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Summary

� Prehistory of types� 1902: Russell's letter to Frege about the paradox in Begri�ss
hrift.� 1903: Russell gives the �rst theory of types: the Rami�ed Type Theory (rtt).� simple theory of types (stt): Ramsey 1926, Hilbert and A
kermann 1928.� 1940: Chur
h's own simply typed �-
al
ulus (known as �!) is based on stt.� The unsatisfa
tory notion of fun
tion in Chur
h's work.
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Prehistory of Types (Eu
lid)

� Eu
lid's Elements (
ir
a 325 B.C.) begins with:1. A point is that whi
h has no part;2. A line is breadthless length....15. A 
ir
le is a plane �gure 
ontained by one line su
h that all the straightlines falling upon it from one point among those lying within the �gure areequal to one another.� Although the above seems to merely de�ne points, lines, and 
ir
les, it showsmore importantly that Eu
lid distinguished between them. Eu
lid alwaysmentioned to whi
h 
lass (points, lines, et
.) an obje
t belonged.
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Prehistory of Types (Eu
lid)

� By distinguishing 
lasses of obje
ts, Eu
lid prevented undesired situations, like
onsidering whether two points (instead of two lines) are parallel.� Undesired results? Eu
lid himself would probably have said: impossible results.When 
onsidering whether two obje
ts were parallel, intuition impli
itly for
edhim to think about the type of the obje
ts. As intuition does not support thenotion of parallel points, he did not even try to undertake su
h a 
onstru
tion.� In this manner, types have always been present in mathemati
s, although theywere not noti
ed expli
itly until the late 1800s. If you have studied geometry,then you have some (impli
it) understanding of types.
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Prehistory of Types (Paradox Threats)

� Starting in the 1800s, mathemati
al systems be
ame less intuitive, for severalreasons:{ Very 
omplex or abstra
t systems.{ Formal systems.{ Something with less intuition than a human using the systems: a 
omputer.� These situations are paradox threats. An example is Frege's Naive Set Theory.In su
h 
ases, there is not enough intuition to a
tivate the (impli
it) typetheory to warn against an impossible situation. Reasoning pro
eeds withinthe impossible situation and then obtains a result that may be wrong orparadoxi
al.Workshop on Logi
, Language and Information 2001 4



Prehistory of Types (formal systems in 19th 
entury)

In the 19th 
entury, the need for a more pre
ise style in mathemati
s arose,be
ause 
ontroversial results had appeared in analysis.� 1821: Many of these 
ontroversies were solved by the work of Cau
hy. E.g.,he introdu
ed a pre
ise de�nition of 
onvergen
e in his Cours d'Analyse [13℄.� 1872: Due to the more exa
t de�nition of real numbers given by Dedekind[19℄, the rules for reasoning with real numbers be
ame even more pre
ise.� 1895-1897: Cantor began formalizing set theory [11, 12℄ and made
ontributions to number theory.
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Prehistory of Types (formal systems in 19th 
entury)

� 1889: Peano formalized arithmeti
 [48℄, but did not treat logi
 or quanti�
ation.� 1879: Frege was not satis�ed with the use of natural language in mathemati
s:\ : : : I found the inadequa
y of language to be an obsta
le; no matterhow unwieldy the expressions I was ready to a

ept, I was less and lessable, as the relations be
ame more and more 
omplex, to attain thepre
ision that my purpose required." (Begri�ss
hrift, Prefa
e)Frege therefore presented Begri�ss
hrift [20℄, the �rst formalisation of logi
giving logi
al 
on
epts via symbols rather than natural language.Workshop on Logi
, Language and Information 2001 6



Prehistory of Types (formal systems in 19th 
entury)

\[Begri�ss
hrift's℄ �rst purpose is to provide us with the most reliable testof the validity of a 
hain of inferen
es and to point out every presuppositionthat tries to sneak in unnoti
ed, so that its origin 
an be investigated."(Begri�ss
hrift, Prefa
e)� 1892-1903 Frege's Grundgesetze der Arithmetik [22, 26℄, 
ould handleelementary arithmeti
, set theory, logi
, and quanti�
ation.
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Prehistory of Types (Begri�ss
hrift's fun
tions)

The introdu
tion of a very general de�nition of fun
tion was the key to theformalisation of logi
. Frege de�ned what we will 
all the Abstra
tion Prin
iple.Abstra
tion Prin
iple 1.\If in an expression, [ : : : ℄ a simple or a 
ompound sign has one or moreo

urren
es and if we regard that sign as repla
eable in all or some of theseo

urren
es by something else (but everywhere by the same thing), then we
all the part that remains invariant in the expression a fun
tion, and therepla
eable part the argument of the fun
tion." (Begri�ss
hrift, Se
tion 9)Workshop on Logi
, Language and Information 2001 8



Prehistory of Types (Begri�ss
hrift's fun
tions)

� Frege put no restri
tions on what 
ould play the role of an argument.� An argument 
ould be a number (as was the situation in analysis), but also aproposition, or a fun
tion.� Similarly, the result of applying a fun
tion to an argument did not ne
essarilyhave to be a number.
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Prehistory of Types (Begri�ss
hrift's fun
tions)

Fun
tions of more than one argument were 
onstru
ted by a method that is very
lose to the method presented by S
h�on�nkel [58℄ in 1924:Abstra
tion Prin
iple 2.\If, given a fun
tion, we think of a sign1 that was hitherto regarded as notrepla
eable as being repla
eable at some or all of its o

urren
es, then byadopting this 
on
eption we obtain a fun
tion that has a new argument inaddition to those it had before." (Begri�ss
hrift, Se
tion 9)1We 
an now regard a sign that previously was 
onsidered repla
eable as repla
eable also in those pla
es in whi
hup to this point it was 
onsidered �xed. [footnote by Frege℄Workshop on Logi
, Language and Information 2001 10



Prehistory of Types (Begri�ss
hrift's fun
tions)

With this de�nition of fun
tion, two of the three possible paradox threats o

urred:1. The generalisation of the 
on
ept of fun
tion made the system more abstra
tand less intuitive. The fa
t that fun
tions 
ould have di�erent types ofarguments is at the basis of the Russell Paradox;2. Frege introdu
ed a formal system instead of the informal systems that wereused up till then. Type theory, that would be helpful in distinguishing betweenthe di�erent types of arguments that a fun
tion might take, was left informal.So, Frege had to pro
eed with 
aution. And so he did, at this stage.Workshop on Logi
, Language and Information 2001 11



Prehistory of Types (Begri�ss
hrift's fun
tions)

Frege was aware of some typing rule that does not allow to substitute fun
tionsfor obje
t variables or obje
ts for fun
tion variables:\if the [ : : : ℄ letter [sign℄ o

urs as a fun
tion sign, this 
ir
umstan
e[should℄ be taken into a

ount." (Begri�ss
hrift, Se
tion 11)\ Now just as fun
tions are fundamentally di�erent from obje
ts, so alsofun
tions whose arguments are and must be fun
tions are fundamentallydi�erent from fun
tions whose arguments are obje
ts and 
annot be anythingelse. I 
all the latter �rst-level, the former se
ond-level."(Fun
tion and Con
ept, pp. 26{27)
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Prehistory of Types (Begri�ss
hrift's fun
tions)In Fun
tion and Con
ept he was aware of the fa
t that making a di�eren
ebetween �rst-level and se
ond-level obje
ts is essential to prevent paradoxes:\The ontologi
al proof of God's existen
e su�ers from the falla
y of treatingexisten
e as a �rst-level 
on
ept." (Fun
tion and Con
ept, p. 27, footnote)The above dis
ussion on fun
tions and arguments show that Frege did indeedavoid the paradox in his Begri�ss
hrift.
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Prehistory of Types (Grundgesetze's fun
tions)

The Begri�ss
hrift, however, was only a prelude to Frege's writings.� In Grundlagen der Arithmetik [21℄ he argued that mathemati
s 
an be seen asa bran
h of logi
.� In Grundgesetze der Arithmetik [22, 26℄ he des
ribed the elementary parts ofarithmeti
s within an extension of the logi
al framework of Begri�ss
hrift.� Frege approa
hed the paradox threats for a se
ond time at the end of Se
tion2 of his Grundgesetze.� He did not want to apply a fun
tion to itself, but to its 
ourse-of-values.Workshop on Logi
, Language and Information 2001 14



Prehistory of Types (Grundgesetze's fun
tions)

Frege de�ned \the fun
tion �(x) has the same 
ourse-of-values as the fun
tion	(x)" by\the fun
tions �(x) and 	(x) always have the same value for the sameargument." (Grundgesetze, p. 7)� Note that fun
tions �(x) and 	(x) may have equal 
ourses-of-values even ifthey have di�erent de�nitions.� E.g., let �(x) be x ^ :x, and 	(x) be x$ :x, for all propositions x.
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Prehistory of Types (Grundgesetze's fun
tions)

Frege denoted the 
ourse-of-values of a fun
tion �(x) by �"�("). The de�nitionof equal 
ourses-of-values 
ould therefore be expressed as�"f(") = �"g(") ! 8a[f(a) = g(a)℄: (1)

In modern terminology, we 
ould say that the fun
tions �(x) and 	(x) have thesame 
ourse-of-values if they have the same graph.
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Prehistory of Types (Grundgesetze's fun
tions)

� The notation �"�("). may be the origin of Russell's notation ^x�(x) for the
lass of obje
ts that have the property �.� A

ording to a paper by Rosser [55℄, the notation ^x�(x) has been at the basisof the 
urrent notation �x:�.� Chur
h is supposed to have written ^x�(x) for the fun
tion x 7! �(x), writingthe hat in front of the x in order to distinguish this fun
tion from the 
lass^x�(x).
Workshop on Logi
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Prehistory of Types (Grundgesetze's fun
tions)

� Frege treated 
ourses-of-values as ordinary obje
ts.� As a 
onsequen
e, a fun
tion that takes obje
ts as arguments 
ould have itsown 
ourse-of-values as an argument.� In modern terminology: a fun
tion that takes obje
ts as arguments 
an haveits own graph as an argument.
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Prehistory of Types (Grundgesetze's fun
tions)

� All essential information of a fun
tion is 
ontained in its graph.� So intuitively, a system in whi
h a fun
tion 
an be applied to its own graphshould have similar possibilities as a system in whi
h a fun
tion 
an be appliedto itself.� Frege ex
luded the paradox threats from his system by forbidding self-appli
ation,� but due to his treatment of 
ourses-of-values these threats were able to enterhis system through a ba
k door.
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Prehistory of Types (Russell's paradox in Grundgesetze)

� In 1902, Russell wrote a letter to Frege [56℄, informing him that he haddis
overed a paradox in his Begri�ss
hrift (Begri�ss
hrift does not su�er froma paradox).� Russell gave his well-known argument, de�ning the propositional fun
tion f(x)by :x(x) (in Russell's words: \to be a predi
ate that 
annot be predi
ated ofitself").� Russell assumed f(f). Then by de�nition of f , :f(f), a 
ontradi
tion.Therefore: :f(f) holds. But then (again by de�nition of f), f(f) holds.Russell 
on
luded that both f(f) and :f(f) hold, a 
ontradi
tion.
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Prehistory of Types (Russell's paradox in Grundgesetze)

� Only six days later, Frege answered Russell that Russell's derivation of theparadox was in
orre
t [25℄. He explained that the self-appli
ation f(f) is notpossible in the Begri�ss
hrift. f(x) is a fun
tion, whi
h requires an obje
t asan argument, and a fun
tion 
annot be an obje
t in the Begri�ss
hrift.� In the same letter, however, Frege explained that Russell's argument 
ouldbe amended to a paradox in the system of his Grundgesetze, using the
ourse-of-values of fun
tions.� Frege's amendment was shortly explained in that letter, but he added anappendix of eleven pages to the se
ond volume of his Grundgesetze in whi
hhe provided a very detailed and 
orre
t des
ription of the paradox.Workshop on Logi
, Language and Information 2001 21



Prehistory of Types (Russell's paradox in Grundgesetze)

� Let fun
tion f(x) be: :8'[(��'(�) = x) �! '(x)℄ and write K = �"f(").� Whi
h of f(K) or :f(K) hold?� A
tually, both f(K) and :f(K) hold.� By (1), for any fun
tion g(x): �"g(") = �"f(") �! g(K) = f(K). This impliesf(K) �! ((�"g(") = K) �! g(K)).� As this holds for any fun
tion g(x), we have:f(K) �! 8'[(�"'(") = K)! '(K)℄ (a)
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Prehistory of Types (Russell's paradox in Grundgesetze)

� On the other hand, for any fun
tion g,8'[(�"'(") = K)! '(K)℄ �! ((�"g(") = K)! g(K)):� Substituting f(x) for g(x) results in:8'[(�"'(") = K)! '(K)℄ �! ((�"f(") = K)! f(K))� and as �"f(") = K by de�nition of K, 8'[(�"'(") = K)! '(K)℄ �! f(K):� Using the de�nition of f , we obtain8'[(�"'(") = K)! '(K)℄ �! :8'[(�"'(") = K)! '(K)℄ (b)
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Prehistory of Types (Russell's paradox in Grundgesetze)

� by (b) and redu
tio ad absurdum, :8'[(��'(�) = K)! '(K)℄; or shorthand:f(K) (
)� Applying (a) results in 8'[(��'(�) = K) ! '(K)℄; whi
h implies::8'[(��'(�) = K)! '(K)℄; or shorthand::f(K) (d)� (
) and (d) 
ontradi
t ea
h other.
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Prehistory of Types (How wrong was Frege?)

In the history of the Russell Paradox, Frege is often depi
ted as the pitiful personwhose system was in
onsistent. This suggests that Frege's system was the onlyone that was in
onsistent, and that Frege was very ina

urate in his writings. Onthese points, history does Frege an injusti
e.In fa
t, Frege's system was mu
h more a

urate than other systems of those days.Peano's work, for instan
e, was less pre
ise on several points:� Peano hardly paid attention to logi
 espe
ially quanti�
ation theory;� Peano did not make a stri
t distin
tion between his symbolism and the obje
tsunderlying this symbolism. Frege was mu
h more a

urate on this point (seeFrege's paper �Uber Sinn und Bedeutung [23℄);Workshop on Logi
, Language and Information 2001 25



Prehistory of Types (How wrong was Frege?)

� Frege made a stri
t distin
tion between a proposition (as an obje
t) and theassertion of a proposition. Frege denoted a proposition, by �A, and itsassertion by ` A. Peano did not make this distin
tion and simply wrote A.Nevertheless, Peano's work was very popular, for several reasons:� Peano had able 
ollaborators, and a better eye for presentation and publi
ity.� Peano bought his own press to supervise the printing of his own journal Rivistadi Matemati
a and Formulaire [49℄
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Prehistory of Types (How wrong was Frege?)

� Peano used a familiar symbolism to the notations were used in those days.� Many of Peano's notations, like 2 for \is an element of", and � for logi
alimpli
ation, are used in Prin
ipia Mathemati
a, and are a
tually still in use.� Frege's work did not have these advantages and was hardly read before 1902� When Peano published his formalisation of mathemati
s in 1889 [48℄ he 
learlydid not know Frege's Begri�ss
hrift as he did not mention the work, and wasnot aware of Frege's formalisation of quanti�
ation theory.
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Prehistory of Types (How wrong was Frege?)

� Peano 
onsidered quanti�
ation theory to be \abstruse" in [49℄:\In this respe
t my 
on
eptual notion of 1879 is superior to the Peanoone. Already, at that time, I spe
i�ed all the laws ne
essary for mydesignation of generality, so that nothing fundamental remains to beexamined. These laws are few in number, and I do not know why theyshould be said to be abstruse. If it is otherwise with the Peano 
on
eptualnotation, then this is due to the unsuitable notation." ([24℄, p. 376)
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Prehistory of Types (How wrong was Frege?)

� In the last paragraph of [24℄, Frege 
on
luded:\ : : : I observe merely that the Peano notation is unquestionably more
onvenient for the typesetter, and in many 
ases takes up less roomthan mine, but that these advantages seem to me, due to the inferiorperspi
uity and logi
al defe
tiveness, to have been paid for too dearly |at any rate for the purposes I want to pursue."(Ueber die Begri�s
hrift des Herrn Peano und meine eigene, p. 378)
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Prehistory of Types (paradox in Peano and Cantor's systems)

� Frege's system was not the only paradoxi
al one.� The Russell Paradox 
an be derived in Peano's system as well, by de�ning the
lass K def= fx j x 62 xg and deriving K 2 K  ! K 62 K.� In Cantor's Set Theory one 
an derive the paradox via the same 
lass (or set,in Cantor's terminology).
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Prehistory of Types (paradoxes)

� Paradoxes were already widely known in antiquity.� The oldest logi
al paradox: the Liar's Paradox \This senten
e is not true",also known as the Paradox of Epimenides. It is referred to in the Bible (Titus1:12) and is based on the 
onfusion between language and meta-language.� The Burali-Forti paradox ([10℄, 1897) is the �rst of the modern paradoxes. Itis a paradox within Cantor's theory on ordinal numbers.� Cantor's paradox on the largest 
ardinal number o

urs in the same �eld. Itdis
overed by Cantor around 1895, but was not published before 1932.
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Prehistory of Types (paradoxes)

� Logi
ians 
onsidered these paradoxes to be out of the s
ope of logi
:The Liar's Paradox 
an be regarded as a problem of linguisti
s.The paradoxes of Cantor and Burali-Forti o

urred in what was 
onsidered inthose days a highly questionable part of mathemati
s: Cantor's Set Theory.� The Russell Paradox, however, was a paradox that 
ould be formulated in allthe systems that were presented at the end of the 19th 
entury (ex
ept forFrege's Begri�ss
hrift). It was at the very basi
s of logi
. It 
ould not bedisregarded, and a solution to it had to be found.� In 1903-1908, Russell suggested the use of types to solve the problem [57℄.
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Prehistory of Types (vi
ious 
ir
le prin
iple)

When Russell proved Frege's Grundgesetze to be in
onsistent, Frege was not theonly person in trouble. In Russell's letter to Frege (1902), we read:\I am on the point of �nishing a book on the prin
iples of mathemati
s"(Letter to Frege, [56℄)Russell had to �nd a solution to the paradoxes, before �nishing his book.His paper Mathemati
al logi
 as based on the theory of types [57℄ (1908), inwhi
h a �rst step is made towards the Rami�ed Theory of Types, started with ades
ription of the most important 
ontradi
tions that were known up till then,in
luding Russell's own paradox. He then 
on
luded:Workshop on Logi
, Language and Information 2001 33



Prehistory of Types (vi
ious 
ir
le prin
iple)

\In all the above 
ontradi
tions there is a 
ommon 
hara
teristi
, whi
h wemay des
ribe as self-referen
e or re
exiveness. [: : : ℄ In ea
h 
ontradi
tionsomething is said about all 
ases of some kind, and from what is said a new
ase seems to be generated, whi
h both is and is not of the same kind asthe 
ases of whi
h all were 
on
erned in what was said." (Ibid.)Russell's plan was, to avoid the paradoxes by avoiding all possible self-referen
es.He postulated the \vi
ious 
ir
le prin
iple":
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Rami�ed Type Theory

\Whatever involves all of a 
olle
tion must not be one of the 
olle
tion."(Mathemati
al logi
 as based on the theory of types)� Russell applies this prin
iple very stri
tly.� He implemented it using types, in parti
ular the so-
alled rami�ed types.� The type theory of 1908 was elaborated in Chapter II of the Introdu
tion tothe famous Prin
ipia Mathemati
a [60℄ (1910-1912).
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Rami�ed Type Theory and Prin
ipia

� In the Prin
ipia, mathemati
s was founded on logi
, as far as possible.� A very formal and a

urate build-up of mathemati
s, avoiding the logi
alparadoxes.� The logi
al part of the Prin
ipia was based on the works of Frege. This wasa
knowledged by Whitehead and Russell in the prefa
e, and 
an also be seenthroughout the des
ription of Type Theory.� The notion of fun
tion is based on Frege's Abstra
tion Prin
iples 1 and 2.
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Rami�ed Type Theory and Prin
ipia

� The Prin
ipia notation ^xf(x) for a 
lass looks very similar to Frege's �"f(") for
ourse-of-values.� An important di�eren
e is that Whitehead and Russell treated fun
tions as�rst-
lass 
itizens. Frege used 
ourses-of-values when speaking about fun
tions.� In the Prin
ipia a dire
t approa
h was possible.� The des
ription of the Rami�ed Theory of Types (rtt) in the Prin
ipia was,though extensive, still informal.
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Rami�ed Type Theory and Prin
ipia

� Type Theory had not yet be
ome an independent subje
t. The theory\only re
ommended itself to us in the �rst instan
e by its ability to solve
ertain 
ontradi
tions. .......... it has also a 
ertain 
onsonan
e with
ommon sense whi
h makes it inherently 
redible"(Prin
ipia Mathemati
a, p. 37)� Type Theory was not introdu
ed be
ause it was interesting on its own, butbe
ause it had to serve as a tool for logi
 and mathemati
s.� A formalisation of Type Theory, therefore, was not 
onsidered in those days.
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Rami�ed Type Theory and Prin
ipia

� Though the des
ription of the rami�ed type theory in the Prin
ipia was stillinformal, it was 
learly present throughout the work.� Types in the Prin
ipia have a double hierar
hy: (simple) types and orders.� It was not mentioned very often, but when ne
essary, Russell made a remarkon the rami�ed type theory.
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Rami�ed Type Theory and Prin
ipia

� There is no de�nition of \type" in the Prin
ipia, only a de�nition of \being ofthe same type":\De�nition of being of the same type. The following is a step-by-stepde�nition, the de�nition for higher types presupposing that for lowertypes. We say that u and v are of the same type if1. both are individuals,2. both are elementary [propositional℄ fun
tions (in Prin
ipia, they onlytake elementary propositions as value) taking arguments of the sametype,3. u is a pf and v is its negation,Workshop on Logi
, Language and Information 2001 40



4. u is '^x '^x is a pf that has x as a free variable or  ^x, and v is '^x_ ^x,where '^x and  ^x are elementary pfs,5. u is (y):'(^x; y) forall and v is (z): (^x; z), where '(^x; ^y),  (^x; ^y) areof the same type,6. both are elementary propositions,7. u is a proposition and v is �unegation or8. u is (x):'x and v is (y): y, where '^x and  ^x are of the same type."(Prin
ipia Mathemati
a, �9�131, p. 133)� There are some omissions in Russell and Whitehead's de�nition.
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Ramsey's Simple Types

� The ideas behind simple types was already explained by Frege (see earlierquotes from Fun
tion and Con
ept).� Ramsey's Simple types:1. 0 is a simple type, the type of individuals.2. If t1; : : : ; tn are simple types, then also (t1; : : : ; tn) is a simple type.2 n = 0is allowed: then we obtain the simple type () of propositions.3. All simple types 
an be 
onstru
ted using the rules 1 and 2.2(t1; : : : ; tn) is the type of pfs that should take n arguments, the ith argument having type ti.Workshop on Logi
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Ramsey's Simple Types

� The propositional fun
tion R(x) should have type (0), as it takes one individualas argument.� The proposition S(a) has type ().� We 
on
lude that in z(R(x); S(a)), we must substitute pfs of type ((0); ()) forz. Therefore, z(R(x); S(a)) has type (((0); ())).
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Whitehead and Russell's Rami�ed Types

� With simple types, the type of a pf only depends on the types of the argumentsthat it 
an take.� In the Prin
ipia, a se
ond hierar
hy is introdu
ed by regarding also the typesof the variables that are bound by a quanti�er (see Prin
ipia, pp. 51{55).� Whitehead and Russell 
onsider, for instan
e, the propositions R(a) and8z:()[z() _ :z()℄ to be of a di�erent level.� The �rst is an atomi
 proposition, while the latter is based on the pf z()_:z().
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Whitehead and Russell's Rami�ed Types

� The pf z()_:z() involves an arbitrary proposition z, therefore 8z:()[z()_:z()℄quanti�es over all propositions z.� A

ording to the vi
ious 
ir
le prin
iple, 8z:()[z() _ :z()℄ 
annot belong tothis 
olle
tion of propositions.� This problem is solved by dividing types into orders whi
h are natural numbers.� Basi
 propositions are of order 0. In 8z:()[z() _ :z()℄ we must mention theorder of the propositions over whi
h is quanti�ed. The pf 8z:()n[z() _ :z()℄quanti�es over all propositions of order n, and has order n+ 1.
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Whitehead and Russell's Rami�ed Types

1. 00 is a rami�ed type of order 0;2. If ta11 ; : : : ; tann are rami�ed types, and a 2 N , a > max(a1; : : : ; an), then(ta11 ; : : : ; tann )a is a rami�ed type of order a (if n = 0 then take a � 0);3. All rami�ed types 
an be 
onstru
ted using the rules 1 and 2.

00; (00)1; �(00)1; (00)4�5; and �00; ()2;�00; (00)1�2�7 are all rami�ed types.�00;�00; (00)2�2�7 is not a rami�ed type.
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Predi
ative Types

� In the type (00)1, all orders are \minimal", i.e., not higher than stri
tlyne
essary. Unlike (00)2 where orders are not minimal.� Types in whi
h all orders are minimal are 
alled predi
ative and play a spe
ialrole in the Rami�ed Theory of Types.1. 00 is a predi
ative type;2. If t1a1; : : : ; tnan are predi
ative types, and a = 1 + max(a1; : : : ; an) (takea = 0 if n = 0), then (ta11 ; : : : ; tann )a is a predi
ative type;3. All predi
ative types 
an be 
onstru
ted using the rules 1 and 2 above.
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Problems of Rami�ed Type Theory

� The main part of the Prin
ipia is devoted to the development of logi
 andmathemati
s using the legal pfs of the rami�ed type theory.� rami�
ation/division of simple types into orders make rtt not easy to use.� (Equality) x =L y def$ 8z[z(x)$ z(y)℄;.In order to express this general notion in rtt, we have to in
orporate all pfs8z : (00)n[z(x)$ z(y)℄ for n > 1, and this 
annot be expressed in one pf.� Not possible to give a 
onstru
tive proof of the theorem of the least upperbound within a rami�ed type theory.
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Axiom of Redu
ibility

� It is not possible in rtt to give a de�nition of an obje
t that refers to the 
lassto whi
h this obje
t belongs (be
ause of the Vi
ious Cir
le Prin
iple). Su
h ade�nition is 
alled an impredi
ative de�nition.� An obje
t de�ned by an impredi
ative de�nition is of a higher order than theorder of the elements of the 
lass to whi
h this obje
t should belong. Thismeans that the de�ned obje
t has an impredi
ative type.� But impredi
ativity is not allowed by the vi
ious 
ir
le prin
iple.� Russell and Whitehead tried to solve these problems with the so-
alled axiomof redu
ibility.Workshop on Logi
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Axiom of Redu
ibility

� (Axiom of Redu
ibility) For ea
h formula f , there is a formula g with apredi
ative type su
h that f and g are (logi
ally) equivalent.� The validity of the Axiom of Redu
ibility has been questioned from the momentit was introdu
ed.� In the 2nd edition of the Prin
ipia, Whitehead and Russell admit:\This axiom has a purely pragmati
 justi�
ation: it leads to the desiredresults, and to no others. But 
learly it is not the sort of axiom withwhi
h we 
an rest 
ontent." (Prin
ipia Mathemati
a, p. xiv)
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Axiom of Redu
ibility

� Though Weyl [59℄ made an e�ort to develop analysis within the Rami�edTheory of Types (without the Axiom of Redu
ibility),� and various parts of mathemati
s 
an be developed within rtt and withoutthe Axiom,� the general attitude towards rtt (without the axiom) was that the system wastoo restri
tive, and that a better solution had to be found.
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Derami�
ation

� Ramsey 
onsiders it essential to divide the paradoxes into two parts:� One group of paradoxes is removed\by pointing out that a propositional fun
tion 
annot signi�
antly takeitself as argument, and by dividing fun
tions and 
lasses into a hierar
hyof types a

ording to their possible arguments."(The Foundations of Mathemati
s, p. 356)This means that a 
lass 
an never be a member of itself. The paradoxes solvedby introdu
ing the hierar
hy of types (but not orders), like the Russell paradox,and the Burali-Forti paradox, are logi
al or synta
ti
al paradoxes;
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Derami�
ation

� The se
ond group of paradoxes is ex
luded by the hierar
hy of orders. Theseparadoxes (like the Liar's paradox, and the Ri
hard Paradox) are based on the
onfusion of language and meta-language. These paradoxes are, therefore,not of a purely mathemati
al or logi
al nature. When a proper distin
tionbetween obje
t language and meta-language is made, these so-
alled semanti
alparadoxes disappear immediately.� Ramsey agrees with the part of the theory that eliminates the synta
ti
paradoxes. I.e., rtt without the orders of the types.� The se
ond part, the hierar
hy of orders, does not gain Ramsey's support.
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Derami�
ation

� By a

epting the hierar
hy in its full extent one either has to a

ept the Axiomof Redu
ibility or reje
t ordinary real analysis.� Ramsey is supported in his view by Hilbert and A
kermann [32℄.� They all suggest a derami�
ation of the theory, i.e. leaving out the orders ofthe types.� When making a proper distin
tion between language and meta-language, thederami�
ation will not lead to a re-introdu
tion of the (semanti
) paradoxes.
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Derami�
ation� Derami�
ation and the Axiom of Redu
ibility are both violations of the Vi
iousCir
le Prin
iple. G�odel [29℄ �lls the gap why they 
an be harmlessly made\it seems that the vi
ious 
ir
le prin
iple [ : : : ℄ applies only if the entitiesinvolved are 
onstru
ted by ourselves. In this 
ase there must 
learlyexist a de�nition (namely the des
ription of the 
onstru
tion) whi
h doesnot refer to a totality to whi
h the obje
t de�ned belongs, be
ause the
onstru
tion of a thing 
an 
ertainly not be based on a totality of thingsto whi
h the thing to be 
onstru
ted itself belongs. If, however, it is aquestion of obje
ts that exist independently of our 
onstru
tions, thereis nothing in the least absurd in the existen
e of totalities 
ontainingmembers, whi
h 
an be des
ribed only by referen
e to this totality."(Russell's mathemati
al logi
)
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Derami�
ation

� This turns the Vi
ious Cir
le Prin
iple into a philosophi
al prin
iple that willbe easily a

epted by intuitionists but that will be reje
ted, at least in its fullstrength, by mathemati
ians with a more platoni
 point of view.� G�odel is supported in his ideas by Quine [50℄, se
tions 34 and 35.� Quine's 
riti
ism on impredi
ative de�nitions (for instan
e, the de�nition ofthe least upper bound of a nonempty subset of the real numbers with an upperbound) is not on the de�nition of a spe
ial symbol, but rather on the veryassumption of the existen
e of su
h an obje
t at all.
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Derami�
ation

� Quine states that even for Poin
ar�e, who was an opponent of impredi
ativede�nitions and derami�
ation, one of the do
trines of 
lasses is that they arethere \from the beginning". So, even for Poin
ar�e there should be no evidentfalla
y in impredi
ative de�nitions.� The derami�
ation has played an important role in the development of typetheory. In 1932 and 1933, Chur
h presented his (untyped) �-
al
ulus [14, 15℄.In 1940 he 
ombined this theory with a derami�ed version of Russell's theoryof types to the system that is known as the simply typed �-
al
ulus
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The Simple Theory of Types

� Ramsey [51℄, and Hilbert and A
kermann [32℄, simpli�ed the Rami�ed Theoryof Types rtt by removing the orders. The result is known as the SimpleTheory of Types (stt).� Nowadays, stt is known via Chur
h's formalisation in �-
al
ulus. However,stt already existed (1926) before �-
al
ulus did (1932), and is therefore notinextri
ably bound up with �-
al
ulus.� How to obtain stt from rtt? Just leave out all the orders and the referen
esto orders (in
luding the notions of predi
ative and impredi
ative types).
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Chur
h's Simply Typed �-
al
ulus �!

� Types and terms in the original �! are a bit di�erent from those of [4℄.� The types of �! are de�ned as follows:{ � individuals and o propositions are types;{ If � and � are types, then so is �! �.� The terms of �! are the following:{ :, ^, 8� for ea
h type �, and �� for ea
h type �, are terms;{ A variable is a term;{ If A;B are terms, then so is AB;{ If A is a term, and x a variable, then �x:�:A is a term.Workshop on Logi
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Typing rules in Chur
h's Simply Typed �-
al
ulus �!

� � ` : : o! o;� ` ^ : o! o! o;� ` 8� : (�! o)! o;� ` �� : (�! o)! �;� � ` x : � if x:� 2 �;� If �; x:� ` A : � then � ` (�x:�:A) : �! �;� If � ` A : �! � and � ` B : � then � ` (AB) : �.
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Comparing �! with stt and rtt

� Apart from the orders, rtt is a subsystem of �!.� The rules of rtt, and the method of deriving the types of pfs have a bottom-up
hara
ter: one 
an only introdu
e a variable of a 
ertain type in a 
ontext �,if there is a pf that has that type in �. In �!, one 
an introdu
e variables ofany type without wondering whether su
h a type is inhabited or not.� Chur
h's �! is more general than rtt in the sense that Chur
h does notonly des
ribe (typable) propositional fun
tions. In �!, also fun
tions of type� ! � (where � is the type of individuals) 
an be des
ribed, and fun
tions thattake su
h fun
tions as arguments, et
..
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Where to �nd above details

� Details 
on
erning the abve slides 
an be downloaded fromhttp://www.
ee.hw.a
.uk/ fairouz/talks/wolli
2001.ps� See also{ Types in Logi
 and Mathemati
s before 1940 byKamareddine, F. and Laan, L. and Nederpelt, R. P. 2000. and{ The Evolution of Type Theory in Logi
 and Mathemati
s by Twan Laan,PhD thesis 1997.
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Item Notation/Lambda Cal
ulus �a la de Bruijn

� For those used to 
lassi
al notation, I translates to item notation:I(x) = x; I(�x:B) = [x℄I(B); I(AB) = (I(B))I(A)� For example, I((�x:(�y:xy))z) = (z)[x℄[y℄(y)x. The items are (z), [x℄, [y℄and (y).� The appli
ator wagon (z) and abstra
tor wagon [x℄ o

ur NEXT to ea
h other.� In 
lassi
al notation the � rule is (�x:A)B !� A[x := B℄. In item notation,the rule is: (B)[x℄A!� [x := B℄AWorkshop on Logi
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Redexes in Item NotationClassi
al Notation Item Notation((�x:(�y:�z:zd)
)b)a (a)(b)[x℄(
)[y℄[z℄(d)z#� #�((�y:�z:zd)
)a (a)(
)[y℄[z℄(d)z#� #�(�z:zd)a (a)[z℄(d)z#� #�ad (d)a

(a)(b) [x℄ (
) [y℄ [z℄ (d) z
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Segments, Partners, Ba
helors� The \bra
keting stru
ture" of the 
lassi
al notation ((�x:(�y:�z: � �)
)b)a),is `f1 f2 f3 g2 g1 g3', where `fi' and `gi' mat
h.� In item notation, (a)(b)[x℄(
)[y℄[z℄(d) has the simpler bra
keting stru
tureff gf gg.� An appli
ator (a) and an abstra
tor [x℄ are partners when they mat
h like `f'and `g'. Non-partnered items are ba
helors. A segment s is well balan
edwhen it 
ontains only partnered items.� Example: Let s � (a)(b)[x℄(
)[y℄[z℄(d). Then: The items (a), (b), [x℄,(
), [y℄, and [z℄ are partnered. The item (d) is a ba
helor. The segment(a)(b)[x℄(
)[y℄[z℄ is well balan
ed.
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More on Segments, Partners, and Ba
helorsConsider some term sx. Some fa
ts:� The main items in s are those at top level, not within some appli
ator (a).� Ea
h main ba
helor abstra
tor [x℄ pre
edes ea
h main ba
helor appli
ator (a).� Removing all main ba
helor items from s yields a well balan
ed segment.� Removing all main partnered items from s yields a segment[v1℄ : : : [vn℄(a1) : : : (am) 
onsisting of all main ba
helor abstra
tors followedby all main ba
helor appli
ators.� If s is of the form s1(b)s2[v℄s3 where [v℄ and (b) are partnered, then s2 mustbe well balan
ed.Workshop on Logi
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Even More on Segments, Partners, and Ba
helors

Ea
h non-empty segment s has a unique partitioning into sub-segmentss = s0s1 � � � sn su
h that� For even i, the segment si is well balan
ed. For odd i, the segment si is aba
helor segment, i.e., it 
ontains only ba
helor main items.� All well balan
ed segments after the �rst and all ba
helor segments arenon-empty.� If si = [x1℄ � � � [xm℄ (only abstra
tor main items) and sj = (a1) � � � (ap) (onlyappli
ator main items), then i < j, i.e., si pre
edes sj in s.
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Examples � [x℄[y℄(a)[z℄[x0℄(b)(
)(d)[y0℄[z0℄(e), has the following partitioning:� well-balan
ed segment s0 � ;� ba
helor segment s1 � [x℄[y℄,� well-balan
ed segment s2 � (a)[z℄,� ba
helor segment s3 � [x0℄(b),� well-balan
ed segment s4 � (
)(d)[y0℄[z0℄,� ba
helor segment s5 � (e).
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More on Item Notation

� Above dis
ussion and further details of item notation 
an be found in [35, 36℄.� Item notation helped greatly in the study of a one-sorted style ofexpli
it substitutions, the �s-style whi
h is related to ��, but has 
ertainsimpli�
ations [37, 38℄.
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Canoni
al Forms� Item notation helps in �nding ni
e 
anoni
al forms. The term[x℄[y℄(a)[z℄[x0℄(b)(
)(d)[y0℄[z0℄(e)is equivalent to [x℄[y℄[x0℄(a)[z℄(
)(d)[y0℄[z0℄(b)(e)and also [x℄[y℄[x0℄(a)[z℄(d)[y0℄(
)[z0℄(b)(e)� Ni
e 
anoni
al forms look like:ba
helor [ ℄s ()[ ℄-pairs, Ai in CF ba
helor ()s, Bi in CF end var[x1℄ : : : [xn℄ (A1)[y1℄: : :(Am)[ym℄ (B1) : : : (Bp) xWorkshop on Logi
, Language and Information 2001 70



� In 
lassi
al notation:�x1 � � ��xn:(�y1:(�y2: � � � (�ym:xBp � � �B1)Am � � � )A2)A1
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Obtaining Canoni
al Forms

The results of going to normal form for the indi
ated redu
tion rules, in the ordershown:�: ()[ ℄-pairs mixed with ba
h. [ ℄s ba
h. ()s end var(A1)[x℄[y℄[z℄(A2)[p℄ � � � (B1)(B2) � � � x
: ba
h. [ ℄s ()[ ℄-pairs mixed with ba
h. ()s end var[x1℄[x2℄ � � � (B1)(A1)[x℄(B2) � � � x�, 
: ba
h. [ ℄s ()[ ℄-pairs ba
h. ()s end var[x1℄[x2℄ � � � (A1)[y1℄(A2)[y2℄ : : : (Am)[ym℄ (B1)(B2) : : : x
, �: ba
h. [ ℄s ()[ ℄-pairs ba
h. ()s end var[x1℄[x2℄ � � � (A1)[y1℄(A2)[y2℄ : : : (Am)[ym℄ (B1)(B2) : : : x
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More on Canoni
al Forms

� Both �(
(A)) and 
(�(A)) are in 
anoni
al form and we have that �(
(A)) =p
(�(A)) where !p is the rule(A1)[y1℄(A2)[y2℄B !p (A2)[y2℄(A1)[y1℄B if y1 =2 FV(A2)

� For a term A, we de�ne: [A℄ = fB j �(
(A)) =p �(
(B))g.� When B 2 [A℄, we write that B �equi A.
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� One-step 
lass-redu
tion ;� is the least 
ompatible relation su
h that:A;� B i� 9A0 2 [A℄:9B0 2 [B℄: A0 !� B0

� Classes ([A℄) and 
lass redu
tion (;�) ni
ely preserve various strongnormalization properties.� De�ne A;(E)[x℄� B i� 9A0 2 [A℄:9B0 2 [B℄:9E0 2 [E℄: A0!(E0)[x℄� B0.
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Theorem 1. If A �equi C and A;(E)[x℄� B then(9D;E0)[B �equi D;E0 �equi E; and C !(E0)[x℄� D℄.

CA �equiDB(E0)[x℄ ;�
(E)[x℄ ;��equi
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A Few Uses of Generalised Redu
tion and Term Reshu�ing� [52℄ uses term reshu�ing and generalized redu
tion in analyzing perpetualredu
tion strategies.� Term reshu�ing is used in [41℄, [39℄ in analyzing typability problems.� [46, 18, 40℄ use generalised redu
tion and/or term reshu�ing in relating SN toWN.� [2℄ uses a form of term-reshu�ing in obtaining a 
al
ulus that 
orresponds tolazy fun
tional evaluation.� [35, 8, 7℄ showed how generalized redu
tion and term reshu�ing 
ould redu
espa
e/time needs.� [34℄ shows various strong properties of generalised redu
tion.
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The Low Level approa
h of fun
tions

� Histori
ally, fun
tions have long been treated as a kind of meta-obje
ts.� Fun
tion values have always been important, but abstra
t fun
tions have notbeen re
ognised in their own right until the third of the 20th 
entury.� In the low level approa
h or operational view on fun
tions, there are nofun
tions as su
h, but only fun
tion values.� E.g., the sine-fun
tion, is always expressed together with a value: sin(�),sin(x) and properties like: sin(2x) = 2 sin(x) 
os(x).� It has long been usual to 
all f(x)|and not f|the fun
tion and this is stillthe 
ase in many introdu
tory mathemati
s 
ourses.Workshop on Logi
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The revolution of treating fun
tions as �rst 
lass 
itizens� In the nowadays a

epted view on fun
tions, they are `�rst 
lass 
itizens'.� Abstra
tion and appli
ation form the basis of the �-
al
ulus and type theory.� This is rigid and does not represent the development of logi
 in 20th 
entury.� Frege and Russell's 
on
eptions of fun
tional abstra
tion, instantiation andappli
ation do not �t well with the �-
al
ulus approa
h.� In Prin
ipia Mathemati
a [60℄: If, for some a, there is a proposition �a, thenthere is a fun
tion �^x, and vi
e versa.� The fun
tion � is not a separate entity but always has an argument.Workshop on Logi
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�-
al
ulus does not fully represent fun
tionalisation1. Abstra
tion from a subexpression 2 + 3 7! x+ 32. Fun
tion 
onstru
tion x+ 3 7! �:x+ 33. Appli
ation 
onstru
tion (�x:(x+ 3))24. Con
retisation to a subexpression (�x:(x+ 3))2! 2 + 3� Cannot identify the original term from whi
h a fun
tion has been abstra
ted.let add2 = (�x:x+ 2) in add2(x) + add2(y)

� 
annot abstra
t only half way: x+ 3 is not a fun
tion, �x:x+ 3 is.� 
annot apply x+ 3 to an argument: (x+ 3)2 does not evaluate to 2+3.
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Parameters: What and Why� we speak about fun
tions with parameters when referring to fun
tions withvariable values in the low-level approa
h. The x in f(x) is a parameter.� Parameters enable the same expressive power as the high-level 
ase, whileallowing us to stay at a lower order. E.g. �rst-order with parameters versusse
ond-order without [43℄.� Desirable properties of the lower order theory (de
idability, easiness of
al
ulations, typability) 
an be maintained, without losing the 
exibility ofthe higher-order aspe
ts.� This low-level approa
h is still worthwile for many exa
t dis
iplines. In fa
t,both in logi
 and in 
omputer s
ien
e it has 
ertainly not been wiped out, andfor good reasons.Workshop on Logi
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Automath
�The�rsttoolforme
hani
alrepresentationand

veri�
ationofmathemati
alproofs, Automath,
hasaparameterme
hanism.
�Therepresentationofamathemati
altextin
Automath
onsistsofa �nitelistoflineswhere
everylinehasthefollowingformat:
x1 :A1 ;:::;xn :An `g(x1 ;:::;xn )=t:T:

Heregisanewname,anabbreviationforthe
expressiontoftypeTandx1 ;:::;xn arethe
parametersofg,withrespe
tivetypesA1 ;:::;An .
�Ea
hlineintrodu
esanewde�nitionwhi
his

inherentlyparametrisedbythevariableso

urring
inthe
ontextneededforit.
�Developmentsofordinarymathemati
altheory

inAutomath[6℄revealedthatthis
ombined
de�nitionandparameterme
hanismisvital
forkeepingproofsmanageableandsuÆ
iently
readableforhumans.
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TheBarendregtCube
�TP ::=VjSjTP TP j�V:TP :TP j�V:TP :TP
�VisasetofvariablesandS=f�;2g.
(axiom)

hi`�:2
(start)

�`A:s
�;x:A`x:A x62dom(�)

(weak)
�`A:B�`C:s

�;x:C`A:B x62dom(�)
(�)

�`A:s1 �;x:A`B:s2
�`(�x:A:B):s2

(s1 ;s2 )2R
(�)

�;x:A`b:B�`(�x:A:B):s
�`(�x:A:b):(�x:A:B)

(appl)
�`F:(�x:A:B)�`a:A

�`Fa:B[x:=a℄
(
onv)

�`A:B�`B 0:sB=� B 0
�`A:B 0
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Di�erenttypeformation
onditions
�(�) �`A:s1 �;x:A`B:s2

�`(�x:A:B):s2
(s1 ;s2 )2R

�(2;�)takes
areofpolymorphism.�2isweakest
on
ubesatisfyingthis.
�(2;2)takes
areoftype
onstru
tors.�!is

weakeston
ubesatisfyingthis.
�(�;2)takes
areoftermdependenttypes.�Pis

weakeston
ubesatisfyingthis.
�!(�;�)
�2(�;�)(2;�)
�P(�;�)

(�;2)
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(2;2)
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SystemsoftheBarendregtCube
SystemRel.systemNames,referen
es
�!

� �
simplytyped�-
al
ulus;[16℄,
[3℄(AppendixA),[33℄
(Chapter14)

�2
F

se
ondordertyped�-

al
ulus;[28℄,[54℄

�P
aut-QE

[9℄
LF

[30℄
�P2

[44℄
�!

POLYREC[53℄
�!

F!
[28℄

�C
CC

Cal
ulusofConstru
tions;
[17℄
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The Barendregt Cube
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LF

� LF (see [30℄) is often des
ribed as �P of the Barendregt Cube.� [27℄ shows that the use of the �-formation rule (�;2) is very restri
ted in thepra
ti
al use of LF.� This use is in fa
t based on a parametri
 
onstru
t rather than on �-formation.� We will �nd a more pre
ise position of LF on the Cube (between �! and �P ).

Workshop on Logi
, Language and Information 2001 86



ML

� We only 
onsider an expli
it version of a subset of ML.� In ML, One 
an de�ne the polymorphi
 identity by:Id(�:�) = (�x:�:x) : (�! �) (2)� But in ML, it is not possible to make an expli
it �-abstra
tion over � : � by:Id = (��: � :�x:�:x) : (��: � :�! �) (3)� The type ��: � :�! � does not belong to the language of ML and hen
e the�-abstra
tion of equation (3) is not possible in ML.Workshop on Logi
, Language and Information 2001 87



ML

� Therefore, we 
an state that ML does not have a �-formation rule (2; �).� Nevertheless, ML has some parameter me
hanism (� parameter of Id)� ML has limited a

ess to the rule (2; �) enabling equation (2) to be de�ned.� ML's type system is none of those of the eight systems of the Cube.� We pla
e the type system of ML on our re�ned Cube (between �2 and �!).
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Extending the Cube with parametri
 
onstru
ts� Parametri
 
onstru
ts are 
(b1; : : : ; bn) with b1; : : : ; bn terms of 
ertain types.� TP ::= V j S j C(TP1; : : :TPn| {z }n�0 ) j TPTP j �V:TP :TP j �V:TP :TPC is a set of 
onstants, b1; : : : ; bn are 
alled the parameters of 
(b1; : : : ; bn).� S allows several kinds of �-
onstru
ts. We also use a set { of (s1; s2) wheres1; s2 2 f�;2g to allow several kinds of parametri
 
onstru
ts.� (s1; s2) 2 { means that we allow parametri
 
onstru
ts 
(b1; : : : ; bn) : A whereb1; : : : ; bn have types B1; : : : ; Bn of sort s1, and A is of type s2.� If both (�; s2) 2 { and (2; s2) 2 { then 
ombinations of parameters allowed.For example, it is allowed that B1 has type �, whilst B2 has type 2.Workshop on Logi
, Language and Information 2001 89



The Cube with parametri
 
onstants� Let S, { � f(�; �); (�;2); (2; �); (2;2)g 
ontaining (�; �).� �S{ = �S and the two rules (!C-weak) and (!C-app):� ` b : B �;�i ` Bi : si �;� ` A : s�; 
(�) : A ` b : B (si; s) 2 {; 
 is �-fresh

�1; 
(�):A;�2 ` bi:Bi[xj:=bj℄i�1j=1 (i = 1; : : : ; n)�1; 
(�):A;�2 ` A : s (if n = 0)�1; 
(�):A;�2 ` 
(b1; : : : ; bn) : A[xj:=bj℄nj=1

� � x1:B1; : : : ; xn:Bn.�i � x1:B1; : : : ; xi�1:Bi�1Workshop on Logi
, Language and Information 2001 90



Properties of the Re�ned Cube� Corre
tness of types) If � ` A : B then (B � 2 or � ` B : S for some sort S).

� (Subje
t Redu
tion SR) If � ` A : B and A!!� A0 then � ` A0 : B� (Strong Normalisation) For all `-legal terms M , we have SN!!�(M). I.e. Mis strongly normalising with respe
t to !!�.� Other properties su
h as Uniqueness of types and typability of subterms hold.� �S{ is the system whi
h has �-formation rules R and parameter rules P .� Let �S{ parametri
ally 
onservative (i.e., (s1; s2) 2 P implies (s1; s2) 2 R).{ The parameter-free system �S is at least as powerful as �S{.{ If � `S{ a : A then f�g `S fag : fAg :Workshop on Logi
, Language and Information 2001 91



Example� R = f(�; �)gP 1 = ; P 2 = f(�; �)g P 3 = f(�;2)g P 4 = f(�; �); (�;2)gAll �RP i for 1 � i � 4 with the above spe
i�
ations are all equal in power.� R5 = f(�; �)g P 5 = f(�; �); (�;2)g:�! < �R5P 5 < �P: we 
an to talk about predi
ates:� : �;eq(x:�; y:�) : �;refl(x:�) : eq(x; x);symm(x:�; y:�; p:eq(x; y)) : eq(y; x);trans(x:�; y:�; z:�; p:eq(x; y); q:eq(y; z)) : eq(x; z) :

eq not possible in �!.Workshop on Logi
, Language and Information 2001 92



The re�ned Barendregt Cube
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LF, ML, Aut-68, and Aut-QE in the re�ned Cube
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LF� [27℄ initially des
ribed LF as the system �P of the Cube.However, the �-formation rule (�;2) is restri
ted in most appli
ations of LF.� [27℄ splits �-formation in two (LF { (�P ) is 
alled LF�):(�0)�; x:A `M : B � ` �x:A:B : �� ` �0x:A:M : �x:A:B (�0x:A:M)N !�0 M [x:=N ℄

(�P )�; x:A `M : B � ` �x:A:B : 2� ` �Px:A:M : �x:A:B (�Px:A:M)N !�P M [x:=N ℄� If M : � or M : A : � in LF, then the �P -normal form of M 
ontains no �P ;� If � ` LF M : A, and �;M;A do not 
ontain a �P , then � ` LF� M : A;� If � ` LF M : A(: �), all in �P -normal form, then � ` LF� M : A(: �).Workshop on Logi
, Language and Information 2001 95



LF� Hen
e: the only need for a type �x:A:B : 2 is to de
lare a variable in it.� This is only done when the Propositions-As-Types prin
iple pat is appliedduring the 
onstru
tion of the type of the operator Prf as follows:prop:� ` prop: � prop:�; �:prop ` �:2prop:� ` (��:prop:�) : 2 :� In LF, this is the only point where the �-formation rule (�;2) is used.� No �P -abstra
tions are used. Prf is only used when applied to term p:prop.� Hen
e, the pra
ti
al use of LF would not be restri
ted if we present Prf in aparametri
 form, and use (�;2) as a parameter instead of a �-formation rule.� This puts LF in between �! and �P in the Re�ned Cube.Workshop on Logi
, Language and Information 2001 96



Logi
ians versus mathemati
ians and indu
tion over numbers� Logi
ian uses ind: Ind as proof term for an appli
ation of the indu
tion axiom.The type Ind 
an only be des
ribed in �R where R = f(�; �); (�;2); (2; �)g:Ind = �p:(N!�):p0!(�n:N :�m:N :pn!Snm!pm)!�n:N :pn (4)� Mathemati
ian uses ind only with P : N!�, Q : P0 and R :(�n:N :�m:N :Pn!Snm!Pm) to form a term (indPQR):(�n:N :Pn).� The use of the indu
tion axiom by the mathemati
ian is better des
ribed bythe parametri
 s
heme (p, q and r are the parameters of the s
heme):ind(p:N!�; q:p0; r:(�n:N :�m:N :pn!Snm!pm)) : �n:N :pn (5)� The logi
ian's type Ind is not needed by the mathemati
ian and the typesthat o

ur in 5 
an all be 
onstru
ted in �R with R = f(�; �)(�;2)g.Workshop on Logi
, Language and Information 2001 97



Logi
ians versus mathemati
ians and indu
tion over numbers

� Mathemati
ian: only applies the indu
tion axiom and doesn't need to knowthe proof-theoreti
al ba
kgrounds.� A logi
ian develops the indu
tion axiom (or studies its properties).� (2; �) is not needed by the mathemati
ian. It is needed in logi
ian's approa
hin order to form the �-abstra
tion �p:(N ! �): � � � ).� Consequently, the type system that is used to des
ribe the mathemati
ian'suse of the indu
tion axiom 
an be weaker than the one for the logi
ian.� Nevertheless, the parameter me
hanism gives the mathemati
ian limited (butfor his purposes suÆ
ient) a

ess to the indu
tion s
heme.Workshop on Logi
, Language and Information 2001 98



Con
lusions� Parameters enable the same expressive power as the high-level 
ase, whileallowing us to stay at a lower order. E.g. �rst-order with parameters versusse
ond-order without [43, 42℄.� Desirable properties of the lower order theory (de
idability, easiness of
al
ulations, typability) 
an be maintained, without losing the 
exibility ofthe higher-order aspe
ts.� Parameters enable us to �nd an exa
t position of type systems in the generalisedframework of type systems.� Parameters des
ribe the di�eren
e between developers and users of systems.
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