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F. D. Kamareddine 7 April 2000Item Notation/Lambda Calulus �a la de Bruijn� I(�x:B) = [x℄I(B) and I(AB) = (I(B))I(A)� I((�x:(�y:xy))z) � (z)[x℄[y℄(y)x. The items are (z), [x℄, [y℄ and (y).� appliator wagon (z) and abstrator wagon [x℄ our NEXT to eah other.� A term is a wagon followed by a term.� (�) (�x:A)B !� A[x := B℄ beomes� (�) (B)[x℄A!� A[x := B℄ or (B)[x℄A!� [x := B℄A� Sometimes, de Bruijn wrote: (�) (B)[x℄A!� (B)[x℄[x := B℄A
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F. D. Kamareddine 7 April 2000Redexes in Item Notation

Classial Notation Item Notation((�x:(�y:�z:zd))b)a !� (a)(b)[x℄()[y℄[z℄(d)z !�((�y:�z:zd))a !� (a)()[y℄[z℄(d)z !�(�z:zd)a !� ad (a)[z℄(d)z !� (d)a

(a)(b) [x℄ () [y℄ [z℄ (d) zFigure 1: Redexes in item notation
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F. D. Kamareddine 7 April 2000Well-balaned segments� The \braketing struture" of t = ((�x:(�y:�z:��))b)a), is ompatible with`f1 f2 f3 g2 g1 g3', where `fi' and `gi' math.� (a)(b)[x℄()[y℄[z℄(d) has the braketing struture ff gf gg.� De�ne a well-balaned segment s to be a segment of partnered () and [℄ pairsthat math like `f' and `g'.� Let s � (a)(b)[x℄()[y℄[z℄(d). Then: (a), (b), [x℄, (), [y℄, and [z℄, arethe partnered main items of s. (d) is a bahelor item. (a)(b)[x℄()[y℄[z℄ iswell-balaned.
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F. D. Kamareddine 7 April 2000Generalised redution� (general �) (b)s[v℄a;�sfa[v := b℄g if s is well-balaned� Many step general �-redution ;;� is the reexive transitive losure of ;�.

� t � (a)(b)[x℄()[y℄[z℄(d)z ;�(b)[x℄()[y℄f((d)z)[z := a℄g �(b)[x℄()[y℄(d)aLemma 1. If a!� b then a;� b. And, If a;� b then a =� b.Corollary 1. If a;;� b then a =� b. 2Theorem 1. The general �-redution is Churh-Rosser. I.e. If a ;;� b anda;;� , then there exists d suh that b;;� d and ;;� d.EEF Foundations shool in Dedutions and Theorem Proving, Heriot-Watt univ, April 6-16 2000 4



F. D. Kamareddine 7 April 2000Term reshu�ing

� (a)(b)[x℄()[y℄[z℄(d)z an be easily rewritten as (b)[x℄()[y℄(a)[z℄(d)z bymoving the item (a) to the right.� I.e., we an keep the old �-axiom and we an ontrat redexes in any order.� diÆult to desribe how ((�x:(�y:�z:zd))b)a, is rewritten as(�x:(�y:(�z:zd)a))b.
(b) [x℄ () [y℄ (a) [z℄ (d) zFigure 2: Term reshu�ing in item notationEEF Foundations shool in Dedutions and Theorem Proving, Heriot-Watt univ, April 6-16 2000 5



F. D. Kamareddine 7 April 2000Uses of Generalised redution and term reshu�ing?� Regnier's premier redex in [Reg 92℄ is a generalised redex. [Reg 94℄ shows thatthe perpetual redution strategy �nds the longest redution path when theterm is SN. Vidal in [Vid 89℄ and Sabry in [SF 92℄ used extended redexes.� [KTU 94℄ uses some generalised redution to show that typability in ML isequivalent to ayli semi-uni�ation.� [Nederpelt 73℄ and [dG 93℄ and [KW 95a℄ use generalised redution and/orterm reshu�ing to redue strong normalisation for �-redution to weaknormalisation for related redutions.� [KW 94℄ uses amongst other things, generalised redution and term reshu�ingto redue typability in the rank-2 restrition of system F to the problem ofayli semi-uni�ation.EEF Foundations shool in Dedutions and Theorem Proving, Heriot-Watt univ, April 6-16 2000 6



F. D. Kamareddine 7 April 2000� [AFM 95℄ uses a form of term-reshu�ing (whih they all \let-C") as a partof an analysis of how to implement sharing in a real language interpreter in away that diretly orresponds to a formal alulus.� The above desription an be found in [KN 95℄. Also, [KN 95℄ showed thatgeneralised redution makes more redexes visible and hene allows for moreexibility in reduing a term.� [BKN 96℄ showed that with generalised redution one may indeed avoid sizeexplosion without the ost of a longer redution path and that �-alulus anbe elegantly extended with de�nitions whih result in shorter type derivation.� [Kam 00℄ shows that generalised redution is the �rst relation for whih bothonservation and postponement of k-redexes hold. [Kam 00℄ shows thatgeneralised redution has PSN.
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F. D. Kamareddine 7 April 2000Partnered and Bahelor Items\partnered" and \bahelors" items help ategorize the main items of a term:Lemma 2. Let s be the body of a term a. Then the following holds:1. Eah bahelor main abstration item in s preedes eah bahelor mainappliation item in s.2. s minus all bahelor main items equals a well-balaned segment.3. The removal from s of all main reduible ouples, leaves behind[v1℄ : : : [vn℄(a1) : : : (am), the segment onsisting of all bahelor mainabstration and appliation items.4. If s � s1(b)s2[v℄s3 where [v℄ and (b) math, then s2 is well-balaned.EEF Foundations shool in Dedutions and Theorem Proving, Heriot-Watt univ, April 6-16 2000 8



F. D. Kamareddine 7 April 2000Corollary 2. For eah non-empty segment s, there is a unique partitioning insegments s0; s1; � � � ; sn, suh that s � s0 s1 � � � sn and:1. 80 � i � n, si is well-balaned in s for even i and si is bahelor in s for odd i.2. If si and sj for 0 � i; j � n are bahelor abstration resp. appliation segments,then si preedes sj in s.3. If i � 1 then s2i 6� ;. 2This is atually a very nie orollary. It tells us a lot about the struture of ourterms.
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F. D. Kamareddine 7 April 2000Examples � [x℄[y℄(a)[z℄[x0℄(b)()(d)[y0℄[z0℄(e), has the following partitioning:� well-balaned segment s0 � ;� bahelor segment s1 � [x℄[y℄,� well-balaned segment s2 � (a)[z℄,� bahelor segment s3 � [x0℄(b),� well-balaned segment s4 � ()(d)[y0℄[z0℄,� bahelor segment s5 � (e).
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F. D. Kamareddine 7 April 2000Using () everywhere

� We will replae (a) by (aÆ).� We will replae [x℄ by (�x) or ("�x); and [x : A℄ by (A�x).� New items: substitution items (A�x) and typing items (��).� For example:(�) (BÆ)(�x)A!� (BÆ)(�x)(B�x)A
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F. D. Kamareddine 7 April 2000Type Theory in Item Notation� T = � j2 j V j T T j �V :T :T� (�) (�x:B:A)C !� A[x := C℄� I whih translates terms from lassial notation to item notation suh that:I(A) = A if A 2 f�;2g [ VI(�x:A:B) = (I(A)�x)I(B)I(AB) = (I(B)Æ)I(A)

� (�) (�x:B:A)C !� A[x := C℄� (�) (CÆ)(B�x)A!� (C�x)AEEF Foundations shool in Dedutions and Theorem Proving, Heriot-Watt univ, April 6-16 2000 12



F. D. Kamareddine 7 April 2000Trees

t tt tt tt
�������

����
���� ���� ����Æ�xÆ u

x zy Figure 3: binary tree of (�x:z:xy)u

t t t tt t tÆ �x Æ xu z y
Figure 4: layered tree of (�x:z:xy)uI((�x:z:xy)u) � (uÆ)(z�x)(yÆ)xEEF Foundations shool in Dedutions and Theorem Proving, Heriot-Watt univ, April 6-16 2000 13



F. D. Kamareddine 7 April 2000Compatibility

� In Classial notation:{ A1!A2A1B!A2B B1!B2AB1!AB2{{ A1!A2�x:A1:B!�x:A2:B B1!B2�x:A:B1!�x:A:B2� In Item notation:{ A1!A2(A1!)B!(A2!)B B1!B2(A!)B1!(A!)B2
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F. D. Kamareddine 7 April 2000Restritions of terms

The restrition t j��xÆ of a term t to a variable ourrene xÆ in t is a term onsistingof preisely those \parts" of t that may be relevant for this xÆ, espeially asregards binding, typing and substitution.� the type of xÆ in t is the type of xÆ in t j��xÆ,� the �'s relevant to xÆ in t appear also in t j��xÆ and have the same bindingrelation to xÆ,� If in t, any substitution for xÆ is possible, then it is also possible in t j��xÆ.
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F. D. Kamareddine 7 April 2000Example of term restrition� t � (��x)(x�v)(xÆ)(��y)((x�z)yÆÆ)(y�u)u.� Only (��x), (x�v), (xÆ), (��y) and (x�z) are of importane for yÆ.{ yÆ is in the sope of (��x); (x�v); (��y) and (x�z).{ The x is a andidate for substitution for yÆ, due to the presene of the Æ�-segment (xÆ)(��y)meaning that the x will substitute y in ((x�z)yÆÆ)(y�u)u.{ Nothing else in t is relevant to yÆ.� t j��yÆ is (��x)(x�v)(xÆ)(��y)(x�z). Remove everything to the right of yÆ:(��x)(x�v)(xÆ)(��y)((x�z). Remove all extra parentheses.� If t is written �x:�:�v:x:(�y:�:(�u:y:u)�z:x:yÆ)x then t j��yÆ is less obvious.
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F. D. Kamareddine 7 April 2000restrition trees

s s ss s s s ss ss s s s
� x u xu

u yx�x �v�u �y �z
Æ �t

t � (��x)((x�u)((uÆ)(x�t)xÆ�y)(u�z)y�v)u

s s s s s s s s� x u x x�x �u Æ �tt j��xÆ � (��x)(x�u)(uÆ)(x�t)xÆFigure 5: A term and its restrition to a variable
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F. D. Kamareddine 7 April 2000De�nition of term restrition

De�nition 1. xÆ j��xÆ � x and (t1!)t2 j��xÆ � � t1 j��xÆ if xÆ ours in t1(t1!)(t2 j��xÆ) if xÆ ours in t2Let t be (��x)((x�u)((uÆ)(x�t)xÆ�y)(u�z)y�v)u:Then t j��xÆ � ((��x)((x�u)((uÆ)(x�t)xÆ�y)(u�z)y�v)u) j��xÆ� (��x)(((x�u)((uÆ)(x�t)xÆ�y)(u�z)y�v)u j��xÆ)� (��x)((x�u)((uÆ)(x�t)xÆ�y)(u�z)y j��xÆ)� (��x)(x�u)(((uÆ)(x�t)xÆ�y)(u�z)y j��xÆ)� (��x)(x�u)((uÆ)(x�t)xÆ j��xÆ)� (��x)(x�u)(uÆ)((x�t)xÆ j��xÆ)� (��x)(x�u)(uÆ)(x�t)(xÆ j��xÆ)� (��x)(x�u)(uÆ)(x�t)xEEF Foundations shool in Dedutions and Theorem Proving, Heriot-Watt univ, April 6-16 2000 18



F. D. Kamareddine 7 April 2000Desribing normal forms in a substitution alulus

[KR 95℄ provided �s, a alulus of substitution �a la de Bruijn, whih remains aslose as possible to the lassial �-alulus. The set of terms, noted �s , of the�s-alulus is given as follows:�s ::= IN j �s�s j ��s j �s �i�s j 'ik�s where i � 1 ; k � 0 :The set of open terms, noted �sop is given as follows:�sop ::= V j IN j�sop�sop j��sop j�sop��sop j'ik�sop where i � 1 ; k � 0
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F. D. Kamareddine 7 April 2000The �s-alulus

�-generation (�a) b �! a �1 b�-�-transition (�a) �ib �! �(a �i+1 b)�-app-transition (a1 a2)�ib �! (a1 �ib) (a2 �ib)�-destrution n �ib �! 8<: n� 1 if n > i'i0 b if n = in if n < i'-�-transition 'ik(�a) �! �('ik+1 a)'-app-transition 'ik(a1 a2) �! ('ik a1) ('ik a2)'-destrution 'ik n �! � n+ i� 1 if n > kn if n � kWe use �s to denote this set of rules.EEF Foundations shool in Dedutions and Theorem Proving, Heriot-Watt univ, April 6-16 2000 20



F. D. Kamareddine 7 April 2000The �se-alulus

The �se-alulus is obtained by adding the following rules to those of the�s-alulus.�-�-transition (a�b)�j  �! (a�j+1 )� (b �j�i+1 ) if i � j�-'-transition 1 ('ik a)�j b �! 'i�1k a if k < j < k + i�-'-transition 2 ('ik a)�j b �! 'ik(a �j�i+1 b) if k + i � j'-�-transition 'ik(a�j b) �! ('ik+1 a)�j ('ik+1�j b) if j � k + 1'-'-transition 1 'ik ('jl a) �! 'jl ('ik+1�j a) if l + j � k'-'-transition 2 'ik ('jl a) �! 'j+i�1l a if l � k < l + jWe use �se to denote this set of rules.EEF Foundations shool in Dedutions and Theorem Proving, Heriot-Watt univ, April 6-16 2000 21



F. D. Kamareddine 7 April 2000se-normal forms in lassial notationIt is umbersome to desribe se-normal forms of open terms. But this desriptionis needed to show the weak normalisation of the se-alulus. In lassial notation,an open term is an se-normal form i� one of the following holds:� a 2 V [ IN, i.e. a is a variable or a de Bruijn number.� a = b , where b and  are se-normal forms.� a = �b, where b is an se-normal form.� a = b �j, where  is an se-nf and b is an se-nf of the form X, or d�ie withj < i, or 'ikd with j � k.� a = 'ikb, where b is an se-nf of the form X, or  �jd with j > k + 1, or 'jl with k < l.EEF Foundations shool in Dedutions and Theorem Proving, Heriot-Watt univ, April 6-16 2000 22



F. D. Kamareddine 7 April 2000se-normal forms in item notation

The se-nf's an be desribed in item notation by the following syntax:NF ::= V j IN j (NF Æ)NF j (�)NF j sVwhere s is a normal �'-segment whose bodies belong to NF . a �ib = (b �i)aand 'ika = ('ik)a. (b �i) and ('ik) are alled �- and '-items respetively. b anda are the bodies of these respetive items.A normal �'-segment s is a sequene of �- and '-items suh that every pair ofadjaent items in s are of the form:('ik)('jl ) and k < l ('ik)(b �j) and k < j � 1(b �i)( �j) and i < j (b �j)('ik) and j � k.EEF Foundations shool in Dedutions and Theorem Proving, Heriot-Watt univ, April 6-16 2000 23



F. D. Kamareddine 7 April 2000Types

� At the end of the nineteenth entury, types did not play a role in mathematisor logi, unless at the meta-level, in order to distinguish between di�erent`lasses' of objets.� Frege's formalization of logial reasoning, as explained in the Begri�sshrift([Frege 1879℄), was untyped.� Only after the disovery of Russell's paradox, undermining Frege's work, onemay observe various formulations of typed theories.� The �rst theory whih aimed at avoiding the paradoxes using types was thatEEF Foundations shool in Dedutions and Theorem Proving, Heriot-Watt univ, April 6-16 2000 24



F. D. Kamareddine 7 April 2000of Russell and Whitehead, as exposed in their famous Prinipia Mathematia([Whitehead and Russell 1910℄).� Churh was the �rst to de�ne a type theory `as suh', almost a deadeafter he developed a theory of funtionals whih is nowadays alled �-alulus([Churh 1932℄).� This alulus was used for de�ning a notion of omputability that turned outto be of the same power as Turing-omputability or general reursiveness.� However, the original, untyped version did not work as a foundation formathematis.� In order to ome round the inonsistenies in his proposal for logi, Churhdeveloped the `simple theory of types' �! ([Churh 1940℄).EEF Foundations shool in Dedutions and Theorem Proving, Heriot-Watt univ, April 6-16 2000 25



F. D. Kamareddine 7 April 2000� From then till the present day, researh on the area has grown and one an�nd various reformulations of type theories.� A taxonomy of type systems has reently been given by Barendregt ([Bar 92℄).� Churh's �! is the lowest system on the Cube.� �! has, apart from type variables, so-alled arrow-types of the form A! B.� In higher type theories, arrow-types are replaed by dependent produts�x:A:B, where B may ontain x as a free variable, and thus may dependon x. Example: �A:�:�x:A:x� This means that abstration an be over types, similarly to the abstrationover terms: �x:A:b.EEF Foundations shool in Dedutions and Theorem Proving, Heriot-Watt univ, April 6-16 2000 26



F. D. Kamareddine 7 April 2000Barendregt Cube
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F. D. Kamareddine 7 April 2000(axiom) <> `� � : 2(start rule) � `� A : S�:�x:A `� x : A x 62 �(weakening rule) � `� A : S � `� D : E�:�x:A `� D : E x 62 �(appliation rule) � `� F : �x:A:B � `� a : A� `� Fa : B[x := a℄(abstration rule) �:�x:A `� b : B � `� �x:A:B : S� `� �x:A:b : �x:A:B(onversion rule) � `� A : B � `� B0 : S B =� B0� `� A : B0(formation rule) � `� A : S1 �:�x:A `� B : S2� `� �x:A:B : S2 if (S1; S2) is a ruleEEF Foundations shool in Dedutions and Theorem Proving, Heriot-Watt univ, April 6-16 2000 28



F. D. Kamareddine 7 April 2000System Allowed (S1; S2) rules�! (�; �)�2 (�; �) (2; �)�P (�; �) (�;2)�P2 (�; �) (2; �) (�;2)�! (�; �) (2;2)�! (�; �) (2; �) (2;2)�P! (�; �) (�;2) (2;2)�P! = �C (�; �) (2; �) (�;2) (2;2)

EEF Foundations shool in Dedutions and Theorem Proving, Heriot-Watt univ, April 6-16 2000 29



F. D. Kamareddine 7 April 2000
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F. D. Kamareddine 7 April 2000Example derivationTake � � ��:�:�y:�. In �2, using the rules (�; �) and (2; �) we have:

� `�2 y : � : � : 2�:��:� `�2 � : � (start)�:��:�:�x:� `�2 x : � : � (start resp weakening)�:��:� `�2 �x:�:� : � (formation rule (�; �) )�:��:� `�2 �x:�:x : �x:�:� (abstration)� `�2 ��:�:�x:�:� : � (formation rule (2; �) )� `�2 ��:�:�x:�:x : ��:��x:�:� (abstration)� `�2 (��:�:�x:�)� : �x:�:� (appliation, we already knew � `�2 � : � )� `�2 (��:�:�x:�:x)�y : � (appliation, we already knew � `�2 y : � )

It is not possible to derive this judgement in �! as (2; �) is needed.EEF Foundations shool in Dedutions and Theorem Proving, Heriot-Watt univ, April 6-16 2000 31



F. D. Kamareddine 7 April 2000The system �!
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F. D. Kamareddine 7 April 2000(axiom) <> `� � : 2(start rule) � `� A : S�:�x:A `� x : A x 62 �(weakening rule) � `� A : S � `� D : E�:�x:A `� D : E x 62 �(appliation rule) � `� F : A! B � `� a : A� `� Fa : B(abstration rule) �:�x:A `� b : B � `� A! B : S� `� �x:A:b : A! B(onversion rule) � `� A : B � `� B0 : S B =� B0� `� A : B0(formation rule) � `� A : � �:�x:A `� B : �� `� �x:A:B : �EEF Foundations shool in Dedutions and Theorem Proving, Heriot-Watt univ, April 6-16 2000 33



F. D. Kamareddine 7 April 2000
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F. D. Kamareddine 7 April 2000The system �! revised(start rule) � `� A : S�:�x:A `� x : A x 62 �(weakening rule) � `� A : S � `� D : E�:�x:A `� D : E x 62 �(appliation rule) � `� F : A! B � `� a : A� `� Fa : B(abstration rule) �:�x:A `� b : B� `� �x:A:b : A! B
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F. D. Kamareddine 7 April 2000Desirable Properties: See [Bar 92℄If � ` A : B then A and B are legal expressions and � is a legal ontext.Theorem 2. (The Churh Rosser Theorem CR, for !!�) If A !!� B andA!!� C then there exists D suh that B !!� D and C !!� DLemma 3. Corretness of types for `�)If � `� A : B then (B � 2 or � `� B : S for some sort S).Theorem 3. (Subjet Redution SR, for `� and !!�)If � `� A : B and A!!� A0 then � `� A0 : BTheorem 4. (Strong Normalisation with respet to `� and !!�)For all `�-legal terms M , we have SN!!�(M). I.e. M is strongly normalisingwith respet to !!�.
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F. D. Kamareddine 7 April 2000�-redution: See [KN 96a℄

� One we allow abstration over types, it would be nie to disuss the redutionrules whih govern these types.� We want: (�x:A:b)C !� b[x := C℄, as well as (�x:A:B)C !� B[x := C℄.� This strategy of permitting �-appliation (�x:A:B)C in term onstrution isnot ommonly used, yet is desirable for the following reasons:� (2) below is more elegant and uniform than (1).If f : �x:A:B and a : A; then fa : B[x := a℄ (1)If f : �x:A:B and a : A; then fa : (�x:A:B)a: (2)EEF Foundations shool in Dedutions and Theorem Proving, Heriot-Watt univ, April 6-16 2000 37



F. D. Kamareddine 7 April 2000� With �-redution, one introdues a ompatibility property for the typing ofappliations: M : N )MP : NP:This is in line with the ompatibility property for the typing of abstrations,whih does hold in general:M : N ) �y:PM : �y:PN:

� A : �; b : A; a : A ` a : A (start)A : �; b : A ` (�a:A:a) : (�a:A:A) (abstration)A : �; b : A ` (�a:A:a)b : (�a:A:A)b (appliation)A : �; b : A ` (�a:A:a)b : A (onversion)� The ability to divide two important questions of typing. � ` A : B beomes:EEF Foundations shool in Dedutions and Theorem Proving, Heriot-Watt univ, April 6-16 2000 38



F. D. Kamareddine 7 April 20001. Is A typable in �? � ` A.2. Is B the type of A in �? How does �(�; A) and B ompare.� In a ompiler, �-redution allows to separate the type �nder from the evaluatorsine ` no longer mentions substitution. One �rst extrats the type and onlythen evaluates it.� This is related to some work of Peyton-Jones in his language Henk.
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F. D. Kamareddine 7 April 2000Extending the Cube with �-redution: See [KN 96a℄

��-redution!��, is the least ompatible relation generated out of the followingaxiom: (��) (�x:B:A)C !�� A[x := C℄!!�� is the reexive transitive losure of !��. =�� is the least equivalenerelation generated by !!��.

(new appliation rule) � `�� F : �x:A:B � `�� a : A� `�� Fa : (�x:A:B)a(new onversion rule) � `�� A : B � `�� B0 : S B =�� B0� `�� A : B0
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F. D. Kamareddine 7 April 2000Barendregt Cube with �-redution
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F. D. Kamareddine 7 April 2000(axiom) <> `�� � : 2(start rule) � `�� A : S�:�x:A `�� x : A x 62 �(weakening rule) � `�� A : S � `�� D : E�:�x:A `�� D : E x 62 �(new appliation rule) � `�� F : �x:A:B � `�� a : A� `�� Fa : (�x:A:B)a(abstration rule) �:�x:A `�� b : B � `�� �x:A:B : S� `�� �x:A:b : �x:A:B(new onversion rule) � `�� A : B � `�� B0 : S B =�� B0� `�� A : B0(formation rule) � `�� A : S1 �:�x:A `�� B : S2� `�� �x:A:B : S2 if (S1; S2) is a ruleEEF Foundations shool in Dedutions and Theorem Proving, Heriot-Watt univ, April 6-16 2000 42
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F. D. Kamareddine 7 April 2000Generation Lemma

Lemma 4. (Generation Lemma for `�)� If � `� �x:A:B : C then � `� A : S1 and �:�x:A `� B : S2 and(S1; S2) is a rule, C =� S2 and.....� If � `� Fa : C then � `� F : �x:A:B and � `� a : A and C =� B[x := a℄and .....� ..................In Generation lemma for `�� for appliation ase, we replae B[x := a℄ by(�x:A:B)a and hange � to to �� everywhere.EEF Foundations shool in Dedutions and Theorem Proving, Heriot-Watt univ, April 6-16 2000 44



F. D. Kamareddine 7 April 2000Corretness of types fails for �-redution even in �!

Lemma 5. For any A;B;C; S we have � 6`�� (�x:A:B)C : S.Proof: If � `�� (�x:A:B)C : S then by generation, � `�� �x:A:B : �x:A0:B0and again by generation, �:�x:A `�� B : S0 ^ S0 =�� �x:A0:B0. Absurd. 2The new legal terms of the form (�x:B:C)A imply the failure of Corretness oftypes Lemma 3 for `�� even in �!.� � `�� A : B may not imply B � 2 or � `�� B : S for some sort S.� E.g., if � � �z:�:�x:z then � `�� (�y:z:y)x : (�y:z:z)x, but � 6`�� (�y:z:z)x :S from Lemma 5.EEF Foundations shool in Dedutions and Theorem Proving, Heriot-Watt univ, April 6-16 2000 45



F. D. Kamareddine 7 April 2000We have a weak orretness of types:Lemma 6. If � `�� A : B and B is not a �-redex then (B � 2 or � `�� B :S for some sort S).Proof: By a trivial indution on the derivation of � `�� A : B noting that theappliation rule does not apply as (�x:A:B)a is not a �-redex. 2Failure of orretness of types implies failure of Subjet Redution even in �!:� In �!, we have: �z:�:�x:z 6`�� x : (�y:z:z)x.� Otherwise,by generation: �z:�:�x:z `�� (�y:z:z)x : S, whih is absurd byLemma 5.� Yet in �!, we have: �z:�:�x:z `�� (�y:z:y)x : (�y:z:z)x.EEF Foundations shool in Dedutions and Theorem Proving, Heriot-Watt univ, April 6-16 2000 46



F. D. Kamareddine 7 April 2000Relating `�� and `� and Weak SR

For A `��-legal, let ^A be C[x := D℄ if A � (�x:B:C)D and A otherwise.Lemma 7.1. If � `�� A : B then � `� A : ^B.2. If � `� A : B then � `�� A : B.Lemma 8. (Weak Subjet Redution for `�� and !!��)1. If � `�� A : B and A!!�� A0 then � `�� A0 : ^B2. If � `�� A : B and A!!�� A0 and B is `�-legal then � `�� A0 : BEEF Foundations shool in Dedutions and Theorem Proving, Heriot-Watt univ, April 6-16 2000 47



F. D. Kamareddine 7 April 2000Canonial typing

There are reasons why separating the questions \what is the type of a term" (via�) and \is the term typable" (via `), is advantageous. Here are some:

� The anonial type of A is easy to alulate.

� �(A) plays the role of a preferene type for A. The preferene type ofA � �x:�:(�y:�:y)x is �(<>;A) � �x:�:(�y:�:�)x whih !!�� to �y:�:�, thetype traditionally given to A.

� The onversion rule is no longer needed as a separate rule in the de�nition ofEEF Foundations shool in Dedutions and Theorem Proving, Heriot-Watt univ, April 6-16 2000 48



F. D. Kamareddine 7 April 2000`. It is aommodated in our appliation rule:� ` A � ` B� ` AB if �(�; A) =�� �x:C:D and �(�; B) =�� C

It will be the ase that �(�; AB) � �(�; A)B =�� (�x:C:D)B !�� D[x :=B℄ and so indeed �(�; AB) =�� D[x := C℄.� Higher degrees:If we use �1 for � and �2 for � then we an aim for a possiblegeneralization. In fat, we an extend our system by inorporating moredi�erent �'s. For example, with an in�nity of �'s, viz. �0, �1, �2, �3 : : :, wereplae �(�; �x:A:B) � �x:A:�(�:�x:A; B) and �(�;�x:A:B) � �(�:�x:A; B)by the following:�(�; �i+1x:A:B) � �ix:A:�(�:�x:A; B); for i = 0; 1; 2; : : : where �0x:A:B � BEEF Foundations shool in Dedutions and Theorem Proving, Heriot-Watt univ, April 6-16 2000 49



F. D. Kamareddine 7 April 2000There may be irumstanes in whih one desires to have more \layers" of �'s.As an example we refer to [de Bruijn 74℄.� This notion enables one to separate the judgement � ` A : B in two:� ` A and �(�; A) = B.
�(�; �) � 2�(�; x) � A if (A�x) 2 ��(�; (aÆ)F ) � (aÆ)�(�; F )�(�; (A�x)B) � (A�x)�(�(A�x); B) if x 62 dom(�)�(�; (A�x)B) � �(�(A�x); B) if x 62 dom(�)
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F. D. Kamareddine 7 April 2000

� In usual type theory:{ the type of (��x)(x�y)y is (��x)(x�y)x and{ the type of (��x)(x�y)x is �.

� With our � , we get the same result:

{ �(<>; (��x)(x�y)y) � (��x)�((��x); (x�y)y) � (��x)(x�y)�((��x)(x�y); y) �(��x)(x�y)x and{ �(<>; (��x)(x�y)x) � �((��x); (x�y)x) � �((��x)(x�y); x) � �EEF Foundations shool in Dedutions and Theorem Proving, Heriot-Watt univ, April 6-16 2000 51



F. D. Kamareddine 7 April 2000Let �0 �<>, �1 � (��z), �2 � (��z)(��y), �3 � �2(��x). We want to �nd theanonial type of (��z)(BÆ)(��y)(yÆ)(��x)x in �0.(�0�) (��z) (BÆ) (��y) (yÆ) (��x) x !�(�1�) (BÆ) (��y) (yÆ) (��x) x !�(BÆ) (�1�) (��y) (yÆ) (��x) x !�(BÆ) (��y) (�2�) (yÆ) (��x) x !�(BÆ) (��y) (yÆ) (�2�) (��x) x !�(BÆ) (��y) (yÆ) (��x) (�3�) x !�(BÆ) (��y) (yÆ) (��x) �
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F. D. Kamareddine 7 April 2000New Typability(`-axiom) <> ` �(`-start rule) � ` A�(A�x) ` x if v

(`-weakening rule) � ` A � ` D�(A�x) ` D if v

(`-appliation rule) � ` F � ` a� ` (aÆ)F if ap

(`-abstration rule) �(A�x) ` b � ` (A�x)B� ` (A�x)b if ab

(`-formation) � ` A �(A�x) ` B� ` (A�x)B if fEEF Foundations shool in Dedutions and Theorem Proving, Heriot-Watt univ, April 6-16 2000 53



F. D. Kamareddine 7 April 2000� v (variable ondition): x 62 � and �(�; A)!!�� S for some S� ap (appliation ondition): �(�; F ) =�� (A�x)B and �(�; a) =�� A for someA;B.� ab (abstration ondition): �(�(A�x); b) =�� B and �(�; (A�x)B) !!�� Sfor some S.� f (formation ondition): �(�; A) !!�� S1 and �(�(A�x); B) !!�� S2 forsome rule (S1; S2).
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F. D. Kamareddine 7 April 2000Properties of `

De�ne A to be the ��-normal form of A.Lemma 9. If � ` A then # �(�; A) and � `� A : �(�; A)Lemma 10. (Subjet Redution for ` and �)� ` A ^A!!�� A0 ) [� ` A0 ^ �(�; A) =�� �(�; A0)℄Theorem 5. (Strong Normalisation for `)If A is �`-legal, then SN!!�(A).Lemma 11. � `� A : B () � ` A and �(�; A) =�� B andB is `�-legal type.EEF Foundations shool in Dedutions and Theorem Proving, Heriot-Watt univ, April 6-16 2000 55



F. D. Kamareddine 7 April 2000Properties of the Cube with generalised redution

C;;�(CR, SN) Cdef(CR, SN, SR)

C(CR, SN, SR)

�������R �������	C;;�def (CR, SN, SR)
�������R�������	

Figure 7: Properties of the Cube with generalised redution
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