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Item Notation/Lambda Calulus �a la de Bruijn

� For those used to lassial notation, I translates to item notation:I(x) = x; I(�x:B) = [x℄I(B); I(AB) = (I(B))I(A)� For example, I((�x:(�y:xy))z) = (z)[x℄[y℄(y)x. The items are (z), [x℄, [y℄and (y).� The appliator wagon (z) and abstrator wagon [x℄ our NEXT to eah other.� In lassial notation the � rule is (�x:A)B !� A[x := B℄. In item notation,the rule is: (B)[x℄A!� [x := B℄AMirosoft, 8 January 2001 1



Redexes in Item NotationClassial Notation Item Notation((�x:(�y:�z:zd))b)a (a)(b)[x℄()[y℄[z℄(d)z#� #�((�y:�z:zd))a (a)()[y℄[z℄(d)z#� #�(�z:zd)a (a)[z℄(d)z#� #�ad (d)a

(a)(b) [x℄ () [y℄ [z℄ (d) z
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Segments, Partners, Bahelors� The \braketing struture" of the lassial notation ((�x:(�y:�z: � �))b)a),is `f1 f2 f3 g2 g1 g3', where `fi' and `gi' math.� In item notation, (a)(b)[x℄()[y℄[z℄(d) has the simpler braketing strutureff gf gg.� An appliator (a) and an abstrator [x℄ are partners when they math like `f'and `g'. Non-partnered items are bahelors. A segment s is well balanedwhen it ontains only partnered items.� Example: Let s � (a)(b)[x℄()[y℄[z℄(d). Then: The items (a), (b), [x℄,(), [y℄, and [z℄ are partnered. The item (d) is a bahelor. The segment(a)(b)[x℄()[y℄[z℄ is well balaned.
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More on Segments, Partners, and BahelorsConsider some term sx. Some fats:� The main items in s are those at top level, not within some appliator (a).� Eah main bahelor abstrator [x℄ preedes eah main bahelor appliator (a).� Removing all main bahelor items from s yields a well balaned segment.� Removing all main partnered items from s yields a segment[v1℄ : : : [vn℄(a1) : : : (am) onsisting of all main bahelor abstrators followedby all main bahelor appliators.� If s is of the form s1(b)s2[v℄s3 where [v℄ and (b) are partnered, then s2 mustbe well balaned.Mirosoft, 8 January 2001 4



Even More on Segments, Partners, and Bahelors

Eah non-empty segment s has a unique partitioning into sub-segmentss = s0s1 � � � sn suh that� For even i, the segment si is well balaned. For odd i, the segment si is abahelor segment, i.e., it ontains only bahelor main items.� All well balaned segments after the �rst and all bahelor segments arenon-empty.� If si = [x1℄ � � � [xm℄ (only abstrator main items) and sj = (a1) � � � (ap) (onlyappliator main items), then i < j, i.e., si preedes sj in s.
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Examples � [x℄[y℄(a)[z℄[x0℄(b)()(d)[y0℄[z0℄(e), has the following partitioning:� well-balaned segment s0 � ;� bahelor segment s1 � [x℄[y℄,� well-balaned segment s2 � (a)[z℄,� bahelor segment s3 � [x0℄(b),� well-balaned segment s4 � ()(d)[y0℄[z0℄,� bahelor segment s5 � (e).
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More on Item Notation� Above disussion and further details of item notation an be foundin [Kamareddine and Nederpelt, 1995, 1996℄.� Item notation helped greatly in the study of a one-sorted style ofexpliit substitutions, the �s-style whih is related to ��, but has ertainsimpli�ations [Kamareddine and R��os, 1997, 1995, 2000℄.
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Canonial Forms� Item notation helps in �nding nie anonial forms. The term[x℄[y℄(a)[z℄[x0℄(b)()(d)[y0℄[z0℄(e)is equivalent to [x℄[y℄[x0℄(a)[z℄()(d)[y0℄[z0℄(b)(e)and also [x℄[y℄[x0℄(a)[z℄(d)[y0℄()[z0℄(b)(e)� Nie anonial forms look like:bahelor [ ℄s ()[ ℄-pairs, Ai in CF bahelor ()s, Bi in CF end var[x1℄ : : : [xn℄ (A1)[y1℄: : :(Am)[ym℄ (B1) : : : (Bp) x� In lassial notation:�x1 � � ��xn:(�y1:(�y2: � � � (�ym:xBp � � �B1)Am � � � )A2)A1Mirosoft, 8 January 2001 8



Some Rules for Generalising RedutionName In Classial Notation In Item Notation((�x:N)P )Q (Q)(P )[x℄N(�) # #(�x:NQ)P (P )[x℄(Q)N(�x:�y:N)P (P )[x℄[y℄N() # #�y:(�x:N)P [y℄(P )[x℄N((�x:�y:N)P )Q (Q)(P )[x℄[y℄N(g) # #(�x:N [y := Q℄)P (P )[x℄[y := Q℄N((�x:�y:N)P )Q (Q)(P )[x℄[y℄N(C) # #(�y:(�x:N)P )Q (Q)[y℄(P )[x℄NMirosoft, 8 January 2001 9



Obtaining Canonial Forms

The results of going to normal form for the indiated redution rules, in the ordershown:�: ()[ ℄-pairs mixed with bah. [ ℄s bah. ()s end var(A1)[x℄[y℄[z℄(A2)[p℄ � � � (B1)(B2) � � � x: bah. [ ℄s ()[ ℄-pairs mixed with bah. ()s end var[x1℄[x2℄ � � � (B1)(A1)[x℄(B2) � � � x�, : bah. [ ℄s ()[ ℄-pairs bah. ()s end var[x1℄[x2℄ � � � (A1)[y1℄(A2)[y2℄ : : : (Am)[ym℄ (B1)(B2) : : : x, �: bah. [ ℄s ()[ ℄-pairs bah. ()s end var[x1℄[x2℄ � � � (A1)[y1℄(A2)[y2℄ : : : (Am)[ym℄ (B1)(B2) : : : x
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More on Canonial Forms

� Both �((A)) and (�(A)) are in anonial form and we have that �((A)) =p(�(A)) where !p is the rule(A1)[y1℄(A2)[y2℄B !p (A2)[y2℄(A1)[y1℄B if y1 =2 FV(A2)� For a term A, we de�ne: [A℄ = fB j �((A)) =p �((B))g.� When B 2 [A℄, we write that B �equi A.
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� One-step lass-redution ;� is the least ompatible relation suh that:A;� B i� 9A0 2 [A℄:9B0 2 [B℄: A0 !� B0� Classes ([A℄) and lass redution (;�) niely preserve various strongnormalization properties.� De�ne A;(E)[x℄� B i� 9A0 2 [A℄:9B0 2 [B℄:9E0 2 [E℄: A0 !(E0)[x℄� B0.
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Theorem 1. If A �equi C and A;(E)[x℄� B then(9D;E0)[B �equi D;E0 �equi E; and C !(E0)[x℄� D℄.

CA �equiDB(E0)[x℄ ;�
(E)[x℄ ;��equi
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A Few Uses of Generalised Redution and Term Reshu�ing� Regnier [1992℄ uses term reshu�ing and generalized redution in analyzingperpetual redution strategies.� Term reshu�ing is used in [Kfoury et al., 1994℄, [Kfoury and Wells, 1994℄ inanalyzing typability problems.� [Nederpelt, 1973; de Groote, 1993; Kfoury and Wells, 1995℄ use generalisedredution and/or term reshu�ing in relating SN to WN.� [Ariola et al., 1995℄ uses a form of term-reshu�ing in obtaining a alulus thatorresponds to lazy funtional evaluation.� [Kamareddine and Nederpelt, 1995; Bloo et al., 1996℄ showed how generalizedredution and term reshu�ing ould redue spae/time needs.� [Kamareddine, 2000℄ shows various strong properties of generalised redution.Mirosoft, 8 January 2001 14



What are Parameters?

� Historially, funtions have long been treated as a kind of of meta-objets.� In the nowadays aepted view on funtions, they are `�rst lass itizens'.� Funtion values have always been important, but abstrat funtions have notbeen reognised in their own right until the middle of the 20th entury.� In the low level approah or operational view on funtions, there are nofuntions as suh, but only funtion values.� E.g., the sine-funtion, is always expressed together with a value: sin(�),sin(x) and properties like: sin(2x) = 2 sin(x) os(x).Mirosoft, 8 January 2001 15



What are Parameters?

� it has long been usual to all f(x)|and not f|the funtion and this is stillthe ase in many introdutory mathematis ourses.� we speak about funtions with parameters when referring to funtions withvariable values in the low-level approah. The x in f(x) is a parameter.� An important di�erene between the low-level and high-level approah iswhether funtions are `spetators' in the world under onsideration whih anbe alled upon for servies but do not join the ongoing play, or `partiipants'standing on stage just like the other players.
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Advantages of Parameters

� The orresponding theory an be of lower order than in the high-level ase,e.g. �rst-order with parameters versus seond-order without.� Possible to �ne-tune a theory by using parameters for some lasses of funtions.� Desirable properties of the lower order theory (deidability, easiness ofalulations, typability) an be maintained, without losing the exibility ofthe higher-order aspets.� This low-level approah is still worthwile for many exat disiplines. In fat,both in logi and in omputer siene it has ertainly not been wiped out, andfor good reasons.Mirosoft, 8 January 2001 17



A di�erent form of abstration and appliation

� Abstration and appliation form the basis of a type system. This view is rigidand does not represent the development of logi in the 20th entury.� Frege and Russell's oneptions of funtional abstration, instantiation andappliation do not �t well with the �-alulus approah.� Here is an example taken from Prinipia Mathematia (f. [Whitehead andRussell, 19101, 19272℄):� 9�15: If, for some a, there is a proposition �a, then thereis a funtion �^x, and vie versa.� The funtion � is not a separate entity but always has an argument.Mirosoft, 8 January 2001 18



Developers versus users of a type theory

� The parameter mehanism enables us to desribe the di�erene betweendevelopers and users of ertain systems.� Logiians versus mathematiians and the indution axiom for natural numbers.� A logiian is someone developing this axiom (or studying its properties).� The mathematiian is usually only interested in applying (using) the axiom.

Mirosoft, 8 January 2001 19



The logiian and Indution

� Logiian: The indution axiom an be desribed in a PTS with sorts �;2, axiom� : 2 and �-formation rules (�; �; �), (�;2;2), (2; �; �) by the PTS-type Ind:Ind = �p:(N!�):p0!(�n:N :�m:N :pn!Snm!pm)!�n:N :pnind: Ind serves as a proof term for any appliation of the indution axiom.
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The mathematiian and Indution

� Mathematiian: only applies the indution axiom and doesn't need to knowthe proof-theoretial bakgrounds.� Mathematiian uses the term ind only in ombination with terms P :N!�, Q : P0 and R : (�n:N :�m:N :Pn!Snm!Pm) to form a term(indPQR):(�n:N :Pn).� The use of the indution axiom by the mathematiian is muh better desribedby the parametri sheme (p, q and r are the parameters of the sheme):ind(p:N!�; q:p0; r:(�n:N :�m:N :pn!Snm!pm)) : �n:N :pn:
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The mathematiian's use of Indution

� The types that our in this sheme an all be onstruted using sorts �;2,axiom � : 2 and rules (�; �; �), (�;2;2).� The rule (2; �; �) is not needed (in the logiian's approah, this rule wasneeded to form the �-abstration �p:(N ! �): � � � ).� Consequently, the type system that is used to desribe the mathematiian'suse of the indution axiom an be weaker than the one for the logiian.� Nevertheless, the parameter mehanism gives the mathematiian limited (butfor his purposes suÆient) aess to the indution sheme.
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Automath

� The �rst tool for mehanial representation and veri�ation of mathematialproofs, Automath, has a parameter mehanism.� The representation of a mathematial text in Automath onsists of a �nitelist of lines where every line has the following format:x1 : A1; : : : ; xn : An ` g(x1; : : : ; xn) = t : T:Here g is a new name, an abbreviation for the expression t of type T andx1; : : : ; xn are the parameters of g, with respetive types A1; : : : ; An.
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Automath

� Eah line introdues a new de�nition whih is inherently parametrised by thevariables ourring in the ontext needed for it.� Atual development of ordinary mathematial theory in theAutomath systemby e.g. van Benthem Jutting (f. [Benthem Jutting, 1977℄) revealed that thisombined de�nition and parameter mehanism is vital for keeping proofsmanageable and suÆiently readable for humans.
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The Barendregt Cube
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(axiom) hi ` � : 2(start) � ` A : s�; x:A ` x : A x 62 dom (�)(weak) � ` A : B � ` C : s�; x:C ` A : B x 62 dom (�)(�) � ` A : s1 �; x:A ` B : s2� ` (�x:A:B) : s2 (s1; s2) 2 R(�) �; x:A ` b : B � ` (�x:A:B) : s� ` (�x:A:b) : (�x:A:B)(appl) � ` F : (�x:A:B) � ` a : A� ` Fa : B[x:=a℄(onv) � ` A : B � ` B0 : s B =� B0� ` A : B0Mirosoft, 8 January 2001 26



�! (�; �)�2 (�; �) (2; �)�P (�; �) (�;2)�! (�; �) (2;2)�P2 (�; �) (2; �) (�;2)�! (�; �) (2; �) (2;2)�P! (�; �) (�;2) (2;2)�C (�; �) (2; �) (�;2) (2;2)Figure 1: Di�erent type formation onditions
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System Related system Names, referenes�! �� simply typed �-alulus;[Churh, 1940℄, [Barendregt,1984℄ (Appendix A), [Hindleyand Seldin, 1986℄ (Chapter14)�2 F seond order typed �-alulus; [Girard, 1972℄,[Reynolds, 1974℄�P aut-QE [Bruijn, 1968℄LF [Harper et al., 1987℄�P2 [Longo and Moggi, 1988℄�! POLYREC [Renardel de Lavalette, 1991℄�! F! [Girard, 1972℄�C CC Calulus of Construtions;[Coquand and Huet, 1988℄Figure 3: Systems of the Barendregt CubeMirosoft, 8 January 2001 29



LF

� The system LF (see [Harper et al., 1987℄) is often desribed as the system �Pof the Barendregt Cube.� However, Geuvers [Geuvers, 1993℄ shows that the use of the �-formation rule(�;2) is very restrited in the pratial use of LF.� We will see that this use is in fat based on a parametri onstrut rather thanon a �-formation rule.� Here again, we will be able to �nd a more preise position of LF on the Cubewhih will be the enter of the line whose ends are �! and �P .
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ML

� We only onsider an expliit version of a subset of ML.� In ML, One an de�ne the polymorphi identity by:Id(�:�) = (�x:�:x) : (� ! �): (1)� But in ML, it is not possible to make an expliit �-abstration over � : � by:Id = (��: � :�x:�:x) : (��: � :�! �) (2)� Those familiar with ML know that the type ��: � :� ! � does not belong tothe language of ML and hene the �-abstration of equation (2) is not possiblein ML.Mirosoft, 8 January 2001 31



ML

� Therefore, we an state that ML does not have a �-formation rule (2; �).� Nevertheless, it learly has some parameter mehanism (� ating as parameterof Id)� Hene ML has limited aess to the rule (2; �) enabling equation (1) to bede�ned. This means that ML's type system is none of those of the eightsystems of the Cube.� We will �nd a plae for the type system of ML on our re�ned Cube.
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Extending the Cube with parametri onstruts

� We extend the eight systems of the Barendregt Cube with parametrionstruts.� Parametri onstruts are of the form (b1; : : : ; bn) where b1; : : : ; bn are termsof ertain presribed types.� Just as we an allow several kinds of �-onstruts (via the set R) in theBarendregt Cube, we an also allow several kinds of parametri onstruts.� This is indiated by a set P, onsisting of tuples (s1; s2) where s1; s2 2 f�;2g.
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Extending the Cube with parametri onstruts

� (s1; s2) 2 P means that we allow parametri onstruts (b1; : : : ; bn) : A whereb1; : : : ; bn have types B1; : : : ; Bn of sort s1, and A is of type s2.� However, if both (�; s2) 2 P and (2; s2) 2 P then ombinations of parametersare possible.� For example, it is allowed that B1 has type �, whilst B2 has type 2.
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Extending the Cube with parametri onstruts

� TP ::= V j S j C(LT ) j TPTP j �V:TP :TP j �V:TP :TP ;LT ::= ? j hLT ;TP i:� V is a set of variables, C is a set of onstants, and S = f�;2g.� h: : : hh?; A1i; A2i : : : Ani is written hA1; : : : ; Ani or even A1; : : : ; An.� In a parametri term of the form (b1; : : : ; bn), the subterms b1; : : : ; bn arealled the parameters of the term.
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The Barendregt Cube with parametri onstants

� Let R, P be subsets of f(�; �); (�;2); (2; �); (2;2)g ontaining (�; �).� The judgments that are derivable in �RP are determined by the usualrules for �R and the following two rules where � � x1:B1; : : : ; xn:Bn and�i � x1:B1; : : : ; xi�1:Bi�1:

(!C-weak) � ` b : B �;�i ` Bi : si �;� ` A : s�; (�) : A ` b : B (si; s) 2 P;  is �-fresh

(!C-app) �1; (�):A;�2 ` bi:Bi[xj:=bj℄i�1j=1 (i = 1; : : : ; n)�1; (�):A;�2 ` A : s (if n = 0)�1; (�):A;�2 ` (b1; : : : ; bn) : A[xj:=bj℄nj=1Mirosoft, 8 January 2001 36



Lemma 1. Corretness of types) If � ` A : B then (B � 2 or � ` B :S for some sort S).

Theorem 1. (Subjet Redution SR) If � ` A : B and A !!� A0 then� ` A0 : B 2

Theorem 2. (Strong Normalisation) For all `-legal terms M , we haveSN!!�(M). I.e. M is strongly normalising with respet to !!�.

Other properties suh as Uniqueness of types and typability of subterms also hold.Mirosoft, 8 January 2001 37
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� Consider the system �RP. We all this system parametrially onservative if(s1; s2) 2 P implies (s1; s2) 2 R.

� Let �RP be parametrially onservative. The parameter-free system �R is atleast as powerful as �RP.

� Let �RP be parametrially onservative.If � `RP a : A then f�g `R fag : fAg :Mirosoft, 8 January 2001 39
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LF

� Geuvers [Geuvers, 1993℄ initially desribes the system LF (see [Harper et al.,1987℄) as the system �P of the Cube.� However, the use of the �-formation rule (�;2) is quite restritive in mostappliations of LF.� Geuvers splits the �-formation rule in two:(�0)�; x:A `M : B � ` �x:A:B : �� ` �0x:A:M : �x:A:B ;(�P )�; x:A `M : B � ` �x:A:B : 2� ` �Px:A:M : �x:A:B :System LF without rule (�P ) is alled LF�.Mirosoft, 8 January 2001 41



LF

� �-redution is split into �0-redution and �P -redution:(�0x:A:M)N !�0 M [x:=N ℄;(�Px:A:M)N !�P M [x:=N ℄:Geuvers then shows that{ If M : � or M : A : � in LF, then the �P -normal form of M ontains no �P ;{ If � ` LF M : A, and �;M;A do not ontain a �P , then � ` LF� M : A;{ If � ` M : A(: �), all in �P -normal form, then � ` LF� M : A(: �).� This means that the only real need for a type �x:A:B : 2 is to be able todelare a variable in it.Mirosoft, 8 January 2001 42



LF

� The only point at whih this is really done is where the bool-styleimplementation of the Propositions-As-Types priniple pat is made:� the onstrution of the type of the operator Prf (in an unparameterised form)has to be made as follows:prop:� ` prop: � prop:�; �:prop ` �:2prop:� ` (��:prop:�) : 2 :� In the pratial use of LF, this is the only point where the �-formation rule(�;2) is used.� No �P -abstrations are used, either, and the term Prf is only used when it isapplied to a term p:prop.Mirosoft, 8 January 2001 43



LF

� This means that the pratial use of LF would not be restrited if weintrodued Prf in a parametri form, and replaed the �-formation rule (�;2)by a parameter rule (�;2).� This puts (the pratial appliations of) LF in between the systems �! and�P in the Re�ned Barendregt Cube.
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� The above only explained the extension of the Cube with parametri onstants.Details an be found in [Kamareddine et al., 2001℄.� A larger extension an be made to the more generalised Pure Type Systems.� We an add de�nitions and parametri de�nitions to the Cube and Pure Typesystems. This an be found in [Laan, 1997℄.
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