Evolution of types and functions in 20th century

Fairouz Kamareddine
Heriot-Watt University
Joint work with Twan Laan and Rob Nederpelt

2 August 2001

Abstract
We provide a prehistory of type theory up to 1903 and its development
between Russell and Whitehead's Principia Mathematica (1910-1912) and
Church’s simply typed A-calculus of 1940. We also show that the notion of
function adopted in the A-calculus and type theory is not satisfactory.

Workshop on Logic, Language and Information 2001

Summary

e Prehistory of types

e 1902: Russell's letter to Frege about the paradox in Begriffsschrift.

e 1903: Russell gives the first theory of types: the Ramified Type Theory (RTT).
e simple theory of types (STT): Ramsey 1926, Hilbert and Ackermann 1928.

e 1940: Church's own simply typed A\-calculus (known as A\—) is based on STT.

e The unsatisfactory notion of function in Church’s work.

Workshop on Logic, Language and Information 2001

Prehistory of Types (Euclid)

e Euclid's Elements (circa 325 B.C.) begins with:

1. A point is that which has no part;
2. A line is breadthless length.

15. A circle is a plane figure contained by one line such that all the straight
lines falling upon it from one point among those lying within the figure are
equal to one another.

e Although the above seems to merely define points, lines, and circles, it shows
more importantly that Euclid distinguished between them. Euclid always
mentioned to which class (points, lines, etc.) an object belonged.

Workshop on Logic, Language and Information 2001 2

Prehistory of Types (Euclid)

e By distinguishing classes of objects, Euclid prevented undesired situations, like
considering whether two points (instead of two lines) are parallel.

e Undesired results? Euclid himself would probably have said: impossible results.
When considering whether two objects were parallel, intuition implicitly forced
him to think about the type of the objects. As intuition does not support the
notion of parallel points, he did not even try to undertake such a construction.

e In this manner, types have always been present in mathematics, although they

were not noticed explicitly until the late 1800s. If you have studied geometry,
then you have some (implicit) understanding of types.

Workshop on Logic, Language and Information 2001 3

Prehistory of Types (Paradox Threats)

e Starting in the 1800s, mathematical systems became less intuitive, for several
reasons:

— Very complex or abstract systems.
— Formal systems.
— Something with less intuition than a human using the systems: a computer.

e These situations are paradox threats. An example is Frege's Naive Set Theory.
In such cases, there is not enough intuition to activate the (implicit) type
theory to warn against an impossible situation. Reasoning proceeds within
the impossible situation and then obtains a result that may be wrong or
paradoxical.

Workshop on Logic, Language and Information 2001 4

Prehistory of Types (formal systems in 19th century)

In the 19th century, the need for a more precise style in mathematics arose,
because controversial results had appeared in analysis.

e 1821: Many of these controversies were solved by the work of Cauchy. E.g.,
he introduced a precise definition of convergence in his Cours d’Analyse [13].

e 1872: Due to the more exact definition of real numbers given by Dedekind
[19], the rules for reasoning with real numbers became even more precise.

e 1895-1897: Cantor began formalizing set theory [11, 12] and made
contributions to number theory.

Workshop on Logic, Language and Information 2001 5

Prehistory of Types (formal systems in 19th century)

e 1889: Peano formalized arithmetic [48], but did not treat logic or quantification.

e 1879: Frege was not satisfied with the use of natural language in mathematics:

“ ... | found the inadequacy of language to be an obstacle; no matter
how unwieldy the expressions | was ready to accept, | was less and less
able, as the relations became more and more complex, to attain the

precision that my purpose required.”
(Begriffsschrift, Preface)

Frege therefore presented Begriffsschrift [20], the first formalisation of logic
giving logical concepts via symbols rather than natural language.

Workshop on Logic, Language and Information 2001

Prehistory of Types (formal systems in 19th century)

“[Begriffsschrift’s| first purpose is to provide us with the most reliable test
of the validity of a chain of inferences and to point out every presupposition

that tries to sneak in unnoticed, so that its origin can be investigated.”
(Begriffsschrift, Preface)

e 1892-1903 Frege's Grundgesetze der Arithmetik [22, 26], could handle
elementary arithmetic, set theory, logic, and quantification.

Workshop on Logic, Language and Information 2001

Prehistory of Types (Begriffsschrift’s functions)

The introduction of a very general definition of function was the key to the
formalisation of logic. Frege defined what we will call the Abstraction Principle.

Abstraction Principle 1.

“If in an expression, [... | a simple or a compound sign has one or more
occurrences and if we regard that sign as replaceable in all or some of these
occurrences by something else (but everywhere by the same thing), then we
call the part that remains invariant in the expression a function, and the
replaceable part the argument of the function.”

(Begriffsschrift, Section 9)

Workshop on Logic, Language and Information 2001 8

Prehistory of Types (Begriffsschrift’s functions)

e Frege put no restrictions on what could play the role of an argument.

e An argument could be a number (as was the situation in analysis), but also a
proposition, or a function.

e Similarly, the result of applying a function to an argument did not necessarily
have to be a number.

Workshop on Logic, Language and Information 2001 9

Prehistory of Types (Begriffsschrift’s functions)

Functions of more than one argument were constructed by a method that is very
close to the method presented by Schonfinkel [58] in 1924:

Abstraction Principle 2.

“If, given a function, we think of a sign* that was hitherto regarded as not
replaceable as being replaceable at some or all of its occurrences, then by
adopting this conception we obtain a function that has a new argument in
addition to those it had before.”

(Begriffsschrift, Section 9)

IWe can now regard a sign that previously was considered replaceable as replaceable also in those places in which
up to this point it was considered fixed. [footnote by Frege]

Workshop on Logic, Language and Information 2001 10

Prehistory of Types (Begriffsschrift’s functions)

With this definition of function, two of the three possible paradox threats occurred:

1. The generalisation of the concept of function made the system more abstract
and less intuitive. The fact that functions could have different types of
arguments is at the basis of the Russell Paradox;

2. Frege introduced a formal system instead of the informal systems that were
used up till then. Type theory, that would be helpful in distinguishing between
the different types of arguments that a function might take, was left informal.

So, Frege had to proceed with caution. And so he did, at this stage.

Workshop on Logic, Language and Information 2001 11

Prehistory of Types (Begriffsschrift’s functions)

Frege was aware of some typing rule that does not allow to substitute functions
for object variables or objects for function variables:

“if the [...] letter [sign] occurs as a function sign, this circumstance
[should] be taken into account.”

(Begriffsschrift, Section 11)

“ Now just as functions are fundamentally different from objects, so also
functions whose arguments are and must be functions are fundamentally
different from functions whose arguments are objects and cannot be anything
else. | call the latter first-level, the former second-level.”

(Function and Concept, pp. 26—27)

Workshop on Logic, Language and Information 2001 12

Prehistory of Types (Begriffsschrift’s functions)

In Function and Concept he was aware of the fact that making a difference
between first-level and second-level objects is essential to prevent paradoxes:

“The ontological proof of God's existence suffers from the fallacy of treating
existence as a first-level concept.”

(Function and Concept, p. 27, footnote)

The above discussion on functions and arguments show that Frege did indeed
avoid the paradox in his Begriffsschrift.

Workshop on Logic, Language and Information 2001 13

Prehistory of Types (Grundgesetze’s functions)

The Begriffsschrift, however, was only a prelude to Frege's writings.

e In Grundlagen der Arithmetik [21] he argued that mathematics can be seen as
a branch of logic.

e In Grundgesetze der Arithmetik [22, 26] he described the elementary parts of
arithmetics within an extension of the logical framework of Begriffsschrift.

e Frege approached the paradox threats for a second time at the end of Section
2 of his Grundgesetze.

e He did not want to apply a function to itself, but to its course-of-values.

Workshop on Logic, Language and Information 2001 14

Prehistory of Types (Grundgesetze’s functions)
Frege defined “the function ®(x) has the same course-of-values as the function
U(x)" by

“the functions ®(z) and ¥(x) always have the same value for the same
argument.”

(Grundgesetze, p. 7)

e Note that functions ®(x) and ¥(z) may have equal courses-of-values even if
they have different definitions.

e E.g., let ®(z) be x A —x, and ¥(x) be x <+ —z, for all propositions .

Workshop on Logic, Language and Information 2001 15

Prehistory of Types (Grundgesetze’s functions)

Frege denoted the course-of-values of a function ®(x) by é®(e). The definition
of equal courses-of-values could therefore be expressed as

ef(e) = egle) «— Va[f(a) = g(a)]. (1)

In modern terminology, we could say that the functions ®(z) and ¥(x) have the
same course-of-values if they have the same graph.

Workshop on Logic, Language and Information 2001 16

Prehistory of Types (Grundgesetze’s functions)

e The notation c¢®(¢). may be the origin of Russell's notation 2®(x) for the
class of objects that have the property ®.

e According to a paper by Rosser [55], the notation £®(x) has been at the basis
of the current notation \z.P.

e Church is supposed to have written Ax®(x) for the function x — ®(x), writing
the hat in front of the = in order to distinguish this function from the class

TP (x).

Workshop on Logic, Language and Information 2001 17

Prehistory of Types (Grundgesetze’s functions)

e Frege treated courses-of-values as ordinary objects.

e As a consequence, a function that takes objects as arguments could have its
own course-of-values as an argument.

e In modern terminology: a function that takes objects as arguments can have
its own graph as an argument.

Workshop on Logic, Language and Information 2001 18

Prehistory of Types (Grundgesetze’s functions)

e All essential information of a function is contained in its graph.
e So intuitively, a system in which a function can be applied to its own graph
should have similar possibilities as a system in which a function can be applied

to itself.

o Frege excluded the paradox threats from his system by forbidding self-
application,

e but due to his treatment of courses-of-values these threats were able to enter
his system through a back door.

Workshop on Logic, Language and Information 2001 19

Prehistory of Types (Russell’s paradox in Grundgesetze)

e In 1902, Russell wrote a letter to Frege [56], informing him that he had
discovered a paradox in his Begriffsschrift (Begriffsschrift does not suffer from
a paradox).

e Russell gave his well-known argument, defining the propositional function f(x)

by —x(x) (in Russell's words: “to be a predicate that cannot be predicated of
itself”).

e Russell assumed f(f). Then by definition of f, —f(f), a contradiction.
Therefore: —f(f) holds. But then (again by definition of f), f(f) holds.
Russell concluded that both f(f) and —f(f) hold, a contradiction.

Workshop on Logic, Language and Information 2001 20

Prehistory of Types (Russell’s paradox in Grundgesetze)

e Only six days later, Frege answered Russell that Russell’s derivation of the
paradox was incorrect [25]. He explained that the self-application f(f) is not
possible in the Begriffsschrift. f(x) is a function, which requires an object as
an argument, and a function cannot be an object in the Begriffsschrift.

e In the same letter, however, Frege explained that Russell’'s argument could
be amended to a paradox in the system of his Grundgesetze, using the
course-of-values of functions.

e Frege's amendment was shortly explained in that letter, but he added an
appendix of eleven pages to the second volume of his Grundgesetze in which
he provided a very detailed and correct description of the paradox.

Workshop on Logic, Language and Information 2001 21

Prehistory of Types (Russell’s paradox in Grundgesetze)

e Let function f(x) be: =Vy[(ap(a) =x) — p(z)] and write K = £ f(¢).
e Which of f(K) or —=f(K) hold?
e Actually, both f(K) and —f(K) hold.

e By (1), for any function g(z): ég(e) = ef(e) — g(K) = f(K). This implies
FK) — ((eg(e) = K) — g(K)).

e As this holds for any function g(z), we have:
FIK) — Vol(ep(e) = K) — ¢(K) (a)

Workshop on Logic, Language and Information 2001 22

Prehistory of Types (Russell’s paradox in Grundgesetze)

e On the other hand, for any function g,
Vol(ép(e) = K) = o(K)] — ((eg(e) = K) — g(K)).

e Substituting f(z) for g(x) results in:
Vol(ep(e) = K) = o(K)] — ((ef(e) = K) — f(K))

e and as £f(e) = K by definition of K, Vp[(ép(e) = K) — o(K)] — f(K).

e Using the definition of f, we obtain
Vol(ep(e) = K) = o(K)] — —Vop|(ep(e) = K) = ¢(K)] (b)

Workshop on Logic, Language and Information 2001 23

Prehistory of Types (Russell’s paradox in Grundgesetze)

e by (b) and reductio ad absurdum, =Vy[(dp(a) = K) — ¢(K)], or shorthand:
F(K) ()

e Applying (a) results in Vo[(ap(a) = K) — @(K)|, which implies
—~—Vo[(dp(a) = K) — ¢(K)], or shorthand:
~f(K) (d)

e (c) and (d) contradict each other.

Workshop on Logic, Language and Information 2001 24

Prehistory of Types (How wrong was Frege?)

In the history of the Russell Paradox, Frege is often depicted as the pitiful person
whose system was inconsistent. This suggests that Frege's system was the only
one that was inconsistent, and that Frege was very inaccurate in his writings. On
these points, history does Frege an injustice.

In fact, Frege's system was much more accurate than other systems of those days.
Peano’s work, for instance, was /ess precise on several points:

e Peano hardly paid attention to logic especially quantification theory;

e Peano did not make a strict distinction between his symbolism and the objects
underlying this symbolism. Frege was much more accurate on this point (see
Frege's paper Uber Sinn und Bedeutung [23]);

Workshop on Logic, Language and Information 2001 25

Prehistory of Types (How wrong was Frege?)

e Frege made a strict distinction between a proposition (as an object) and the
assertion of a proposition. Frege denoted a proposition, by —A, and its
assertion by = A. Peano did not make this distinction and simply wrote A.

Nevertheless, Peano’s work was very popular, for several reasons:

e Peano had able collaborators, and a better eye for presentation and publicity.

e Peano bought his own press to supervise the printing of his own journal Rivista
di Matematica and Formulaire [49]

Workshop on Logic, Language and Information 2001 26

Prehistory of Types (How wrong was Frege?)

e Peano used a familiar symbolism to the notations were used in those days.

e Many of Peano’s notations, like € for “is an element of”, and D for logical
implication, are used in Principia Mathematica, and are actually still in use.

e Frege’s work did not have these advantages and was hardly read before 1902

e When Peano published his formalisation of mathematics in 1889 [48] he clearly
did not know Frege's Begriffsschrift as he did not mention the work, and was
not aware of Frege's formalisation of quantification theory.

Workshop on Logic, Language and Information 2001 27

Prehistory of Types (How wrong was Frege?)

e Peano considered quantification theory to be “abstruse” in [49]:

“In this respect my conceptual notion of 1879 is superior to the Peano
one. Already, at that time, | specified all the laws necessary for my
designation of generality, so that nothing fundamental remains to be
examined. These laws are few in number, and | do not know why they
should be said to be abstruse. If it is otherwise with the Peano conceptual

notation, then this is due to the unsuitable notation.”
([24], p. 376)

Workshop on Logic, Language and Information 2001

28

Prehistory of Types (How wrong was Frege?)

e In the last paragraph of [24], Frege concluded:

“ ... | observe merely that the Peano notation is unquestionably more
convenient for the typesetter, and in many cases takes up less room
than mine, but that these advantages seem to me, due to the inferior
perspicuity and logical defectiveness, to have been paid for too dearly —
at any rate for the purposes | want to pursue.”

(Ueber die Begriffschrift des Herrn Peano und meine eigene, p. 378)

Workshop on Logic, Language and Information 2001

29

Prehistory of Types (paradox in Peano and Cantor’s systems)

e Frege's system was not the only paradoxical one.

e The Russell Paradox can be derived in Peano’s system as well, by defining the
class K % {2 |z ¢)} and deriving K € K +— K ¢ K.

e In Cantor’s Set Theory one can derive the paradox via the same class (or set,
in Cantor's terminology).

Workshop on Logic, Language and Information 2001 30

Prehistory of Types (paradoxes)

e Paradoxes were already widely known in antiquity.
e The oldest logical paradox: the Liar’s Paradox “This sentence is not true”,
also known as the Paradox of Epimenides. It is referred to in the Bible (Titus

1:12) and is based on the confusion between language and meta-language.

e The Burali-Forti paradox ([10], 1897) is the first of the modern paradoxes. It
is a paradox within Cantor’s theory on ordinal numbers.

e (Cantor’s paradox on the largest cardinal number occurs in the same field. It
discovered by Cantor around 1895, but was not published before 1932.

Workshop on Logic, Language and Information 2001 31

Prehistory of Types (paradoxes)

e Logicians considered these paradoxes to be out of the scope of logic:
The Liar's Paradox can be regarded as a problem of linguistics.
The paradoxes of Cantor and Burali-Forti occurred in what was considered in
those days a highly questionable part of mathematics: Cantor’s Set Theory.

e The Russell Paradox, however, was a paradox that could be formulated in all
the systems that were presented at the end of the 19th century (except for
Frege's Begriffsschrift). It was at the very basics of logic. It could not be

disregarded, and a solution to it had to be found.

e In 1903-1908, Russell suggested the use of types to solve the problem [57].

Workshop on Logic, Language and Information 2001 32

Prehistory of Types (vicious circle principle)

When Russell proved Frege's Grundgesetze to be inconsistent, Frege was not the
only person in trouble. In Russell’s letter to Frege (1902), we read:

“I am on the point of finishing a book on the principles of mathematics”

(Letter to Frege, [56])

Russell had to find a solution to the paradoxes, before finishing his book.

His paper Mathematical logic as based on the theory of types [57] (1908), in
which a first step is made towards the Ramified Theory of Types, started with a
description of the most important contradictions that were known up till then,

including Russell’'s own paradox. He then concluded:

Workshop on Logic, Language and Information 2001 33

Prehistory of Types (vicious circle principle)

“In all the above contradictions there is a common characteristic, which we
may describe as self-reference or reflexiveness. |...] In each contradiction
something is said about all cases of some kind, and from what is said a new
case seems to be generated, which both is and is not of the same kind as
the cases of which all were concerned in what was said.”

(Ibid.)

Russell's plan was, to avoid the paradoxes by avoiding all possible self-references.
He postulated the ‘“vicious circle principle”:

Workshop on Logic, Language and Information 2001 34

Ramified Type Theory

“Whatever involves all of a collection must not be one of the collection.”

(Mathematical logic as based on the theory of types)

e Russell applies this principle very strictly.
e He implemented it using types, in particular the so-called ramified types.

e The type theory of 1908 was elaborated in Chapter Il of the Introduction to
the famous Principia Mathematica [60] (1910-1912).

Workshop on Logic, Language and Information 2001 35

Ramified Type Theory and Principia

e In the Principia, mathematics was founded on logic, as far as possible.

e A very formal and accurate build-up of mathematics, avoiding the logical
paradoxes.

e The logical part of the Principia was based on the works of Frege. This was
acknowledged by Whitehead and Russell in the preface, and can also be seen
throughout the description of Type Theory.

e The notion of function is based on Frege’s Abstraction Principles 1 and 2.

Workshop on Logic, Language and Information 2001 36

Ramified Type Theory and Principia

e The Principia notation & f (x) for a class looks very similar to Frege's ¢ f (&) for
course-of-values.

e An important difference is that Whitehead and Russell treated functions as
first-class citizens. Frege used courses-of-values when speaking about functions.

e In the Principia a direct approach was possible.

e The description of the Ramified Theory of Types (RTT) in the Principia was,
though extensive, still informal.

Workshop on Logic, Language and Information 2001 37

Ramified Type Theory and Principia

e Type Theory had not yet become an independent subject. The theory

“only recommended itself to us in the first instance by its ability to solve
certain contradictions. it has also a certain consonance with
common sense which makes it inherently credible”

(Principia Mathematica, p. 37)

e [Type Theory was not introduced because it was interesting on its own, but
because it had to serve as a tool for logic and mathematics.

e A formalisation of Type Theory, therefore, was not considered in those days.

Workshop on Logic, Language and Information 2001 38

Ramified Type Theory and Principia

e Though the description of the ramified type theory in the Principia was still
informal, it was clearly present throughout the work.

e Types in the Principia have a double hierarchy: (simple) types and orders.

e |t was not mentioned very often, but when necessary, Russell made a remark
on the ramified type theory.

Workshop on Logic, Language and Information 2001 39

Ramified Type Theory and Principia

e There is no definition of “type” in the Principia, only a definition of “being of
the same type":

“Definition of being of the same type. The following is a step-by-step
definition, the definition for higher types presupposing that for lower
types. We say that u and v are of the same type if

1. both are individuals,
2. both are elementary [propositional] functions (in Principia, they only

take elementary propositions as value) taking arguments of the same

type,
3. uis a pf and v is its negation,

Workshop on Logic, Language and Information 2001 40

4. wis & @z Is a pf that has x as a free variable or ¥z, and v is pz V Yz,
where 2 and Yz are elementary pfs,

5. uis (y).o(z,y) forall and v is (2).4(x, z), where o(Z,9), Y(Z,y) are
of the same type,

0. both are elementary propositions,

7. w is a proposition and v is ~unegation or

8. uis (x).ox and v is (y).1®by, where & and 1 are of the same type.”

(Principia Mathematica, x9-131, p. 133)

e [here are some omissions in Russell and Whitehead’'s definition.

Workshop on Logic, Language and Information 2001

41

Ramsey’s Simple Types

e The ideas behind simple types was already explained by Frege (see earlier
quotes from Function and Concept).

e Ramsey’s Simple types:

1. 0 is a simple type, the type of individuals.

2. If tq,...,t, are simple types, then also (¢i,...,t,) is a simple type.? n =0
is allowed: then we obtain the simple type () of propositions.

3. All simple types can be constructed using the rules 1 and 2.

2(t1, ..., tn) is the type of pfs that should take n arguments, the ith argument having type ¢;.

Workshop on Logic, Language and Information 2001 42

Ramsey’s Simple Types

e The propositional function R(x) should have type (0), as it takes one individual
as argument.

e The proposition S(a) has type ().

e We conclude that in z(R(x), S(a)), we must substitute pfs of type ((0), ()) for
z. Therefore, z(R(x),S(a)) has type (((0),())).

Workshop on Logic, Language and Information 2001 43

Whitehead and Russell’s Ramified Types

e With simple types, the type of a pf only depends on the types of the arguments
that it can take.

e In the Principia, a second hierarchy is introduced by regarding also the types
of the variables that are bound by a quantifier (see Principia, pp. 51-55).

e Whitehead and Russell consider, for instance, the propositions R(a) and
Vz:()|[z() V —z()] to be of a different level.

e The first is an atomic proposition, while the latter is based on the pf z()V —z().

Workshop on Logic, Language and Information 2001 44

Whitehead and Russell’s Ramified Types

e The pf z()V—z() involves an arbitrary proposition z, therefore Vz:()[z()V —z()]
quantifies over all propositions z.

e According to the vicious circle principle, Vz:()[z() V —z()] cannot belong to
this collection of propositions.

e This problem is solved by dividing types into orders which are natural numbers.
e Basic propositions are of order 0. In Vz:()[z() V —z()] we must mention the

order of the propositions over which is quantified. The pf Vz:()"[z() V —z()]
quantifies over all propositions of order n, and has order n + 1.

Workshop on Logic, Language and Information 2001 45

Whitehead and Russell’s Ramified Types

1. 0% is a ramified type of order 0;

2. If 7Y, ..., t% are ramified types, and a € N, a > max(ay,...,a,), then
(t5,...,t%)% is a ramified type of order a (if n = 0 then take a > 0);

3. All ramified types can be constructed using the rules 1 and 2.

5 2\ /
0% (0°)*; <(O°)1, (00)4) . and (OO, ()2, (OO, (O°)1>) are all ramified types.
7

2
<O°, (OO, (O°)2>) is not a ramified type.

Workshop on Logic, Language and Information 2001 46

Predicative Types

e In the type (00)1, all orders are “minimal”, i.e., not higher than strictly
necessary. Unlike (0°)° where orders are not minimal.

e Types in which all orders are minimal are called predicative and play a special
role in the Ramified Theory of Types.

1. 0° is a predicative type;

2. If t1%1, ... ¢, are predicative types, and ¢ = 1 + max(ay,...,a,) (take
a=0if n=0), then (t{*,...,t%)" is a predicative type;

3. All predicative types can be constructed using the rules 1 and 2 above.

Workshop on Logic, Language and Information 2001 47

Problems of Ramified Type Theory

e The main part of the Principia is devoted to the development of logic and
mathematics using the legal pfs of the ramified type theory.

e ramification/division of simple types into orders make RTT not easy to use.

o (Equality) x =1 y < Vz[z(x) < z(y)]..

In order to express this general notion in RTT, we have to incorporate all pfs
Vz : (0°)"[z(x) «++ z(y)] for n > 1, and this cannot be expressed in one pf.

e Not possible to give a constructive proof of the theorem of the least upper
bound within a ramified type theory.

Workshop on Logic, Language and Information 2001 48

Axiom of Reducibility

e |t is not possible in RTT to give a definition of an object that refers to the class
to which this object belongs (because of the Vicious Circle Principle). Such a
definition is called an impredicative definition.

e An object defined by an impredicative definition is of a higher order than the
order of the elements of the class to which this object should belong. This
means that the defined object has an impredicative type.

e But impredicativity is not allowed by the vicious circle principle.

e Russell and Whitehead tried to solve these problems with the so-called axiom
of reducibility.

Workshop on Logic, Language and Information 2001 49

Axiom of Reducibility

e (Axiom of Reducibility) For each formula f, there is a formula g with a
predicative type such that f and g are (logically) equivalent.

e The validity of the Axiom of Reducibility has been questioned from the moment
it was introduced.

e In the 2nd edition of the Principia, Whitehead and Russell admit:

“This axiom has a purely pragmatic justification: it leads to the desired
results, and to no others. But clearly it is not the sort of axiom with
which we can rest content.”

(Principia Mathematica, p. xiv)

Workshop on Logic, Language and Information 2001 50

Axiom of Reducibility

e Though Weyl [59] made an effort to develop analysis within the Ramified
Theory of Types (without the Axiom of Reducibility),

e and various parts of mathematics can be developed within RTT and without
the Axiom,

e the general attitude towards RTT (without the axiom) was that the system was
too restrictive, and that a better solution had to be found.

Workshop on Logic, Language and Information 2001 51

Deramification

e Ramsey considers it essential to divide the paradoxes into two parts:

e One group of paradoxes is removed

“by pointing out that a propositional function cannot significantly take
itself as argument, and by dividing functions and classes into a hierarchy

of types according to their possible arguments.”
(The Foundations of Mathematics, p. 356)

This means that a class can never be a member of itself. The paradoxes solved
by introducing the hierarchy of types (but not orders), like the Russell paradox,
and the Burali-Forti paradox, are logical or syntactical paradoxes;

Workshop on Logic, Language and Information 2001 52

Deramification

e The second group of paradoxes is excluded by the hierarchy of orders. These
paradoxes (like the Liar's paradox, and the Richard Paradox) are based on the
confusion of language and meta-language. These paradoxes are, therefore,
not of a purely mathematical or logical nature. When a proper distinction
between object language and meta-language is made, these so-called semantical
paradoxes disappear immediately.

e Ramsey agrees with the part of the theory that eliminates the syntactic
paradoxes. l.e., RTT without the orders of the types.

e The second part, the hierarchy of orders, does not gain Ramsey’s support.

Workshop on Logic, Language and Information 2001 53

Deramification

e By accepting the hierarchy in its full extent one either has to accept the Axiom
of Reducibility or reject ordinary real analysis.

e Ramsey is supported in his view by Hilbert and Ackermann [32].

e They all suggest a deramification of the theory, i.e. leaving out the orders of
the types.

e \When making a proper distinction between language and meta-language, the
deramification will not lead to a re-introduction of the (semantic) paradoxes.

Workshop on Logic, Language and Information 2001 54

Deramification

e Deramification and the Axiom of Reducibility are both violations of the Vicious
Circle Principle. Godel [29] fills the gap why they can be harmlessly made

“it seems that the vicious circle principle [... | applies only if the entities
involved are constructed by ourselves. In this case there must clearly
exist a definition (namely the description of the construction) which does
not refer to a totality to which the object defined belongs, because the
construction of a thing can certainly not be based on a totality of things
to which the thing to be constructed itself belongs. If, however, it is a
question of objects that exist independently of our constructions, there
is nothing in the least absurd in the existence of totalities containing
members, which can be described only by reference to this totality.”
(Russell’s mathematical logic)

Workshop on Logic, Language and Information 2001 55

Deramification

e This turns the Vicious Circle Principle into a philosophical principle that will
be easily accepted by intuitionists but that will be rejected, at least in its full
strength, by mathematicians with a more platonic point of view.

e Godel is supported in his ideas by Quine [50], sections 34 and 35.

e Quine's criticism on impredicative definitions (for instance, the definition of
the least upper bound of a nonempty subset of the real numbers with an upper
bound) is not on the definition of a special symbol, but rather on the very
assumption of the existence of such an object at all.

Workshop on Logic, Language and Information 2001 56

Deramification

e Quine states that even for Poincaré, who was an opponent of impredicative
definitions and deramification, one of the doctrines of classes is that they are
there “from the beginning”. So, even for Poincaré there should be no evident

fallacy in impredicative definitions.

e The deramification has played an important role in the development of type
theory. In 1932 and 1933, Church presented his (untyped) A-calculus [14, 15].
In 1940 he combined this theory with a deramified version of Russell’s theory
of types to the system that is known as the simply typed A-calculus

Workshop on Logic, Language and Information 2001 57

The Simple Theory of Types

e Ramsey [51], and Hilbert and Ackermann [32], simplified the Ramified Theory
of Types RTT by removing the orders. The result is known as the Simple
Theory of Types (sTT).

e Nowadays, STT is known via Church's formalisation in A-calculus. However,
STT already existed (1926) before \-calculus did (1932), and is therefore not
inextricably bound up with A-calculus.

e How to obtain sTT from RTT? Just leave out all the orders and the references
to orders (including the notions of predicative and impredicative types).

Workshop on Logic, Language and Information 2001 58

Church’s Simply Typed A-calculus A—

e Types and terms in the original A— are a bit different from those of [4].

e The types of A— are defined as follows:
— ¢ Individuals and o propositions are types;
— If o and (3 are types, then so is aa — 5.

e The terms of A— are the following:

— -, A, ¥, for each type «, and 1, for each type «, are terms;
— A variable is a term;

— If A, B are terms, then so is AB;

— If Ais a term, and x a variable, then \z:«v. A is a term.

Workshop on Logic, Language and Information 2001

59

Typing rules in Church’s Simply Typed A-calculus A—

o ['F—:0— 0;
I'EA:0— 0— o0;
'V, :(a—0)—o;

I'Fay: (a—0) = a;
e I'Fzx:aifriael];
o IfI"x:atA: B then'F (Ax:a.A) : a — S;

e IfTFA:a—fand'FB:«athen'-(AB): 5.

Workshop on Logic, Language and Information 2001 60

Comparing A— with STT and RTT

e Apart from the orders, RTT is a subsystem of A\—.

e The rules of RTT, and the method of deriving the types of pfs have a bottom-up
character. one can only introduce a variable of a certain type in a context I,
if there is a pf that has that type in I'. In A—, one can introduce variables of
any type without wondering whether such a type is inhabited or not.

e Church's A— is more general than RTT in the sense that Church does not
only describe (typable) propositional functions. In A—, also functions of type
7 — 1 (where ¢ is the type of individuals) can be described, and functions that
take such functions as arguments, etc..

Workshop on Logic, Language and Information 2001 61

Where to find above details

e Details concerning the abve slides can be downloaded from

http://www.cee.hw.ac.uk/ fairouz/talks/wollic2001.ps

e See also

— Types in Logic and Mathematics before 1940 by
Kamareddine, F. and Laan, L. and Nederpelt, R. P. 2000. and

— The Evolution of Type Theory in Logic and Mathematics by Twan Laan,

PhD thesis 1997.

Workshop on Logic, Language and Information 2001

62

Item Notation/Lambda Calculus a la de Bruijn

e For those used to classical notation, Z translates to item notation:

I(z) =2, I(x.B)=[z]Z(B), ZI(AB) = (Z(B))I(A)

e For example, Z((Ax.(Ay.zy))z) = (2)|z]ly](y)x. The items are (z), x|, |y]
and (y).

e The applicator wagon (z) and abstractor wagon |x] occur NEXT to each other.

e In classical notation the 3 rule is (\7.A)5 —3 A|x := B]. In item notation,

the rule is:
A —>5 [J? = B]A

Workshop on Logic, Language and Information 2001 63

Redexes in Item Notation

Classical Notation ltem Notation
(M- (Ay-Azzd)c)b)a (a) (D)] (c)]yl[z](d)z
¥ \¥e
(Ay-Az-zd)c)a (a)(c)ly]|z](d)z
¥ ¥
(A..zd)a (a)|z](d)z
¥ \¥e
ad (d)a

Workshop on Logic, Language and Information 2001

64

Segments, Partners, Bachelors

e The "bracketing structure” of the classical notation ((\..(A,.\.. — —)c)b)a),
is ‘11 {2 {3 }2 }1 }3', where ‘{;" and ‘};" match.

e In item notation, (a) (¢)|y][z](d) has the simpler bracketing structure

T

e An applicator (a) and an abstractor |z] are partners when they match like ‘{’
and ‘}'. Non-partnered items are bachelors. A segment s is well balanced
when it contains only partnered items.

e Example: Let 5 = (a) (o)lyllz](d). Then: The items (a), (b), [x],
(¢), ly], and [z] are partnered. The item (d) is a bachelor. The segment
(a) (e)lyl|z] is well balanced.

Workshop on Logic, Language and Information 2001 65

More on Segments, Partners, and Bachelors

Consider some term sz. Some facts:

e The main items in 5 are those at top level, not within some applicator (a).

e Each main bachelor abstractor [x]| precedes each main bachelor applicator (a).
e Removing all main bachelor items from s yields a well balanced segment.

e Removing all main partnered items from s vyields a segment

(1] ... [vn](a1) ... (a,,) consisting of all main bachelor abstractors followed
by all main bachelor applicators.

e If 5 is of the form 57(b)s3|v|s3 where [v] and (b) are partnered, then 55 must
be well balanced.

Workshop on Logic, Language and Information 2001 66

Even More on Segments, Partners, and Bachelors

Each non-empty segment s has a unique partitioning into sub-segments
S = 5051 -5, such that

e For even 7, the segment s; is well balanced. For odd ¢, the segment s; is a
bachelor segment, i.e., it contains only bachelor main items.

e All well balanced segments after the first and all bachelor segments are
non-empty.

o If 5, = |x1] - |xm] (only abstractor main items) and 5; = (a1)--- (ap) (only
applicator main items), then i < j, i.e., §; precedes 55 In's.

Workshop on Logic, Language and Information 2001 67

Example
s = [z]ly](a)[2][z'](b) (e), has the following partitioning:

e well-balanced segment 55 = ()

e bachelor segment 57 = [z][y],

e well-balanced segment 53 = (a)|z],

e bachelor segment s3 = [2'|(D),

e well-balanced segment s; = ,

e bachelor segment 55 = (e).

Workshop on Logic, Language and Information 2001

68

More on Item Notation

e Above discussion and further details of item notation can be found in [35, 36].

e |tem notation helped greatly in the study of a one-sorted style of
explicit substitutions, the As-style which is related to Ao, but has certain
simplifications [37, 38].

Workshop on Logic, Language and Information 2001 69

Canonical Forms

is equivalent to

and also

e Nice canonical forms look like:

ltem notation helps in finding nice canonical forms. The term

bachelor ()s, B; in CF

end var

bachelor [|s | ()[]-pairs, A; in CF

(By) - .- (Bp)

Workshop on Logic, Language and Information 2001

70

e In classical notation:

Axy o A (A (Ay, - (

Workshop on Logic, Language and Information 2001

xB),--

. Bl)

71

Obtaining Canonical Forms

The results of going to normal form for the indicated reduction rules, in the order
shown:

0: ()|]-pairs mixed with bach. [|s | bach. ()s end var
| Al A (B)(By)- - |

v: bach. | |s ()] |-pairs mixed with bach. ()s end var
1][zo] -~ | (By)(A1)[z](Bo) -- z

6, v: | bach. [|s ()] |-pairs bach. ()s end var
ilos]- | (Al (A2)p2] . (Aw)lym] | (B1)(By) ... | =

v, 0: | bach. []s ()] |-pairs bach. ()s end var
21][2s] (A1) [w1)(A2) (2] - - - (Am)[Ym] | (B1)(B2)... |

Workshop on Logic, Language and Information 2001 72

More on Canonical Forms

e Both O(v(A)) and y(0#(A)) are in canonical form and we have that 6(v(A))
v(0(A)) where —, is the rule

(A1)[y1](A2)|y2]| B —p (A2)|y2](A1)[y1] B if y1 ¢ FV(As)

e For a term A, we define: [A] ={B |0(y(A)) =, 0(v(B))}.

e When B € |A], we write that B ~.qu; A.

Workshop on Logic, Language and Information 2001

p

73

e One-step class-reduction ~3 is the least compatible relation such that:

A~z B iff JA'€[A].3B' € [B]. A" —»3 B’

o Classes (|A]) and class reduction (~»3) nicely preserve various strong
normalization properties.

e Define A~1"l Biff 34’ € [A1.3B € [B].3E' € [E]. A' - B,

Workshop on Logic, Language and Information 2001 74

Theorem 1. /f A ~.y; C and A M(BE)M B then

(3D, E)[B Requi D, E' ~equi E, and C =1 D],

%equi %equi
E'|x
SECA I

Workshop on Logic, Language and Information 2001

75

A Few Uses of Generalised Reduction and Term Reshuffling

e [52] uses term reshuffling and generalized reduction in analyzing perpetual
reduction strategies.

e Term reshuffling is used in [41], [39] in analyzing typability problems.

e [46, 18, 40] use generalised reduction and/or term reshuffling in relating SN to
WN.

e [2] uses a form of term-reshuffling in obtaining a calculus that corresponds to
lazy functional evaluation.

e [35, 8, 7] showed how generalized reduction and term reshuffling could reduce
space/time needs.

e [34] shows various strong properties of generalised reduction.

Workshop on Logic, Language and Information 2001 76

The Low Level approach of functions

e Historically, functions have long been treated as a kind of meta-objects.

e Function values have always been important, but abstract functions have not
been recognised in their own right until the third of the 20th century.

e In the low level approach or operational view on functions, there are no
functions as such, but only function values.

e E.g., the sine-function, is always expressed together with a value: sin(m),
sin(z) and properties like: sin(2x) = 2sin(z) cos(x).

e It has long been usual to call f(z)—and not f—the function and this is still
the case in many introductory mathematics courses.

Workshop on Logic, Language and Information 2001 77

The revolution of treating functions as first class citizens

e In the nowadays accepted view on functions, they are ‘first class citizens'.
e Abstraction and application form the basis of the A-calculus and type theory.
e This is rigid and does not represent the development of logic in 20th century.

e Frege and Russell’'s conceptions of functional abstraction, instantiation and
application do not fit well with the A-calculus approach.

e In Principia Mathematica [60]: If, for some a, there is a proposition ¢a, then
there is a function ¢, and vice versa.

e The function ¢ is not a separate entity but always has an argument.

Workshop on Logic, Language and Information 2001 78

A-calculus does not fully represent functionalisation

1. Abstraction from a subexpression 2+ 3 +— = + 3
2. Function construction £ +3 — A.x + 3
3. Application construction (Az.(z + 3))2

4. Concretisation to a subexpression (Az.(x +3))2 > 243

e Cannot identify the original term from which a function has been abstracted.

let add, = (Az.xz + 2) in add,(z) + addy(y)

e cannot abstract only half way: = + 3 is not a function, Ax.x + 3 is.

e cannot apply « + 3 to an argument: (x + 3)2 does not evaluate to 2+3.

Workshop on Logic, Language and Information 2001

79

Parameters: What and Why

we speak about functions with parameters when referring to functions with
variable values in the low-level approach. The = in f(z) is a parameter.

Parameters enable the same expressive power as the high-level case, while
allowing us to stay at a lower order. E.g. first-order with parameters versus
second-order without [43].

Desirable properties of the lower order theory (decidability, easiness of

calculations, typability) can be maintained, without losing the flexibility of
the higher-order aspects.

This low-level approach is still worthwile for many exact disciplines. In fact,
both in logic and in computer science it has certainly not been wiped out, and
for good reasons.

Workshop on Logic, Language and Information 2001 80

Automath

e The first tool for mechanical representation and
verification of mathematical proofs, AUTOMATH,
has a parameter mechanism.

e The representation of a mathematical text in
AUTOMATH consists of a finite list of /ines where
every line has the following format:

ry: Ay, .., xn Ay g(ay, ..o x,) =t T

Here g is a new name, an abbreviation for the
expression t of type 1" and x1,...,x, are the
parameters of g, with respective types A1,..., A,.

e Each line introduces a new definition which is
inherently parametrised by the variables occurring
In the context needed for it.

e Developments of ordinary mathematical theory
in AUTOMATH [6] revealed that this combined
definition and parameter mechanism is vital
for keeping proofs manageable and sufficiently
readable for humans.

Workshop on Logic, Language and Information 2001 81

The Barendregt Cube
® \le =) 7 S 7 \le\wlw _ \C\“\le.\wlw 7 H:\“\le.\wlw

e Vs a set of variables and S = {x, O}.

(axiom) (O Fx: 0O
I'FA:s
(start) FoAFs A4 x & poMm (I)
I'A:B T'H(C:s
(weak) T 2 0F A B x & boMm (T)
I'-A:s1 TI',z:AF B : s9
IT R
(1) I wAD) s 05 E€
() De:AFb: B I'F (Ilz:A.B) : s
' (Ax:Ab) : (IIx:A.B)
(app) '-F:(Ilx:AB) T'Fa:A
PP T - Fa: Blzi=a]
I'A:B TrB':s B=3B
(conv)

'-A:B

Workshop on Logic, Language and Information 2001 82

Different type formation conditions

(11) I'FA:s1 I',z:AF B: sy
' (Ilx:A.B) : s9

(s1,82) € Nw_
e ([,x) takes care of polymorphism. A2 is weakest
on cube satisfying this.

e (00,00) takes care of type constructors. Aw is
weakest on cube satisfying this.

e (x, [J) takes care of term dependent types. AP is
weakest on cube satisfying this.

A= | (x, %)

A2 (x,%) | (O, *)

AP (, %) (x,0)

Aw (, %) (O, 0O)
AP2 | (k%) | (O,%) | (%,0)

Aw | (k) | (8, %) (0,0)
APw | (x, %) (x,0) | (O,0)
AC (x,%) | (O,%) | (%,0) | (O,0)

Workshop on Logic, Language and Information 2001 83

Systems of the Barendregt Cube

System | Rel. system | Names, references

A—> AT simply typed A-calculus; [16],
[3] (Appendix A), [33]
(Chapter 14)

A2 F second order typed A-
calculus; [28], [54]

AP AUT-QE 9]

LF 30

AP2 44

AW POLYREC 53

AW Fw 28

AC CC Calculus of Constructions;
17

Workshop on Logic, Language and Information 2001 84

The Barendregt Cube

AW

A2

A

P

P

2

APw

/

AP

Workshop on Logic, Language and Information 2001

/

1, %

)ER

*x. [

)ER

85

LF

e LF (see [30]) is often described as AP of the Barendregt Cube.

e [27] shows that the use of the II-formation rule (x, 0) is very restricted in the
practical use of LF.

e This use is in fact based on a parametric construct rather than on II-formation.

e We will find a more precise position of LF on the Cube (between A\— and A\P).

Workshop on Logic, Language and Information 2001 86

ML

e \We only consider an explicit version of a subset of ML.
e In ML, One can define the polymorphic identity by:

Id(a:x) = (A\z:a.x) @ (@ — «) (2)

e But in ML, it is not possible to make an explicit A-abstraction over « : * by:

Id = (Aa: x Ax:a.z) : (Ila: * .a — «a) (3)

e The type Ila: x.c« — o does not belong to the language of ML and hence the
A-abstraction of equation (3) is not possible in ML.

Workshop on Logic, Language and Information 2001 87

ML

e Therefore, we can state that ML does not have a II-formation rule (O, x).

e Nevertheless, ML has some parameter mechanism (a parameter of Id)

e ML has limited access to the rule (O, %) enabling equation (2) to be defined.
e ML's type system is none of those of the eight systems of the Cube.

e We place the type system of ML on our refined Cube (between A2 and \w).

Workshop on Logic, Language and Information 2001 88

Extending the Cube with parametric constructs

e Parametric constructs are ¢(by, ..., b,) with by,..., b, terms of certain types.
[Tp = V ‘ S ‘ C(Tpl, .. TPE> ‘ TPTP |)\VZTP.TP ‘ HV:TP-TP
nEO
C is a set of constants, by, ..., b, are called the parameters of ¢(by,...,b,).

e S allows several kinds of II-constructs. We also use a set 9 of (s1,s2) where
$1,82 € {*,0} to allow several kinds of parametric constructs.

® (s1,52) € § means that we allow parametric constructs ¢(by,...,b,) : A where
bi,...,b, have types By, ..., B, of sort s;, and A is of type ss.

o If both (%,s2) € § and (O, s3) € § then combinations of parameters allowed.
For example, it is allowed that B; has type *, whilst By has type O.

Workshop on Logic, Language and Information 2001 89

The Cube with parametric constants
o Let 6' ﬂ C {(*7 *)7 (*7 D)7 (D7 *)7 (D7 D)} Containing (*7 *)
— —
e \G9 = AG and the two rules (C-weak) and (C-app):

I'e(A):AFb: B

(si,s) € 9, cis I'-fresh

Fl, C(A)ZA, FQ - bZBZ[xJ:b]];;ll (Z —]., e o ,n)
Fl, C(A)ZA, FQ - A:s (If n — O)
Fl, C(A)ZA, FQ - C(bl, e oey bn) . A[xj::bj];"zl

A=x1:B1,...,x,:B,.
A,,; = ZBliBl, c. ,xi_lzBi_l

Workshop on Logic, Language and Information 2001 90

Properties of the Refined Cube
e Correctness of types) If ' A : Bthen (B=0or ' B : S for some sort .5).

e (Subject Reduction SR) f ' - A: Band A —3 A" then' - A" : B

e (Strong Normalisation) For all F-legal terms M, we have SN_, ;(M). l.e. M
iIs strongly normalising with respect to —g.

e Other properties such as Uniqueness of types and typability of subterms hold.
e \G&Y is the system which has II-formation rules R and parameter rules P.

o Let A& parametrically conservative (i.e., (s1,82) € P implies (s1,52) € R).

— The parameter-free system A\S is at least as powerful as A\&¥Y.
— Ifl“l—gﬂa:Athen F} -5 {CL} : {A}

Workshop on Logic, Language and Information 2001 91

Example

 R={(x,%)}
=0 Py={(x%} Ps={*0)} Pi={(*),(x0)}

All \RP; for 1 <1 <4 with the above specifications are all equal in power.

o R; = {(*7*)} Ps = {(*7 *)7 (*7 D)}

A— < AR5Ps5 < AP: we can to talk about predicates:

symm(x:cv, y:cr, pieq(x Y)
trans(x:a, y:a, z:a, p:eq(x,y), q:eq(y, z)

eq not possible in A—.

Workshop on Logic, Language and Information 2001

The refined Barendregt Cube

Workshop on Logic, Language and Information 2001

A2

AP2

APw

93

LF, ML, AuT-68, and AUT-QE in the refined Cube

A2

ML

AP2

E

APw

LF

Workshop on Logic, Language and Information 2001

94

LF
e [27] initially described LF as the system AP of the Cube.

However, the II-formation rule (x, O) is restricted in most applications of LF.
e [27] splits A-formation in two (LF — (Ap) is called LF™):

I'Ne:AFM:B T FIlx:A.B: %

(Ao) T \z:AM : IIz:A.B

(Aoz:AM)N — 35, M|z:=N|

I'N'e:AF-M:B TI'tFIlz:AB:O
' pz:A.M : 1lz:A.B

()\p) ()\pJZAM)N —7Bp M[x::N]

o If M :xor M:A:xinlLF, then the 8p-normal form of M contains no Ap;
o IfI'HM: A, and I', M, A do not contain a Ap, then '+~ M : A;
o If " M: A(: %), all in Bp-normal form, then I' - - M : A(: %).

Workshop on Logic, Language and Information 2001 95

LF

Hence: the only need for a type Ilx:A.B : O is to declare a variable in it.

This is only done when the Propositions-As-Types principle PAT is applied
during the construction of the type of the operator Prf as follows:

prop:x - prop: ¥ prop:x, a:prop - x:0

prop:* = (Ila:prop.x*) : O
In LF, this is the only point where the II-formation rule (x,0) is used.

No Ap-abstractions are used. Prf is only used when applied to term p:prop.

Hence, the practical use of LF would not be restricted if we present Prf in a
parametric form, and use (x,) as a parameter instead of a II-formation rule.

This puts LF in between A— and AP in the Refined Cube.

Workshop on Logic, Language and Information 2001 96

Logicians versus mathematicians and induction over numbers

e |ogician uses ind: Ind as proof term for an application of the induction axiom.
The type Ind can only be described in AR where R = {(x, %), (x,0), (0, %) }:

Ind = [Ip:(N—*).p0— (IIn:N.IIm:N.pn— Snm—pm)—IIn:N.pn (4)

e Mathematician uses ind only with P : N—x, ¢ : PO and R
(In:N.IIm:N.Pn—Snm—Pm) to form a term (indPQR):(IIn:N.Pn).

e The use of the induction axiom by the mathematician is better described by
the parametric scheme (p, ¢ and r are the parameters of the scheme):

ind(p:N—x, ¢:p0, r:(IIn:N.IIm:N.pn— Snm—pm)) : IIn:N.pn (5)

e The logician’s type Ind is not needed by the mathematician and the types
that occur in 5 can all be constructed in AR with R = {(x,x)(x, 0)}.

Workshop on Logic, Language and Information 2001 97

Logicians versus mathematicians and induction over numbers

e Mathematician: only applies the induction axiom and doesn’'t need to know
the proof-theoretical backgrounds.

e A logician develops the induction axiom (or studies its properties).

e (O, %) is not needed by the mathematician. It is needed in logician’s approach
in order to form the Il-abstraction IIp:(N — %).---).

e Consequently, the type system that is used to describe the mathematician’s
use of the induction axiom can be weaker than the one for the logician.

e Nevertheless, the parameter mechanism gives the mathematician limited (but
for his purposes sufficient) access to the induction scheme.

Workshop on Logic, Language and Information 2001 98

Conclusions
e Parameters enable the same expressive power as the high-level case, while
allowing us to stay at a lower order. E.g. first-order with parameters versus
second-order without [43, 42].
e Desirable properties of the lower order theory (decidability, easiness of
calculations, typability) can be maintained, without losing the flexibility of

the higher-order aspects.

e Parameters enable us to find an exact position of type systems in the generalised
framework of type systems.

e Parameters describe the difference between developers and users of systems.

Workshop on Logic, Language and Information 2001 99

References

[1] S. Abramsky, Dov M. Gabbay, and T.S.E. Maibaum, editors. Handbook
of Logic in Computer Science, Volume 2: Background: Computational
Structures. Oxford University Press, 1992.

[2] Zena M. Ariola, Matthias Felleisen, John Maraist, Martin Odersky, and Philip
Wadler. The call-by-need lambda calculus. In Conf. Rec. 22nd Ann. ACM
Symp. Princ. of Prog. Langs., pages 233-246, 1995.

[3] H.P. Barendregt. The Lambda Calculus: its Syntax and Semantics.
Studies in Logic and the Foundations of Mathematics 103. North-Holland,
Amsterdam, revised edition, 1984.

Workshop on Logic, Language and Information 2001 100

[4] H.P. Barendregt. Lambda calculi with types. In [1], pages 117-309. Oxford
University Press, 1992.

[5] P. Benacerraf and H. Putnam, editors. Philosophy of Mathematics.
Cambridge University Press, second edition, 1983.

[6] L.S. van Benthem Jutting. Checking Landau’s “Grundlagen” in the
Automath system. PhD thesis, Eindhoven University of Technology, 1977.
Published as Mathematical Centre Tracts nr. 83 (Amsterdam, Mathematisch
Centrum, 1979).

[7] R. Bloo, F. Kamareddine, and R. P. Nederpelt. The Barendregt Cube with
Definitions and Generalised Reduction. Information and Computation, 126
(2):123-143, 1996.

Workshop on Logic, Language and Information 2001 101

[8] Roel Bloo, Fairouz Kamareddine, and Rob Nederpelt. The Barendregt cube
with definitions and generalised reduction. Inform. & Comput., 126(2):123-
143, May 1996.

[9] N.G. de Bruijn. The mathematical language AUTOMATH, its usage and
some of its extensions. In M. Laudet, D. Lacombe, and M. Schuetzenberger,
editors, Symposium on Automatic Demonstration, pages 29-61, IRIA,
Versailles, 1968. Springer Verlag, Berlin, 1970. Lecture Notes in Mathematics
125; also in [47], pages 73-100.

[10] C. Burali-Forti. Una questione sui numeri transfiniti. Rendiconti del Circolo
Matematico di Palermo, 11:154-164, 1897. English translation in [31], pages
104-112.

[11] G. Cantor. Beitrage zur Begriindung der transfiniten Mengenlehre (Erster

Workshop on Logic, Language and Information 2001 102

Artikel). Mathematische Annalen, 46:481-512, 1895.

[12] G. Cantor. Beitrage zur Begriindung der transfiniten Mengenlehre (Zweiter
Artikel). Mathematische Annalen, 49:207-246, 1897.

[13] A.-L. Cauchy. Cours d’Analyse de I'Ecole Royale Polytechnique. Debure,
Paris, 1821. Also as (Euvres Complétes (2), volume Ill, Gauthier-Villars,
Paris, 1897.

[14] A. Church. A set of postulates for the foundation of logic (1). Annals of
Mathematics, 33:346—366, 1932.

[15] A. Church. A set of postulates for the foundation of logic (2). Annals of
Mathematics, 34:839-864, 1933.

Workshop on Logic, Language and Information 2001 103

[16] A. Church. A formulation of the simple theory of types. The Journal of
Symbolic Logic, 5:56-68, 1940.

[17] T. Coquand and G. Huet. The calculus of constructions. Information and
Computation, 76:95-120, 1988.

[18] Philippe de Groote. The conservation theorem revisited. In Proc. Int’l Conf.
Typed Lambda Calculi and Applications, pages 163-178. Springer-Verlag,
1993.

[19] R. Dedekind. Stetigkeit und irrationale Zahlen. Vieweg & Sohn,
Braunschweig, 1872.

[20] G. Frege. Begriffsschrift, eine der arithmetischen nachgebildete Formel-
sprache des reinen Denkens. Nebert, Halle, 1879. Also in [31], pages
1-82.

Workshop on Logic, Language and Information 2001 104

[21] G. Frege. Grundlagen der Arithmetik, eine logisch-mathematische
Untersuchung uber den Begriff der Zahl. , Breslau, 1884.

[22] G. Frege. Grundgesetze der Arithmetik, begriffschriftlich abgeleitet, volume I.
Pohle, Jena, 1892. Reprinted 1962 (Olms, Hildesheim).

[23] G. Frege. Uber Sinn und Bedeutung. Zeitschrift fiir Philosophie und
philosophische Kritik, new series, 100:25-50, 1892. English translation in
[45], pages 157-177.

[24] G. Frege. Ueber die Begriffschrift des Herrn Peano und meine eigene.
Berichte iiber die Verhandlungen der Koniglich Sachsischen Gesellschaft der
Wissenschaften zu Leipzig, Mathematisch-physikalische Klasse 48, pages
361-378, 1896. English translation in [45], pages 234-248.

[25] G. Frege. Letter to Russell. English translation in [31], pages 127-128, 1902.

Workshop on Logic, Language and Information 2001 105

[26] G. Frege. Grundgesetze der Arithmetik, begriffschriftlich abgeleitet,
volume Il. Pohle, Jena, 1903. Reprinted 1962 (Olms, Hildesheim).

[27] J.H. Geuvers. Logics and Type Systems. PhD thesis, Catholic University of
Nijmegen, 1993.

[28] J.-Y. Girard. Interprétation fonctionelle et élimination des coupures dans
I'arithmétique d’ordre supérieur. PhD thesis, Université Paris VII, 1972.

[29] K. Godel. Russell's mathematical logic. In P.A. Schlipp, editor, The
Philosophy of Bertrand Russell. Evanston & Chicago, Northwestern
University, 1944. Also in [5], pages 447—-469.

[30] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.

In Proceedings Second Symposium on Logic in Computer Science, pages
194-204, Washington D.C., 1987. IEEE.

Workshop on Logic, Language and Information 2001 106

[31]

[32]

[33]

[34]

J. van Heijenoort, editor. From Frege to Godel: A Source Book in
Mathematical Logic, 1879-1931. Harvard University Press, Cambridge,
Massachusetts, 1967.

D. Hilbert and W. Ackermann. Grundziige der Theoretischen Logik. Die
Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen,
Band XXVII. Springer Verlag, Berlin, first edition, 1928.

J.R. Hindley and J.P. Seldin. Introduction to Combinators and \-calculus,
volume 1 of London Mathematical Society Student Texts. Cambridge
University Press, 1986.

Fairouz Kamareddine. Postponement, conservation and preservation of
strong normalisation for generalised reduction. J. Logic Comput., 10(5):721-
738, 2000.

Workshop on Logic, Language and Information 2001 107

[35]

[36]

[37]

[38]

[39]

Fairouz Kamareddine and Rob Nederpelt. Refining reduction in the -
calculus. J. Funct. Programming, 5(4):637-651, October 1995.

Fairouz Kamareddine and Rob Nederpelt. A useful A-notation. Theoret.
Comput. Sci., 155(1):85-109, 1996.

Fairouz Kamareddine and Alejandro Rios. A A-calculus a la de Bruijn with
explicit substitution. In 7th Int’l Symp. Prog. Lang.: Implem., Logics &
Programs, volume 982 of LNCS, pages 45-62. Springer-Verlag, 1995.

Fairouz Kamareddine and Alejandro Rios. Extending a A-calculus with
explicit substitution which preserves strong normalisation into a confluent
calculus on open terms. J. Funct. Programming, 7(4):395-420, 1997.

A. J. Kfoury and J. B. Wells. A direct algorithm for type inference in the

Workshop on Logic, Language and Information 2001 108

rank-2 fragment of the second-order A-calculus. In Proc. 1994 ACM Conf.
LISP Funct. Program., pages 196—207, 1994.

[40] A. J. Kfoury and J. B. Wells. New notions of reduction and non-semantic
proofs of -strong normalization in typed A-calculi. In Proc. 10th Ann. IEEE
Symp. Logic in Computer Sci., pages 311-321, 1995.

[41] Assaf J. Kfoury, Jerzy Tiuryn, and Pawet Urzyczyn. The hierarchy of finitely
typed functional programs. In Proc. 2nd Ann. Symp. Logic in Computer
Sci., pages 225-235, 1987.

[42] T. Laan. The Evolution of Type Theory in Logic and Mathematics. PhD
thesis, Eindhoven University of Technology, 1997.

[43] Twan Laan and Michael Franssen. Parameters for first order logic. Logic
and Computation, 2001.

Workshop on Logic, Language and Information 2001 109

[44]

[45]

[46]

[47]

[48]

G. Longo and E. Moggi. Constructive natural deduction and its modest
interpretation. Technical Report CMU-CS-88-131, Carnegie Mellono
University, Pittsburgh, USA, 1988.

B. McGuinness, editor. Gottlob Frege: Collected Papers on Mathematics,
Logic, and Philosophy. Basil Blackwell, Oxford, 1984.

Rob Nederpelt. Strong Normalization in a Typed Lambda Calculus With
Lambda Structured Types. PhD thesis, Eindhoven, 1973.

R.P. Nederpelt, J.H. Geuvers, and R.C. de Vrijer, editors. Selected Papers
on Automath. Studies in Logic and the Foundations of Mathematics 133.
North-Holland, Amsterdam, 1994.

G. Peano. Arithmetices principia, nova methodo exposita. Bocca, Turin,
1889. English translation in [31], pages 83-97.

Workshop on Logic, Language and Information 2001 110

[49] G. Peano. Formulaire de Mathématique. Bocca, Turin, 1894-1908. 5
successive versions; the final edition issued as Formulario Mathematico.

[50] W. Van Orman Quine. Set Theory and its Logic. Harvard University Press,
Cambridge, Massachusetts, 1963.

[51] F.P. Ramsey. The foundations of mathematics. Proceedings of the London
Mathematical Society, 2nd series, 25:338-384, 1926.

[52] L. Regnier. Lambda calcul et réseaux. PhD thesis, University Paris 7, 1992.

[53] G.R. Renardel de Lavalette. Strictness analysis via abstract interpretation for
recursively defined types. Information and Computation, 99:154-177, 1991.

[54] J.C. Reynolds. Towards a theory of type structure, volume 19 of Lecture
Notes in Computer Science, pages 408—425. Springer, 1974.

Workshop on Logic, Language and Information 2001 111

[55] J.B. Rosser. Highlights of the history of the lambda-calculus. Annals of the
History of Computing, 6(4):337-349, 1984.

[56] B. Russell. Letter to Frege. English translation in [31], pages 124-125, 1902.

[57] B. Russell. Mathematical logic as based on the theory of types. American
Journal of Mathematics, 30:222-262, 1908. Also in [31], pages 150-182.

[58] M. Schénfinkel. Uber die Bausteine der mathematischen Logik.
Mathematische Annalen, 92:305-316, 1924. Also in [31], pages 355-366.

[59] H. Weyl. Das Kontinuum. Veit, Leipzig, 1918. German; also in: Das
Kontinuum und andere Monographien, Chelsea Pub.Comp., New York, 1960.

[60] A.N. Whitehead and B. Russell. Principia Mathematica, volume I, Il, IlI.

Workshop on Logic, Language and Information 2001 112

Cambridge University Press, 1910, 19272, All references are to the first
volume, unless otherwise stated.

Workshop on Logic, Language and Information 2001 113

