ULTRA: Useful Logics, Types,
Rewriting, and Applications

Prof. Fairouz Kamareddine
Dept. of Computing & Electrical Engineering
Heriot-Watt University

2 March 2000

Heriot-Watt University

F. D. Kamareddine

Main way information
travels in society:

Number of parts in
complex machine:

Worst consequences of
single machine failure:

Likelihood a machine
includes a computer:

Heriot-Watt University

2 March 2000

A Century of Complexity

1900

2000

paper

electric signals, radio

10,000 (locomotive)

1,000,000,000 (CPU)

100s die

end of all life?

very low

very high

F. D. Kamareddine 2 March 2000

The Need for Some Kind of Formalism

e Because of the increasing interdependency of systems and the faster and
more automatic travel of information, failures can have a wide impact. So
correctness is important.

e Modern technological systems are just too complicated for humans to reason
about unaided, so automation is needed.

e Systems have so many possible states that testing is often impractical. It
seems that proofs are needed to cover infinitely many situations.

e So some kind of formalism is needed to aid in design and to ensure safety.

Heriot-Watt University 2

F. D. Kamareddine 2 March 2000

What Kind of Formalisms?

A reasoning formalism should at /east be:

e Correct: Only correct statements can be “proven”.
e Adequate: Needed properties in the problem domain can be stated and proved.

e feasible: The resources (money, time) used in stating and proving needed
properties must be within practical limits.

Heriot-Watt University 3

F. D. Kamareddine 2 March 2000

What Kind of Formalisms?

Assuming a minimally acceptable formalism, we would also like it to be:

e Efficient. Costs of both the reasoning process and the thing being reasoned
about should be minimized.

e Supportive of reuse: Slight specification changes should not force reproving
properties for an entire system. Libraries of pre-proved statements should be

well supported.

e Elegant: The core of the reasoning formalism should be as simple as possible,
to aid in reasoning about the formalism itself.

Heriot-Watt University 4

F. D. Kamareddine 2 March 2000

Logics, Types, and Rewriting

Logics, types, and rewriting are

e clegant, as we can formulate and (automate) clear rules of how they work
(e.g., from A and A — B we can deduce B),

e adequate (we can express a lot in these tiny formalisms), and

e able to be shown correct.

Logics, types, and rewriting have existed in various since from the times of the
ancient Babylonians and Greeks (e.g., Euclid, Aristotle, etc.).

Heriot-Watt University 5

F. D. Kamareddine 2 March 2000

Proofs? Logics? What are they?

e A proof is the guarantee of some statement provided by a rigorous explanation
stated using some /ogic.

e A logic is a formalism for statements and proofs of statements. A logic usually
has axioms (statements “for free”) and rules for combining already proven
statements to prove more statements.

e \Why do we believe the explanation of a proof? Because a proved statement is
derived step by step from explicit assumptions using a trusted logic.

e There has been an explosion of new logics in the 20th century. How do we
know which ones to trust? Fund us and we will tell you ...

Heriot-Watt University 6

F. D. Kamareddine 2 March 2000

A Brief History of Logic (Aristotle)

e Aristotle (384-322 B.C.) wanted a set of rules that would be powerful enough
for most intuitively valid proofs.
e Aristotle correctly stated that proof search is harder than proof checking:

Given a proof of a statement, one can check that it is a correct proof.
Given a statement, one may not be able to find the proof.

Aristotle’s intuitions on this have been confirmed by Godel, Turing, and others.

Heriot-Watt University 7

F. D. Kamareddine 2 March 2000

A Brief History of Logic (Leibniz)

e Leibniz (1646-1717) conceived of automated deduction, i.e., to find

— a language L in which arbitrary concepts could be formulated, and
— a machine to determine the correctness of statements in L.

e Such a machine can not work for every statement according to Aristotle and
(later results by) Godel and Turing.

Heriot-Watt University

F. D. Kamareddine 2 March 2000

A Brief History of Logic (Cantor, Peano, Frege)

The late 1800s saw the beginnings of serious formalization:

e Cantor began formalizing set theory [1, 2] and made contributions to number
theory.

e Peano formalized arithmetic [14], but did not treat logic or quantification.

o Frege's Begriffsschrift [5] (1879) was the first formalisation of logic which
presented logical concepts via symbols rather than natural language. Frege's
Grundgesetze der Arithmetik [6, 8], called later by others Naive Set
Theory (NST), could handle elementary arithmetic, set theory, logic, and
quantification.

Heriot-Watt University 9

F. D. Kamareddine 2 March 2000

A Brief History of Logic (Frege’s Set Theory)

o Frege’'s NST allowed a precise definition of the vital concept of the function. As
a result, NST could include not only functions that take numbers as arguments
and return numbers as results, but also functions that can take and return
other sorts of arguments, including functions. These powerful functions were
the key to the formalization of logic in NST.

e Frege was cautious: ordinary functions could only take “objects” as arguments,
not other functions. However, to gain important expressive power, he allowed
a way to turn a function into an object representing its graph.

e Unfortunately, this led to a paradox, due to the implicit possibility of self-
application of functions.

Heriot-Watt University 10

F. D. Kamareddine 2 March 2000

A Brief History of Logic (Russell’s Paradox)

e In 1902, Russell suggested [15] and Frege completed the argument [7] that
a paradox could occur in NST. First, one can define S to be “the set of all
sets which do not contain themselves’. Then, one can prove both of these
statements in NST:

SesS S¢S

e In fact, the same paradox could be encoded in the systems of Cantor and
Peano. As a result, all three systems were inconsistent — not only could every
true statement be proved but also every false one! (Three-valued logic can
solve this, but is unsatisfactory for other reasons.) Logic was in a crisis.

e In 1908, Russell suggested the use of types to solve the problem [16].

Heriot-Watt University 11

F. D. Kamareddine 2 March 2000

A Brief History of Types (Euclid)

e Euclid's Elements (circa 325 B.C.) begins with:

1. A point is that which has no part;
2. A line is breadthless length.

15. A circle is a plane figure contained by one line such that all the straight
lines falling upon it from one point among those lying within the figure are
equal to one another.

e Although the above seems to merely define points, lines, and circles, it shows
more importantly that Euclid distinguished between them. Euclid always
mentioned to which class (points, lines, etc.) an object belonged.

Heriot-Watt University 12

F. D. Kamareddine 2 March 2000

A Brief History of Types (Euclid)

e By distinguishing classes of objects, Euclid prevented undesired situations, like
considering whether two points (instead of two lines) are parallel.

e Undesired results? Euclid himself would probably have said: impossible results.
When considering whether two objects were parallel, intuition implicitly forced
him to think about the type of the objects. As intuition does not support the
notion of parallel points, he did not even try to undertake such a construction.

e In this manner, types have always been present in mathematics, although they

were not noticed explicitly until the late 1800s. If you have studied geometry,
then you have some (implicit) understanding of types.

Heriot-Watt University 13

F. D. Kamareddine 2 March 2000

A Brief History of Types (Paradox Threats)

e Starting in the 1800s, mathematical systems became less intuitive, for several
reasons:

— Very complex or abstract systems.
— Formal systems.
— Something with less intuition than a human using the systems: a computer.

e These situations are paradox threats. An example is Frege's NST. In such
cases, there is not enough intuition to activate the (implicit) type theory to
warn against an impossible situation. Reasoning proceeds within the impossible
situation and then obtains a result that may be wrong or paradoxical.

Heriot-Watt University 14

F. D. Kamareddine 2 March 2000

Example Failures due to Type Errors

An untyped computer program may receive instructions from a first-year student
to add the number 3 to the word “four” (instead of the number 4). The
computer is unaware that “four” is not a number and the result of 3 + “four”
is unpredictable. The computer may

e give an answer that is clearly wrong (for example, true),
e give no answer at all, or
e give an answer that is not so clearly wrong (for example, 6).

Especially the last situation is highly undesirable.

Heriot-Watt University 15

F. D. Kamareddine 2 March 2000

A Brief History of Types (Russell)

e To avoid the paradoxes of the systems of Cantor, Peano, and Frege, Russell
prescribed avoiding self-reference and self-application in his “vicious circle
principle”:

Whatever involves all of a collection must not be one of the collection.
e Russell implemented this in his Ramified Theory of Types (RTT) [16] which

used types and orders. Self-application was prevented by forcing functions of
order k to be applied only to arguments of order less than k.

e This was carried out further by Russell and Whitehead in the famous Principia
Mathematica [17] (1910-1912), which founded mathematics on logic, as far as
possible, avoiding paradoxes.

Heriot-Watt University 16

F. D. Kamareddine 2 March 2000

A Brief History of Types (Russell)

e For example, in RTT, one can define a function “+" which is restricted to be
applied only to integers.

e Although RTT was correct, unlike NST, the types of RTT have turned out
instead to be too restrictive for mathematics and computer science where fixed
points (to mention one example) play an important role. RTT also forces
duplication of the definitions of the number system, the boolean algebra, etc.,
at every level.

e The exploration of the middle ground between these two extremes has led
to many systems, most of them in the context of the A-calculus, the first
higher-order rewriting system.

Heriot-Watt University 17

F. D. Kamareddine 2 March 2000

A Quick Introduction to Rewriting

We all know how to do algebra:

(a+b)—a by rule r+y=y+=x
= (b+a)—a by rule r—y=1z+(—y)
= (b+a)+ (—a) by rule (z+y)+z=x+ (y+ 2)
= b+ (a+ (—a)) by rule x4+ (—x) =0
= b+0 by rule r+0==x
= b

Rewriting is the action of replacing a subexpression which is matched by an
instance of one side of a rule by the corresponding instance of the other side of
the same rule. If you have studied algebra, then you are skilled at rewriting.

Heriot-Watt University 18

F. D. Kamareddine 2 March 2000

Important Issues in Rewriting

e Orientation: Usually, most rules can only be used from left to right as
in x +0 — x. Forward use of the oriented rules represents progress in
computation. Unoriented rules usually do trivial work as in x +y =y + .

e [ermination: It is desirable to show that rewriting halts, i.e., to avoid infinite
sequences of the form P — P, — Py — - - -.

e (Confluence: The result of rewriting is independent of the order in the rules are
used. For example, 1 4+ 2 4+ 3 should rewrite to 6, no matter how we evaluate
it.

Heriot-Watt University 19

F. D. Kamareddine 2 March 2000

A Brief History of Rewriting (Ancients)

e When the Greeks introduced logic they did not have modern-style rewriting.

e The Babylonians on the other hand, developed techniques for symbolic
computations through their work on algebra. This can be viewed as rewriting.

e The Arabs of course first introduced algebra in close to its modern form.

Heriot-Watt University 20

F. D. Kamareddine 2 March 2000

A Brief History of Rewriting (A-Calculus)

e In the late 1800s, Frege identified the abstraction principle: Any expression
mentioning some symbol in zero or more places can be turned into a function
by abstracting over that symbol.

e Introduced in the 1930s, Church's M-calculus made function abstraction an
operator. For example, (Ax. z + 5) represents the (unnamed) mathematical
function which takes as input any number and returns as output the result of
adding 5 to that number.

e The A-calculus provides higher-order rewriting, allowing equations like:

flAr. x4+ (1/2))5) = f(5+ (1/5)) = f(540.2) = f(5.2)

Heriot-Watt University 21

F. D. Kamareddine 2 March 2000

A Brief History of Rewriting (A-Calculus)

e The type-free A-calculus, which can be seen as a small computer programming
language, is an excellent theory of functions — it can represent all computable
functions.

e Church intended the type-free A\-calculus with logical operators to provide a
foundation for mathematics. Unfortunately, Russell’'s paradox could also be
encoded in the type-free A-calculus, rendering its use for logic incorrect.

e Church introduced the simply typed A-calculus (STLC) [3] to provide logic
while avoiding Russell’'s paradox in a manner similar to RTT. Unfortunately,
like RTT, the STLC is too restrictive. A modern, slightly less restrictive
descendant of this approach is the so-called “higher-order logic” (HOL).

Heriot-Watt University 22

F. D. Kamareddine 2 March 2000

The Convergence of Logics, Types, and Rewriting

e Heyting [10], Kolmogorov [12], Curry and Feys [4] (improved by Howard [11]),
and de Bruijn [13] all observed the “propositions as types” or “proofs as terms”
(PAT) correspondence.

e In PAT, logical operators are embedded in the types of A\-terms rather than in
the terms and A-terms are viewed as proofs of the propositions represented by
their types.

e Advantages of PAT include the ability to manipulate proofs, easier support
for independent proof checking, the possibility of the extraction of computer
programs from proofs, and the ability to prove the consistency of the logic via
the termination of the rewriting system.

Heriot-Watt University 23

F. D. Kamareddine 2 March 2000

My Work: Item Notation

e /tem notation (similar to the notation of de Bruijn’s AUTOMATH) writes

function abstraction as (A;)M instead of (Ax. M) and function application as
(N&)M instead of M N.

e Some of my work has explored some of the huge number of technical advantages
of item notation over Church’s notation, too many to list here. If you are using
Church’s notation, then you should immediately switch to item notation.

e In addition, | have obtained a variety of results using item notation which
would have been much more difficult to find otherwise, e.g., various results
with explicit substitution, also an extension of —3 which is confluent and
conserves strong normalization.

Heriot-Watt University 24

F. D. Kamareddine 2 March 2000

My Work: Implicit Redexes

o In the A-term (nd)(+0)(Af)(md)(Az)(Ay)(yd)(xd)f, the pairs (+6)(Af) and
(md)(Ag) are B-redexes. The pair (nd)(A,) is an implicit 3-redex, which would
be revealed by contracting the two explicit redexes.

e |t is quite desirable to have the option of contracting implicit redexes directly
(generalized [-reduction). Also, there are simple transformations which
expose implicit 3-redexes without contracting any (-redexes, corresponding
to permutative conversions of logic and having connections with the CPS
transformation and lazy evaluation.

e My work has proven a number of useful properties of generalized 3-reduction
and transformations which expose implicit J-redexes.

Heriot-Watt University 25

F. D. Kamareddine 2 March 2000

My Work: Definitions

e Many type theories allow certain steps if two types or terms are convertible.
It is essential for practical use of these systems (e.g., in theorem prover
implementations such as Nuprl, Coq, Lego, etc.) to be able to use definitions
in the context in deciding these questions of convertibility.

e For example, access to definitions is needed to be able to show that
(@) (Apix) (Ayiz) (A fia—sa)(y0) f is typable, because the knowledge that z is
an abbreviation for a is not usable in typing the subexpression (yd)f.

e My work has proven many important properties of type systems with definitions.

Heriot-Watt University 26

F. D. Kamareddine 2 March 2000

My Work: Explicit Substitutions

e Systems of explicit substitution bridge the gap between the meta-theory of
substitution and binding and the steps needed to implement these concepts.

e My work has provided explicit substitution calculi having many desirable
properties. They (1) simulate one step 3-reduction, (2) are confluent (on closed
terms), (3) preserve strong normalisation (have PSN), (4) have associated
calculi of substitutions that are SN, (5) have simply typed versions that are
SN, (6) possess confluent extensions on open terms which have WN.

Heriot-Watt University 27

F. D. Kamareddine 2 March 2000

References

[1] G. Cantor. Beitrage zur Begriindung der transfiniten Mengenlehre (Erster
Artikel). Mathematische Annalen, 46:481-512, 1895.

[2] G. Cantor. Beitrage zur Begriindung der transfiniten Mengenlehre (Zweiter
Artikel). Mathematische Annalen, 49:207-246, 1897.

[3] Alonzo Church. A formulation of the simple theory of types. The Journal of
Symbolic Logic, 5:56-68, 1940.

[4] H. B. Curry and R. Feys. Combinatory Logic I. Studies in Logic and the
Foundations of Mathematics. North-Holland, Amsterdam, 1958.

Heriot-Watt University 28

F. D. Kamareddine 2 March 2000

[5] G. Frege. Begriffsschrift, eine der arithmetischen nachgebildete Formel-
sprache des reinen Denkens. Nebert, Halle, 1879. Also in [9], pages 1-82.

[6] G. Frege. Grundgesetze der Arithmetik, begriffschriftlich abgeleitet, volume |.
Pohle, Jena, 1892. Reprinted 1962 (Olms, Hildesheim).

[7] G. Frege. Letter to Russell. English translation in [9], pages 127-128, 1902.

[8] G. Frege. Grundgesetze der Arithmetik, begriffschriftlich abgeleitet,
volume Il. Pohle, Jena, 1903. Reprinted 1962 (Olms, Hildesheim).

[9] J. van Heijenoort, editor. From Frege to Godel: A Source Book in
Mathematical Logic, 1879-1931. Harvard University Press, Cambridge,
Massachusetts, 1967.

Heriot-Watt University 29

F. D. Kamareddine 2 March 2000

[10] A. Heyting. Mathematische Grundlagenforschung. Intuitionismus.

Beweistheorie. Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-
Verlag, Berlin, 1934.

[11] W. A. Howard. The formulaes-as-types notion of construction. In
Jonathan P. Seldin and J. Roger Hindley, editors, To H. B. Curry: Essays

on Combinatory Logic, Lambda Calculus, and Formalism, pages 479-490.
Academic Press, 1980.

[12] A. N. Kolmogorov. Zur Deutung der Intuitionistischen Logik.
Mathematisches Zeitschrift, 35:58-65, 1932.

[13] R. Nederpelt, J. H. Geuvers, and Roel C. de Vrijer. Selected Papers on
Automath. North-Holland, Amsterdam, 1994.

Heriot-Watt University 30

F. D. Kamareddine 2 March 2000

[14] G. Peano. Arithmetices principia, nova methodo exposita. Bocca, Turin,
1889. English translation in [9], pages 83-97.

[15] B. Russell. Letter to Frege. English translation in [9], pages 124-125, 1902.

[16] B. Russell. Mathematical logic as based on the theory of types. American
Journal of Mathematics, 30:222-262, 1908. Also in [9], pages 150-182.

[17] A.N. Whitehead and B. Russell. Principia Mathematica, volume I, Il, IlI.
Cambridge University Press, 1910, 19272, All references are to the first
volume, unless otherwise stated.

Heriot-Watt University 31

