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Summary

� Prehistory of types� 1902: Russell's letter to Frege about the paradox in Begri�sshrift.� 1903: Russell gives the �rst theory of types: the Rami�ed Type Theory (rtt).� simple theory of types (stt): Ramsey 1926, Hilbert and Akermann 1928.� 1940: Churh's own simply typed �-alulus (known as �!) is based on stt.� The unsatisfatory notion of funtion in Churh's work.
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Prehistory of Types (Eulid)

� Eulid's Elements (ira 325 B.C.) begins with:1. A point is that whih has no part;2. A line is breadthless length....15. A irle is a plane �gure ontained by one line suh that all the straightlines falling upon it from one point among those lying within the �gure areequal to one another.� Although the above seems to merely de�ne points, lines, and irles, it showsmore importantly that Eulid distinguished between them. Eulid alwaysmentioned to whih lass (points, lines, et.) an objet belonged.
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Prehistory of Types (Eulid)

� By distinguishing lasses of objets, Eulid prevented undesired situations, likeonsidering whether two points (instead of two lines) are parallel.� Undesired results? Eulid himself would probably have said: impossible results.When onsidering whether two objets were parallel, intuition impliitly foredhim to think about the type of the objets. As intuition does not support thenotion of parallel points, he did not even try to undertake suh a onstrution.� In this manner, types have always been present in mathematis, although theywere not notied expliitly until the late 1800s. If you have studied geometry,then you have some (impliit) understanding of types.
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Prehistory of Types (Paradox Threats)

� Starting in the 1800s, mathematial systems beame less intuitive, for severalreasons:{ Very omplex or abstrat systems.{ Formal systems.{ Something with less intuition than a human using the systems: a omputer.� These situations are paradox threats. An example is Frege's Naive Set Theory.In suh ases, there is not enough intuition to ativate the (impliit) typetheory to warn against an impossible situation. Reasoning proeeds withinthe impossible situation and then obtains a result that may be wrong orparadoxial.Workshop on Logi, Language and Information 2001 4



Prehistory of Types (formal systems in 19th entury)

In the 19th entury, the need for a more preise style in mathematis arose,beause ontroversial results had appeared in analysis.� 1821: Many of these ontroversies were solved by the work of Cauhy. E.g.,he introdued a preise de�nition of onvergene in his Cours d'Analyse [13℄.� 1872: Due to the more exat de�nition of real numbers given by Dedekind[19℄, the rules for reasoning with real numbers beame even more preise.� 1895-1897: Cantor began formalizing set theory [11, 12℄ and madeontributions to number theory.
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Prehistory of Types (formal systems in 19th entury)

� 1889: Peano formalized arithmeti [48℄, but did not treat logi or quanti�ation.� 1879: Frege was not satis�ed with the use of natural language in mathematis:\ : : : I found the inadequay of language to be an obstale; no matterhow unwieldy the expressions I was ready to aept, I was less and lessable, as the relations beame more and more omplex, to attain thepreision that my purpose required." (Begri�sshrift, Prefae)Frege therefore presented Begri�sshrift [20℄, the �rst formalisation of logigiving logial onepts via symbols rather than natural language.Workshop on Logi, Language and Information 2001 6



Prehistory of Types (formal systems in 19th entury)

\[Begri�sshrift's℄ �rst purpose is to provide us with the most reliable testof the validity of a hain of inferenes and to point out every presuppositionthat tries to sneak in unnotied, so that its origin an be investigated."(Begri�sshrift, Prefae)� 1892-1903 Frege's Grundgesetze der Arithmetik [22, 26℄, ould handleelementary arithmeti, set theory, logi, and quanti�ation.
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Prehistory of Types (Begri�sshrift's funtions)

The introdution of a very general de�nition of funtion was the key to theformalisation of logi. Frege de�ned what we will all the Abstration Priniple.Abstration Priniple 1.\If in an expression, [ : : : ℄ a simple or a ompound sign has one or moreourrenes and if we regard that sign as replaeable in all or some of theseourrenes by something else (but everywhere by the same thing), then weall the part that remains invariant in the expression a funtion, and thereplaeable part the argument of the funtion." (Begri�sshrift, Setion 9)Workshop on Logi, Language and Information 2001 8



Prehistory of Types (Begri�sshrift's funtions)

� Frege put no restritions on what ould play the role of an argument.� An argument ould be a number (as was the situation in analysis), but also aproposition, or a funtion.� Similarly, the result of applying a funtion to an argument did not neessarilyhave to be a number.
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Prehistory of Types (Begri�sshrift's funtions)

Funtions of more than one argument were onstruted by a method that is verylose to the method presented by Sh�on�nkel [58℄ in 1924:Abstration Priniple 2.\If, given a funtion, we think of a sign1 that was hitherto regarded as notreplaeable as being replaeable at some or all of its ourrenes, then byadopting this oneption we obtain a funtion that has a new argument inaddition to those it had before." (Begri�sshrift, Setion 9)1We an now regard a sign that previously was onsidered replaeable as replaeable also in those plaes in whihup to this point it was onsidered �xed. [footnote by Frege℄Workshop on Logi, Language and Information 2001 10



Prehistory of Types (Begri�sshrift's funtions)

With this de�nition of funtion, two of the three possible paradox threats ourred:1. The generalisation of the onept of funtion made the system more abstratand less intuitive. The fat that funtions ould have di�erent types ofarguments is at the basis of the Russell Paradox;2. Frege introdued a formal system instead of the informal systems that wereused up till then. Type theory, that would be helpful in distinguishing betweenthe di�erent types of arguments that a funtion might take, was left informal.So, Frege had to proeed with aution. And so he did, at this stage.Workshop on Logi, Language and Information 2001 11



Prehistory of Types (Begri�sshrift's funtions)

Frege was aware of some typing rule that does not allow to substitute funtionsfor objet variables or objets for funtion variables:\if the [ : : : ℄ letter [sign℄ ours as a funtion sign, this irumstane[should℄ be taken into aount." (Begri�sshrift, Setion 11)\ Now just as funtions are fundamentally di�erent from objets, so alsofuntions whose arguments are and must be funtions are fundamentallydi�erent from funtions whose arguments are objets and annot be anythingelse. I all the latter �rst-level, the former seond-level."(Funtion and Conept, pp. 26{27)
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Prehistory of Types (Begri�sshrift's funtions)In Funtion and Conept he was aware of the fat that making a di�erenebetween �rst-level and seond-level objets is essential to prevent paradoxes:\The ontologial proof of God's existene su�ers from the fallay of treatingexistene as a �rst-level onept." (Funtion and Conept, p. 27, footnote)The above disussion on funtions and arguments show that Frege did indeedavoid the paradox in his Begri�sshrift.
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Prehistory of Types (Grundgesetze's funtions)

The Begri�sshrift, however, was only a prelude to Frege's writings.� In Grundlagen der Arithmetik [21℄ he argued that mathematis an be seen asa branh of logi.� In Grundgesetze der Arithmetik [22, 26℄ he desribed the elementary parts ofarithmetis within an extension of the logial framework of Begri�sshrift.� Frege approahed the paradox threats for a seond time at the end of Setion2 of his Grundgesetze.� He did not want to apply a funtion to itself, but to its ourse-of-values.Workshop on Logi, Language and Information 2001 14



Prehistory of Types (Grundgesetze's funtions)

Frege de�ned \the funtion �(x) has the same ourse-of-values as the funtion	(x)" by\the funtions �(x) and 	(x) always have the same value for the sameargument." (Grundgesetze, p. 7)� Note that funtions �(x) and 	(x) may have equal ourses-of-values even ifthey have di�erent de�nitions.� E.g., let �(x) be x ^ :x, and 	(x) be x$ :x, for all propositions x.
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Prehistory of Types (Grundgesetze's funtions)

Frege denoted the ourse-of-values of a funtion �(x) by �"�("). The de�nitionof equal ourses-of-values ould therefore be expressed as�"f(") = �"g(") ! 8a[f(a) = g(a)℄: (1)

In modern terminology, we ould say that the funtions �(x) and 	(x) have thesame ourse-of-values if they have the same graph.

Workshop on Logi, Language and Information 2001 16



Prehistory of Types (Grundgesetze's funtions)

� The notation �"�("). may be the origin of Russell's notation ^x�(x) for thelass of objets that have the property �.� Aording to a paper by Rosser [55℄, the notation ^x�(x) has been at the basisof the urrent notation �x:�.� Churh is supposed to have written ^x�(x) for the funtion x 7! �(x), writingthe hat in front of the x in order to distinguish this funtion from the lass^x�(x).
Workshop on Logi, Language and Information 2001 17



Prehistory of Types (Grundgesetze's funtions)

� Frege treated ourses-of-values as ordinary objets.� As a onsequene, a funtion that takes objets as arguments ould have itsown ourse-of-values as an argument.� In modern terminology: a funtion that takes objets as arguments an haveits own graph as an argument.
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Prehistory of Types (Grundgesetze's funtions)

� All essential information of a funtion is ontained in its graph.� So intuitively, a system in whih a funtion an be applied to its own graphshould have similar possibilities as a system in whih a funtion an be appliedto itself.� Frege exluded the paradox threats from his system by forbidding self-appliation,� but due to his treatment of ourses-of-values these threats were able to enterhis system through a bak door.
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Prehistory of Types (Russell's paradox in Grundgesetze)

� In 1902, Russell wrote a letter to Frege [56℄, informing him that he haddisovered a paradox in his Begri�sshrift (Begri�sshrift does not su�er froma paradox).� Russell gave his well-known argument, de�ning the propositional funtion f(x)by :x(x) (in Russell's words: \to be a prediate that annot be prediated ofitself").� Russell assumed f(f). Then by de�nition of f , :f(f), a ontradition.Therefore: :f(f) holds. But then (again by de�nition of f), f(f) holds.Russell onluded that both f(f) and :f(f) hold, a ontradition.
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Prehistory of Types (Russell's paradox in Grundgesetze)

� Only six days later, Frege answered Russell that Russell's derivation of theparadox was inorret [25℄. He explained that the self-appliation f(f) is notpossible in the Begri�sshrift. f(x) is a funtion, whih requires an objet asan argument, and a funtion annot be an objet in the Begri�sshrift.� In the same letter, however, Frege explained that Russell's argument ouldbe amended to a paradox in the system of his Grundgesetze, using theourse-of-values of funtions.� Frege's amendment was shortly explained in that letter, but he added anappendix of eleven pages to the seond volume of his Grundgesetze in whihhe provided a very detailed and orret desription of the paradox.Workshop on Logi, Language and Information 2001 21



Prehistory of Types (Russell's paradox in Grundgesetze)

� Let funtion f(x) be: :8'[(��'(�) = x) �! '(x)℄ and write K = �"f(").� Whih of f(K) or :f(K) hold?� Atually, both f(K) and :f(K) hold.� By (1), for any funtion g(x): �"g(") = �"f(") �! g(K) = f(K). This impliesf(K) �! ((�"g(") = K) �! g(K)).� As this holds for any funtion g(x), we have:f(K) �! 8'[(�"'(") = K)! '(K)℄ (a)
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Prehistory of Types (Russell's paradox in Grundgesetze)

� On the other hand, for any funtion g,8'[(�"'(") = K)! '(K)℄ �! ((�"g(") = K)! g(K)):� Substituting f(x) for g(x) results in:8'[(�"'(") = K)! '(K)℄ �! ((�"f(") = K)! f(K))� and as �"f(") = K by de�nition of K, 8'[(�"'(") = K)! '(K)℄ �! f(K):� Using the de�nition of f , we obtain8'[(�"'(") = K)! '(K)℄ �! :8'[(�"'(") = K)! '(K)℄ (b)
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Prehistory of Types (Russell's paradox in Grundgesetze)

� by (b) and redutio ad absurdum, :8'[(��'(�) = K)! '(K)℄; or shorthand:f(K) ()� Applying (a) results in 8'[(��'(�) = K) ! '(K)℄; whih implies::8'[(��'(�) = K)! '(K)℄; or shorthand::f(K) (d)� () and (d) ontradit eah other.
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Prehistory of Types (How wrong was Frege?)

In the history of the Russell Paradox, Frege is often depited as the pitiful personwhose system was inonsistent. This suggests that Frege's system was the onlyone that was inonsistent, and that Frege was very inaurate in his writings. Onthese points, history does Frege an injustie.In fat, Frege's system was muh more aurate than other systems of those days.Peano's work, for instane, was less preise on several points:� Peano hardly paid attention to logi espeially quanti�ation theory;� Peano did not make a strit distintion between his symbolism and the objetsunderlying this symbolism. Frege was muh more aurate on this point (seeFrege's paper �Uber Sinn und Bedeutung [23℄);Workshop on Logi, Language and Information 2001 25



Prehistory of Types (How wrong was Frege?)

� Frege made a strit distintion between a proposition (as an objet) and theassertion of a proposition. Frege denoted a proposition, by �A, and itsassertion by ` A. Peano did not make this distintion and simply wrote A.Nevertheless, Peano's work was very popular, for several reasons:� Peano had able ollaborators, and a better eye for presentation and publiity.� Peano bought his own press to supervise the printing of his own journal Rivistadi Matematia and Formulaire [49℄

Workshop on Logi, Language and Information 2001 26



Prehistory of Types (How wrong was Frege?)

� Peano used a familiar symbolism to the notations were used in those days.� Many of Peano's notations, like 2 for \is an element of", and � for logialimpliation, are used in Prinipia Mathematia, and are atually still in use.� Frege's work did not have these advantages and was hardly read before 1902� When Peano published his formalisation of mathematis in 1889 [48℄ he learlydid not know Frege's Begri�sshrift as he did not mention the work, and wasnot aware of Frege's formalisation of quanti�ation theory.
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Prehistory of Types (How wrong was Frege?)

� Peano onsidered quanti�ation theory to be \abstruse" in [49℄:\In this respet my oneptual notion of 1879 is superior to the Peanoone. Already, at that time, I spei�ed all the laws neessary for mydesignation of generality, so that nothing fundamental remains to beexamined. These laws are few in number, and I do not know why theyshould be said to be abstruse. If it is otherwise with the Peano oneptualnotation, then this is due to the unsuitable notation." ([24℄, p. 376)
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Prehistory of Types (How wrong was Frege?)

� In the last paragraph of [24℄, Frege onluded:\ : : : I observe merely that the Peano notation is unquestionably moreonvenient for the typesetter, and in many ases takes up less roomthan mine, but that these advantages seem to me, due to the inferiorperspiuity and logial defetiveness, to have been paid for too dearly |at any rate for the purposes I want to pursue."(Ueber die Begri�shrift des Herrn Peano und meine eigene, p. 378)
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Prehistory of Types (paradox in Peano and Cantor's systems)

� Frege's system was not the only paradoxial one.� The Russell Paradox an be derived in Peano's system as well, by de�ning thelass K def= fx j x 62 xg and deriving K 2 K  ! K 62 K.� In Cantor's Set Theory one an derive the paradox via the same lass (or set,in Cantor's terminology).
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Prehistory of Types (paradoxes)

� Paradoxes were already widely known in antiquity.� The oldest logial paradox: the Liar's Paradox \This sentene is not true",also known as the Paradox of Epimenides. It is referred to in the Bible (Titus1:12) and is based on the onfusion between language and meta-language.� The Burali-Forti paradox ([10℄, 1897) is the �rst of the modern paradoxes. Itis a paradox within Cantor's theory on ordinal numbers.� Cantor's paradox on the largest ardinal number ours in the same �eld. Itdisovered by Cantor around 1895, but was not published before 1932.
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Prehistory of Types (paradoxes)

� Logiians onsidered these paradoxes to be out of the sope of logi:The Liar's Paradox an be regarded as a problem of linguistis.The paradoxes of Cantor and Burali-Forti ourred in what was onsidered inthose days a highly questionable part of mathematis: Cantor's Set Theory.� The Russell Paradox, however, was a paradox that ould be formulated in allthe systems that were presented at the end of the 19th entury (exept forFrege's Begri�sshrift). It was at the very basis of logi. It ould not bedisregarded, and a solution to it had to be found.� In 1903-1908, Russell suggested the use of types to solve the problem [57℄.
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Prehistory of Types (viious irle priniple)

When Russell proved Frege's Grundgesetze to be inonsistent, Frege was not theonly person in trouble. In Russell's letter to Frege (1902), we read:\I am on the point of �nishing a book on the priniples of mathematis"(Letter to Frege, [56℄)Russell had to �nd a solution to the paradoxes, before �nishing his book.His paper Mathematial logi as based on the theory of types [57℄ (1908), inwhih a �rst step is made towards the Rami�ed Theory of Types, started with adesription of the most important ontraditions that were known up till then,inluding Russell's own paradox. He then onluded:Workshop on Logi, Language and Information 2001 33



Prehistory of Types (viious irle priniple)

\In all the above ontraditions there is a ommon harateristi, whih wemay desribe as self-referene or reexiveness. [: : : ℄ In eah ontraditionsomething is said about all ases of some kind, and from what is said a newase seems to be generated, whih both is and is not of the same kind asthe ases of whih all were onerned in what was said." (Ibid.)Russell's plan was, to avoid the paradoxes by avoiding all possible self-referenes.He postulated the \viious irle priniple":
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Rami�ed Type Theory

\Whatever involves all of a olletion must not be one of the olletion."(Mathematial logi as based on the theory of types)� Russell applies this priniple very stritly.� He implemented it using types, in partiular the so-alled rami�ed types.� The type theory of 1908 was elaborated in Chapter II of the Introdution tothe famous Prinipia Mathematia [60℄ (1910-1912).
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Rami�ed Type Theory and Prinipia

� In the Prinipia, mathematis was founded on logi, as far as possible.� A very formal and aurate build-up of mathematis, avoiding the logialparadoxes.� The logial part of the Prinipia was based on the works of Frege. This wasaknowledged by Whitehead and Russell in the prefae, and an also be seenthroughout the desription of Type Theory.� The notion of funtion is based on Frege's Abstration Priniples 1 and 2.
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Rami�ed Type Theory and Prinipia

� The Prinipia notation ^xf(x) for a lass looks very similar to Frege's �"f(") forourse-of-values.� An important di�erene is that Whitehead and Russell treated funtions as�rst-lass itizens. Frege used ourses-of-values when speaking about funtions.� In the Prinipia a diret approah was possible.� The desription of the Rami�ed Theory of Types (rtt) in the Prinipia was,though extensive, still informal.
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Rami�ed Type Theory and Prinipia

� Type Theory had not yet beome an independent subjet. The theory\only reommended itself to us in the �rst instane by its ability to solveertain ontraditions. .......... it has also a ertain onsonane withommon sense whih makes it inherently redible"(Prinipia Mathematia, p. 37)� Type Theory was not introdued beause it was interesting on its own, butbeause it had to serve as a tool for logi and mathematis.� A formalisation of Type Theory, therefore, was not onsidered in those days.

Workshop on Logi, Language and Information 2001 38



Rami�ed Type Theory and Prinipia

� Though the desription of the rami�ed type theory in the Prinipia was stillinformal, it was learly present throughout the work.� Types in the Prinipia have a double hierarhy: (simple) types and orders.� It was not mentioned very often, but when neessary, Russell made a remarkon the rami�ed type theory.
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Rami�ed Type Theory and Prinipia

� There is no de�nition of \type" in the Prinipia, only a de�nition of \being ofthe same type":\De�nition of being of the same type. The following is a step-by-stepde�nition, the de�nition for higher types presupposing that for lowertypes. We say that u and v are of the same type if1. both are individuals,2. both are elementary [propositional℄ funtions (in Prinipia, they onlytake elementary propositions as value) taking arguments of the sametype,3. u is a pf and v is its negation,Workshop on Logi, Language and Information 2001 40



4. u is '^x '^x is a pf that has x as a free variable or  ^x, and v is '^x_ ^x,where '^x and  ^x are elementary pfs,5. u is (y):'(^x; y) forall and v is (z): (^x; z), where '(^x; ^y),  (^x; ^y) areof the same type,6. both are elementary propositions,7. u is a proposition and v is �unegation or8. u is (x):'x and v is (y): y, where '^x and  ^x are of the same type."(Prinipia Mathematia, �9�131, p. 133)� There are some omissions in Russell and Whitehead's de�nition.
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Ramsey's Simple Types

� The ideas behind simple types was already explained by Frege (see earlierquotes from Funtion and Conept).� Ramsey's Simple types:1. 0 is a simple type, the type of individuals.2. If t1; : : : ; tn are simple types, then also (t1; : : : ; tn) is a simple type.2 n = 0is allowed: then we obtain the simple type () of propositions.3. All simple types an be onstruted using the rules 1 and 2.2(t1; : : : ; tn) is the type of pfs that should take n arguments, the ith argument having type ti.Workshop on Logi, Language and Information 2001 42



Ramsey's Simple Types

� The propositional funtion R(x) should have type (0), as it takes one individualas argument.� The proposition S(a) has type ().� We onlude that in z(R(x); S(a)), we must substitute pfs of type ((0); ()) forz. Therefore, z(R(x); S(a)) has type (((0); ())).
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Whitehead and Russell's Rami�ed Types

� With simple types, the type of a pf only depends on the types of the argumentsthat it an take.� In the Prinipia, a seond hierarhy is introdued by regarding also the typesof the variables that are bound by a quanti�er (see Prinipia, pp. 51{55).� Whitehead and Russell onsider, for instane, the propositions R(a) and8z:()[z() _ :z()℄ to be of a di�erent level.� The �rst is an atomi proposition, while the latter is based on the pf z()_:z().
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Whitehead and Russell's Rami�ed Types

� The pf z()_:z() involves an arbitrary proposition z, therefore 8z:()[z()_:z()℄quanti�es over all propositions z.� Aording to the viious irle priniple, 8z:()[z() _ :z()℄ annot belong tothis olletion of propositions.� This problem is solved by dividing types into orders whih are natural numbers.� Basi propositions are of order 0. In 8z:()[z() _ :z()℄ we must mention theorder of the propositions over whih is quanti�ed. The pf 8z:()n[z() _ :z()℄quanti�es over all propositions of order n, and has order n+ 1.
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Whitehead and Russell's Rami�ed Types

1. 00 is a rami�ed type of order 0;2. If ta11 ; : : : ; tann are rami�ed types, and a 2 N , a > max(a1; : : : ; an), then(ta11 ; : : : ; tann )a is a rami�ed type of order a (if n = 0 then take a � 0);3. All rami�ed types an be onstruted using the rules 1 and 2.

00; (00)1; �(00)1; (00)4�5; and �00; ()2;�00; (00)1�2�7 are all rami�ed types.�00;�00; (00)2�2�7 is not a rami�ed type.
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Prediative Types

� In the type (00)1, all orders are \minimal", i.e., not higher than stritlyneessary. Unlike (00)2 where orders are not minimal.� Types in whih all orders are minimal are alled prediative and play a speialrole in the Rami�ed Theory of Types.1. 00 is a prediative type;2. If t1a1; : : : ; tnan are prediative types, and a = 1 + max(a1; : : : ; an) (takea = 0 if n = 0), then (ta11 ; : : : ; tann )a is a prediative type;3. All prediative types an be onstruted using the rules 1 and 2 above.
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Problems of Rami�ed Type Theory

� The main part of the Prinipia is devoted to the development of logi andmathematis using the legal pfs of the rami�ed type theory.� rami�ation/division of simple types into orders make rtt not easy to use.� (Equality) x =L y def$ 8z[z(x)$ z(y)℄;.In order to express this general notion in rtt, we have to inorporate all pfs8z : (00)n[z(x)$ z(y)℄ for n > 1, and this annot be expressed in one pf.� Not possible to give a onstrutive proof of the theorem of the least upperbound within a rami�ed type theory.
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Axiom of Reduibility

� It is not possible in rtt to give a de�nition of an objet that refers to the lassto whih this objet belongs (beause of the Viious Cirle Priniple). Suh ade�nition is alled an imprediative de�nition.� An objet de�ned by an imprediative de�nition is of a higher order than theorder of the elements of the lass to whih this objet should belong. Thismeans that the de�ned objet has an imprediative type.� But imprediativity is not allowed by the viious irle priniple.� Russell and Whitehead tried to solve these problems with the so-alled axiomof reduibility.Workshop on Logi, Language and Information 2001 49



Axiom of Reduibility

� (Axiom of Reduibility) For eah formula f , there is a formula g with aprediative type suh that f and g are (logially) equivalent.� The validity of the Axiom of Reduibility has been questioned from the momentit was introdued.� In the 2nd edition of the Prinipia, Whitehead and Russell admit:\This axiom has a purely pragmati justi�ation: it leads to the desiredresults, and to no others. But learly it is not the sort of axiom withwhih we an rest ontent." (Prinipia Mathematia, p. xiv)
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Axiom of Reduibility

� Though Weyl [59℄ made an e�ort to develop analysis within the Rami�edTheory of Types (without the Axiom of Reduibility),� and various parts of mathematis an be developed within rtt and withoutthe Axiom,� the general attitude towards rtt (without the axiom) was that the system wastoo restritive, and that a better solution had to be found.
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Derami�ation

� Ramsey onsiders it essential to divide the paradoxes into two parts:� One group of paradoxes is removed\by pointing out that a propositional funtion annot signi�antly takeitself as argument, and by dividing funtions and lasses into a hierarhyof types aording to their possible arguments."(The Foundations of Mathematis, p. 356)This means that a lass an never be a member of itself. The paradoxes solvedby introduing the hierarhy of types (but not orders), like the Russell paradox,and the Burali-Forti paradox, are logial or syntatial paradoxes;
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Derami�ation

� The seond group of paradoxes is exluded by the hierarhy of orders. Theseparadoxes (like the Liar's paradox, and the Rihard Paradox) are based on theonfusion of language and meta-language. These paradoxes are, therefore,not of a purely mathematial or logial nature. When a proper distintionbetween objet language and meta-language is made, these so-alled semantialparadoxes disappear immediately.� Ramsey agrees with the part of the theory that eliminates the syntatiparadoxes. I.e., rtt without the orders of the types.� The seond part, the hierarhy of orders, does not gain Ramsey's support.
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Derami�ation

� By aepting the hierarhy in its full extent one either has to aept the Axiomof Reduibility or rejet ordinary real analysis.� Ramsey is supported in his view by Hilbert and Akermann [32℄.� They all suggest a derami�ation of the theory, i.e. leaving out the orders ofthe types.� When making a proper distintion between language and meta-language, thederami�ation will not lead to a re-introdution of the (semanti) paradoxes.
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Derami�ation� Derami�ation and the Axiom of Reduibility are both violations of the ViiousCirle Priniple. G�odel [29℄ �lls the gap why they an be harmlessly made\it seems that the viious irle priniple [ : : : ℄ applies only if the entitiesinvolved are onstruted by ourselves. In this ase there must learlyexist a de�nition (namely the desription of the onstrution) whih doesnot refer to a totality to whih the objet de�ned belongs, beause theonstrution of a thing an ertainly not be based on a totality of thingsto whih the thing to be onstruted itself belongs. If, however, it is aquestion of objets that exist independently of our onstrutions, thereis nothing in the least absurd in the existene of totalities ontainingmembers, whih an be desribed only by referene to this totality."(Russell's mathematial logi)
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Derami�ation

� This turns the Viious Cirle Priniple into a philosophial priniple that willbe easily aepted by intuitionists but that will be rejeted, at least in its fullstrength, by mathematiians with a more platoni point of view.� G�odel is supported in his ideas by Quine [50℄, setions 34 and 35.� Quine's ritiism on imprediative de�nitions (for instane, the de�nition ofthe least upper bound of a nonempty subset of the real numbers with an upperbound) is not on the de�nition of a speial symbol, but rather on the veryassumption of the existene of suh an objet at all.
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Derami�ation

� Quine states that even for Poinar�e, who was an opponent of imprediativede�nitions and derami�ation, one of the dotrines of lasses is that they arethere \from the beginning". So, even for Poinar�e there should be no evidentfallay in imprediative de�nitions.� The derami�ation has played an important role in the development of typetheory. In 1932 and 1933, Churh presented his (untyped) �-alulus [14, 15℄.In 1940 he ombined this theory with a derami�ed version of Russell's theoryof types to the system that is known as the simply typed �-alulus
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The Simple Theory of Types

� Ramsey [51℄, and Hilbert and Akermann [32℄, simpli�ed the Rami�ed Theoryof Types rtt by removing the orders. The result is known as the SimpleTheory of Types (stt).� Nowadays, stt is known via Churh's formalisation in �-alulus. However,stt already existed (1926) before �-alulus did (1932), and is therefore notinextriably bound up with �-alulus.� How to obtain stt from rtt? Just leave out all the orders and the referenesto orders (inluding the notions of prediative and imprediative types).
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Churh's Simply Typed �-alulus �!

� Types and terms in the original �! are a bit di�erent from those of [4℄.� The types of �! are de�ned as follows:{ � individuals and o propositions are types;{ If � and � are types, then so is �! �.� The terms of �! are the following:{ :, ^, 8� for eah type �, and �� for eah type �, are terms;{ A variable is a term;{ If A;B are terms, then so is AB;{ If A is a term, and x a variable, then �x:�:A is a term.Workshop on Logi, Language and Information 2001 59



Typing rules in Churh's Simply Typed �-alulus �!

� � ` : : o! o;� ` ^ : o! o! o;� ` 8� : (�! o)! o;� ` �� : (�! o)! �;� � ` x : � if x:� 2 �;� If �; x:� ` A : � then � ` (�x:�:A) : �! �;� If � ` A : �! � and � ` B : � then � ` (AB) : �.
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Comparing �! with stt and rtt

� Apart from the orders, rtt is a subsystem of �!.� The rules of rtt, and the method of deriving the types of pfs have a bottom-upharater: one an only introdue a variable of a ertain type in a ontext �,if there is a pf that has that type in �. In �!, one an introdue variables ofany type without wondering whether suh a type is inhabited or not.� Churh's �! is more general than rtt in the sense that Churh does notonly desribe (typable) propositional funtions. In �!, also funtions of type� ! � (where � is the type of individuals) an be desribed, and funtions thattake suh funtions as arguments, et..
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Where to �nd above details

� Details onerning the abve slides an be downloaded fromhttp://www.ee.hw.a.uk/ fairouz/talks/wolli2001.ps� See also{ Types in Logi and Mathematis before 1940 byKamareddine, F. and Laan, L. and Nederpelt, R. P. 2000. and{ The Evolution of Type Theory in Logi and Mathematis by Twan Laan,PhD thesis 1997.
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Item Notation/Lambda Calulus �a la de Bruijn

� For those used to lassial notation, I translates to item notation:I(x) = x; I(�x:B) = [x℄I(B); I(AB) = (I(B))I(A)� For example, I((�x:(�y:xy))z) = (z)[x℄[y℄(y)x. The items are (z), [x℄, [y℄and (y).� The appliator wagon (z) and abstrator wagon [x℄ our NEXT to eah other.� In lassial notation the � rule is (�x:A)B !� A[x := B℄. In item notation,the rule is: (B)[x℄A!� [x := B℄AWorkshop on Logi, Language and Information 2001 63



Redexes in Item NotationClassial Notation Item Notation((�x:(�y:�z:zd))b)a (a)(b)[x℄()[y℄[z℄(d)z#� #�((�y:�z:zd))a (a)()[y℄[z℄(d)z#� #�(�z:zd)a (a)[z℄(d)z#� #�ad (d)a

(a)(b) [x℄ () [y℄ [z℄ (d) z
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Segments, Partners, Bahelors� The \braketing struture" of the lassial notation ((�x:(�y:�z: � �))b)a),is `f1 f2 f3 g2 g1 g3', where `fi' and `gi' math.� In item notation, (a)(b)[x℄()[y℄[z℄(d) has the simpler braketing strutureff gf gg.� An appliator (a) and an abstrator [x℄ are partners when they math like `f'and `g'. Non-partnered items are bahelors. A segment s is well balanedwhen it ontains only partnered items.� Example: Let s � (a)(b)[x℄()[y℄[z℄(d). Then: The items (a), (b), [x℄,(), [y℄, and [z℄ are partnered. The item (d) is a bahelor. The segment(a)(b)[x℄()[y℄[z℄ is well balaned.
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More on Segments, Partners, and BahelorsConsider some term sx. Some fats:� The main items in s are those at top level, not within some appliator (a).� Eah main bahelor abstrator [x℄ preedes eah main bahelor appliator (a).� Removing all main bahelor items from s yields a well balaned segment.� Removing all main partnered items from s yields a segment[v1℄ : : : [vn℄(a1) : : : (am) onsisting of all main bahelor abstrators followedby all main bahelor appliators.� If s is of the form s1(b)s2[v℄s3 where [v℄ and (b) are partnered, then s2 mustbe well balaned.Workshop on Logi, Language and Information 2001 66



Even More on Segments, Partners, and Bahelors

Eah non-empty segment s has a unique partitioning into sub-segmentss = s0s1 � � � sn suh that� For even i, the segment si is well balaned. For odd i, the segment si is abahelor segment, i.e., it ontains only bahelor main items.� All well balaned segments after the �rst and all bahelor segments arenon-empty.� If si = [x1℄ � � � [xm℄ (only abstrator main items) and sj = (a1) � � � (ap) (onlyappliator main items), then i < j, i.e., si preedes sj in s.
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Examples � [x℄[y℄(a)[z℄[x0℄(b)()(d)[y0℄[z0℄(e), has the following partitioning:� well-balaned segment s0 � ;� bahelor segment s1 � [x℄[y℄,� well-balaned segment s2 � (a)[z℄,� bahelor segment s3 � [x0℄(b),� well-balaned segment s4 � ()(d)[y0℄[z0℄,� bahelor segment s5 � (e).
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More on Item Notation

� Above disussion and further details of item notation an be found in [35, 36℄.� Item notation helped greatly in the study of a one-sorted style ofexpliit substitutions, the �s-style whih is related to ��, but has ertainsimpli�ations [37, 38℄.
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Canonial Forms� Item notation helps in �nding nie anonial forms. The term[x℄[y℄(a)[z℄[x0℄(b)()(d)[y0℄[z0℄(e)is equivalent to [x℄[y℄[x0℄(a)[z℄()(d)[y0℄[z0℄(b)(e)and also [x℄[y℄[x0℄(a)[z℄(d)[y0℄()[z0℄(b)(e)� Nie anonial forms look like:bahelor [ ℄s ()[ ℄-pairs, Ai in CF bahelor ()s, Bi in CF end var[x1℄ : : : [xn℄ (A1)[y1℄: : :(Am)[ym℄ (B1) : : : (Bp) xWorkshop on Logi, Language and Information 2001 70



� In lassial notation:�x1 � � ��xn:(�y1:(�y2: � � � (�ym:xBp � � �B1)Am � � � )A2)A1
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Obtaining Canonial Forms

The results of going to normal form for the indiated redution rules, in the ordershown:�: ()[ ℄-pairs mixed with bah. [ ℄s bah. ()s end var(A1)[x℄[y℄[z℄(A2)[p℄ � � � (B1)(B2) � � � x: bah. [ ℄s ()[ ℄-pairs mixed with bah. ()s end var[x1℄[x2℄ � � � (B1)(A1)[x℄(B2) � � � x�, : bah. [ ℄s ()[ ℄-pairs bah. ()s end var[x1℄[x2℄ � � � (A1)[y1℄(A2)[y2℄ : : : (Am)[ym℄ (B1)(B2) : : : x, �: bah. [ ℄s ()[ ℄-pairs bah. ()s end var[x1℄[x2℄ � � � (A1)[y1℄(A2)[y2℄ : : : (Am)[ym℄ (B1)(B2) : : : x
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More on Canonial Forms

� Both �((A)) and (�(A)) are in anonial form and we have that �((A)) =p(�(A)) where !p is the rule(A1)[y1℄(A2)[y2℄B !p (A2)[y2℄(A1)[y1℄B if y1 =2 FV(A2)

� For a term A, we de�ne: [A℄ = fB j �((A)) =p �((B))g.� When B 2 [A℄, we write that B �equi A.
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� One-step lass-redution ;� is the least ompatible relation suh that:A;� B i� 9A0 2 [A℄:9B0 2 [B℄: A0 !� B0

� Classes ([A℄) and lass redution (;�) niely preserve various strongnormalization properties.� De�ne A;(E)[x℄� B i� 9A0 2 [A℄:9B0 2 [B℄:9E0 2 [E℄: A0!(E0)[x℄� B0.
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Theorem 1. If A �equi C and A;(E)[x℄� B then(9D;E0)[B �equi D;E0 �equi E; and C !(E0)[x℄� D℄.

CA �equiDB(E0)[x℄ ;�
(E)[x℄ ;��equi
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A Few Uses of Generalised Redution and Term Reshu�ing� [52℄ uses term reshu�ing and generalized redution in analyzing perpetualredution strategies.� Term reshu�ing is used in [41℄, [39℄ in analyzing typability problems.� [46, 18, 40℄ use generalised redution and/or term reshu�ing in relating SN toWN.� [2℄ uses a form of term-reshu�ing in obtaining a alulus that orresponds tolazy funtional evaluation.� [35, 8, 7℄ showed how generalized redution and term reshu�ing ould reduespae/time needs.� [34℄ shows various strong properties of generalised redution.
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The Low Level approah of funtions

� Historially, funtions have long been treated as a kind of meta-objets.� Funtion values have always been important, but abstrat funtions have notbeen reognised in their own right until the third of the 20th entury.� In the low level approah or operational view on funtions, there are nofuntions as suh, but only funtion values.� E.g., the sine-funtion, is always expressed together with a value: sin(�),sin(x) and properties like: sin(2x) = 2 sin(x) os(x).� It has long been usual to all f(x)|and not f|the funtion and this is stillthe ase in many introdutory mathematis ourses.Workshop on Logi, Language and Information 2001 77



The revolution of treating funtions as �rst lass itizens� In the nowadays aepted view on funtions, they are `�rst lass itizens'.� Abstration and appliation form the basis of the �-alulus and type theory.� This is rigid and does not represent the development of logi in 20th entury.� Frege and Russell's oneptions of funtional abstration, instantiation andappliation do not �t well with the �-alulus approah.� In Prinipia Mathematia [60℄: If, for some a, there is a proposition �a, thenthere is a funtion �^x, and vie versa.� The funtion � is not a separate entity but always has an argument.Workshop on Logi, Language and Information 2001 78



�-alulus does not fully represent funtionalisation1. Abstration from a subexpression 2 + 3 7! x+ 32. Funtion onstrution x+ 3 7! �:x+ 33. Appliation onstrution (�x:(x+ 3))24. Conretisation to a subexpression (�x:(x+ 3))2! 2 + 3� Cannot identify the original term from whih a funtion has been abstrated.let add2 = (�x:x+ 2) in add2(x) + add2(y)

� annot abstrat only half way: x+ 3 is not a funtion, �x:x+ 3 is.� annot apply x+ 3 to an argument: (x+ 3)2 does not evaluate to 2+3.
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Parameters: What and Why� we speak about funtions with parameters when referring to funtions withvariable values in the low-level approah. The x in f(x) is a parameter.� Parameters enable the same expressive power as the high-level ase, whileallowing us to stay at a lower order. E.g. �rst-order with parameters versusseond-order without [43℄.� Desirable properties of the lower order theory (deidability, easiness ofalulations, typability) an be maintained, without losing the exibility ofthe higher-order aspets.� This low-level approah is still worthwile for many exat disiplines. In fat,both in logi and in omputer siene it has ertainly not been wiped out, andfor good reasons.Workshop on Logi, Language and Information 2001 80



Automath
�The�rsttoolformehanialrepresentationand

veri�ationofmathematialproofs, Automath,
hasaparametermehanism.
�Therepresentationofamathematialtextin
Automathonsistsofa �nitelistoflineswhere
everylinehasthefollowingformat:
x1 :A1 ;:::;xn :An `g(x1 ;:::;xn )=t:T:

Heregisanewname,anabbreviationforthe
expressiontoftypeTandx1 ;:::;xn arethe
parametersofg,withrespetivetypesA1 ;:::;An .
�Eahlineintroduesanewde�nitionwhihis

inherentlyparametrisedbythevariablesourring
intheontextneededforit.
�Developmentsofordinarymathematialtheory

inAutomath[6℄revealedthatthisombined
de�nitionandparametermehanismisvital
forkeepingproofsmanageableandsuÆiently
readableforhumans.
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TheBarendregtCube
�TP ::=VjSjTP TP j�V:TP :TP j�V:TP :TP
�VisasetofvariablesandS=f�;2g.
(axiom)

hi`�:2
(start)

�`A:s
�;x:A`x:A x62dom(�)

(weak)
�`A:B�`C:s

�;x:C`A:B x62dom(�)
(�)

�`A:s1 �;x:A`B:s2
�`(�x:A:B):s2

(s1 ;s2 )2R
(�)

�;x:A`b:B�`(�x:A:B):s
�`(�x:A:b):(�x:A:B)

(appl)
�`F:(�x:A:B)�`a:A

�`Fa:B[x:=a℄
(onv)

�`A:B�`B 0:sB=� B 0
�`A:B 0
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Di�erenttypeformationonditions
�(�) �`A:s1 �;x:A`B:s2

�`(�x:A:B):s2
(s1 ;s2 )2R

�(2;�)takesareofpolymorphism.�2isweakest
onubesatisfyingthis.
�(2;2)takesareoftypeonstrutors.�!is

weakestonubesatisfyingthis.
�(�;2)takesareoftermdependenttypes.�Pis

weakestonubesatisfyingthis.
�!(�;�)
�2(�;�)(2;�)
�P(�;�)

(�;2)
�!(�;�)

(2;2)
�P2(�;�)(2;�)(�;2)
�!(�;�)(2;�)

(2;2)
�P!(�;�)

(�;2)(2;2)
�C(�;�)(2;�)(�;2)(2;2)

WorkshoponLogi,LanguageandInformation2001
83



SystemsoftheBarendregtCube
SystemRel.systemNames,referenes
�!

� �
simplytyped�-alulus;[16℄,
[3℄(AppendixA),[33℄
(Chapter14)

�2
F

seondordertyped�-
alulus;[28℄,[54℄

�P
aut-QE

[9℄
LF

[30℄
�P2

[44℄
�!

POLYREC[53℄
�!

F!
[28℄

�C
CC

CalulusofConstrutions;
[17℄
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The Barendregt Cube
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LF

� LF (see [30℄) is often desribed as �P of the Barendregt Cube.� [27℄ shows that the use of the �-formation rule (�;2) is very restrited in thepratial use of LF.� This use is in fat based on a parametri onstrut rather than on �-formation.� We will �nd a more preise position of LF on the Cube (between �! and �P ).
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ML

� We only onsider an expliit version of a subset of ML.� In ML, One an de�ne the polymorphi identity by:Id(�:�) = (�x:�:x) : (�! �) (2)� But in ML, it is not possible to make an expliit �-abstration over � : � by:Id = (��: � :�x:�:x) : (��: � :�! �) (3)� The type ��: � :�! � does not belong to the language of ML and hene the�-abstration of equation (3) is not possible in ML.Workshop on Logi, Language and Information 2001 87



ML

� Therefore, we an state that ML does not have a �-formation rule (2; �).� Nevertheless, ML has some parameter mehanism (� parameter of Id)� ML has limited aess to the rule (2; �) enabling equation (2) to be de�ned.� ML's type system is none of those of the eight systems of the Cube.� We plae the type system of ML on our re�ned Cube (between �2 and �!).
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Extending the Cube with parametri onstruts� Parametri onstruts are (b1; : : : ; bn) with b1; : : : ; bn terms of ertain types.� TP ::= V j S j C(TP1; : : :TPn| {z }n�0 ) j TPTP j �V:TP :TP j �V:TP :TPC is a set of onstants, b1; : : : ; bn are alled the parameters of (b1; : : : ; bn).� S allows several kinds of �-onstruts. We also use a set { of (s1; s2) wheres1; s2 2 f�;2g to allow several kinds of parametri onstruts.� (s1; s2) 2 { means that we allow parametri onstruts (b1; : : : ; bn) : A whereb1; : : : ; bn have types B1; : : : ; Bn of sort s1, and A is of type s2.� If both (�; s2) 2 { and (2; s2) 2 { then ombinations of parameters allowed.For example, it is allowed that B1 has type �, whilst B2 has type 2.Workshop on Logi, Language and Information 2001 89



The Cube with parametri onstants� Let S, { � f(�; �); (�;2); (2; �); (2;2)g ontaining (�; �).� �S{ = �S and the two rules (!C-weak) and (!C-app):� ` b : B �;�i ` Bi : si �;� ` A : s�; (�) : A ` b : B (si; s) 2 {;  is �-fresh

�1; (�):A;�2 ` bi:Bi[xj:=bj℄i�1j=1 (i = 1; : : : ; n)�1; (�):A;�2 ` A : s (if n = 0)�1; (�):A;�2 ` (b1; : : : ; bn) : A[xj:=bj℄nj=1

� � x1:B1; : : : ; xn:Bn.�i � x1:B1; : : : ; xi�1:Bi�1Workshop on Logi, Language and Information 2001 90



Properties of the Re�ned Cube� Corretness of types) If � ` A : B then (B � 2 or � ` B : S for some sort S).

� (Subjet Redution SR) If � ` A : B and A!!� A0 then � ` A0 : B� (Strong Normalisation) For all `-legal terms M , we have SN!!�(M). I.e. Mis strongly normalising with respet to !!�.� Other properties suh as Uniqueness of types and typability of subterms hold.� �S{ is the system whih has �-formation rules R and parameter rules P .� Let �S{ parametrially onservative (i.e., (s1; s2) 2 P implies (s1; s2) 2 R).{ The parameter-free system �S is at least as powerful as �S{.{ If � `S{ a : A then f�g `S fag : fAg :Workshop on Logi, Language and Information 2001 91



Example� R = f(�; �)gP 1 = ; P 2 = f(�; �)g P 3 = f(�;2)g P 4 = f(�; �); (�;2)gAll �RP i for 1 � i � 4 with the above spei�ations are all equal in power.� R5 = f(�; �)g P 5 = f(�; �); (�;2)g:�! < �R5P 5 < �P: we an to talk about prediates:� : �;eq(x:�; y:�) : �;refl(x:�) : eq(x; x);symm(x:�; y:�; p:eq(x; y)) : eq(y; x);trans(x:�; y:�; z:�; p:eq(x; y); q:eq(y; z)) : eq(x; z) :

eq not possible in �!.Workshop on Logi, Language and Information 2001 92



The re�ned Barendregt Cube
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LF, ML, Aut-68, and Aut-QE in the re�ned Cube
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LF� [27℄ initially desribed LF as the system �P of the Cube.However, the �-formation rule (�;2) is restrited in most appliations of LF.� [27℄ splits �-formation in two (LF { (�P ) is alled LF�):(�0)�; x:A `M : B � ` �x:A:B : �� ` �0x:A:M : �x:A:B (�0x:A:M)N !�0 M [x:=N ℄

(�P )�; x:A `M : B � ` �x:A:B : 2� ` �Px:A:M : �x:A:B (�Px:A:M)N !�P M [x:=N ℄� If M : � or M : A : � in LF, then the �P -normal form of M ontains no �P ;� If � ` LF M : A, and �;M;A do not ontain a �P , then � ` LF� M : A;� If � ` LF M : A(: �), all in �P -normal form, then � ` LF� M : A(: �).Workshop on Logi, Language and Information 2001 95



LF� Hene: the only need for a type �x:A:B : 2 is to delare a variable in it.� This is only done when the Propositions-As-Types priniple pat is appliedduring the onstrution of the type of the operator Prf as follows:prop:� ` prop: � prop:�; �:prop ` �:2prop:� ` (��:prop:�) : 2 :� In LF, this is the only point where the �-formation rule (�;2) is used.� No �P -abstrations are used. Prf is only used when applied to term p:prop.� Hene, the pratial use of LF would not be restrited if we present Prf in aparametri form, and use (�;2) as a parameter instead of a �-formation rule.� This puts LF in between �! and �P in the Re�ned Cube.Workshop on Logi, Language and Information 2001 96



Logiians versus mathematiians and indution over numbers� Logiian uses ind: Ind as proof term for an appliation of the indution axiom.The type Ind an only be desribed in �R where R = f(�; �); (�;2); (2; �)g:Ind = �p:(N!�):p0!(�n:N :�m:N :pn!Snm!pm)!�n:N :pn (4)� Mathematiian uses ind only with P : N!�, Q : P0 and R :(�n:N :�m:N :Pn!Snm!Pm) to form a term (indPQR):(�n:N :Pn).� The use of the indution axiom by the mathematiian is better desribed bythe parametri sheme (p, q and r are the parameters of the sheme):ind(p:N!�; q:p0; r:(�n:N :�m:N :pn!Snm!pm)) : �n:N :pn (5)� The logiian's type Ind is not needed by the mathematiian and the typesthat our in 5 an all be onstruted in �R with R = f(�; �)(�;2)g.Workshop on Logi, Language and Information 2001 97



Logiians versus mathematiians and indution over numbers

� Mathematiian: only applies the indution axiom and doesn't need to knowthe proof-theoretial bakgrounds.� A logiian develops the indution axiom (or studies its properties).� (2; �) is not needed by the mathematiian. It is needed in logiian's approahin order to form the �-abstration �p:(N ! �): � � � ).� Consequently, the type system that is used to desribe the mathematiian'suse of the indution axiom an be weaker than the one for the logiian.� Nevertheless, the parameter mehanism gives the mathematiian limited (butfor his purposes suÆient) aess to the indution sheme.Workshop on Logi, Language and Information 2001 98



Conlusions� Parameters enable the same expressive power as the high-level ase, whileallowing us to stay at a lower order. E.g. �rst-order with parameters versusseond-order without [43, 42℄.� Desirable properties of the lower order theory (deidability, easiness ofalulations, typability) an be maintained, without losing the exibility ofthe higher-order aspets.� Parameters enable us to �nd an exat position of type systems in the generalisedframework of type systems.� Parameters desribe the di�erene between developers and users of systems.
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