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Item Notation/Lambda Calculus a la de Bruijn

o Z\z.B) = [z]Z(B) and  Z(AB) = (Z(B))Z(A)

o Z((\a.(Ay.2y))z) = (2)[a]ly](y)z. The items are (), [z], [y] and (y).

e applicator wagon (z) and abstractor wagon |x] occur NEXT to each other.
e A term is a wagon followed by a term.

o (3) ()\i.A)B =g Alz := B] becomes

. (5) A —4 Al == B] or A =4[z = BJA

e Sometimes, de Bruijn wrote: () A =3 |z .= BJA
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Redexes in Item Notation

Classical Notation Item Notation
(Ae-(Ay-Azzd)e)b)a —g (a) ()yllzl(d)z —p
((Ay-Az.zd)c)a —3 (a)(0)lyl[z](d)z =3
(A\..zd)a —3 ad (a)lz](d)z —3 (d)a

Figure 1: Redexes in item notation
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Well-balanced segments

e The “bracketing structure” of t = ((\..(A\,.\.. — —)c)b)a), is compatible with
‘oo {3 }o b1 )3, where ‘{;" and ‘};" match.

e (a) (¢)lyl|z](d) has the bracketing structure {{ }{ }}.

e Define a well-balanced segment s to be a segment of partnered () and [] pairs
that match like ‘{' and ‘}".

o Let 5 = (a) (o)lyllz](d). Then: (a), (b), [x], (¢), [y], and [z], are
the partnered main items of 5. (d) is a bachelor item. (a) (c)|y][z] is
well-balanced.
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Generalised reduction
e (general B)  (b)s|v]a~gs{alv:=0b]}  if 5 is well-balanced

e Many step general 3-reduction ~» 3 is the reflexive transitive closure of ~3.

t = (a)(b)[z|(c)ly]lz](d)z  ~p
o (O)z](o)lyli((d)z)[z:=a]} =
(b)[zl(c)yl(d)a

Lemma 1l. /fa —=3bthena~s3b. And, If a ~3 b then a =3 b.
Corollary 1. [fa ~»5 b then a =g b. O

Theorem 1. The general 3-reduction is Church-Rosser. le. If a ~»3 b and
a ~»g c, then there exists d such that b ~»g d and c ~»g d.
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Term reshuffling

o (a)(b)[x](c)ly]lz](d)z can be easily rewritten as (b)[x|(c)|y|(a)[z](d)z by
moving the item (a) to the right.

e |.e., we can keep the old (#-axiom and we can contract redexes in any order.

o difficult to describe how ((A,.(A,.A..zd)c)b)a, is  rewritten  as
(Az-(Ay.(Az.2zd)a)c)b.

Figure 2: Term reshuffling in item notation
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Uses of Generalised reduction and term reshuffling?

e Regnier's premier redex in [Reg 92] is a generalised redex. [Reg 94] shows that
the perpetual reduction strategy finds the longest reduction path when the

term is SN. Vidal in [Vid 89] and Sabry in [SF 92] used extended redexes.

o [KTU 94] uses some generalised reduction to show that typability in ML is
equivalent to acyclic semi-unification.

e [Nederpelt 73] and [dG 93] and [KW 95a] use generalised reduction and/or
term reshuffling to reduce strong normalisation for (-reduction to weak
normalisation for related reductions.

o [KW 94| uses amongst other things, generalised reduction and term reshuffling
to reduce typability in the rank-2 restriction of system F to the problem of
acyclic semi-unification.
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e [AFM 95] uses a form of term-reshuffling (which they call “let-C") as a part
of an analysis of how to implement sharing in a real language interpreter in a
way that directly corresponds to a formal calculus.

e The above description can be found in [KN 95]. Also, [KN 95] showed that
generalised reduction makes more redexes visible and hence allows for more
flexibility in reducing a term.

e [BKN 96] showed that with generalised reduction one may indeed avoid size
explosion without the cost of a longer reduction path and that A-calculus can
be elegantly extended with definitions which result in shorter type derivation.

e [Kam 00] shows that generalised reduction is the first relation for which both

conservation and postponement of k-redexes hold. [Kam 00| shows that
generalised reduction has PSN.
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Partnered and Bachelor ltems

“partnered” and “bachelors” items help categorize the main items of a term:

Lemma 2. Lets be the body of a term a. Then the following holds:

1. Each bachelor main abstraction item in s precedes each bachelor main
application item in's.

2. s minus all bachelor main items equals a well-balanced segment.

3. The removal from s of all main reducible couples, leaves behind
(1] ... [vn](a1) ... (am), the segment consisting of all bachelor main

abstraction and application items.

4. If s = 51(b)sz|v]s3 where [v] and (b) match, then 53 is well-balanced.
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Corollary 2. For each non-empty segment s, there is a unique partitioning in
segments sy, 81, -, 8, such that' s =sys1---S, and:

1. VO <1 <mn,s; is well-balanced in's for even v and s; is bachelor in's for odd i.

2. Ifs; and'sj for 0 < 4,5 < n are bachelor abstraction resp. application segments,
then s; precedess; in's.

3. Ifi>1 thens3; £ 0. O

This is actually a very nice corollary. It tells us a lot about the structure of our
terms.
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Example
s = [z]ly](a)[2][z'](b) (e), has the following partitioning:

e well-balanced segment 55 = ()
e bachelor segment 57 = [z][y],

e well-balanced segment 53 = (a)|z],

2'](0),

e bachelor segment s3
e well-balanced segment s; = ,

e bachelor segment 55 = (e).
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Using () everywhere

e We will replace (a) by (ad).

e We will replace [z] by (A;) or (eA;); and [z : A] by (A)X,).

e New items: substitution items (Ao, ) and typing items (I'7).

e For example:

(B)  (BO)(Ae)A —=p (BO)(\e)(Boz)A
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Type Theory in ltem Notation
° T:*‘D|V‘TT‘7TV;T.T

o (8) (Mep.A)C —p Az :=C]

e 7 which translates terms from classical notation to item notation such that:

T(A) ~ A if Ac {+,0VUV
T(npa.B) = (Z(A)m,)I(B)
T(AB) = (Z(B)§)I(A)

e (8) (Mup.A)C =g Az :=C]

e (8) (C0)(BA)A —=p (Cos)A
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Trees

Figure 4: layered tree of (\....zy)u

Z((Az:z-wy)u) = (ud)(2Ae)(yo)x

EEF Foundations school in Deductions and Theorem Proving, Heriot-Watt univ, April 6-16 2000 13



F. D. Kamareddine

Compatibility
e In Classical notation:
_ A1—>A2 Bl—>BQ
AlB—>AzB ABl—>ABQ
_ A1—>A2 B1—>BQ
77:1::A1°B_>7T:1::A2'B Tp:A-B1— 7. 4. Ba
e |[n Item notation:
_ A1—>A2 Bl—)BQ
(Alw)B—>(A2w)B (Aw)Bl—>(Aw)B2
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Restrictions of terms

The restriction ¢ [ z° of a term ¢ to a variable occurrence x° in t is a term consisting
of precisely those “parts” of ¢t that may be relevant for this x°, especially as
regards binding, typing and substitution.

e the type of z° in ¢ is the type of x° in [ z°,

e the \'s relevant to z° in ¢ appear also in ¢[z° and have the same binding
relation to z°,

e If in ¢, any substitution for x° is possible, then it is also possible in ¢ [z°.

EEF Foundations school in Deductions and Theorem Proving, Heriot-Watt univ, April 6-16 2000 15



F. D. Kamareddine 7 April 2000

Example of term restriction
o 1= (xAg)(@Av) () (xAy) ((2A2)y°0) (yAu) .

e Only (x)\;), (zAy), (zd), (xA,) and (zA,) are of importance for y°.

— y° is in the scope of (x\;), (zAy), (xAy) and (zA,).

— The x is a candidate for substitution for y°, due to the presence of the d\-
segment (x0)(*),) meaning that the x will substitute y in ((x\,)y°d)(yA,)u.

— Nothing else in t is relevant to y°.

o {1y is (xA;)(xAy)(xd)(xAy)(xA;). Remove everything to the right of y°:
($Az) (2 Ay)(20)(xAy)((zX,). Remove all extra parentheses.

o If tis written Ay Apiz(Ayis. Ay ) Aziz.y°)x then £ [y° is less obvious.
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restriction trees

u
£z

¥ J‘\J XJ?E\ .
b
t = (eda) (2 A0) ((u0) (A1) 2°Ay ) (ud2 )y Aw ) u

* T U X

t1x® = (xAg)(zAy) (ud) (zAs)z°

Figure 5: A term and its restriction to a variable
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Definition of term restriction

if £° occurs in t1
if £° occurs in to

(trw)(t2 [2°)

tl FCUO
Let ¢ be (xAz)((zA ) ((wd)(zAe)T°Ay) (uA)yAy)u.

z and (tiw)ts 1 2° = {

x° [ °

Definition 1.
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Describing normal forms in a substitution calculus

[KR 95] provided s, a calculus of substitution a la de Bruijn, which remains as
close as possible to the classical A-calculus. The set of terms, noted As, of the
As-calculus is given as follows:

As::=1IN | AsAs | Ms | Aso'As | ptAs  where i>1, k>0.
The set of open terms, noted As,, is given as follows:

Asop := V| IN|AsopAsop | AASop | AsopoAsop | 0iAsey — where i>1, k>0
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o-generation
o-A-transition
o-app-transition

o-destruction

- A-transition
p-app-transition

o-destruction

The M\s-calculus

(Aa)b — aold
(Aa)o'b — Aao“Tib)
((1,1 CLQ) o'b — ((1,1 O'Zb) ((1,2 O'Zb)
n—1 if n>q
no'b — eib  if n=i
n if n <1
pr(Aa) — AM@hp1a)
prlaraz)  — (¢} a1) (9} a2)
; n+i—1 if n>k
QN —

n if n<k

We use \s to denote this set of rules.
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The As.-calculus

7 April 2000

The As.-calculus is obtained by adding the following rules to those of the

As-calculus.
g-o-transition  (acb)o’c — (ac?T'c)o(bo? " )
o-p-transition 1 (¢t a)o?b — gpiz_l a
o-p-transition 2 (ot a)o’b — ¢ (ac? "T1D)
p-o-transition  py(ac?b) — (pp1a)07 (P 1 ;b)
p-p-transition 1 ¢} (pra)  — ¥ (Phr1-, @)
p-p-transition 2 ¢t (pla) — @ a

We use \s. to denote this set of rules.
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s.-normal forms in classical notation
It is cumbersome to describe s.-normal forms of open terms. But this description

Is needed to show the weak normalisation of the s.-calculus. In classical notation,
an open term is an s.-normal form iff one of the following holds:

e a € VUIN, i.e. ais a variable or a de Bruijn number.
e a = bc, where b and ¢ are s.-normal forms.
e a = \b, where b is an s.-normal form.

e a = bolc, where ¢ is an s.-nf and b is an s.-nf of the form X, or d o’e with
J <1, orprdwith j <k.

o 0 = gp};b, where b is an s.-nf of the form X, or co/d with j > k + 1, or gp‘ljc
with k£ < [.
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s.-normal forms in item notation

The s.-nf's can be described in item notation by the following syntax:
NF :=V | IN | (NF§)NF | (A\)NF | sV

where 5 is a normal op-segment whose bodies belong to NE. ao'b = (bo')a
and pLa = (p})a. (bo*) and (¢},) are called o- and ¢-items respectively. b and
a are the bodies of these respective items.

A normal ocp-segment s is a sequence of o- and -items such that every pair of
adjacent items in s are of the form:

(9071;)(90?) and k <! (gﬂ,’%)(bqj) and k£ <j—1
(bo")(co?) and i < j (bo?)(p},) and j < k.
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Types

e At the end of the nineteenth century, types did not play a role in mathematics
or logic, unless at the meta-level, in order to distinguish between different
‘classes’ of objects.

e Frege's formalization of logical reasoning, as explained in the Begriffsschrift
([Frege 1879]), was untyped.

e Only after the discovery of Russell's paradox, undermining Frege's work, one
may observe various formulations of typed theories.

e The first theory which aimed at avoiding the paradoxes using types was that
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of Russell and Whitehead, as exposed in their famous Principia Mathematica
([Whitehead and Russell 1910]).

e Church was the first to define a type theory ‘as such’, almost a decade

after he developed a theory of functionals which is nowadays called A-calculus
([Church 1932]).

e This calculus was used for defining a notion of computability that turned out
to be of the same power as Turing-computability or general recursiveness.

e However, the original, untyped version did not work as a foundation for
mathematics.

e In order to come round the inconsistencies in his proposal for logic, Church
developed the ‘simple theory of types’ A_, ([Church 1940]).
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e From then till the present day, research on the area has grown and one can
find various reformulations of type theories.

e A taxonomy of type systems has recently been given by Barendregt ([Bar 92]).

e Church’'s A_, is the lowest system on the Cube.

e )\_, has, apart from type variables, so-called arrow-types of the form A — B.

e In higher type theories, arrow-types are replaced by dependent products
II,..4.B, where B may contain x as a free variable, and thus may depend

on x. Example: I14... )\, 4.7

e This means that abstraction can be over types, similarly to the abstraction
over terms: A;.4.b.
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Barendregt Cube
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(axiom)

(start rule)

(weakening rule)

(application rule)

(abstraction rule)

(conversion rule)

(formation rule)

7 April 2000

<>Fgx:0
I'Fg A: S
TooaF,z A% ET
Fl—gA:S Fl—gD:E
Tooar, D E  *&7l
I'Fg F' i 11;:4.B I'Fga:A

I' 5 Fa: Blx := a

T Agabpb:B  ThgllyuaB:S

T Fs Apin b 1. B

' A:B T'FsgB':S B=3DB
I'kg A: B’
Fl‘gA:Sl F.)\x:A l_BB:SQ

T F;IL.4.B: 5 if (S1,52) is arule
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System Allowed (51, S2) rules

- o)

A2 (x,%) | (O,x)

AP (%, %) (%, 0)

AP2 (x,%) | (O,%) | (x,0)

A (%, %) (0,0)
Aw (x,%) | (O, *) (O0,0)
APw (, %) (x,0) | (O,0)
APw=MAC | (x,%) | (O,%) | (x,0) | (O,0)
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Aw AC
A2 AP2
\w APw
Ay AP
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Example derivation
Take I' = A\g.x.Ay:5. In A2, using the rules (%, ) and (O, %) we have:

I'Fyoy:pB:x:0

L Aas Fao o (start)

| R P N v I A T (start resp weakening)

I Aqis Fag Hgig.00 o % (formation rule (x,x) )
Chgx Foo A 1 . n.c (abstraction)

I' l_)\2 Ha:*-Hx:a-Of ok (formation rule (D, >l<) )

I'Fao Aais-Azia @ 2 g Il.q.c0 - (abstraction)
I'Fa2 AaisAzia) 8 0 1.8 (application, we already knew I' Fyo 3 : % )
' Fao (Aais-Aza-x)By @ B (application, we already knew I' o vy : 3 )

It is not possible to derive this judgement in A_, as (O, *) is needed.
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The system )\_,
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(axiom)

(start rule)

(weakening rule)

(application rule)

(abstraction rule)

(conversion rule)

(formation rule)
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<>tgx:0

I'Fg A: S

TooaF, 2. A%ET

FFBA:S FFBD:E

Tooar, D E  *&7l

I'Fg FF: A— B I'Fga:A

I'+g Fla: B

F.)\x:Ang:B FFBA%B:S

F|—5 Aw:A.b:A—)B

't A:B TI't3B:S B=3B

FI—BA:B’

Fl—/gA:* F-)\a::AF,BBZ*

r |—5 Hm:A.B S
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The system )\_, revised

(start rule)

(weakening rule)

(application rule)

(abstraction rule)

FFBA:S

F.)\x:Al—gaZZAng

I'Fg A: S I'Fg D E

T D E ¢l

Fl‘gF:A—)B Fl—ga:A

I'+5 Fa: B

T Agiabpb: B

IFs Apab: A— B
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Desirable Properties: See [Bar 92]

If ' = A: B then A and B are legal expressions and I' is a legal context.

Theorem 2. (The Church Rosser Theorem CR, for —+3) If A =3 B and
A —+3 C then there exists D such that B —+3 D and C —3 D

Lemma 3. Correctness of types for-3)
IfT'-3 A: B then(B=0OorI't-g B: S for some sort S).

Theorem 3. (Subject Reduction SR, for g and —+3)
IfI'-3 A:Band A -3 A" then'Fg A" : B

Theorem 4. (Strong Normalisation with respect to -3 and —+3)
For all -g-legal terms M, we have SN_, ,(M). le. M is strongly normalising
with respect to —» 3.
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II-reduction: See [KN 96a]

e Once we allow abstraction over types, it would be nice to discuss the reduction
rules which govern these types.

e We want: (A;.4.0)C —3 blx := C], as well as (II,.4.B)C —3 Blz := (.

e This strategy of permitting II-application (Il1,.4.B)C in term construction is
not commonly used, yet is desirable for the following reasons:

e (2) below is more elegant and uniform than (1).
If f:1I,.4.B and a: A, then fa: Blz := a] (1)
If f:11,.4.B and a: A, then fa: (Il;.4.B)a. (2)
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e With II-reduction, one introduces a compatibility property for the typing of
applications:

M:N= MP:NP.

This is in line with the compatibility property for the typing of abstractions,
which does hold in general:

M:N = M\;.pM :11,.pN.

A:xb:Aa:A F a:A (start)

. A:xb: A o (Agea-a) @ (Ig.4.A) (abstraction)
A:xb: A = (Ag:a.a)b: (IT;.4.A)b  (application)
A:xb: A - (Aga.a)b: A (conversion)

e The ability to divide two important questions of typing. I' - A : B becomes:
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1. Is A typable in I'? I' - A.
2. Is B the type of A in I'? How does 7(I', A) and B compare.

In a compiler, II-reduction allows to separate the type finder from the evaluator
since - no longer mentions substitution. One first extracts the type and only

then evaluates it.

e This is related to some work of Peyton-Jones in his language Henk.
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Extending the Cube with II-reduction: See [KN 96a]

Bll-reduction — 3y, is the least compatible relation generated out of the following
axiom:

(BL) (7.3 A)C —pm Alx := C]
—p11 IS the reflexive transitive closure of —grr. =pp Is the least equivalence
relation generated by — g17.

Fl‘@HFZHx;A.B PI—QHCLIA
r '_BH Fa : (Hm:A.B)CL

(new application rule)

Fl‘@HA:B Pl—ﬁnB/ZS BZQHB/

(new conversion rule) TFon A: DB

EEF Foundations school in Deductions and Theorem Proving, Heriot-Watt univ, April 6-16 2000 40



F. D. Kamareddine 7 April 2000

Barendregt Cube with II-reduction

EEF Foundations school in Deductions and Theorem Proving, Heriot-Watt univ, April 6-16 2000 41



F. D. Kamareddine

(axiom)

(start rule)

(weakening rule)

(new application rule)

(abstraction rule)

(new conversion rule)

(formation rule)

7 April 2000

<>Fpnx: O
Fl—BHA:S
Tooarma AYETD
Fl—BHAIS F"gHD:E
TronFmD:E vl
I' b F' 2 1gpn.B I'Fgma: A

I' tgn Fa: (I1;.4.B)a

T Agiabpnb: B ThpgllaaB:S

T Fan Ao 11,4 B

I'FgnA:B TkgnB':S  B=gnB
F"BHA:B/
Fl‘gnA:Sl F-Ax:A |—5HB:SQ

I |_BH H:I::A-B : Sz if (S17 S2) Is a rule
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Generation Lemma

Lemma 4. (Generation Lemma for t-3)

o [f I l_ﬁ I[I,.4.B : C then T l_ﬁ A : Sy and T'A,.4 |—5 B : 55 and
(51,52) is a rule, C =3 Sy and.....

o [fI'F3 Fa:C thenl' kg F :1l;.4.B and ' Fga: A and C = Blx := a]
and .....

In Generation lemma for Fgp for application case, we replace Blz := a| by
(IT;.4.B)a and change (§ to to SII everywhere.
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Correctness of types fails for 1I-reduction even in )\_,

Lemma b. Forany A,B,C,S we have I’ /g (11,.4.B)C : S.

Proof: /f I Fgp (I1,.4.B)C : S then by generation, I' Fgry 1. 4.B @ 11, 41. B’
and again by generation, I'\Ag.a Fpn B : 8" NS =g . 40.B'. Absurd. O

The new legal terms of the form (II,.5.C')A imply the failure of Correctness of
types Lemma 3 for g1 even in A_,.

o I'Fgp A: B may not imply B=0orI' gy B : S for some sort S.

o Eg., if ' =X, 0p, then I g (Ayzy)x 0 (ILy.2.2)z, but T' g (1L,.,.2)2 :
S from Lemma 5.
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We have a weak correctness of types:

Lemma 6. /fI'Fgg A: B and B is not a II-redex then (B =0 orI' g B :
S for some sort S).

Proof: By a trivial induction on the derivation of I' =51 A : B noting that the
application rule does not apply as (I1,.4.B)a is not a II-redex. ]

Failure of correctness of types implies failure of Subject Reduction even in A_,:
e In A, we have: ... \,.. g o (IL,...2)z.

e Otherwise,by generation: A,... Az, Fpo (IL,...2)z : S, which is absurd by
Lemma b.

o Yetin A\, we have: \.... )\, Fpn (Myzy)x o (IL,...2) 2.
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Relating 57 and 3 and Weak SR

For A Fgp-legal, let A be C[z := D] if A= (IL,.5.C)D and A otherwise.

Lemma 7.
1. IfTFgn A: B thenT' 3 A: B.

2. IfI‘I—BA:BthenFI—BHA:B.

Lemma 8. (Weak Subject Reduction for g and —s11)

1. IfTFgn A: B and A = A' thenT b A’ : B

2. IfTkgn A: B and A —pn A’ and B is -3-legal then I' -3 A" : B
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Canonical typing

There are reasons why separating the questions “what is the type of a term” (via
7) and "“is the term typable” (via F), is advantageous. Here are some:

e The canonical type of A is easy to calculate.

e 7(A) plays the role of a preference type for A. The preference type of
A= Ayey)xis 7(<>, A) = Uy (1L %)x which =317 to 11,...%, the
type traditionally given to A.

e The conversion rule is no longer needed as a separate rule in the definition of
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. It is accommodated in our application rule:

'-A TI'HB
I'-AB

If T(P, A) —pBI1 Hx;c.D and T(P, B) —pBII C

It will be the case that 7(I'y) AB) = 7(I', A) B =3 (Il,.c.D)B —sn D|x :=
B| and so indeed 7(I', AB) =311 D]z := C].

o Higher degrees:If we use ! for IT and \? for \ then we can aim for a possible
generalization. In fact, we can extend our system by incorporating more
different \'s. For example, with an infinity of X's, viz. A% A}, A2, A3 ... we
replace 7(I', Ap.a.B) = . a.7(TApoa, B) and 7(I',I1.4.B) = 7(I". X\z.4, B)
by the following:

([, T1.B) = A 4. 7(T Apa, B),for i = 0,1,2,... where \0. ,.B =B
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There may be circumstances in which one desires to have more “layers” of \'s.

As an example we refer to [de Bruijn 74].

e This notion enables one to separate the judgement I' - A : B in two:

I'-Aand 7(I' A) = B.

7(I, %) = O

(T, ) = Aif (AX,) €T

(T, (ad) F) = (ad)r(I', F)

(T, (AX,)B) = (All,)7(I'(A)\,),B) if & dom(T)
([, (All,)B) = 7(I'(AX;), B) if © & dom(I)
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e In usual type theory:

— the type of (x)\,)(xA,)y is (xII,)(zll,)z and
— the type of (xII,)(xIL,)x is *.

e With our 7, we get the same result:

— T(<>, (¥Aa)(2Ay)y) = (+Ia)T((xAs), (2Ay)y) = (+11) (21 T((*Aa) (2 Ay), y) =
(*1I,)(2IL,)z and
— 7(<>, (*I1,) (211, x) = 7((*xAz), (2IL))x) = 7((xA\z)(xAy), ) = *
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Let I'g =<>, I'1 = (x\,), I'a = (xA2) (%), . We want to find the
canonical type of (xII,)(BJ)(*A )(yd)(*)\ Jx in T'y.
(Fo7)  (+IL:) (B9) (*Ay) (y9) (*Az)
(I'vm)  (B9) (%Ay) (y6) (*Az)
(BS) (I'im)  (*Ay) (y6) (*Az)
(B9) (+IL,) (27)  (y9) (*Az)
(B9) (+ITy) (y6) (Ia7)  (*As)
(B9) (+ITy) (y0) (+1lz)
(B9) (+ITy) (y9) (1)
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New Typability

(F-axiom) <> %
(F-start rule) F(iAZ)AF . T
(F-weakening rule) 1 l_(ill)\ ; |1: IbD T
(—-application rule) L " F (w0 g Ca it ap
(F-abstraction rule) [(AN) '1:'[)_ a E '; (AIl,)B £ b
(~-formation) PFA TAN)EB .o

[+ (AlL)B
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e vc (variable condition): x € I" and 7(I', A) =11 S for some S

e ap (application condition): 7(I', F') =g (All,)B and 7(I', a) = A for some
A, B.

e ab (abstraction condition): 7(I'(AA;),b) =g B and 7(I', (All,)B) =31 S
for some §.

e fc (formation condition): 7(I';A) =3 S1 and 7(I'(AA;), B) =g S22 for
some rule (57, .55).
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Properties of -

Define A to be the BII-normal form of A.

Lemma 9. /fT'+ A then | 7(I'A) andT' g A:7(T', A)

Lemma 10. (Subject Reduction for - and 7)
'FANA —gn A= [THAANT(D,A) =g (I, A7)]

Theorem 5. (Strong Normalisation for )
If A is T -legal, then SN 5(A).

Lemmall. I' 4 A : B < I' v A and 7(I';A) =pn B and
B is Fg-legal type.
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Properties of the Cube with generalised reduction

C(CR, SN, SR)
C-.,(CR, SN) Cuaes(CR, SN, SR)

N

Cpaes (CR, SN, SR)

Figure 7: Properties of the Cube with generalised reduction
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