Explicit Extensions in (Typed) λ-calculi

Fairouz Kamareddine
Dept. of Computing \& Electrical Engineering
Heriot-Watt University

10 April 2000

Item Notation/Lambda Calculus à la de Bruijn

- $\mathcal{I}(\lambda x . B)=[x] \mathcal{I}(B) \quad$ and $\quad \mathcal{I}(A B)=(\mathcal{I}(B)) \mathcal{I}(A)$
- $\mathcal{I}((\lambda x .(\lambda y . x y)) z) \equiv(z)[x]y x$. The items are $(z),[x],[y]$ and (y).
- applicator wagon (z) and abstractor wagon $[x]$ occur NEXT to each other.
- A term is a wagon followed by a term.
- $(\beta) \quad(\lambda x . A) B \rightarrow_{\beta} A[x:=B]$ becomes
- $(\beta) \quad(B)[x] A \rightarrow_{\beta} A[x:=B]$ or $(B)[x] A \rightarrow_{\beta}[x:=B] A$
- Sometimes, de Bruijn wrote: $(\beta) \quad(B)[x] A \rightarrow_{\beta}(B)[x][x:=B] A$

Redexes in Item Notation

Figure 1: Redexes in item notation

Well-balanced segments

- The "bracketing structure" of $\left.t=\left(\left(\lambda_{x} \cdot\left(\lambda_{y} \cdot \lambda_{z} \cdot--\right) c\right) b\right) a\right)$, is compatible with ' $\left\{_{1}\left\{_{2}\left\{_{3}\right\}_{2}\right\}_{1}\right\}_{3}$ ', where ' $\{i \text { ' and ' }\}_{i}$ ' match.
- $(a)(b)[x](c)[y][z](d)$ has the bracketing structure $\{\}\}\}$.
- Define a well-balanced segment \bar{s} to be a segment of partnered () and [] pairs that match like ' $\{$ ' and ' $\}$ '.
- Let $\bar{s} \equiv(a)(b)[x](c)[y][z](d)$. Then: $(a),(b),[x],(c),[y]$, and $[z]$, are the partnered main items of \bar{s}. (d) is a bachelor item. $(a)(b)[x](c)[y][z]$ is well-balanced.

Generalised reduction

- (general β) $\quad(b) \bar{s}[v] a \leadsto{ }_{\beta} \bar{s}\{a[v:=b]\} \quad$ if \bar{s} is well-balanced
- Many step general β-reduction ω_{β} is the reflexive transitive closure of \sim_{β}.

$t \equiv(a)(b)[x](c)[y][z](d) z$	\sim_{β}
- $\quad(b)[x](c)[y]\{((d) z)[z:=a]\}$	\equiv
$\quad(b)[x](c)[y](d) a$	

Lemma 1. If $a \rightarrow_{\beta} b$ then $a \sim_{\beta} b$. And, If $a \sim_{\beta} b$ then $a=_{\beta} b$.
Corollary 1. If $a \rightsquigarrow_{\beta} b$ then $a=_{\beta} b$.
Theorem 1. The general β-reduction is Church-Rosser. I.e. If $a \propto_{\beta} b$ and $a \omega_{\beta} c$, then there exists d such that $b \omega_{\beta} d$ and $c \infty \omega_{\beta} d$.

Term reshuffling

- $(a)(b)[x](c)[y][z](d) z$ can be easily rewritten as $(b)[x](c)[y](a)[z](d) z$ by moving the item (a) to the right.
- I.e., we can keep the old β-axiom and we can contract redexes in any order.
- difficult to describe how $\left(\left(\lambda_{x} \cdot\left(\lambda_{y} \cdot \lambda_{z} \cdot z d\right) c\right) b\right) a$, is rewritten as $\left(\lambda_{x} \cdot\left(\lambda_{y} \cdot\left(\lambda_{z} \cdot z d\right) a\right) c\right) b$.

Figure 2: Term reshuffling in item notation

Uses of Generalised reduction and term reshuffling?

- Regnier's premier redex in [Reg 92] is a generalised redex. [Reg 94] shows that the perpetual reduction strategy finds the longest reduction path when the term is SN. Vidal in [Vid 89] and Sabry in [SF 92] used extended redexes.
- [KTU 94] uses some generalised reduction to show that typability in ML is equivalent to acyclic semi-unification.
- [Nederpelt 73] and [dG 93] and [KW 95a] use generalised reduction and/or term reshuffling to reduce strong normalisation for β-reduction to weak normalisation for related reductions.
- [KW 94] uses amongst other things, generalised reduction and term reshuffling to reduce typability in the rank-2 restriction of system F to the problem of acyclic semi-unification.
- [AFM 95] uses a form of term-reshuffling (which they call "let-C") as a part of an analysis of how to implement sharing in a real language interpreter in a way that directly corresponds to a formal calculus.
- The above description can be found in [KN 95]. Also, [KN 95] showed that generalised reduction makes more redexes visible and hence allows for more flexibility in reducing a term.
- [BKN 96] showed that with generalised reduction one may indeed avoid size explosion without the cost of a longer reduction path and that λ-calculus can be elegantly extended with definitions which result in shorter type derivation.
- [Kam 00] shows that generalised reduction is the first relation for which both conservation and postponement of k-redexes hold. [Kam 00] shows that generalised reduction has PSN.

Partnered and Bachelor Items

"partnered" and "bachelors" items help categorize the main items of a term:
Lemma 2. Let \bar{s} be the body of a term a. Then the following holds:

1. Each bachelor main abstraction item in \bar{s} precedes each bachelor main application item in \bar{s}.
2. \bar{s} minus all bachelor main items equals a well-balanced segment.
3. The removal from \bar{s} of all main reducible couples, leaves behind $\left[v_{1}\right] \ldots\left[v_{n}\right]\left(a_{1}\right) \ldots\left(a_{m}\right)$, the segment consisting of all bachelor main abstraction and application items.
4. If $\bar{s} \equiv \overline{s_{1}}(b) \overline{s_{2}}[v] \overline{s_{3}}$ where $[v]$ and (b) match, then $\overline{s_{2}}$ is well-balanced.

Corollary 2. For each non-empty segment \bar{s}, there is a unique partitioning in segments $\overline{s_{0}}, \overline{s_{1}}, \cdots, \overline{s_{n}}$, such that $\bar{s} \equiv \overline{s_{0}} \overline{s_{1}} \ldots \overline{s_{n}}$ and:

1. $\forall 0 \leq i \leq n, \overline{s_{i}}$ is well-balanced in \bar{s} for even i and $\overline{s_{i}}$ is bachelor in \bar{s} for odd i.
2. If $\overline{s_{i}}$ and $\overline{s_{j}}$ for $0 \leq i, j \leq n$ are bachelor abstraction resp. application segments, then $\overline{s_{i}}$ precedes $\overline{s_{j}}$ in \bar{s}.
3. If $i \geq 1$ then $\overline{s_{2 i}} \not \equiv \emptyset$.

This is actually a very nice corollary. It tells us a lot about the structure of our terms.

Example

$\bar{s} \equiv[x][y](a)[z]\left[x^{\prime}\right](b)(c)(d)\left[y^{\prime}\right]\left[z^{\prime}\right](e)$, has the following partitioning:

- well-balanced segment $\overline{s_{0}} \equiv \emptyset$
- bachelor segment $\overline{s_{1}} \equiv[x][y]$,
- well-balanced segment $\overline{s_{2}} \equiv(a)[z]$,
- bachelor segment $\overline{s_{3}} \equiv\left[x^{\prime}\right](b)$,
- well-balanced segment $\overline{s_{4}} \equiv(c)(d)\left[y^{\prime}\right]\left[z^{\prime}\right]$,
- bachelor segment $\overline{5_{5}} \equiv(e)$.

Using () everywhere

- We will replace (a) by $(a \delta)$.
- We will replace $[x]$ by $\left(\lambda_{x}\right)$ or $\left(\varepsilon \lambda_{x}\right)$; and $[x: A]$ by $\left(A \lambda_{x}\right)$.
- New items: substitution items $\left(A \sigma_{x}\right)$ and typing items $(\Gamma \tau)$.
- For example:
$(\beta) \quad(B \delta)\left(\lambda_{x}\right) A \rightarrow_{\beta}(B \delta)\left(\lambda_{x}\right)\left(B \sigma_{x}\right) A$

Type Theory in Item Notation

- $\mathcal{T}=*|\square| V|\mathcal{T} \mathcal{T}| \pi_{V: \mathcal{T} \cdot \mathcal{T}}$
- $(\beta) \quad\left(\lambda_{x: B} \cdot A\right) C \rightarrow_{\beta} A[x:=C]$
- I which translates terms from classical notation to item notation such that:

$$
\begin{array}{ll}
\mathcal{I}(A) & =A \\
\mathcal{I}\left(\pi_{x: A} \cdot B\right) & =\left(\mathcal{I}(A) \pi_{x}\right) \mathcal{I}(B) \\
\mathcal{I}(A B) & =(\mathcal{I}(B) \delta) \mathcal{I}(A)
\end{array} \quad \text { if } A \in\{*, \square\} \cup V
$$

- $(\beta) \quad\left(\lambda_{x: B} . A\right) C \rightarrow_{\beta} A[x:=C]$
- $(\beta) \quad(C \delta)\left(B \lambda_{x}\right) A \rightarrow_{\beta}\left(C \sigma_{x}\right) A$

Trees

Figure 3: binary tree of $\left(\lambda_{x: z} \cdot x y\right) u$

Figure 4: layered tree of $\left(\lambda_{x: z} \cdot x y\right) u$
$\mathcal{I}\left(\left(\lambda_{x: z} . x y\right) u\right) \equiv(u \delta)\left(z \lambda_{x}\right)(y \delta) x$

Compatibility

- In Classical notation:

$$
\begin{array}{ll}
- & \frac{A_{1} \rightarrow A_{2}}{A_{1} B \rightarrow A_{2} B} \quad \frac{B_{1} \rightarrow B_{2}}{A B_{1} \rightarrow A B_{2}} \\
- & \frac{A_{1} \rightarrow A_{2}}{\pi_{x: A_{1}} \cdot B \rightarrow \pi_{x: A_{2}} \cdot B} \quad \frac{B_{1} \rightarrow B_{2}}{\pi_{x: A} \cdot B_{1} \rightarrow \pi_{x: A} \cdot B_{2}}
\end{array}
$$

- In Item notation:
-

$\frac{A_{1} \rightarrow A_{2}}{\left(A_{1} \omega\right) B \rightarrow\left(A_{2} \omega\right) B}$
$\frac{B_{1} \rightarrow B_{2}}{(A \omega) B_{1} \rightarrow(A \omega) B_{2}}$

Restrictions of terms

The restriction $t \uparrow x^{\circ}$ of a term t to a variable occurrence x° in t is a term consisting of precisely those "parts" of t that may be relevant for this x°, especially as regards binding, typing and substitution.

- the type of x° in t is the type of x° in $t \upharpoonright x^{\circ}$,
- the λ^{\prime} 's relevant to x° in t appear also in $t \uparrow x^{\circ}$ and have the same binding relation to x°,
- If in t, any substitution for x° is possible, then it is also possible in $t \uparrow x^{\circ}$.

Example of term restriction

- $t \equiv\left(* \lambda_{x}\right)\left(x \lambda_{v}\right)(x \delta)\left(* \lambda_{y}\right)\left(\left(x \lambda_{z}\right) y^{\circ} \delta\right)\left(y \lambda_{u}\right) u$.
- Only $\left(* \lambda_{x}\right),\left(x \lambda_{v}\right),(x \delta),\left(* \lambda_{y}\right)$ and $\left(x \lambda_{z}\right)$ are of importance for y°.
- y° is in the scope of $\left(* \lambda_{x}\right),\left(x \lambda_{v}\right),\left(* \lambda_{y}\right)$ and $\left(x \lambda_{z}\right)$.
- The x is a candidate for substitution for y°, due to the presence of the $\delta \lambda$ segment $(x \delta)\left(* \lambda_{y}\right)$ meaning that the x will substitute y in $\left(\left(x \lambda_{z}\right) y^{\circ} \delta\right)\left(y \lambda_{u}\right) u$.
- Nothing else in t is relevant to y°.
- $t \vDash y^{\circ}$ is $\left(* \lambda_{x}\right)\left(x \lambda_{v}\right)(x \delta)\left(* \lambda_{y}\right)\left(x \lambda_{z}\right)$. Remove everything to the right of y° : $\left(* \lambda_{x}\right)\left(x \lambda_{v}\right)(x \delta)\left(* \lambda_{y}\right)\left(\left(x \lambda_{z}\right)\right.$. Remove all extra parentheses.
- If t is written $\lambda_{x: *} \cdot \lambda_{v: x} \cdot\left(\lambda_{y: *} \cdot\left(\lambda_{u: y} \cdot u\right) \lambda_{z: x} . y^{\circ}\right) x$ then $t \upharpoonright y^{\circ}$ is less obvious.

restriction trees

$$
\begin{aligned}
& \text { * } \\
& t \equiv\left(* \lambda_{x}\right)\left(\left(x \lambda_{u}\right)\left((u \delta)\left(x \lambda_{t}\right) x^{0} \lambda_{y}\right)\left(u \lambda_{z}\right) y \lambda_{v}\right) u
\end{aligned}
$$

$$
\begin{aligned}
& t \uparrow x^{\circ} \equiv\left(* \lambda_{x}\right)\left(x \lambda_{u}\right)(u \delta)\left(x \lambda_{t}\right) x^{\circ}
\end{aligned}
$$

Figure 5: A term and its restriction to a variable

Definition of term restriction

Definition 1. $\quad x^{\circ} \mid x^{\circ} \equiv x$ and $\left(t_{1} \omega\right) t_{2} \upharpoonright x^{\circ} \equiv \begin{cases}t_{1} \upharpoonright x^{\circ} & \text { if } x^{\circ} \text { occurs in } t_{1} \\ \left(t_{1} \omega\right)\left(t_{2} \upharpoonright x^{\circ}\right) & \text { if } x^{\circ} \text { occurs in } t_{2}\end{cases}$
Let t be $\left(* \lambda_{x}\right)\left(\left(x \lambda_{u}\right)\left((u \delta)\left(x \lambda_{t}\right) x^{\circ} \lambda_{y}\right)\left(u \lambda_{z}\right) y \lambda_{v}\right) u$.

$$
\begin{aligned}
\text { Then } t \upharpoonright x^{\circ} & \equiv\left(\left(* \lambda_{x}\right)\left(\left(x \lambda_{u}\right)\left((u \delta)\left(x \lambda_{t}\right) x^{\circ} \lambda_{y}\right)\left(u \lambda_{z}\right) y \lambda_{v}\right) u\right) \upharpoonright x^{\circ} \\
& \equiv\left(* \lambda_{x}\right)\left(\left(\left(x \lambda_{u}\right)\left((u \delta)\left(x \lambda_{t}\right) x^{\circ} \lambda_{y}\right)\left(u \lambda_{z}\right) y \lambda_{v}\right) u \upharpoonright x^{\circ}\right) \\
& \equiv\left(* \lambda_{x}\right)\left(\left(x \lambda_{u}\right)\left((u \delta)\left(x \lambda_{t}\right) x^{\circ} \lambda_{y}\right)\left(u \lambda_{z}\right) y \upharpoonright x^{\circ}\right) \\
& \equiv\left(* \lambda_{x}\right)\left(x \lambda_{u}\right)\left(\left((u \delta)\left(x \lambda_{t}\right) x^{\circ} \lambda_{y}\right)\left(u \lambda_{z}\right) y \upharpoonright x^{\circ}\right) \\
& \equiv\left(* \lambda_{x}\right)\left(x \lambda_{u}\right)\left((u \delta)\left(x \lambda_{t}\right) x^{\circ} \upharpoonright x^{\circ}\right) \\
& \equiv\left(* \lambda_{x}\right)\left(x \lambda_{u}\right)(u \delta)\left(\left(x \lambda_{t}\right) x^{\circ} \upharpoonright x^{\circ}\right) \\
& \equiv\left(* \lambda_{x}\right)\left(x \lambda_{u}\right)(u \delta)\left(x \lambda_{t}\right)\left(x^{\circ} \upharpoonright x^{\circ}\right) \\
& \equiv\left(* \lambda_{x}\right)\left(x \lambda_{u}\right)(u \delta)\left(x \lambda_{t}\right) x
\end{aligned}
$$

Describing normal forms in a substitution calculus

[KR 95] provided λs, a calculus of substitution à la de Bruijn, which remains as close as possible to the classical λ-calculus. The set of terms, noted Λs, of the λs-calculus is given as follows:

$$
\Lambda s::=\mathbb{N}|\Lambda s \Lambda s| \lambda \Lambda s\left|\Lambda s \sigma^{i} \Lambda s\right| \varphi_{k}^{i} \Lambda s \quad \text { where } i \geq 1, k \geq 0 .
$$

The set of open terms, noted $\Lambda s_{o p}$ is given as follows:
$\Lambda s_{o p}::=\mathbf{V}|\mathbb{N}| \Lambda s_{o p} \Lambda s_{o p}\left|\lambda \Lambda s_{o p}\right| \Lambda s_{o p} \sigma \Lambda s_{o p} \mid \varphi_{k}^{i} \Lambda s_{o p} \quad$ where $\quad i \geq 1, \quad k \geq 0$

The λs-calculus

We use λs to denote this set of rules.

The λs_{e}-calculus

The λs_{e}-calculus is obtained by adding the following rules to those of the λs-calculus.

σ - σ-transition	$(a \sigma b) \sigma^{j} c$	\longrightarrow	$\left(a \sigma^{j+1} c\right) \sigma\left(b \sigma^{j-i+1} c\right)$	if $i \leq j$
$\sigma-\varphi$-transition 1	$\left(\varphi_{k}^{i} a\right) \sigma^{j} b$	\longrightarrow	$\varphi_{k}^{i-1} a$	if $k<j<k+i$
$\sigma-\varphi$-transition 2	$\left(\varphi_{k}^{i} a\right) \sigma^{j} b$	\longrightarrow	$\varphi_{k}^{i}\left(a \sigma^{j-i+1} b\right)$	if $k+i \leq j$
$\varphi-\sigma$-transition	$\varphi_{k}^{i}\left(a \sigma^{j} b\right)$	$\longrightarrow\left(\varphi_{k+1}^{i} a\right) \sigma^{j}\left(\varphi_{k+1-j}^{i} b\right)$	if $j \leq k+1$	
φ - φ-transition 1	$\varphi_{k}^{i}\left(\varphi_{l}^{j} a\right)$	$\longrightarrow \varphi_{l}^{j}\left(\varphi_{k+1-j}^{i} a\right)$	if $l+j \leq k$	
φ - φ-transition 2	$\varphi_{k}^{i}\left(\varphi_{l}^{j} a\right)$	\longrightarrow	$\varphi_{l}^{j+i-1} a$	if $l \leq k<l+j$

We use λs_{e} to denote this set of rules.

s_{e}-normal forms in classical notation

It is cumbersome to describe s_{e}-normal forms of open terms. But this description is needed to show the weak normalisation of the s_{e}-calculus. In classical notation, an open term is an s_{e}-normal form iff one of the following holds:

- $a \in \mathbf{V} \cup \mathbb{I N}$, i.e. a is a variable or a de Bruijn number.
- $a=b c$, where b and c are s_{e}-normal forms.
- $a=\lambda b$, where b is an s_{e}-normal form.
- $a=b \sigma^{j} c$, where c is an s_{e}-nf and b is an s_{e}-nf of the form X, or $d \sigma^{i} e$ with $j<i$, or $\varphi_{k}^{i} d$ with $j \leq k$.
- $a=\varphi_{k}^{i} b$, where b is an s_{e}-nf of the form X, or $c \sigma^{j} d$ with $j>k+1$, or $\varphi_{l}^{j} c$ with $k<l$.

s_{e}-normal forms in item notation

The s_{e}-nf's can be described in item notation by the following syntax:

$$
N F::=\mathbf{V}|\mathbb{I N}|(N F \delta) N F|(\lambda) N F| \bar{s} \mathbf{V}
$$

where \bar{s} is a normal $\sigma \varphi$-segment whose bodies belong to $N F$. $a \sigma^{i} b=\left(b \sigma^{i}\right) a$ and $\varphi_{k}^{i} a=\left(\varphi_{k}^{i}\right) a$. $\left(b \sigma^{i}\right)$ and $\left(\varphi_{k}^{i}\right)$ are called σ - and φ-items respectively. b and a are the bodies of these respective items.

A normal $\sigma \varphi$-segment \bar{s} is a sequence of σ - and φ-items such that every pair of adjacent items in \bar{s} are of the form:

$$
\begin{aligned}
& \left(\varphi_{k}^{i}\right)\left(\varphi_{l}^{j}\right) \text { and } k<l \\
& \left(b \sigma^{i}\right)\left(c \sigma^{j}\right) \text { and } i<j
\end{aligned}
$$

$$
\begin{aligned}
& \left(\varphi_{k}^{i}\right)\left(b \sigma^{j}\right) \text { and } k<j-1 \\
& \quad\left(b \sigma^{j}\right)\left(\varphi_{k}^{i}\right) \text { and } j \leq k .
\end{aligned}
$$

Types

- At the end of the nineteenth century, types did not play a role in mathematics or logic, unless at the meta-level, in order to distinguish between different 'classes' of objects.
- Frege's formalization of logical reasoning, as explained in the Begriffsschrift ([Frege 1879]), was untyped.
- Only after the discovery of Russell's paradox, undermining Frege's work, one may observe various formulations of typed theories.
- The first theory which aimed at avoiding the paradoxes using types was that
of Russell and Whitehead, as exposed in their famous Principia Mathematica ([Whitehead and Russell 1910]).
- Church was the first to define a type theory 'as such', almost a decade after he developed a theory of functionals which is nowadays called λ-calculus ([Church 1932]).
- This calculus was used for defining a notion of computability that turned out to be of the same power as Turing-computability or general recursiveness.
- However, the original, untyped version did not work as a foundation for mathematics.
- In order to come round the inconsistencies in his proposal for logic, Church developed the 'simple theory of types' λ_{\rightarrow} ([Church 1940]).
- From then till the present day, research on the area has grown and one can find various reformulations of type theories.
- A taxonomy of type systems has recently been given by Barendregt ([Bar 92]).
- Church's λ_{\rightarrow} is the lowest system on the Cube.
- λ_{\rightarrow} has, apart from type variables, so-called arrow-types of the form $A \rightarrow B$.
- In higher type theories, arrow-types are replaced by dependent products $\Pi_{x: A} \cdot B$, where B may contain x as a free variable, and thus may depend on x. Example: $\Pi_{A: *} \cdot \lambda_{x: A} \cdot x$
- This means that abstraction can be over types, similarly to the abstraction over terms: $\lambda_{x: A}, b$.

Barendregt Cube

System	Allowed $\left(S_{1}, S_{2}\right)$ rules			
λ_{\rightarrow}	$(*, *)$			
$\lambda 2$	$(*, *)$	$(\square, *)$		
λP	$(*, *)$		$(*, \square)$	
$\lambda P 2$	$(*, *)$	$(\square, *)$	$(*, \square)$	
$\lambda \underline{\omega}$	$(*, *)$			(\square, \square)
$\lambda \omega$	$(*, *)$	$(\square, *)$		(\square, \square)
$\lambda P \underline{\omega}$	$(*, *)$		$(*, \square)$	(\square, \square)
$\lambda P \omega=\lambda C$	$(*, *)$	$(\square, *)$	$(*, \square)$	(\square, \square)

Figure 6: The Cube

Example derivation

Take $\Gamma \equiv \lambda_{\beta: *} \cdot \lambda_{y: \beta}$. In $\lambda 2$, using the rules $(*, *)$ and $(\square, *)$ we have:

```
\Gamma\vdash}\mp@subsup{}{\lambda2}{}y:\beta:*
\Gamma.\mp@subsup{\lambda}{\alpha:*}{}\mp@subsup{\vdash}{\lambda2}{}\alpha:*
\Gamma.}\mp@subsup{\lambda}{\alpha:*}{}\cdot\mp@subsup{\lambda}{x:\alpha}{}\mp@subsup{\vdash}{\lambda2}{}x:\alpha:
\Gamma. }\mp@subsup{\lambda}{\alpha:*}{}\mp@subsup{\vdash}{\lambda2}{}\mp@subsup{\Pi}{x:\alpha}{}\cdot\alpha:
\Gamma.\mp@subsup{\lambda}{\alpha:*}{}\mp@subsup{\vdash}{\lambda2}{}\mp@subsup{\lambda}{x:\alpha}{}\cdotx:\mp@subsup{\Pi}{x:\alpha}{}\cdot\alpha
\Gamma \vdash { } _ { \lambda 2 } \Pi _ { \alpha : * } \cdot \Pi _ { x : \alpha } . \alpha : *
\Gamma\vdash}\mp@subsup{\lambda}{22}{}\mp@subsup{\lambda}{\alpha:*\cdot}{*}\mp@subsup{\lambda}{x:\alpha}{}\cdotx:\mp@subsup{\Pi}{\alpha:*}{}\mp@subsup{\Pi}{x:\alpha}{}\cdot
```



```
\Gamma\vdash}\mp@subsup{\lambda}{\lambda2}{}(\mp@subsup{\lambda}{\alpha:*}{*}\cdot\mp@subsup{\lambda}{x:\alpha}{}\cdotx)\betay:
```

(start)
(start resp weakening)
(formation rule $(*, *)$)
(abstraction)
(formation rule $(\square, *)$)
(abstraction)
(application, we already knew $\Gamma \vdash_{\lambda 2} \beta: *$)
(application, we already knew $\Gamma \vdash_{\lambda 2} y: \beta$)

It is not possible to derive this judgement in λ_{\rightarrow} as $(\square, *)$ is needed.

The system λ_{\rightarrow}

$$
\begin{array}{ll}
\text { (axiom) } & <>\vdash_{\beta} *: \square \\
\text { (start rule) } & \frac{\Gamma \vdash_{\beta} A: S}{\Gamma \cdot \lambda_{x: A} \vdash_{\beta} x: A} x \notin \Gamma \\
\text { (weakening rule) } & \frac{\Gamma \vdash_{\beta} A: S \quad \Gamma \vdash_{\beta} D: E}{\Gamma \cdot \lambda_{x: A} \vdash_{\beta} D: E} x \notin \Gamma \\
\text { (application rule) } & \frac{\Gamma \vdash_{\beta} F: A \rightarrow B \quad \Gamma \vdash_{\beta} a: A}{\Gamma \vdash_{\beta} F a: B} \\
\text { (abstraction rule) } & \frac{\Gamma \cdot \lambda_{x: A} \vdash_{\beta} b: B \quad \Gamma \vdash_{\beta} A \rightarrow B: S}{\Gamma \vdash_{\beta} \lambda_{x: A} \cdot b: A \rightarrow B} \\
\text { (conversion rule) } & \frac{\Gamma \vdash_{\beta} A: B}{} \quad \Gamma \vdash_{\beta} B^{\prime}: S \\
\text { (formation rule) } & \frac{\Gamma \vdash_{\beta} A: H_{\beta}: B^{\prime}}{\Gamma \vdash_{\beta} \Pi_{x: A} \cdot B: B^{\prime}} \\
\text { (f. } B_{x: A} \vdash_{\beta} B: *
\end{array}
$$

The system λ_{\rightarrow} revised

$$
\begin{array}{ll}
\text { (start rule) } & \frac{\Gamma \vdash_{\beta} A: S}{\Gamma \cdot \lambda_{x: A} \vdash_{\beta} x: A} x \notin \Gamma \\
\text { (weakening rule) } & \frac{\Gamma \vdash_{\beta} A: S}{\Gamma \cdot \lambda_{x: A} \vdash_{\beta} D: E} \vdash_{\beta} D: E \\
\text { (application rule) } & \frac{\Gamma \vdash_{\beta} F: A \rightarrow B}{\Gamma \vdash_{\beta} F a: B} \quad \\
\text { (abstraction rule) } & \frac{\Gamma \cdot \lambda_{x: A} \vdash_{\beta} b: B}{\Gamma \vdash_{\beta} \lambda_{x: A} b: A \rightarrow B}
\end{array}
$$

Desirable Properties: See [Bar 92]

If $\Gamma \vdash A: B$ then A and B are legal expressions and Γ is a legal context.
Theorem 2. (The Church Rosser Theorem $C R$, for \rightarrow_{β}) If $A \rightarrow_{\beta} B$ and $A \rightarrow_{\beta} C$ then there exists D such that $B \rightarrow_{\beta} D$ and $C \rightarrow_{\beta} D$

Lemma 3. Correctness of types for \vdash_{β}) If $\Gamma \vdash_{\beta} A: B$ then $\left(B \equiv \square\right.$ or $\Gamma \vdash_{\beta} B: S$ for some sort S).

Theorem 3. (Subject Reduction $S R$, for \vdash_{β} and \rightarrow_{β}) If $\Gamma \vdash_{\beta} A: B$ and $A \rightarrow_{\beta} A^{\prime}$ then $\Gamma \vdash_{\beta} A^{\prime}: B$

Theorem 4. (Strong Normalisation with respect to \vdash_{β} and \rightarrow_{β}) For all \vdash_{β}-legal terms M, we have $S N_{\rightarrow_{\beta}}(M)$. I.e. M is strongly normalising with respect to \rightarrow_{β}.

Π-reduction: See [KN 96a]

- Once we allow abstraction over types, it would be nice to discuss the reduction rules which govern these types.
- We want: $\left(\lambda_{x: A} \cdot b\right) C \rightarrow_{\beta} b[x:=C]$, as well as $\left(\Pi_{x: A} \cdot B\right) C \rightarrow_{\beta} B[x:=C]$.
- This strategy of permitting Π-application $\left(\Pi_{x: A} . B\right) C$ in term construction is not commonly used, yet is desirable for the following reasons:
- (2) below is more elegant and uniform than (1).

$$
\begin{align*}
& \text { If } f: \Pi_{x: A} \cdot B \text { and } a: A \text {, then } f a: B[x:=a] \tag{1}\\
& \text { If } f: \Pi_{x: A} \cdot B \text { and } a: A \text {, then } f a:\left(\Pi_{x: A} \cdot B\right) a . \tag{2}
\end{align*}
$$

- With Π-reduction, one introduces a compatibility property for the typing of applications:

$$
M: N \Rightarrow M P: N P .
$$

This is in line with the compatibility property for the typing of abstractions, which does hold in general:

$$
M: N \Rightarrow \lambda_{y: P} M: \Pi_{y: P} N .
$$

$A: *, b: A, a: A$	$\vdash a: A$	(start)
$A: *, b: A$	$\vdash\left(\lambda_{a: A} \cdot a\right):\left(\Pi_{a: A} \cdot A\right)$	(abstraction)
$A: *, b: A$	$\vdash\left(\lambda_{a: A} \cdot a\right) b:\left(\Pi_{a: A} \cdot A\right) b$	(application)
$A: *, b: A$	$\vdash\left(\lambda_{a: A} \cdot a\right) b: A$	(conversion)

- The ability to divide two important questions of typing. $\Gamma \vdash A: B$ becomes:

1. Is A typable in Γ ? $\Gamma \vdash A$.
2. Is B the type of A in Γ ? How does $\tau(\Gamma, A)$ and B compare.

- In a compiler, Π-reduction allows to separate the type finder from the evaluator since \vdash no longer mentions substitution. One first extracts the type and only then evaluates it.
- This is related to some work of Peyton-Jones in his language Henk.

Extending the Cube with П-reduction: See [KN 96a]

$\beta \Pi$-reduction $\rightarrow_{\beta \Pi}$, is the least compatible relation generated out of the following axiom:

$$
(\beta \Pi) \quad\left(\pi_{x: B} . A\right) C \rightarrow_{\beta \Pi} A[x:=C]
$$

$\rightarrow_{\beta \Pi}$ is the reflexive transitive closure of $\rightarrow_{\beta \Pi} .=_{\beta \Pi}$ is the least equivalence relation generated by $\rightarrow_{\beta п}$.

$$
\begin{array}{ll}
\text { (new application rule) } & \frac{\Gamma \vdash_{\beta \Pi} F: \Pi_{x: A} \cdot B \quad \Gamma \vdash_{\beta \Pi} a: A}{\Gamma \vdash_{\beta \Pi} F a:\left(\Pi_{x: A} \cdot B\right) a} \\
\text { (new conversion rule) } & \frac{\Gamma \vdash_{\beta \Pi} A: B \quad \Gamma \vdash_{\beta \Pi} B^{\prime}: S}{\Gamma \vdash_{\beta \Pi} A: B^{\prime}} \quad B=_{\beta \Pi} B^{\prime} \\
\hline
\end{array}
$$

Barendregt Cube with П-reduction

(axiom)	$<>\vdash_{\beta \Pi} *: \square$
(start rule)	$\frac{\Gamma \vdash_{\beta \Pi} A: S}{\Gamma \cdot \lambda_{x: A} \vdash_{\beta \Pi} x: A} x \notin \Gamma$
(weakening rule)	$\frac{\Gamma \vdash_{\beta \Pi} A: S \quad \Gamma \vdash_{\beta \Pi} D: E}{\Gamma \cdot \lambda_{x: A} \vdash_{\beta \Pi} D: E} x \notin \Gamma$
(new application rule)	$\frac{\Gamma \vdash_{\beta \Pi} F: \Pi_{x: A} \cdot B \quad \Gamma \vdash_{\beta \Pi} a: A}{\Gamma \vdash_{\beta \Pi} F a:\left(\Pi_{x: A} \cdot B\right) a}$
(abstraction rule)	$\frac{\Gamma \cdot \lambda_{x: A} \vdash_{\beta \Pi} b: B \quad \Gamma \vdash_{\beta \Pi} \Pi_{x: A} \cdot B: S}{\Gamma \vdash_{\beta \Pi} \lambda_{x: A} \cdot b: \Pi_{x: A} \cdot B}$
(new conversion rule)	$\frac{\Gamma \vdash_{\beta \Pi} A: B \quad \Gamma \vdash_{\beta \Pi} B^{\prime}: S}{\Gamma \vdash_{\beta \Pi} A: B^{\prime}} \quad B={ }_{\beta \Pi} B^{\prime}$
(formation rule)	$\frac{\Gamma \vdash_{\beta \Pi} A: S_{1}}{\Gamma \vdash_{\beta \Pi} \Pi_{x: A} \cdot B: \lambda_{x: A} \vdash_{\beta \Pi} B: S_{2}}$

Generation Lemma

Lemma 4. (Generation Lemma for \vdash_{β})

- If $\Gamma \vdash_{\beta} \Pi_{x: A} \cdot B: C$ then $\Gamma \vdash_{\beta} A: S_{1}$ and $\Gamma . \lambda_{x: A} \vdash_{\beta} B: S_{2}$ and $\left(S_{1}, S_{2}\right)$ is a rule, $C={ }_{\beta} S_{2}$ and.....
- If $\Gamma \vdash_{\beta} F a: C$ then $\Gamma \vdash_{\beta} F: \Pi_{x: A} \cdot B$ and $\Gamma \vdash_{\beta} a: A$ and $C={ }_{\beta} B[x:=a]$ and

In Generation lemma for $\vdash_{\beta \Pi}$ for application case, we replace $B[x:=a]$ by $\left(\Pi_{x: A} \cdot B\right) a$ and change β to to $\beta \Pi$ everywhere.

Correctness of types fails for Π-reduction even in λ_{\rightarrow}

Lemma 5. For any A, B, C, S we have $\Gamma \vdash_{\beta \Pi}\left(\Pi_{x: A} \cdot B\right) C: S$.
Proof: If $\Gamma \vdash_{\beta \Pi}\left(\Pi_{x: A} \cdot B\right) C: S$ then by generation, $\Gamma \vdash_{\beta \Pi} \Pi_{x: A} \cdot B: \Pi_{x: A^{\prime}} \cdot B^{\prime}$ and again by generation, $\Gamma \cdot \lambda_{x: A} \vdash_{\beta \Pi} B: S^{\prime} \wedge S^{\prime}={ }_{\beta \Pi} \Pi_{x: A^{\prime}} \cdot B^{\prime}$. Absurd.

The new legal terms of the form $\left(\Pi_{x: B} . C\right) A$ imply the failure of Correctness of types Lemma 3 for $\vdash_{\beta \Pi}$ even in λ_{\rightarrow}.

- $\Gamma \vdash_{\beta п} A: B$ may not imply $B \equiv \square$ or $\Gamma \vdash_{\beta \Pi} B: S$ for some sort S.
- E.g., if $\Gamma \equiv \lambda_{z: *} \cdot \lambda_{x: z}$ then $\Gamma \vdash_{\beta \Pi}\left(\lambda_{y: z} \cdot y\right) x:\left(\Pi_{y: z} \cdot z\right) x$, but $\Gamma \vdash_{\beta \Pi}\left(\Pi_{y: z} \cdot z\right) x$: S from Lemma 5.

We have a weak correctness of types:
Lemma 6. If $\Gamma \vdash_{\beta \Pi} A: B$ and B is not a Π-redex then $\left(B \equiv \square\right.$ or $\Gamma \vdash_{\beta \Pi} B$: S for some sort S).

Proof: By a trivial induction on the derivation of $\Gamma \vdash_{\beta \Pi} A: B$ noting that the application rule does not apply as $\left(\Pi_{x: A} \cdot B\right) a$ is not a Π-redex.

Failure of correctness of types implies failure of Subject Reduction even in λ_{\rightarrow} :

- $\operatorname{In} \lambda_{\rightarrow \text {, }}$ we have: $\lambda_{z: *} \cdot \lambda_{x: z} \forall_{\beta \Pi} x:\left(\Pi_{y: z} \cdot z\right) x$.
- Otherwise, by generation: $\lambda_{z: *} \cdot \lambda_{x: z} \vdash_{\beta \Pi}\left(\Pi_{y: z} \cdot z\right) x: S$, which is absurd by Lemma 5.
- Yet in $\lambda_{\rightarrow \text {, }}$, we have: $\lambda_{z: * \cdot} \lambda_{x: z} \vdash_{\beta \Pi}\left(\lambda_{y: z} \cdot y\right) x:\left(\Pi_{y: z} \cdot z\right) x$.

Relating $\vdash_{\beta \Pi}$ and \vdash_{β} and Weak SR

For $A \vdash_{\beta \Pi-l e g a l, ~ l e t ~}^{A}$ be $C[x:=D]$ if $A \equiv\left(\Pi_{x: B} . C\right) D$ and A otherwise.
Lemma 7.

1. If $\Gamma \vdash_{\beta \Pi} A: B$ then $\Gamma \vdash_{\beta} A: \hat{B}$.
2. If $\Gamma \vdash_{\beta} A: B$ then $\Gamma \vdash_{\beta \Pi} A: B$.

Lemma 8. (Weak Subject Reduction for $\vdash_{\beta \Pi}$ and $\rightarrow_{\beta \Pi}$)

1. If $\Gamma \vdash_{\beta \Pi} A: B$ and $A>_{\beta \Pi} A^{\prime}$ then $\Gamma \vdash_{\beta \Pi} A^{\prime}: \hat{B}$
2. If $\Gamma \vdash_{\beta \Pi} A: B$ and $A \rightarrow_{\beta \Pi} A^{\prime}$ and B is \vdash_{β}-legal then $\Gamma \vdash_{\beta \Pi} A^{\prime}: B$

Canonical typing

There are reasons why separating the questions "what is the type of a term" (via τ) and "is the term typable" (via \vdash), is advantageous. Here are some:

- The canonical type of A is easy to calculate.
- $\tau(A)$ plays the role of a preference type for A. The preference type of $A \equiv \lambda_{x: *} \cdot\left(\lambda_{y: *} \cdot y\right) x$ is $\tau(<>, A) \equiv \Pi_{x: *}\left(\Pi_{y: * * *}\right) x$ which $\rightarrow_{\beta \Pi}$ to $\Pi_{y: * * *}$, the type traditionally given to A.
- The conversion rule is no longer needed as a separate rule in the definition of
\vdash. It is accommodated in our application rule:

$$
\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A B} \text { if } \tau(\Gamma, A)={ }_{\beta \Pi} \Pi_{x: C} \cdot D \text { and } \tau(\Gamma, B)={ }_{\beta \Pi} C
$$

It will be the case that $\tau(\Gamma, A B) \equiv \tau(\Gamma, A) B=_{\beta \Pi}\left(\Pi_{x: C} \cdot D\right) B \rightarrow_{\beta \Pi} D[x:=$ $B]$ and so indeed $\tau(\Gamma, A B)={ }_{\beta \Pi} D[x:=C]$.

- Higher degrees:If we use λ^{1} for Π and λ^{2} for λ then we can aim for a possible generalization. In fact, we can extend our system by incorporating more different λ 's. For example, with an infinity of λ 's, viz. $\lambda^{0}, \lambda^{1}, \lambda^{2}, \lambda^{3} \ldots$, we replace $\tau\left(\Gamma, \lambda_{x: A} \cdot B\right) \equiv \Pi_{x: A} \cdot \tau\left(\Gamma \cdot \lambda_{x: A}, B\right)$ and $\tau\left(\Gamma, \Pi_{x: A} \cdot B\right) \equiv \tau\left(\Gamma \cdot \lambda_{x: A}, B\right)$ by the following:

$$
\tau\left(\Gamma, \lambda_{x: A}^{i+1} \cdot B\right) \equiv \lambda_{x: A}^{i} \cdot \tau\left(\Gamma \cdot \lambda_{x: A}, B\right), \text { for } i=0,1,2, \ldots \text { where } \lambda_{x: A}^{0} \cdot B \equiv B
$$

There may be circumstances in which one desires to have more "layers" of λ 's. As an example we refer to [de Bruijn 74].

- This notion enables one to separate the judgement $\Gamma \vdash A: B$ in two: $\Gamma \vdash A$ and $\tau(\Gamma, A)=B$.

$$
\begin{array}{lll}
\tau(\Gamma, *) & \equiv \square & \\
\tau(\Gamma, x) & \equiv A \text { if }\left(A \lambda_{x}\right) \in \Gamma & \\
\tau(\Gamma,(a \delta) F) & \equiv(a \delta) \tau(\Gamma, F) & \\
\tau\left(\Gamma,\left(A \lambda_{x}\right) B\right) & \equiv\left(A \Pi_{x}\right) \tau\left(\Gamma\left(A \lambda_{x}\right), B\right) & \text { if } x \notin \operatorname{dom}(\Gamma) \\
\tau\left(\Gamma,\left(A \Pi_{x}\right) B\right) & \equiv \tau\left(\Gamma\left(A \lambda_{x}\right), B\right) & \text { if } x \notin \operatorname{dom}(\Gamma)
\end{array}
$$

- In usual type theory:
- the type of $\left(* \lambda_{x}\right)\left(x \lambda_{y}\right) y$ is $\left(* \Pi_{x}\right)\left(x \Pi_{y}\right) x$ and
- the type of $\left(* \Pi_{x}\right)\left(x \Pi_{y}\right) x$ is $*$.
- With our τ, we get the same result:
$-\tau\left(<>,\left(* \lambda_{x}\right)\left(x \lambda_{y}\right) y\right) \equiv\left(* \Pi_{x}\right) \tau\left(\left(* \lambda_{x}\right),\left(x \lambda_{y}\right) y\right) \equiv\left(* \Pi_{x}\right)\left(x \Pi_{y}\right) \tau\left(\left(* \lambda_{x}\right)\left(x \lambda_{y}\right), y\right) \equiv 】$ $\left(* \Pi_{x}\right)\left(x \Pi_{y}\right) x$ and
$-\tau\left(<>,\left(* \Pi_{x}\right)\left(x \Pi_{y}\right) x\right) \equiv \tau\left(\left(* \lambda_{x}\right),\left(x \Pi_{y}\right) x\right) \equiv \tau\left(\left(* \lambda_{x}\right)\left(x \lambda_{y}\right), x\right) \equiv *$

Let $\Gamma_{0} \equiv<>, \Gamma_{1} \equiv\left(* \lambda_{z}\right), \Gamma_{2} \equiv\left(* \lambda_{z}\right)\left(* \lambda_{y}\right), \Gamma_{3} \equiv \Gamma_{2}\left(* \lambda_{x}\right)$. We want to find the canonical type of $\left(* \Pi_{z}\right)(B \delta)\left(* \lambda_{y}\right)(y \delta)\left(* \lambda_{x}\right) x$ in Γ_{0}.

$$
\left(\Gamma_{0} \tau\right) \quad\left(* \Pi_{z}\right)
$$

$\left(* \lambda_{y}\right)$
($y \delta$)
$\left(* \lambda_{x}\right)$
$\left(\Gamma_{1} \tau\right)$
$(B \delta)$
$\left(* \lambda_{y}\right)$
($y \delta$)
$\left(* \lambda_{x}\right)$
(B $\delta) \quad\left(\Gamma_{1} \tau\right) \quad\left(* \lambda_{y}\right)$
($y \delta$)
$\left(* \lambda_{x}\right)$
($B \delta$)
$\left(* \Pi_{y}\right)$
$\left(\Gamma_{2} \tau\right) \quad(y \delta)$
$\left(* \lambda_{x}\right)$

$(B \delta)$	$\left(* \Pi_{y}\right)$	$(y \delta)$	$\left(\Gamma_{2} \tau\right)$	$\left(* \lambda_{x}\right)$
$(B \delta)$	$\left(* \Pi_{y}\right)$	$(y \delta)$		$\left(* \Pi_{x}\right)$
$(B \delta)$	$\left(* \Pi_{y}\right)$	$(y \delta)$	$\left(* \Pi_{x}\right)$	

$\left(* \Pi_{x}\right)$

New Typability

$$
\begin{array}{cl}
(\vdash \text {-axiom }) & <>\vdash * \\
(\vdash \text {-start rule) } & \frac{\Gamma \vdash A}{\Gamma\left(A \lambda_{x}\right) \vdash x} \text { if vc } \\
(\vdash \text {-weakening rule) } & \frac{\Gamma \vdash A \quad \Gamma \vdash D}{\Gamma\left(A \lambda_{x}\right) \vdash D} \text { if vc } \\
(\vdash \text {-application rule) } & \frac{\Gamma \vdash F}{\Gamma \vdash(a \delta) F} \text { if ap } \\
(\vdash \text {-abstraction rule) } & \frac{\Gamma\left(A \lambda_{x}\right) \vdash b \quad \Gamma \vdash\left(A \Pi_{x}\right) B}{\Gamma \vdash\left(A \lambda_{x}\right) b} \text { if ab } \\
(\vdash \text {-formation }) & \frac{\Gamma \vdash A \quad \Gamma\left(A \lambda_{x}\right) \vdash B}{\Gamma \vdash\left(A \Pi_{x}\right) B} \text { if } \mathrm{fc}
\end{array}
$$

- vc (variable condition): $x \notin \Gamma$ and $\tau(\Gamma, A) \rightarrow_{\beta \Pi} S$ for some S
- ap (application condition): $\tau(\Gamma, F)={ }_{\beta \Pi}\left(A \Pi_{x}\right) B$ and $\tau(\Gamma, a)={ }_{\beta \Pi} A$ for some A, B.
- ab (abstraction condition): $\tau\left(\Gamma\left(A \lambda_{x}\right), b\right)={ }_{\beta \Pi} B$ and $\tau\left(\Gamma,\left(A \Pi_{x}\right) B\right) \rightarrow_{\beta \Pi} S$ for some S.
- fc (formation condition): $\tau(\Gamma, A) \rightarrow_{\beta \Pi} S_{1}$ and $\tau\left(\Gamma\left(A \lambda_{x}\right), B\right) \rightarrow_{\beta \Pi} S_{2}$ for some rule (S_{1}, S_{2}).

Properties of \vdash

Define \bar{A} to be the $\beta \Pi$-normal form of A.
Lemma 9. If $\Gamma \vdash A$ then $\downarrow \overline{\tau(\Gamma, A)}$ and $\Gamma \vdash_{\beta} A: \overline{\tau(\Gamma, A)}$
Lemma 10. (Subject Reduction for \vdash and τ)
$\Gamma \vdash A \wedge A \rightarrow_{\beta \Pi} A^{\prime} \Rightarrow\left[\Gamma \vdash A^{\prime} \wedge \tau(\Gamma, A)={ }_{\beta \Pi} \tau\left(\Gamma, A^{\prime}\right)\right]$
Theorem 5. (Strong Normalisation for \vdash) If A is Γ^{\vdash}-legal, then $S N_{\rightarrow_{\beta}}(A)$.

Lemma 11. $\Gamma \vdash_{\beta} A: B \Longleftrightarrow \Gamma \vdash A$ and $\tau(\Gamma, A)={ }_{\beta \Pi} B$ and B is \vdash_{β}-legal type.

Properties of the Cube with generalised reduction

Figure 7: Properties of the Cube with generalised reduction

References

[AFM 95] Ariola, Z.M. Felleisen, M. Maraist, J. Odersky, M. and Wadler, P., A call by need lambda calculus, Conf. Rec. 22nd Ann. ACM Symp. Princ. Program. Lang. ACM, 1995.
[Bar 84] Barendregt, H., Lambda Calculus: its Syntax and Semantics, NorthHolland, 1984.
[Bar 92] Barendregt, H., Lambda calculi with types, Handbook of Logic in Computer Science, volume II, ed. Abramsky S., Gabbay D.M., Maibaum T.S.E., Oxford University Press, 1992.
[de Bruijn 74] Bruijn, N.G. de, Some extensions of AUTOMATH: the AUT-4 family, Dept. of Mathematics, Eindhoven University of Technology, 1974.
[BKN 96] Bloo, R., Kamareddine, F., Nederpelt, R. The Barendregt Cube with Definitions and Generalised Reduction. Information and Computation 126(2), 123-143, 1996.
[dG 93] de Groote, P., The conservation theorem revisited, Int'l Conf. Typed Lambda Calculi and Applications, vol. 664 of LNCS, 163-178, SpringerVerlag, 1993.
[KN 95] Kamareddine, F., and Nederpelt, R.P., Generalising reduction in the λ-calculus, Journal of Functional Programming 5 (4), 637-651, 1995.
[KN 96a] F. Kamareddine and R. Nederpelt, Canonical Typing and π-conversion in the Barendregt Cube, Functional Programming 6, 1996.
[Church 1932] Church, A., A set of postulates for the foundation of logic, Annals of Math. 33 (1932), 346-366 and 34 (1933), 839-864.
[Church 1940] Church, A., A formulation of the simple theory of types, Journal of Symbolic Logic 5 (1940), 56-68.
[Frege 1879] Frege, G., Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens (Halle, Verlag von Louis Nebert, 1879). Reprint 1964 (Hildesheim, Georg Olms Verlagsbuchhaltung).
[KN 96b] Kamareddine, F., and Nederpelt, R.P., A useful λ-notation, Theoretical Computer Science 155, 1996.
[KR 95] Kamareddine, F., and Rios, A., λ-calculus à la de Bruijn \& explicit substitution, Lecture Notes in Computer Science 982, 7th international
symposium on Programming Languages: Implementations, Logics and Programs, PLILP '95, 45-62, Springer-Verlag, 1995.
[KR 96] Kamareddine, F., and Rios, A., Generalised β_{e}-reduction and explicit substitution, Computing Science Research Report, University of Glasgow, 1996.
[Kam 00] Kamareddine, F., A reduction relation for which postponement of Kcontractions, Conservation and Preservation of Strong Normalisation hold, Journal of Logic and Computation, volume 10, number 5, 2000.
[KTU 94] Kfoury, A.J., Tiuryn, J. and Urzyczyn, P., An analysis of ML typability, J. ACM 41(2), 368-398, 1994.
[KW 94] Kfoury, A.J. and Wells, J.B., A direct algorithm for type inference in
the rank-2 fragment of the second order λ-calculus, Proc. 1994 ACM Conf. LISP Funct. Program., 1994.
[KW 95a] Kfoury, A.J. and Wells, J.B., New notions of reductions and nonsemantic proofs of β-strong normalisation in typed λ-calculi, LICS, 1995.
[KW 95b] Kfoury, A.J. and Wells, J.B., Addendum to new notions of reduction and non-semantic proofs of β-strong normalisation in typed λ-calculi, Boston University.
[BLR 95] Benaissa, Briaud, Lescanne, Rouyer-Degli, λv, a calculus of explicit substitutions which preserves strong normalisation, personel communication, 1995.
[MN 95] Muñoz C., Confluence and preservation of strong normalisation in an explicit substitution calculus, Rapport de Recherche No 2762, INRIA.
[Nederpelt 73] Nederpelt, R.P., Strong normalisation in a typed lambda calculus with lambda structured types, Ph.D. thesis, Eindhoven University of Technology, Department of Mathematics and Computer Science, 1973. Also appears in [NGV 94].
[NGV 94] Nederpelt, R.P., Geuvers, J.H. and de Vrijer, R.C., eds., Selected Papers on Automath, North Holland, 1994.
[Reg 92] Regnier, L., Lambda calcul et réseaux, Thèse de doctorat de l'université Paris 7, 1992.
[Reg 94] Regnier, L., Une équivalence sur les lambda termes, Theoretical Computer Science 126, 281-292, 1994.
[SF 92] Sabry, A., and Felleisen, M., Reasoning about programs in continuationpassing style, Proc. 1992 ACM Conf. LISP Funct. Program., 288-298, 1992.
[Vid 89] Vidal, D., Nouvelles notions de réduction en lambda calcul, Thèse de doctorat, Université de Nancy 1, 1989.
[Whitehead and Russell 1910] Whitehead, A.N. and Russell, B., Principia Mathematica (Cambridge, Cambridge University Press, 1910/1913). Reprint 1960, same editor.

