De Bruijn's syntax and reductional equivalence of λ -terms

Fairouz Kamareddine (Heriot-Watt University) Roel Bloo and Rob Nederpelt (Eindhoven, NL)

5 September 2001

Item Notation/Lambda Calculus à la de Bruijn

• *I* translates to item notation:

$$\mathcal{I}(x) = x, \qquad \mathcal{I}(\lambda x.B) = [x]\mathcal{I}(B), \qquad \mathcal{I}(AB) = (\mathcal{I}(B))\mathcal{I}(A)$$

- $(\lambda x.\lambda y.xy)z$ translates to (z)[x]yx.
- The *items* are (z), [x], [y] and (y). The last x is the *heart* of the term.
- The applicator wagon (z) and abstractor wagon [x] occur NEXT to each other.
- The β rule $(\lambda x.A)B \to_{\beta} A[x:=B]$ becomes in item notation:

$$(B)[x]A \rightarrow_{\beta} [x := B]A$$

Redexes in Item Notation

Classical Notation

$$\frac{(\underbrace{(\lambda_{x}.(\lambda_{y}.\lambda_{z}.zd)c)b})}{\downarrow_{\beta}} \\ (\underbrace{(\lambda_{y}.\lambda_{z}.zd)c})a \\ \downarrow_{\beta} \\ \underbrace{(\lambda_{z}.zd)a}_{\downarrow_{\beta}} \\ ad$$

Item Notation

$$\underbrace{((\lambda_{x}.(\lambda_{y}.\lambda_{z}.zd)c)b)a}_{\downarrow\beta} \qquad (a)\underline{(b)[x](c)[y][z](d)z}_{\downarrow\beta} \\
\underline{((\lambda_{y}.\lambda_{z}.zd)c})a \qquad (a)\underline{(c)[y][z](d)z}_{\downarrow\beta} \\
\underline{(\lambda_{z}.zd)a}_{\downarrow\beta} \qquad \underline{(a)[z](d)z}_{\downarrow\beta} \\
\underline{(a)[z](d)z}_{\downarrow\beta} \\
\underline{(a)[a](d)z}_{\downarrow\beta} \\
\underline{(a)$$

Segments, Partners, Bachelors

- The "bracketing structure" of $((\lambda_x.(\lambda_y.\lambda_z.--)c)b)a)$, is ' $\{1 \ \{2 \ \{3 \ \}_2 \ \}_1 \ \}_3$ ', where ' $\{i$ ' and ' $\}_i$ ' match.
- The bracketing structure of (a)(b)[x](c)[y][z](d) is simpler: $\{\{\}\}\}$.
- ullet (a) and [z] are partners. (b) and [x] are partners. (c) and [y] are partners.
- (d) is bachelor.
- A segment \overline{s} is well balanced when it contains only partnered main items. (a)(b)[x](c)[y][z] is well balanced.
- A segment is bachelor when it contains only bachelor main items.

More on Segments, Partners, and Bachelors

- The *main* items are those at top level. In (yy)[x]x the main items are: (yy) and [x]. [y] and (y) are *not* main items.
- Each main bachelor [] precedes each main bachelor (). For example, look at: [u](a)(b)[x](c)[y][z](d)u.
- Removing all main bachelor items yields a well balanced segment. For example from [u](a)(b)[x](c)[y][z](d) we get: (a)(b)[x](c)[y][z].
- Removing all main partnered items yields a bachelor segment $[v_1] \dots [v_n](a_1) \dots (a_m)$. For example from [u](a)(b)[x](c)[y][z](d) we get: [u](d).
- If [v] and (b) are partnered in $\overline{s_1}(b)\overline{s_2}[v]\overline{s_3}$, then $\overline{s_2}$ must be well balanced.

Even More on Segments, Partners, and Bachelors

Each non-empty segment \overline{s} has a unique *partitioning* into sub-segments $\overline{s} = \overline{s_0 s_1} \cdots \overline{s_n}$ such that $n \ge 0$,

- $\overline{s_i}$ is not empty for $i \geq 1$,
- \bullet $\overline{s_i}$ is well balanced if i is even and is bachelor if i is odd.
- if $\overline{s_i} = [x_1] \cdots [x_m]$ and $\overline{s_j} = (a_1) \cdots (a_p)$ then $\overline{s_i}$ precedes $\overline{s_j}$
- Example: $\overline{s} \equiv [x][y](a)[z][x'](b)(c)(d)[y'][z'](e)$ is partitioned as:

$$\bullet \ \ \overline{s} \equiv \underbrace{ \ \ \ }_{\overline{s_1}}^{\overline{s_0}} \underbrace{ [x][y] (a)[z]}_{\overline{s_3}} \underbrace{ [x'](b) (c)(d)[y'][z']}_{\overline{s_5}} \underbrace{ (e) }_{\overline{s_5}}$$

More on Item Notation

- Above discussion and further details of item notation can be found in [Kamareddine and Nederpelt, 1995, 1996].
- Item notation helped greatly in the study of a one-sorted style of explicit substitutions, the λs -style which is related to $\lambda \sigma$, but has certain simplifications [Kamareddine and Ríos, 1995, 1997; Kamareddine and Ríos, 2000].
- For explicit substitution in item notation see [Kamareddine and Nederpelt, 1993]

Canonical Forms

• Nice canonical forms look like:

bachelor []s	$()[]$ -pairs, A_i in CF	bachelor ()s, B_i in CF	end var
$[x_1]\dots[x_n]$	$(A_1)[y_1](A_m)[y_m]$	$(B_1)\dots(B_p)$	x

• classical:

$$\lambda x_1 \cdots \lambda x_n \cdot (\lambda y_1 \cdot (\lambda y_2 \cdot \cdots (\lambda y_m \cdot x B_p \cdots B_1) A_m \cdots) A_2) A_1$$

• For example, a canonical form of:

is

Some Helpful Rules for reaching canonical forms

Name	In Classical Notation	In Item Notation	
	$((\lambda_x.N)P)Q$	(Q)(P)[x]N	
(θ)	\downarrow	↓	
	$(\lambda_x.NQ)P$	(P)[x](Q)N	
(γ)	$(\pmb{\lambda}_x.\pmb{\lambda_y}.N)P$	(P)[x][y]N	
	\downarrow	↓	
	$oldsymbol{\lambda_y}.(\lambda_x.N)P$	[y](P)[x]N	
(γ_C)	$((\lambda_x.\lambda_y.N)P)Q$	(Q)(P)[x][y]N	
	\downarrow	↓	
	$(\pmb{\lambda_y}.(\pmb{\lambda_x}.N)P)Q$	(Q)[y](P)[x]N	
(g)	$((\lambda_x.\lambda_y.N)P)Q$	(Q)(P)[x][y]N	
	\downarrow	 	
	$(\lambda_x.N[y:=Q])P$	(P)[x][y := Q]N	

A Few Uses of Generalised Reduction and Term Reshuffling

- Regnier [1992] uses term reshuffling and generalized reduction in analyzing perpetual reduction strategies.
- Term reshuffling is used in [Kfoury et al., 1994; Kfoury and Wells, 1994] in analyzing typability problems.
- [Nederpelt, 1973; de Groote, 1993; Kfoury and Wells, 1995] use generalised reduction and/or term reshuffling in relating SN to WN.
- [Ariola et al., 1995] uses a form of term-reshuffling in obtaining a calculus that corresponds to lazy functional evaluation.
- [Kamareddine and Nederpelt, 1995; Kamareddine et al., 1999, 1998; Bloo et al., 1996] shows that they could reduce space/time needs.
- [Kamareddine, 2000] shows various strong properties of generalised reduction.

Obtaining Canonical Forms

θ -nf:		()[]-pairs mixed with bach. []s	bach. ()s	end var
		$(A_1)[x][y][z](A_2)[p]\cdots$	$(B_1)(B_2)\cdots$	x
γ -nf:	bach. []s	()[]-pairs mixed with bach. ()s		end var
	$[x_1][x_2]\cdots$	$(B_1)(A_1)[x](B_2)\cdots$		x
$ heta$ - γ -nf:	bach. []s	()[]-pairs	bach. ()s	end var
	$[x_1][x_2]\cdots$	$(A_1)[y_1](A_2)[y_2]\dots(A_m)[y_m]$	$(B_1)(B_2)\dots$	x
γ - $ heta$ -nf:	bach. []s	()[]-pairs	bach. ()s	end var
	$[x_1][x_2]\cdots$	$(A_1)[y_1](A_2)[y_2]\dots(A_m)[y_m]$	$(B_1)(B_2)\dots$	x

Example

For $M \equiv [x][y](a)[z][x'](b)(c)(d)[y'][z'](e)x$:

$\theta(M)$:	bach. []s	()[]-pairs mixed with bach. []s	bach. ()s	end var
	[x][y]	(a)[z][x'](d)[y'](c)[z']	(b)(e)	x
$\gamma(M)$:	bach. []s	()[]-pairs mixed with bach. ()s	bach. ()s	end var
	[x][y][x']	(a)[z](b)(c)[z'](d)[y']	(e)	x
$\theta(\gamma(M))$:	bach. []s	()[]-pairs	bach. ()s	end var
	[x][y][x']	(a)[z](c)[z'](d)[y']	(b)(e)	x
$\gamma(\theta(M))$:	bach. []s	()[]-pairs	bach. ()s	end var
	[x][y][x']	(a)[z](d)[y'](c)[z']	(b)(e)	x

Classes of terms modulo reductional behaviour

- ullet $\to_{ heta}$ and \to_{γ} are SN and CR. Hence heta-nf and γ -nf are unique.
- Both $\theta(\gamma(A))$ and $\gamma(\theta(A))$ are in *canonical form*.
- $\theta(\gamma(A)) =_p \gamma(\theta(A))$ where \to_p is the rule $(A_1)[y_1](A_2)[y_2]B \to_p (A_2)[y_2](A_1)[y_1]B \qquad \text{if } y_1 \notin \mathrm{FV}(A_2)$
- We define: [A] to be $\{B \mid \theta(\gamma(A)) =_p \theta(\gamma(B))\}.$
- When $B \in [A]$, we write that $B \approx_{\text{equi}} A$.
- $\rightarrow_{\theta}, \rightarrow_{\gamma}, =_{\gamma}, =_{\theta}, =_{p} \subset \approx_{\text{equi}} \subset =_{\beta} \text{ (strict inclusions)}.$
- Define $\mathrm{CCF}(A)$ as $\{A' \text{ in canonical form } | A' =_p \theta(\gamma(A))\}.$

Reduction based on classes

• One-step class-reduction \rightsquigarrow_{β} is the least compatible relation such that:

$$A \rightsquigarrow_{\beta} B$$
 iff $\exists A' \in [A]. \exists B' \in [B]. A' \rightarrow_{\beta} B'$

- \sim_{β} really acts as reduction on classes:
- If $A \leadsto_{\beta} B$ then forall $A' \approx_{\text{equi}} A$, forall $B' \approx_{\text{equi}} B$, we have $A' \leadsto_{\beta} B'$.

Properties of reduction modulo classes

- \leadsto_{β} generalises \to_g and \to_{β} : $\to_{\beta} \subset \to_g \subset \leadsto_{\beta} \subset =_{\beta}$.
- $\bullet \approx_{\beta}$ and $=_{\beta}$ are equivalent: $A \approx_{\beta} B$ iff $A =_{\beta} B$.
- \leadsto_{β} is Church Rosser: If $A \leadsto_{\beta} B$ and $A \leadsto_{\beta} C$, then for some $D: B \leadsto_{\beta} D$ and $C \leadsto_{\beta} D$.
- Classes preserve $SN_{\rightarrow_{\beta}}$: If $A \in SN_{\rightarrow_{\beta}}$ and $A' \in [A]$ then $A' \in SN_{\rightarrow_{\beta}}$.
- Classes preserve $SN_{\leadsto_{\beta}}$: If $A \in SN_{\leadsto_{\beta}}$ and $A' \in [A]$ then $A' \in SN_{\leadsto_{\beta}}$.
- $SN_{\rightarrow_{\beta}}$ and $SN_{\sim_{\beta}}$ are equivalent: $A \in SN_{\sim_{\beta}}$ iff $A \in SN_{\rightarrow_{\beta}}$.

Using Item Notation in Type Systems

- Now, all items are written inside () instead of using () and [].
- $(\lambda_x.x)y$ is written as: $(y\delta)(\lambda_x)x$ instead of (y)[x]x.
- $\Pi_{z:*}(\lambda_{x:z}.x)y$ is written as: $(*\Pi_z)(y\delta)(z\lambda_x)x$.

The Barendregt Cube in item notation and class reduction

• The formulation is the same except that terms are written in item notation:

- $\mathcal{T} = * | \Box | V | (\mathcal{T}\delta)\mathcal{T} | (\mathcal{T}\lambda_V)\mathcal{T} | (\mathcal{T}\Pi_V)\mathcal{T}.$
- The typing rules don't change although we do class reduction \leadsto_β instead of normal β -reduction \to_β .
- The typing rules don't change because $=_{\beta}$ is the same as \approx_{β} .

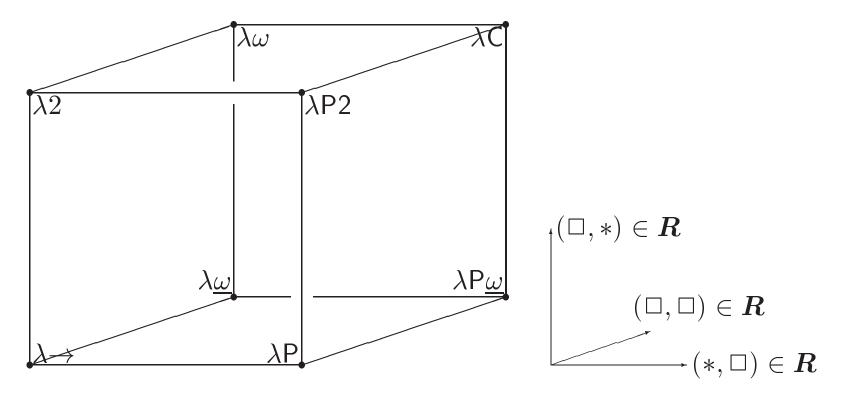


Figure 1: The Barendregt Cube

Subject Reduction fails

- Most properties including SN hold for all systems of the cube extended with class reduction. However, SR only holds in λ_{\rightarrow} (*,*) and $\lambda_{\underline{\omega}}$ (\square , \square).
- SR fails in λP (*, \square) (and hence in $\lambda P2, \lambda P\underline{\omega}$ and λC). Example in paper.
- SR also fails in $\lambda 2$ (\square ,*) (and hence in $\lambda P2$, $\lambda \omega$ and λC):

Why does Subject Reduction fails

- $(y'\delta)(\beta\delta)(*\lambda_{\alpha})(\alpha\lambda_{y})(y\delta)(\alpha\lambda_{x})x \rightsquigarrow_{\beta}(\beta\delta)(*\lambda_{\alpha})(y'\delta)(\alpha\lambda_{x})x$.
- $(\lambda_{\alpha:*}.\lambda_{y:\alpha}.(\lambda_{x:\alpha}.x)y)\beta y' \leadsto_{\beta} (\lambda_{\alpha:*}.(\lambda_{x:\alpha}.x)y')\beta$
- $\beta: *, y': \beta \vdash_{\lambda 2} (\lambda_{\alpha:*}.\lambda_{y:\alpha}.(\lambda_{x:\alpha}.x)y)\beta y': \beta$
- Yet, $\beta: *, y': \beta \not\vdash_{\lambda 2} (\lambda_{\alpha:*}.(\lambda_{x:\alpha}.x)y')\beta: \tau$ for any τ .
- the information that $y':\beta$ has replaced $y:\alpha$ is lost in $(\lambda_{\alpha:*}.(\lambda_{x:\alpha}.x)y')\beta$.
- But we need $y': \alpha$ to be able to type the subterm $(\lambda_{x:\alpha}.x)y'$ of $(\lambda_{\alpha:*}.(\lambda_{x:\alpha}.x)y')\beta$ and hence to type $\beta:*,y':\beta\vdash(\lambda_{\alpha:*}.(\lambda_{x:\alpha}.x)y')\beta:\beta$.

Solution to Subject Reduction: Use "let expressions/definitions"

- Definitions/let expressions are of the form: let x:A=B and are added to contexts exactly like the declarations y:C.
- (def rule) $\frac{\Gamma, \text{let } x: A = B \vdash^{\mathsf{c}} C: D}{\Gamma \vdash^{\mathsf{c}} (\lambda_{x:A}.C)B: D[x:=A]}$
- we define $\Gamma \vdash^{c} \cdot =_{def} \cdot$ to be the equivalence relation generated by:
 - if $A =_{\beta} B$ then $\Gamma \vdash^{c} A =_{def} B$
 - if let x:M=N is in Γ and if B arises from A by substituting one particular occurrence of x in A by N, then $\Gamma \vdash^{\mathsf{c}} A =_{\mathsf{def}} B$.

The (simplified) Cube with definitions and class reduction

(axiom) (app) (abs)
$$and$$
 (form) are unchanged.

$$\frac{\Gamma \vdash^{\mathsf{c}} A : s}{\Gamma, x : A \vdash^{\mathsf{c}} x : A} \qquad \frac{\Gamma \vdash^{\mathsf{c}} A : s}{\Gamma, \text{ let } x : A = B \vdash^{\mathsf{c}} x : A} \qquad x \text{ fresh}$$

$$(\text{weak}) \quad \frac{\Gamma \vdash^{\mathsf{c}} D : E \quad \Gamma \vdash^{\mathsf{c}} A : s}{\Gamma, x : A \vdash^{\mathsf{c}} D : E} \quad \frac{\Gamma \vdash^{\mathsf{c}} A : s \quad \Gamma \vdash^{\mathsf{c}} B : A \quad \Gamma \vdash^{\mathsf{c}} D : E}{\Gamma, \text{ let } x : A = B \vdash^{\mathsf{c}} D : E} \quad x \text{ fresh}$$

$$(\text{cense}) \quad \Gamma \vdash^{\mathsf{c}} A : B \quad \Gamma \vdash^{\mathsf{c}} B' : S \quad \Gamma \vdash^{\mathsf{c}} B =_{\mathsf{def}} B'$$

$$(\operatorname{conv}) \qquad \frac{\Gamma \vdash^{\operatorname{c}} A : B \qquad \qquad \Gamma \vdash^{\operatorname{c}} B' : S \qquad \qquad \Gamma \vdash^{\operatorname{c}} B =_{\operatorname{def}} B'}{\Gamma \vdash^{\operatorname{c}} A : B'}$$

(def)
$$\frac{\Gamma, \text{let } x : A = B \vdash^{c} C : D}{\Gamma \vdash^{c} (\lambda_{x:A}.C)B : D[x := A]}$$

Table 1: Definitions solve subject reduction

1.
$$\beta: *, y': \beta$$
, let $\alpha: * = \beta$ $\vdash^{c} y': \beta$

2.
$$\beta: *, y': \beta$$
, let $\alpha: * = \beta$ $\vdash^{c} \alpha =_{def} \beta$

3.
$$\beta:*,y':\beta,$$
 let $\alpha:*=\beta$ $\vdash^{c} y':\alpha$ (from 1 and 2)

4.
$$\beta: *, y': \beta$$
, let $\alpha: * = \beta$, let $x: \alpha = y' \vdash^{c} x: \alpha$

5.
$$\beta: *, y': \beta$$
, let $\alpha: * = \beta$ $\vdash^{\mathsf{c}} (\lambda_{x:\alpha}.x)y': \alpha[x:=y'] = \alpha$

$$\beta: *, y': \beta \qquad \vdash^{\mathsf{c}} \qquad (\lambda_{\alpha:*}.(\lambda_{x:\alpha}.x)y')\beta: \alpha[\alpha:=\beta] = \beta$$

Properties of the Cube with definitions and class Reduction

- \bullet \vdash^{c} is a generalisation of \vdash : If $\Gamma \vdash A : B$ then $\Gamma \vdash^{c} A : B$.
- Equivalent terms have same types: If $\Gamma \vdash^{c} A : B$ and $A' \in [A]$, $B' \in [B]$ then $\Gamma \vdash^{c} A' : B'$.
- Subject Reduction for \vdash^{c} and \leadsto_{β} : If $\Gamma \vdash^{c} A : B$ and $A \leadsto_{\beta} A'$ then $\Gamma \vdash^{c} A' : B$.
- Unicity of Types for ⊢^c:
 - If $\Gamma \vdash^{\mathsf{c}} A : B$ and $\Gamma \vdash^{\mathsf{c}} A : B'$ then $\Gamma \vdash^{\mathsf{c}} B =_{\mathsf{def}} B'$
 - If $\Gamma \vdash^{\mathsf{c}} A : B$ and $\Gamma \vdash^{\mathsf{c}} A' : B'$ and $\Gamma \vdash^{\mathsf{c}} A =_{\beta} A'$ then $\Gamma \vdash^{\mathsf{c}} B =_{\mathsf{def}} B'$.
- Strong Normalisation of \leadsto_{β} : In the Cube, every legal term is strongly normalising with respect to \leadsto_{β} .

Bibliography

- Z.M. Ariola, M. Felleisen, J. Maraist, M. Odersky, and P. Wadler. A call by need lambda calculus. 22nd ACM Symposium on Principles of Programming Languages, 1995.
- Roel Bloo, Fairouz Kamareddine, and Rob Nederpelt. The Barendregt cube with definitions and generalised reduction. *Inform. & Comput.*, 126(2):123–143, May 1996.
- Philippe de Groote. The conservation theorem revisited. In *Proc. Int'l Conf. Typed Lambda Calculi and Applications*, pages 163–178. Springer-Verlag, 1993.
- F. Kamareddine, R. Bloo, and R. Nederpelt. On Π -conversion in the λ -cube and the combination with abbreviations. Ann. Pure Appl. Logic, 97(1–3):27–45, 1999.
- F. Kamareddine and A. Ríos. Relating the $\lambda \sigma$ and λs -styles of explicit substitutions. *J. Logic Comput.*, 10(3): 399–431, 2000.
- Fairouz Kamareddine. Postponement, conservation and preservation of strong normalisation for generalised reduction. *J. Logic Comput.*, 10(5):721–738, 2000.

- Fairouz Kamareddine and Rob Nederpelt. On stepwise explicit substitution. *Int'l J. Foundations Comput. Sci.*, 4(3): 197–240, 1993.
- Fairouz Kamareddine and Rob Nederpelt. Refining reduction in the λ -calculus. *J. Funct. Programming*, 5(4):637–651, October 1995.
- Fairouz Kamareddine and Rob Nederpelt. A useful λ -notation. Theoret. Comput. Sci., 155(1):85–109, 1996.
- Fairouz Kamareddine and Alejandro Ríos. A λ -calculus à la de Bruijn with explicit substitution. In 7th Int'l Symp. Prog. Lang.: Implem., Logics & Programs, volume 982 of LNCS, pages 45–62. Springer-Verlag, 1995.
- Fairouz Kamareddine and Alejandro Ríos. Extending a λ -calculus with explicit substitution which preserves strong normalisation into a confluent calculus on open terms. *J. Funct. Programming*, 7(4):395–420, 1997.
- Fairouz Kamareddine, Alejandro Ríos, and J. B. Wells. Calculi of generalised β -reduction and explicit substitutions: The type free and simply typed versions. *J. Funct. Logic Programming*, 1998(5), June 1998.
- A. J. Kfoury and J. B. Wells. A direct algorithm for type inference in the rank-2 fragment of the second-order λ -calculus. In *Proc.* 1994 ACM Conf. LISP Funct. Program., pages 196–207, 1994. ISBN 0-89791-643-3.

- A. J. Kfoury and J. B. Wells. New notions of reduction and non-semantic proofs of β -strong normalization in typed λ -calculi. In *Proc. 10th Ann. IEEE Symp. Logic in Computer Sci.*, pages 311–321, 1995. ISBN 0-8186-7050-9.
- Assaf J. Kfoury, Jerzy Tiuryn, and Paweł Urzyczyn. An analysis of ML typability. *J. ACM*, 41(2):368–398, March 1994.
- Rob Nederpelt. Strong Normalization in a Typed Lambda Calculus With Lambda Structured Types. PhD thesis, Eindhoven, 1973.
- L. Regnier. Lambda calcul et réseaux. PhD thesis, University Paris 7, 1992.