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Item Notation/Lambda Calculus a la de Bruijn

e For those used to classical notation, Z translates to item notation:

I(z) =2, I(x.B)=[z]Z(B), ZI(AB) = (Z(B))I(A)

e For example, Z((Az.(Ay.wy))z) = (2)[zlly|(y)x. The items are (z), [z], [y]
and (y).

e The applicator wagon (z) and abstractor wagon [x] occur NEXT to each other.

e In classical notation the 3 rule is (\1.A) —3 Alx := B]. In item notation,

the rule is:
A —>5 [J? = B]A
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Redexes in Item Notation

Classical Notation ltem Notation
(M- (Ay-Azzd)c)b)a (a) (D) ] (e)]yl[z](d)z
¥ \¥e
(Ay-Az-zd)c)a (a)(c)lyl|z](d)z
¥ ¥
(A..zd)a (a)|z](d)z
¥ \¥e
ad (d)a
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Segments, Partners, Bachelors

e The “bracketing structure” of the classical notation ((\..(A,.\.. — —)c)b)a),
IS {2 {3 }2 }3’, where ‘{i’ and ‘}i’ match.

e In item notation, (a) (¢)|y]lz](d) has the simpler bracketing structure

T

e An applicator (a) and an abstractor |z] are partners when they match like ‘{’
and ‘}’. Non-partnered items are bachelors. A segment s is well balanced
when it contains only partnered items.

e Example: Let 5 = (a) (¢)lyllz](d). Then: The items (a), (b), [x],
(¢), ly], and [z] are partnered. The item (d) is a bachelor. The segment
(a) (¢)lyl|z] is well balanced.
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More on Segments, Partners, and Bachelors

Consider some term sxz. Some facts:

e The main items in 5 are those at top level, not within some applicator (a).
e Each main bachelor abstractor [x| precedes each main bachelor applicator (a).
e Removing all main bachelor items from s yields a well balanced segment.

e Removing all main partnered items from s vyields a segment
(1] ... [vn](a1) ... (a,,) consisting of all main bachelor abstractors followed
by all main bachelor applicators.

o If 5 is of the form 57(b)s3|v|s3 where [v] and (b) are partnered, then 55 must
be well balanced.

Microsoft, 8 January 2001 4



Even More on Segments, Partners, and Bachelors

Each non-empty segment s has a unique partitioning into sub-segments
S = 5051 -5, such that

e For even 7, the segment s; is well balanced. For odd ¢, the segment s; is a
bachelor segment, i.e., it contains only bachelor main items.

o All well balanced segments after the first and all bachelor segments are
non-empty.

o If 5; = |z1] - |xm] (only abstractor main items) and 5; = (a1)--- (a,) (only
applicator main items), then i < j, i.e., §; precedes 55 In's.
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Example
s = [x]|yl(a)|z]|2'](b) (e), has the following partitioning:
o well-balanced segment 5y = ()
e bachelor segment 57 = [z][y],
e well-balanced segment 53 = (a)|z],

e bachelor segment 53 = [/

[ I
/N

b),
e well-balanced segment 54 =

e bachelor segment 55 = (¢).
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More on Item Notation

e Above discussion and further details of item notation can be found
in [Kamareddine and Nederpelt, 1995, 1996].

e |ltem notation helped greatly in the study of a one-sorted style of

explicit substitutions, the As-style which is related to Ao, but has certain
simplifications [Kamareddine and Rios, 1997, 1995, 2000].
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Canonical Forms

e |tem notation helps in finding nice canonical forms. The term

[z][y](a)[][2] (D) (e)
is equivalent to
z][y][z"](a)[2] (b)(e)
and also

z][y][z"](a) 7] (b)(e)

e Nice canonical forms look like:

bachelor [|s | ()|]-pairs, A; in CF | bachelor ()s, B; in CF | end var

EZ I (B1) ... (Bp) x
e |n classical notation:
Axp o A (A ( Ay, - ( xB, - B) ) As)
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Some Rules for Generalising Reduction

Name | In Classical Notation | In Item Notation
(Az-N)P)Q (Q)(P)|z]N
(0) ) )
(A NQ)P (P)[z](Q)N
( 'Ay-N) ly|N
(7) ) )
>‘y-( V) ] N
((Az-Ay-N)P)Q) (Q)(P)|z][y]N
(9) ) )
(Ae Ny := Q)P | (P)lz]ly := QN
(Ao Ay-N)P)Q (@) lyIN
(ve) i }
(Ay- (M- N)P)Q (Q)[y] N
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Obtaining Canonical Forms

The results of going to normal form for the indicated reduction rules, in the order
shown:

0: ()| ]-pairs mixed with bach. [|s | bach. ()s end var
| Al An)p)- (B)(By)- - |

v: bach. | |s ()] |-pairs mixed with bach. ()s end var
1][zo] -~ | (By)(A1)[z](Bo) -- z

6, v: | bach. [|s ()] |-pairs bach. ()s end var
ilos]- | (Al (A2)pe] . (A)lym] | (B)(By) ... | =

v, 0: | bach. []s ()] |-pairs bach. ()s end var
EER) (A1) [w1)(A2) (2] - - - (Am)[Ym] | (B1)(B2) ... |
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More on Canonical Forms

e Both O(v(A)) and y(0#(A)) are in canonical form and we have that 6(v(A))
v(0(A)) where —, is the rule

(A1)|y1](A2)[y2] B —p (A2)[y2](A1)[y1]B if y1 ¢ FV(As)
e For a term A, we define: [A] ={B |0(y(A)) =, 0(v(B))}.

e When B € [A], we write that B ~qu; A.
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e One-step class-reduction ~3 is the least compatible relation such that:

A~ B iff JA'€[A].3B' € [B]|. A" =3 B’

o Classes (|A]) and class reduction (~»3) nicely preserve various strong
normalization properties.

e Define A~ Biff 34’ € [A1.3B € [B].3E' € [E]. A’ - B,
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Theorem 1. [f A~y C and A M(BE)M B then

(3D, E)[B Requi D, E' ~equ E, and C =1 D],

b
PR €|
%equi %equi
El
A 1 R

Microsoft, 8 January 2001

13



A Few Uses of Generalised Reduction and Term Reshuffling

e Regnier [1992] uses term reshuffling and generalized reduction in analyzing
perpetual reduction strategies.

e Term reshuffling is used in [Kfoury et al., 1994], [Kfoury and Wells, 1994] in
analyzing typability problems.

o [Nederpelt, 1973; de Groote, 1993; Kfoury and Wells, 1995] use generalised
reduction and/or term reshuffling in relating SN to WN.

e [Ariola et al., 1995] uses a form of term-reshuffling in obtaining a calculus that
corresponds to lazy functional evaluation.

e [Kamareddine and Nederpelt, 1995; Bloo et al., 1996] showed how generalized
reduction and term reshuffling could reduce space/time needs.

e [Kamareddine, 2000] shows various strong properties of generalised reduction.
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What are Parameters?

e Historically, functions have long been treated as a kind of of meta-objects.
e In the nowadays accepted view on functions, they are ‘first class citizens'.

e Function values have always been important, but abstract functions have not
been recognised in their own right until the middle of the 20th century.

e In the low level approach or operational view on functions, there are no
functions as such, but only function values.

e E.g., the sine-function, is always expressed together with a value: sin(m),
sin(x) and properties like: sin(2z) = 2sin(x) cos(x).
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What are Parameters?

e it has long been usual to call f(z)—and not f—the function and this is still
the case in many introductory mathematics courses.

e we speak about functions with parameters when referring to functions with
variable values in the low-level approach. The z in f(x) is a parameter.

e An important difference between the low-level and high-level approach is
whether functions are ‘spectators’ in the world under consideration which can
be called upon for services but do not join the ongoing play, or ‘participants’
standing on stage just like the other players.
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Advantages of Parameters

e The corresponding theory can be of lower order than in the high-level case,
e.g. first-order with parameters versus second-order without.

e Possible to fine-tune a theory by using parameters for some classes of functions.

e Desirable properties of the lower order theory (decidability, easiness of
calculations, typability) can be maintained, without losing the flexibility of
the higher-order aspects.

e This low-level approach is still worthwile for many exact disciplines. In fact,
both in logic and in computer science it has certainly not been wiped out, and
for good reasons.
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A different form of abstraction and application

e Abstraction and application form the basis of a type system. This view is rigid
and does not represent the development of logic in the 20th century.

e Frege and Russell’'s conceptions of functional abstraction, instantiation and
application do not fit well with the A-calculus approach.

e Here is an example taken from Principia Mathematica (cf. [Whitehead and
Russell, 19101, 19272]):

x 9-15. If, for some a, there is a proposition ¢a, then there

Is a function ¢z, and vice versa.

e The function ¢ is not a separate entity but always has an argument.
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Developers versus users of a type theory

e The parameter mechanism enables us to describe the difference between
developers and users of certain systems.

e Logicians versus mathematicians and the induction axiom for natural numbers.
e A logician is someone developing this axiom (or studying its properties).

e The mathematician is usually only interested in applying (using) the axiom.
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The logician and Induction

e Logician: The induction axiom can be described in a PTS with sorts *, O, axiom
% : O and II-formation rules (x,x*,*), (x, 0, 0), (O, %, *) by the PTS-type Ind:

Ind = [Ip:(N—*).p0— (IIn:N.Ilm:N.pn— Snm—pm)—1In:N.pn

ind: Ind serves as a proof term for any application of the induction axiom.
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The mathematician and Induction

e Mathematician: only applies the induction axiom and doesn’t need to know
the proof-theoretical backgrounds.

e Mathematician uses the term ind only in combination with terms P :
N—x*, @ : P0 and R : (IIn:N.Ilm:N.Pn—Snm—Pm) to form a term
(ind PQR):(IIn:N.Pn).

e The use of the induction axiom by the mathematician is much better described
by the parametric scheme (p, ¢ and r are the parameters of the scheme):

ind(p:N—x, ¢:p0, r:(IIn:N.IIm:N.pn—Snm—pm)) : IIn:N.pn.
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The mathematician’s use of Induction

e The types that occur in this scheme can all be constructed using sorts *, O,
axiom * : O and rules (x, x,x), (*, O, O).

e The rule (O, %,%) is not needed (in the logician's approach, this rule was
needed to form the II-abstraction IIp:(N — x).---).

e Consequently, the type system that is used to describe the mathematician’s
use of the induction axiom can be weaker than the one for the logician.

e Nevertheless, the parameter mechanism gives the mathematician limited (but
for his purposes sufficient) access to the induction scheme.

Microsoft, 8 January 2001 22



Automath

e The first tool for mechanical representation and verification of mathematical
proofs, AUTOMATH, has a parameter mechanism.

e The representation of a mathematical text in AUTOMATH consists of a finite
list of lines where every line has the following format:

ry: Ay, ..., xn Ay glay,. .o x,) =t T,

Here g is a new name, an abbreviation for the expression ¢t of type 1" and
x1,...,%, are the parameters of g, with respective types A4, ..., A,.
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Automath

e Each line introduces a new definition which is inherently parametrised by the
variables occurring in the context needed for it.

e Actual development of ordinary mathematical theory in the AUTOMATH system
by e.g. van Benthem Jutting (cf. [Benthem Jutting, 1977]) revealed that this
combined definition and parameter mechanism is vital for keeping proofs
manageable and sufficiently readable for humans.
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The Barendregt Cube
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(axiom)
(start)
(weak)
(1)

(A)
(appl)
(conv)
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A= | (x, %)

A2 | (k) | (O, %)

AP (, %) (x,0)

Aw | (%, %) (0,0)

AP2 | (%,%) | (O,%) | (x,0)

Aw | (k) | (O, %) (0,8)

APw | (%, %) (+0) | (0,0

AC | (%) | (B,%) | (x,0) | (O,0)
Figure 1: Different type formation conditions
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System

Related system

Names, references

A—

A2

AP

AP2
Aw
AW
AC

)\T

AUT-QE
LF

POLYREC
Fw
CC

simply typed  A-calculus;
[Church, 1940], [Barendregt,
1984] (Appendix A), [Hindley
and Seldin, 1986] (Chapter
14)

second order typed -
calculus; [Girard, 1972],
[Reynolds, 1974]

[Bruijn, 1968]

[Harper et al., 1987]

Longo and Moggi, 1988]
[Renardel de Lavalette, 1991]
Girard, 1972]

Calculus of Constructions;
[Coquand and Huet, 1988]
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Figure 3: Systems of the Barendregt Cube
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LF

e The system LF (see [Harper et al., 1987]) is often described as the system AP
of the Barendregt Cube.

e However, Geuvers [Geuvers, 1993] shows that the use of the II-formation rule
(*,0) is very restricted in the practical use of LF.

e \We will see that this use is in fact based on a parametric construct rather than
on a II-formation rule.

e Here again, we will be able to find a more precise position of LF on the Cube
which will be the center of the line whose ends are A— and \P.
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ML

e We only consider an explicit version of a subset of ML.

e In ML, One can define the polymorphic identity by:
Id(a:x) = (Az:ax) : (@ — «). (1)
e But in ML, it is not possible to make an explicit A-abstraction over o« : *x by:

Id = (Ao * Ax:a.z) @ (Ha: x.a — «) (2)

e Those familiar with ML know that the type Ila: * .« — o does not belong to

the language of ML and hence the A-abstraction of equation (2) is not possible
in ML.
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ML

e Therefore, we can state that ML does not have a II-formation rule (O, x).

e Nevertheless, it clearly has some parameter mechanism (« acting as parameter
of Id)

e Hence ML has limited access to the rule (O, %) enabling equation (1) to be
defined. This means that ML's type system is none of those of the eight
systems of the Cube.

e We will find a place for the type system of ML on our refined Cube.

Microsoft, 8 January 2001 32



Extending the Cube with parametric constructs

o We extend the eight systems of the Barendregt Cube with parametric
constructs.

e Parametric constructs are of the form ¢(by,...,b,) where by, ..., b, are terms
of certain prescribed types.

e Just as we can allow several kinds of Il-constructs (via the set R) in the
Barendregt Cube, we can also allow several kinds of parametric constructs.

e This is indicated by a set P, consisting of tuples (s1, s2) where s1, 89 € {*,0}.
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Extending the Cube with parametric constructs

® (s1,52) € P means that we allow parametric constructs ¢(by, ..., b,) : A where
bi,...,b, have types By,..., B, of sort s1, and A is of type ss.

e However, if both (x,s2) € P and (O, s3) € P then combinations of parameters
are possible.

e For example, it is allowed that B; has type *, whilst By has type O.
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Extending the Cube with parametric constructs

TP % | S | C(,CT) ‘ TPTP ‘ )\V:TP.TP | HV:TP.TP;
Lr == &|(Lr,Tp).

e )V is a set of variables, C is a set of constants, and S = {x, O}.
o (...((0,A1),As)... A,) is written (A1,...,A,) oreven Ay, ..., A,.

e In a parametric term of the form c¢(by,...,b,), the subterms by,...,b, are
called the parameters of the term.
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The Barendregt Cube with parametric constants

o Let R, P be subsets of {(x, ), (x,0),(0,%),(0,0)} containing (*, *).

e The judgments that are derivable in ARP are determined by the usual
rules for AR and the following two rules where A = z:B4,...,z,:B, and
A,,; = CBliBl, c. ,xi_lzBi_l:

(C-weak) T o(A): A I—Sb e % (si,8) € P, cis I'-fresh
Fl, C(A)IA, FQ - szl[a:]:b]];;ll (’L — 1, ce ,?7,)
- Fl, C(A)IA, FQ - A:s (If n — O)
(C-app) Iy, c(A) A, To F e(br, - ba) < Az, =b,],
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Lemma 1. Correctness of types) If ' = A : B then (B = Oor' - B :
S for some sort S).

Theorem 1. (Subject Reduction SR) If ' = A : B and A —3 A’ then
I'-A:B ]

Theorem 2. (Strong Normalisation) For all t-legal terms M, we have
SN, ,(M). l.e. M is strongly normalising with respect to —g.

Other properties such as Uniqueness of types and typability of subterms also hold.
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Figure 4: The refined Barendregt Cube
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e Consider the system ARP. We call this system parametrically conservative if
(s1,s2) € P implies (s1,s2) € R.

e Let ARP be parametrically conservative. The parameter-free system AR is at
least as powerful as ARP.

e Let ARP be parametrically conservative.
If I' Frp a : A then {F} R {CL} : {A} .
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Figure 5: LF, ML, AuT-68, and AuT-QE in the refined Barendregt Cube
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LF

e Geuvers [Geuvers, 1993] initially describes the system LF (see [Harper et al.,
1987]) as the system AP of the Cube.

e However, the use of the II-formation rule (x,0) is quite restrictive in most
applications of LF.

e Geuvers splits the A\-formation rule in two:
(AO)F,xiA ~M:B TI'Fllz:A.B:x*
' Xz:A.M : 1lz:A.B ’
(AP)F,QZ:AI—M:B Fl—Hx:A.B:IZI.
' px:A.M : 1lz:A.B
System LF without rule (Ap) is called LF™.
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LF

e (-reduction is split into By-reduction and (Gp-reduction:
(Aoz:A.M)N — 3, M|x:=N];
(Apz:A.M)N —3g, M|x:=N].

Geuvers then shows that

— f M :xor M:A:xinLF, then the 8p-normal form of M contains no Ap;
- fI'-M: A, and I', M, A do not contain a Ap, thenI' -~ M : A;
— IfI'F M : A(: %), all in Bp-normal form, then I' = - M : A(: *).

e This means that the only real need for a type IIz:A.B : O is to be able to
declare a variable in it.
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LF

The only point at which this is really done is where the bool-style
implementation of the Propositions-As-Types principle PAT is made:

the construction of the type of the operator Prf (in an unparameterised form)
has to be made as follows:
prop:* - prop: *  prop:*,a:prop - x:0

prop:* - (Ila:prop.x*) : O

In the practical use of LF, this is the only point where the II-formation rule
(*,0) is used.

No \p-abstractions are used, either, and the term Prf is only used when it is
applied to a term p:prop.
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LF

e This means that the practical use of LF would not be restricted if we
introduced Prf in a parametric form, and replaced the II-formation rule (x,0)
by a parameter rule (x, ).

e This puts (the practical applications of) LF in between the systems A— and
AP in the Refined Barendregt Cube.

Microsoft, 8 January 2001 44



e The above only explained the extension of the Cube with parametric constants.
Details can be found in [Kamareddine et al., 2001].

e A larger extension can be made to the more generalised Pure Type Systems.

e \We can add definitions and parametric definitions to the Cube and Pure Type
systems. This can be found in [Laan, 1997].
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