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h 2000A Century of Complexity

1900 2000Main way informationtravels in so
iety: paper ele
tri
 signals, radioNumber of parts in
omplex ma
hine: 10,000 (lo
omotive) 1,000,000,000 (CPU)Worst 
onsequen
es ofsingle ma
hine failure: 100s die end of all life?Likelihood a ma
hinein
ludes a 
omputer: very low very high
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h 2000The Need for Some Kind of Formalism

� Be
ause of the in
reasing interdependen
y of systems and the faster andmore automati
 travel of information, failures 
an have a wide impa
t. So
orre
tness is important.� Modern te
hnologi
al systems are just too 
ompli
ated for humans to reasonabout unaided, so automation is needed.� Systems have so many possible states that testing is often impra
ti
al. Itseems that proofs are needed to 
over in�nitely many situations.� So some kind of formalism is needed to aid in design and to ensure safety.
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h 2000What Kind of Formalisms?

A reasoning formalism should at least be:� Corre
t: Only 
orre
t statements 
an be \proven".� Adequate: Needed properties in the problem domain 
an be stated and proved.� Feasible: The resour
es (money, time) used in stating and proving neededproperties must be within pra
ti
al limits.
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h 2000What Kind of Formalisms?

Assuming a minimally a

eptable formalism, we would also like it to be:� EÆ
ient: Costs of both the reasoning pro
ess and the thing being reasonedabout should be minimized.� Supportive of reuse: Slight spe
i�
ation 
hanges should not for
e reprovingproperties for an entire system. Libraries of pre-proved statements should bewell supported.� Elegant: The 
ore of the reasoning formalism should be as simple as possible,to aid in reasoning about the formalism itself.
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h 2000Logi
s, Types, and Rewriting

Logi
s, types, and rewriting are� elegant, as we 
an formulate and (automate) 
lear rules of how they work(e.g., from A and A! B we 
an dedu
e B),� adequate (we 
an express a lot in these tiny formalisms), and� able to be shown 
orre
t.Logi
s, types, and rewriting have existed in various sin
e from the times of thean
ient Babylonians and Greeks (e.g., Eu
lid, Aristotle, et
.).Heriot-Watt University 5
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h 2000Proofs? Logi
s? What are they?

� A proof is the guarantee of some statement provided by a rigorous explanationstated using some logi
.� A logi
 is a formalism for statements and proofs of statements. A logi
 usuallyhas axioms (statements \for free") and rules for 
ombining already provenstatements to prove more statements.� Why do we believe the explanation of a proof? Be
ause a proved statement isderived step by step from expli
it assumptions using a trusted logi
.� There has been an explosion of new logi
s in the 20th 
entury. How do weknow whi
h ones to trust? Fund us and we will tell you : : :Heriot-Watt University 6
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h 2000A Brief History of Logi
 (Aristotle)

� Aristotle (384{322 B.C.) wanted a set of rules that would be powerful enoughfor most intuitively valid proofs.� Aristotle 
orre
tly stated that proof sear
h is harder than proof 
he
king:Given a proof of a statement, one 
an 
he
k that it is a 
orre
t proof.Given a statement, one may not be able to �nd the proof.Aristotle's intuitions on this have been 
on�rmed by G�odel, Turing, and others.
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h 2000A Brief History of Logi
 (Leibniz)

� Leibniz (1646{1717) 
on
eived of automated dedu
tion, i.e., to �nd{ a language L in whi
h arbitrary 
on
epts 
ould be formulated, and{ a ma
hine to determine the 
orre
tness of statements in L.� Su
h a ma
hine 
an not work for every statement a

ording to Aristotle and(later results by) G�odel and Turing.
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h 2000A Brief History of Logi
 (Cantor, Peano, Frege)

The late 1800s saw the beginnings of serious formalization:� Cantor began formalizing set theory [1, 2℄ and made 
ontributions to numbertheory.� Peano formalized arithmeti
 [14℄, but did not treat logi
 or quanti�
ation.� Frege's Begri�ss
hrift [5℄ (1879) was the �rst formalisation of logi
 whi
hpresented logi
al 
on
epts via symbols rather than natural language. Frege'sGrundgesetze der Arithmetik [6, 8℄, 
alled later by others Naive SetTheory (NST), 
ould handle elementary arithmeti
, set theory, logi
, andquanti�
ation.Heriot-Watt University 9
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h 2000A Brief History of Logi
 (Frege's Set Theory)

� Frege's NST allowed a pre
ise de�nition of the vital 
on
ept of the fun
tion. Asa result, NST 
ould in
lude not only fun
tions that take numbers as argumentsand return numbers as results, but also fun
tions that 
an take and returnother sorts of arguments, in
luding fun
tions. These powerful fun
tions werethe key to the formalization of logi
 in NST.� Frege was 
autious: ordinary fun
tions 
ould only take \obje
ts" as arguments,not other fun
tions. However, to gain important expressive power, he alloweda way to turn a fun
tion into an obje
t representing its graph.� Unfortunately, this led to a paradox, due to the impli
it possibility of self-appli
ation of fun
tions.Heriot-Watt University 10
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h 2000A Brief History of Logi
 (Russell's Paradox)

� In 1902, Russell suggested [15℄ and Frege 
ompleted the argument [7℄ thata paradox 
ould o

ur in NST. First, one 
an de�ne S to be \the set of allsets whi
h do not 
ontain themselves". Then, one 
an prove both of thesestatements in NST: S 2 S S =2 S� In fa
t, the same paradox 
ould be en
oded in the systems of Cantor andPeano. As a result, all three systems were in
onsistent | not only 
ould everytrue statement be proved but also every false one! (Three-valued logi
 
ansolve this, but is unsatisfa
tory for other reasons.) Logi
 was in a 
risis.� In 1908, Russell suggested the use of types to solve the problem [16℄.Heriot-Watt University 11
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h 2000A Brief History of Types (Eu
lid)

� Eu
lid's Elements (
ir
a 325 B.C.) begins with:1. A point is that whi
h has no part;2. A line is breadthless length....15. A 
ir
le is a plane �gure 
ontained by one line su
h that all the straightlines falling upon it from one point among those lying within the �gure areequal to one another.� Although the above seems to merely de�ne points, lines, and 
ir
les, it showsmore importantly that Eu
lid distinguished between them. Eu
lid alwaysmentioned to whi
h 
lass (points, lines, et
.) an obje
t belonged.
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h 2000A Brief History of Types (Eu
lid)

� By distinguishing 
lasses of obje
ts, Eu
lid prevented undesired situations, like
onsidering whether two points (instead of two lines) are parallel.� Undesired results? Eu
lid himself would probably have said: impossible results.When 
onsidering whether two obje
ts were parallel, intuition impli
itly for
edhim to think about the type of the obje
ts. As intuition does not support thenotion of parallel points, he did not even try to undertake su
h a 
onstru
tion.� In this manner, types have always been present in mathemati
s, although theywere not noti
ed expli
itly until the late 1800s. If you have studied geometry,then you have some (impli
it) understanding of types.
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h 2000A Brief History of Types (Paradox Threats)

� Starting in the 1800s, mathemati
al systems be
ame less intuitive, for severalreasons:{ Very 
omplex or abstra
t systems.{ Formal systems.{ Something with less intuition than a human using the systems: a 
omputer.� These situations are paradox threats. An example is Frege's NST. In su
h
ases, there is not enough intuition to a
tivate the (impli
it) type theory towarn against an impossible situation. Reasoning pro
eeds within the impossiblesituation and then obtains a result that may be wrong or paradoxi
al.
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h 2000Example Failures due to Type Errors

An untyped 
omputer program may re
eive instru
tions from a �rst-year studentto add the number 3 to the word \four" (instead of the number 4). The
omputer is unaware that \four" is not a number and the result of 3 + \four"is unpredi
table. The 
omputer may� give an answer that is 
learly wrong (for example, true),� give no answer at all, or� give an answer that is not so 
learly wrong (for example, 6).Espe
ially the last situation is highly undesirable.Heriot-Watt University 15
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h 2000A Brief History of Types (Russell)

� To avoid the paradoxes of the systems of Cantor, Peano, and Frege, Russellpres
ribed avoiding self-referen
e and self-appli
ation in his \vi
ious 
ir
leprin
iple":Whatever involves all of a 
olle
tion must not be one of the 
olle
tion.� Russell implemented this in his Rami�ed Theory of Types (RTT) [16℄ whi
hused types and orders. Self-appli
ation was prevented by for
ing fun
tions oforder k to be applied only to arguments of order less than k.� This was 
arried out further by Russell and Whitehead in the famous Prin
ipiaMathemati
a [17℄ (1910-1912), whi
h founded mathemati
s on logi
, as far aspossible, avoiding paradoxes.Heriot-Watt University 16
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h 2000A Brief History of Types (Russell)

� For example, in RTT, one 
an de�ne a fun
tion \+" whi
h is restri
ted to beapplied only to integers.� Although RTT was 
orre
t, unlike NST, the types of RTT have turned outinstead to be too restri
tive for mathemati
s and 
omputer s
ien
e where �xedpoints (to mention one example) play an important role. RTT also for
esdupli
ation of the de�nitions of the number system, the boolean algebra, et
.,at every level.� The exploration of the middle ground between these two extremes has ledto many systems, most of them in the 
ontext of the �-
al
ulus, the �rsthigher-order rewriting system.Heriot-Watt University 17
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h 2000A Qui
k Introdu
tion to Rewriting

We all know how to do algebra:(a+ b)� a by rule x+ y = y + x= (b+ a)� a by rule x� y = x+ (�y)= (b+ a) + (�a) by rule (x+ y) + z = x+ (y + z)= b+ (a+ (�a)) by rule x+ (�x) = 0= b+ 0 by rule x+ 0 = x= bRewriting is the a
tion of repla
ing a subexpression whi
h is mat
hed by aninstan
e of one side of a rule by the 
orresponding instan
e of the other side ofthe same rule. If you have studied algebra, then you are skilled at rewriting.Heriot-Watt University 18
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� Orientation: Usually, most rules 
an only be used from left to right asin x + 0 ! x. Forward use of the oriented rules represents progress in
omputation. Unoriented rules usually do trivial work as in x+ y = y + x.� Termination: It is desirable to show that rewriting halts, i.e., to avoid in�nitesequen
es of the form P ! P1 ! P2 ! � � �.� Con
uen
e: The result of rewriting is independent of the order in the rules areused. For example, 1 + 2 + 3 should rewrite to 6, no matter how we evaluateit.
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h 2000A Brief History of Rewriting (An
ients)

� When the Greeks introdu
ed logi
 they did not have modern-style rewriting.� The Babylonians on the other hand, developed te
hniques for symboli

omputations through their work on algebra. This 
an be viewed as rewriting.� The Arabs of 
ourse �rst introdu
ed algebra in 
lose to its modern form.
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h 2000A Brief History of Rewriting (�-Cal
ulus)

� In the late 1800s, Frege identi�ed the abstra
tion prin
iple: Any expressionmentioning some symbol in zero or more pla
es 
an be turned into a fun
tionby abstra
ting over that symbol.� Introdu
ed in the 1930s, Chur
h's �-
al
ulus made fun
tion abstra
tion anoperator. For example, (�x: x + 5) represents the (unnamed) mathemati
alfun
tion whi
h takes as input any number and returns as output the result ofadding 5 to that number.� The �-
al
ulus provides higher-order rewriting, allowing equations like:f((�x: x+ (1=x))5) = f(5 + (1=5)) = f(5 + 0:2) = f(5:2)Heriot-Watt University 21
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h 2000A Brief History of Rewriting (�-Cal
ulus)

� The type-free �-
al
ulus, whi
h 
an be seen as a small 
omputer programminglanguage, is an ex
ellent theory of fun
tions | it 
an represent all 
omputablefun
tions.� Chur
h intended the type-free �-
al
ulus with logi
al operators to provide afoundation for mathemati
s. Unfortunately, Russell's paradox 
ould also been
oded in the type-free �-
al
ulus, rendering its use for logi
 in
orre
t.� Chur
h introdu
ed the simply typed �-
al
ulus (STLC) [3℄ to provide logi
while avoiding Russell's paradox in a manner similar to RTT. Unfortunately,like RTT, the STLC is too restri
tive. A modern, slightly less restri
tivedes
endant of this approa
h is the so-
alled \higher-order logi
" (HOL).Heriot-Watt University 22
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h 2000The Convergen
e of Logi
s, Types, and Rewriting

� Heyting [10℄, Kolmogorov [12℄, Curry and Feys [4℄ (improved by Howard [11℄),and de Bruijn [13℄ all observed the \propositions as types" or \proofs as terms"(PAT) 
orresponden
e.� In PAT, logi
al operators are embedded in the types of �-terms rather than inthe terms and �-terms are viewed as proofs of the propositions represented bytheir types.� Advantages of PAT in
lude the ability to manipulate proofs, easier supportfor independent proof 
he
king, the possibility of the extra
tion of 
omputerprograms from proofs, and the ability to prove the 
onsisten
y of the logi
 viathe termination of the rewriting system.Heriot-Watt University 23
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� Item notation (similar to the notation of de Bruijn's AUTOMATH) writesfun
tion abstra
tion as (�x)M instead of (�x:M) and fun
tion appli
ation as(NÆ)M instead of M N .� Some of my work has explored some of the huge number of te
hni
al advantagesof item notation over Chur
h's notation, too many to list here. If you are usingChur
h's notation, then you should immediately swit
h to item notation.� In addition, I have obtained a variety of results using item notation whi
hwould have been mu
h more diÆ
ult to �nd otherwise, e.g., various resultswith expli
it substitution, also an extension of !� whi
h is 
on
uent and
onserves strong normalization.Heriot-Watt University 24
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h 2000My Work: Impli
it Redexes

� In the �-term (nÆ)(+Æ)(�f)(mÆ)(�x)(�y)(yÆ)(xÆ)f , the pairs (+Æ)(�f) and(mÆ)(�x) are �-redexes. The pair (nÆ)(�y) is an impli
it �-redex, whi
h wouldbe revealed by 
ontra
ting the two expli
it redexes.� It is quite desirable to have the option of 
ontra
ting impli
it redexes dire
tly(generalized �-redu
tion). Also, there are simple transformations whi
hexpose impli
it �-redexes without 
ontra
ting any �-redexes, 
orrespondingto permutative 
onversions of logi
 and having 
onne
tions with the CPStransformation and lazy evaluation.� My work has proven a number of useful properties of generalized �-redu
tionand transformations whi
h expose impli
it �-redexes.Heriot-Watt University 25
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� Many type theories allow 
ertain steps if two types or terms are 
onvertible.It is essential for pra
ti
al use of these systems (e.g., in theorem proverimplementations su
h as Nuprl, Coq, Lego, et
.) to be able to use de�nitionsin the 
ontext in de
iding these questions of 
onvertibility.� For example, a

ess to de�nitions is needed to be able to show that(aÆ)(�x:�)(�y:x)(�f :a!a)(yÆ)f is typable, be
ause the knowledge that x isan abbreviation for a is not usable in typing the subexpression (yÆ)f .� My work has proven many important properties of type systems with de�nitions.
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h 2000My Work: Expli
it Substitutions

� Systems of expli
it substitution bridge the gap between the meta-theory ofsubstitution and binding and the steps needed to implement these 
on
epts.� My work has provided expli
it substitution 
al
uli having many desirableproperties. They (1) simulate one step �-redu
tion, (2) are 
on
uent (on 
losedterms), (3) preserve strong normalisation (have PSN), (4) have asso
iated
al
uli of substitutions that are SN, (5) have simply typed versions that areSN, (6) possess 
on
uent extensions on open terms whi
h have WN.
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