On automating the extraction of programs from proofs using product types

Fairouz Kamareddine
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, Scotland

François Monin
IRISA
Campus de Beaulieu
Rennes, France

Mauricio Ayala-Rincón
Departamento de Matemática
Universidade de Brasília
Brasília D.F., Brasil

WOLLIC’02, 30th July-2nd August 2002, Rio de Janeiro, Brazil
Introduction

- We are interested in programming language with the point of view: *Proofs as Programs* (Curry-Howard correspondence).
Introduction

• We are interested in programming language with the point of view: *Proofs as Programs* (Curry-Howard correspondence).

• The specifications are the types and the lambda-terms are the extracted programs (the code).
Introduction

- We are interested in programming language with the point of view: *Proofs as Programs* (Curry-Howard correspondence).

- The specifications are the types and the lambda-terms are the extracted programs (the code).

- The verification of the types (compilation) is a proof of program.
Introduction

- We are interested in programming language with the point of view: *Proofs as Programs* (Curry-Howard correspondence).
- The specifications are the types and the lambda-terms are the extracted programs (the code).
- The verification of the types (compilation) is a proof of program.
- The ProPre system was designed as a prototype to show the feasibility of the theory.
Motivation

- The difficulty is to find formal proofs automatically.
Motivation

- The difficulty is to find formal proofs automatically.
- Example:

\[\text{quot}(x, 0, 0) = 0, \quad \text{quot}(s(x), s(y), z) = \text{quot}(x, y, z), \]
\[\text{quot}(0, s(y), z) = 0, \quad \text{quot}(x, 0, s(z)) = s(\text{quot}(x, s(z), s(z))) \]

The term \(\text{quot}(x, y, y) \) computes \(\left\lfloor \frac{x}{y} \right\rfloor \).
Motivation

- The difficulty is to find formal proofs automatically.

Example:

\[\text{quot}(x, 0, 0) = 0, \quad \text{quot}(s(x), s(y), z) = \text{quot}(x, y, z), \]
\[\text{quot}(0, s(y), z) = 0, \quad \text{quot}(x, 0, s(z)) = s(\text{quot}(x, s(z), s(z))) \]

The term \(\text{quot}(x, y, y) \) computes \(\left\lfloor \frac{x}{y} \right\rfloor \).

- The proofs are expressed in natural deduction style.
Motivation

- The difficulty is to find formal proofs automatically.
- Example:
 \[\text{quot}(x, 0, 0) = 0, \quad \text{quot}(s(x), s(y), z) = \text{quot}(x, y, z), \]
 \[\text{quot}(0, s(y), z) = 0, \quad \text{quot}(x, 0, s(z)) = s(\text{quot}(x, s(z), s(z))) \]

The term \(\text{quot}(x, y, y) \) computes \(\lfloor \frac{x}{y} \rfloor \).

- The proofs are expressed in natural deduction style.
- The automated termination proofs \(\neq \) techniques of rewriting systems.
Motivation

- Is it possible to go further than the ProPre system but using the same theory?
Motivation

- Is it possible to go further than the ProPre system but using the same theory?
- We analyse the proofs made in the system.
Motivation

• Is it possible to go further than the ProPre system but using the same theory?
• We analyse the proofs made in the system.
• We then develop some particular formal proofs using product types.
Motivation

• Is it possible to go further than the ProPre system but using the same theory?
• We analyse the proofs made in the system.
• We then develop some particular formal proofs using product types.
• The formal proofs are released from the termination part.
Motivation

- Is it possible to go further than the ProPre system but using the same theory?
- We analyse the proofs made in the system.
- We then develop some particular formal proofs using product types.
- The formal proofs are released from the termination part.
- This allows automated termination proofs to be incorporated while lambda-terms are still extracted from the proofs.
Motivation

• Is it possible to go further than the ProPre system but using the same theory?
• We analyse the proofs made in the system.
• We then develop some particular formal proofs using product types.
• The formal proofs are released from the termination part.
• This allows automated termination proofs to be incorporated while lambda-terms are still extracted from the proofs.
• The class of automated extracted programs are thus enlarged.
Overview

• The ProPre system
• Logical framework: AF2, TTR
• The rules and proofs in ProPre
• Analysis of the I-proofs
• The skeleton proofs
• The connection between skeleton proofs and I-proofs
• The product type
• The canonical proofs

Conclusion
The ProPre system

- ProPre is a program synthesis system.
The ProPre system

- ProPre is a program synthesis system.
- Example:
The ProPre system

- ProPre is a program synthesis system.
- Example:
 - The type of the list of natural number in ProPre:

 Type Ln : Nil | cons N Ln;
The ProPre system

- ProPre is a program synthesis system.
- Example:
 - The type of the list of natural number in ProPre:
 \[
 \text{TypeLn} : \text{Nil} \mid \text{consNLn};
 \]
 - The append function in ProPre:
 \[
 \text{Let append} : \text{Ln} \mid \text{Ln} \rightarrow \text{Ln}
 \]
 \[
 \text{Nil y} \rightarrow y
 \]
 \[
 (\text{Cons n x}) y \rightarrow (\text{Cons n (append x y)});
 \]
The ProPre system

- ProPre is a program synthesis system.
- Example:
 - The type of the list of natural number in ProPre:
 \[
 \text{Type } \text{Ln} : \text{Nil} \mid \text{cons N Ln};
 \]
 - The append function in ProPre:
 \[
 \text{Let } \text{append} : \text{Ln} \mid \text{Ln} \rightarrow \text{Ln}
 \]
 \[
 \text{Nil y => y}
 \]
 \[
 \text{(Cons n x) y => (Cons n (append x y))};
 \]
- The systems leads from a specification of a function to a program.
The ProPre system

- Functional programming language based on the paradigm: Programming by Proofs ("Proofs as Programs")
The ProPre system

- Functional programming language based on the paradigm:
 Programming by Proofs
 ("Proofs as Programs")
- Type System:
 program extraction \Rightarrow lambda-term
The ProPre system

- Functional programming language based on the paradigm: Programming by Proofs ("Proofs as Programs")
- Type System: program extraction \Rightarrow lambda-term
- Automated strategies for proving termination of recursive functions.
Logical Framework

- The type system is a Second Order Type with Lambda-Calculus: *Second Order Functional Arithmetic, AF2* (D. Leivant, J.L. Krivine).
Logical Framework

- The type system is a Second Order Type with Lambda-Calculus: *Second Order Functional Arithmetic, AF2* (D. Leivant, J.L. Krivine).
- Data types are multisorted terms algebras defined by formulas with one free variable.
Logical Framework

- The type system is a Second Order Type with Lambda-Calculus: *Second Order Functional Arithmetic, AF2* (D. Leivant, J.L. Krivine).
- Data types are multisorted terms algebras defined by formulas with one free variable.
 - The integers sort nat

 $0 : \to \text{nat}, \ s : \text{nat} \to \text{nat}$
Logical Framework

• The type system is a Second Order Type with Lambda-Calculus: *Second Order Functional Arithmetic, AF2* (D. Leivant, J.L. Krivine).

• Data types are multisorted terms algebras defined by formulas with one free variable.

 • The integers sort nat

 $0 : \rightarrow nat, s : nat \rightarrow nat$

 • The data type $N(x)$ of natural numbers:

 $\forall X (X(0) \rightarrow (\forall y (X(y) \rightarrow X(s(y)))) \rightarrow X(x)))$
Logical Framework

- The type system is a Second Order Type with Lambda-Calculus: *Second Order Functional Arithmetic, AF2* (D. Leivant, J.L. Krivine).
- Data types are multisorted terms algebras defined by formulas with one free variable.
 - The integers sort \(\text{nat} \)
 \[
 0 : \rightarrow \text{nat}, \ s : \text{nat} \rightarrow \text{nat}
 \]
 - The data type \(N(x) \) of natural numbers:
 \[
 \forall X (X(0) \rightarrow (\forall y (X(y) \rightarrow X(s(y)))) \rightarrow X(x)))
 \]
- Logical Interpretation coincides with the Algorithmic Interpretation of the formula.
The Logical framework

- Lambda-terms correspond to the algorithmic content of the formulas.
The Logical framework

- Lambda-terms correspond to the algorithmic content of the formulas.

\[\text{Data-Type: Formula of Second Order} \]

\[\downarrow \]

Programs for constructors (successor for integers, cons for lists, etc...)
Intuitionistic rules

\(\Gamma, A \vdash A \) (ax)

\(\frac{\Gamma \vdash A[u]}{\Gamma \vdash A[v]} \) (eq)

\(\frac{\Gamma \vdash A \quad \Gamma \vdash A \to B}{\Gamma \vdash B} \) (→e)

\(\frac{\Gamma \vdash A}{\Gamma \vdash \forall y A} \) (∀₁)
Second Order Functional Arithmetic

\(\Gamma, \ x : A \vdash x : A \) \quad (ax)

\(\Gamma \vdash t : A[u] \quad \Gamma \vdash \varepsilon \ u = v \) \quad (eq)

\(\Gamma, \ x : A \vdash t : B \) \quad (\to_i)

\(\Gamma \vdash u : A \quad \Gamma \vdash t : A \to B \) \quad (\to_e)

\(\Gamma \vdash t : A \) \quad (\forall_1^i)

\(\Gamma \vdash t : \forall y A \) \quad (\forall_1^e)

\(\Gamma \vdash t : \forall y A \) \quad (\forall_2^i)

\(\Gamma \vdash t : \forall y A \) \quad (\forall_2^e)

\(\Gamma \vdash t : \forall y A \) \quad (\forall_1^i)

\(\Gamma \vdash t : \forall Y A \) \quad (\forall_2^e)
A main result in AF2

- A statement of a theorem:
A main result in AF2

- A statement of a theorem:
 - Assume D_1, \ldots, D_n, D data types, f a function symbol, \mathcal{E}_f a set of equations, t a lambda-term.
A main result in AF2

- A statement of a theorem:
 - Assume D_1, \ldots, D_n, D data types, f a function symbol, E_f a set of equations, t a lambda-term.
 - If
 $$\vdash_{E_f} t : \forall x_1, \ldots, \forall x_n \{D_1[x_1], \ldots, D_n[x_n] \rightarrow D[f(x_1, \ldots, x_n)]\}$$
A main result in AF2

- A statement of a theorem:
 - Assume D_1, \ldots, D_n, D data types, f a function symbol, \mathcal{E}_f a set of equations, t a lambda-term.
 - If
 \[
 \vdash_{\mathcal{E}_f} t : \forall x_1, \ldots, \forall x_n \{ D_1[x_1], \ldots, D_n[x_n] \rightarrow D[f(x_1, \ldots, x_n)] \}
 \]
 - Then "t computes f"
A main result in AF2

- A statement of a theorem:
 - Assume D_1, \ldots, D_n, D data types, f a function symbol, \mathcal{E}_f a set of equations, t a lambda-term.
 - If
 $$\vdash_{\mathcal{E}_f} t : \forall x_1, \ldots, \forall x_n \{ D_1[x_1], \ldots, D_n[x_n] \rightarrow D[f(x_1, \ldots, x_n)] \}$$
 - Then "t computes f"
 - Let $f : \text{nat} \rightarrow \text{nat}$. If $\vdash_{\mathcal{E}_f} t : \forall x (N(x) \rightarrow N[f(x)])$ then
 $$\vdash_{\mathcal{E}_f} f(s^n(0)) = s^m(0) \text{ iff } (t \ n) \rightarrow_{\beta} m$$

WOLLIC’02, 30th July-2nd August 2002; Rio de Janeiro, Brazil
Recursive Type Theory

- TTR is an extension of AF2 (M. Parigot)
Recursive Type Theory

- TTR is an extension of AF2 (M. Parigot)
- Its aims is to allow more efficiency extracted programs.
Recursive Type Theory

- TTR is an extension of AF2 (M. Parigot)
- Its aims is to allow more efficiency extracted programs.
- It uses a logical operator of least fixed point allowing recursive definitions of data types.
Recursive Type Theory

- TTR is an extension of AF2 (M. Parigot)
- Its aims is to allow more efficiency extracted programs.
- It uses a logical operator of least fixed point allowing recursive definitions of data types.
- A logical hiding connective for hiding the algorithmic content of some part of the proofs.
Some rules in TTR

- Rules of the hiding operator \uparrow

If A is a formula, u, v terms then $A \uparrow (u \simeq v)$ is a formula.

$$
\frac{\Gamma \vdash_{\xi} t : A \quad \Gamma \vdash_{\xi} e}{\Gamma \vdash_{\xi} t : A \uparrow e} \quad (\uparrow 1) \quad \frac{\Gamma \vdash_{\xi} t : A \uparrow e}{\Gamma \vdash_{\xi} t : A} \quad (\uparrow 2) \quad \frac{\Gamma \vdash_{\xi} t : A \uparrow e}{\Gamma \vdash_{\xi} e} \quad (\uparrow 3)
$$
Somes rules in TTR

• Rules of the hiding operator ⌫

If A is a formula, u, v terms then $A \upharpoonright (u \prec v)$ is a formula.

\[
\frac{\Gamma \vdash \varepsilon \ t : A}{\Gamma \vdash \varepsilon \ t : A \upharpoonright e} \quad \left(\uparrow 1\right) \quad \frac{\Gamma \vdash \varepsilon \ t : A \upharpoonright e}{\Gamma \vdash \varepsilon \ e} \quad \left(\uparrow 2\right) \quad \frac{\Gamma \vdash \varepsilon \ t : A \upharpoonright e}{\Gamma \vdash \varepsilon \ e} \quad \left(\uparrow 3\right)
\]

• External induction rule

\[
\frac{\Gamma \vdash \varepsilon \ t : \forall x [\forall z [Dz \prec x \rightarrow B [z/x]] \rightarrow [D(x) \rightarrow B]]}{\Gamma \vdash \varepsilon \ (T \ t) : \forall x [D(x) \rightarrow B]} \quad \left(\text{Ext}\right)
\]

T is a turing fixed-point operator,
The relation \prec is a well founded partial ordering on the terms of the algebra.
Macro Rules (tactics, derived rules)

- **Thm**: Application of an already proven termination statement (auxiliary functions)
- **Hyp**: Application of induction hypotheses
- **Ax**: Application of Axiom
- **Eq**: Application of an equational rule
- **Struct**: Use of structural rules + manipulations of formulas (Reasoning by cases)
- **Ind**: Use of induction rules + manipulations of formulas
Shape of I-Proofs

\[\Gamma_1 \vdash \theta_1 \quad \ldots \quad \ldots \quad \Gamma_2 \vdash \theta_2 \]

\[\mathcal{D} \quad \text{Distributing tree} \]

\[\vdash_{\xi_f} \forall x_1 D_1(x_1), \ldots, \forall x_n D_n(x_n) \rightarrow D(f(x_1, \ldots, x_n)) \]
The Distributing tree must follow a property:

The formal terminal state property

\[\forall x_1 \forall x_2 \ldots \forall x_n (D_1(x_1) \land \ldots \land D_n(x_n) \rightarrow D(f(x_1, \ldots, x_n))) \]
Enlarging the class of extracted programs

- We revisit the ProPre system and analyse the formal proofs obtained in ProPre.
Enlarging the class of extracted programs

- We revisit the ProPre system and analyse the formal proofs obtained in Propre.
- In order to alleviate and simplify the notion of formal terminal state property (kernel of the I-proofs)
Enlarging the class of extracted programs

- We revisit the ProPre system and analyse the formal proofs obtained in Propre.
 - In order to alleviate and simplify the notion of formal terminal state property (kernel of the I-proofs)
 - In order to enlarge the class of extracted programs
We revisit the ProPre system and analyse the formal proofs obtained in Propre.

- In order to alleviate and simplify the notion of formal terminal state property (kernel of the I-proofs)
- In order to enlarge the class of extracted programs
- We make simplification of Distributing Trees and Formulas.
The skeleton proofs

- The heart of a formula F: it gives rise to a term t.
The skeleton proofs

- The heart of a formula F: it gives rise to a term t.
- The skeleton operation on the distributing tree gives rise to a term distributing tree.
The skeleton proofs

- The heart of a formula F: it gives rise to a term t.
- The skeleton operation on the distributing tree gives rise to a term distributing tree.

\[\Gamma \vdash P \quad \mathcal{H} \quad H(P)\]

\[\vdash F \quad H(F)\]
The skeleton operation is not injective
Formal proofs from skeleton forms

- The skeleton operation is not injective
- The design of abstract terminal state property
Formal proofs from skeleton forms

- The skeleton operation is not injective
- The design of abstract terminal state property
Formal proofs from skeleton forms

- The skeleton operation is not injective
- The design of abstract terminal state property

\[\begin{array}{ccc}
\text{Distributing trees} & \xrightarrow{\text{skeleton}} & \text{Term distributing trees} \\
\text{Formal terminal state property} & \xrightarrow{\mathcal{H}'} & \text{Abstract terminal state property}
\end{array} \]

- We can rebuild proofs from \(\text{Atsp} \)

WOLLIC’02, 30th July-2nd August 2002; Rio de Janeiro, Brazil
Termination proofs

- It is easier to work on term distributing trees for termination proofs.
Termination proofs

- It is easier to work on term distributing trees for termination proofs.
- We can extend the termination property independently from formal proofs.
Termination proofs

- It is easier to work on term distributing trees for termination proofs.
- We can extend the termination property independently from formal proofs.
- Can we extend the class of extracted programs in the same way as in ProPre?
Termination proofs

- It is easier to work on term distributing trees for termination proofs.
- We can extend the termination property independently from formal proofs.
- Can we extend the class of extracted programs in the same way as in ProPre?
- Example:

\[
\text{quot}(x, 0, 0) = 0, \quad \text{quot}(s(x), s(y), z) = \text{quot}(x, y, z), \\
\text{quot}(0, s(y), z) = 0, \quad \text{quot}(x, 0, s(z)) = s(\text{quot}(x, s(z), s(z))
\]

The term \(\text{quot}(x, y, y)\) computes \(\left\lfloor \frac{x}{y} \right\rfloor\).
The main scheme

Termination proof of a function f
The main scheme

Termination proof of a function f → Product Types → A new function \tilde{f}
The main scheme

Termination proof of a function f \quad Product Types \quad A new function \tilde{f}

A new relation $<$
The main scheme

Termination proof of a function f \hspace{2cm} Product \hspace{2cm} A new relation \sim

Types \hspace{2cm} A new relation $<$

Formal Proof of Totality of f
The main scheme

<table>
<thead>
<tr>
<th>Termination proof of a function f</th>
<th>Product Types</th>
<th>A new function \tilde{f}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formal Proof of Totality of f</td>
<td></td>
<td>A new relation $<$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Formal Proof of Totality of \tilde{f}</td>
</tr>
</tbody>
</table>

Formal Proof of Totality of f

Product Types

A new function \tilde{f}

A new relation $<$

Formal Proof of Totality of \tilde{f}
Product Type

- Let $f : D_1, \ldots, D_n \to D$ be a function with \mathcal{E}_f
Product Type

- Let $f : D_1, \ldots , D_n \to D$ be a function with E_f
- The product type of D_1, \ldots , D_n is

$$\forall X \forall y_1, \ldots , y_n D_1(y_1), \ldots , D_n(y_n) \to (X(cp(y_1, \ldots , y_n)) \to X(x))$$
Product Type

- Let $f : D_1, \ldots, D_n \rightarrow D$ be a function with \mathcal{E}_f
- The product type of D_1, \ldots, D_n is
 $\forall X \forall y_1, \ldots, y_n D_1(y_1), \ldots, D_n(y_n) \rightarrow (X(cp(y_1, \ldots, y_n)) \rightarrow X(x))$
- We can define a new function \tilde{f} with $\mathcal{E}_{\tilde{f}}$ from \mathcal{E}_f
Product Type

- Let $f : D_1, \ldots, D_n \rightarrow D$ be a function with \mathcal{E}_f
- The product type of D_1, \ldots, D_n is
 $\forall X \forall y_1, \ldots, y_n D_1(y_1), \ldots, D_n(y_n) \rightarrow (X(cp(y_1, \ldots, y_n)) \rightarrow X(x))$
- We can define a new function \tilde{f} with $\mathcal{E}_{\tilde{f}}$ from \mathcal{E}_f

<table>
<thead>
<tr>
<th>Termination proof of a function f</th>
<th>Product Types</th>
<th>A new function \tilde{f}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WOLLIC’02, 30th July-2nd August 2002; Rio de Janeiro, Brazil
Product Type

- The termination statement of \tilde{f} is
 \[T_{\tilde{f}} = \forall x((D_1 \times \ldots \times D_n)(x) \rightarrow D(\tilde{f}(x))). \]
Product Type

- The termination statement of \tilde{f} is
 $$T_{\tilde{f}} = \forall x((D_1 \times \ldots \times D_n)(x) \rightarrow D(\tilde{f}(x))).$$

- **Fact**: If there is a λ-term \tilde{F} such that
 $$\vdash_{\mathcal{E}_{\tilde{f}}} \tilde{F} : T_{\tilde{f}},$$
 then there is a λ-term F such that
 $$\vdash_{\mathcal{E}_f} F : T_f$$
 with
 $$\mathcal{E}_f' = \mathcal{E}_f \cup \{ f(x_1, \ldots, x_n) = \tilde{f}(cp(x_1, \ldots, x_n)) \} \cup \mathcal{E}_{\tilde{f}}.$$
Product Type

• The termination statement of \tilde{f} is
 \[T_{\tilde{f}} = \forall x((D_1 \times \ldots \times D_n)(x) \rightarrow D(\tilde{f}(x))). \]

• Fact: If there is a λ-term \tilde{F} such that
 \[\vdash \varepsilon_{\tilde{f}} \tilde{F} : T_{\tilde{f}}, \]
 then there is a λ-term F such that
 \[\vdash \varepsilon'_f F : T_f \]
 with
 \[\varepsilon'_f = \varepsilon_f \cup \{ f(x_1, \ldots, x_n) = \tilde{f}(cp(x_1, \ldots, x_n)) \} \cup \varepsilon_{\tilde{f}}. \]
Canonical I-proofs

- We change the relation \(\prec \) about \(\tilde{f} \):

\[
\Gamma \vdash \varepsilon\ t : \forall x[\forall z(Dz \prec x \rightarrow B[z/x] \rightarrow [D(x) \rightarrow B])] \\
\Gamma \vdash \varepsilon\ (T\ t) : \forall x[D(x) \rightarrow B] \quad (Ext)
\]
We change the relation \prec about \tilde{f}:

\[
\Gamma \vdash \varepsilon \quad t : \forall x[\forall z[Dz \prec x \rightarrow B[z/x]] \rightarrow [D(x) \rightarrow B]] \\
\Gamma \vdash \varepsilon \quad (T \ t) : \forall x[D(x) \rightarrow B]
\]

(Canonical I-proofs)
We change the relation \prec about \tilde{f}:

$$\Gamma \vdash_{\mathcal{E}} t : \forall x[\forall z[Dz \prec x \rightarrow B[z/x]] \rightarrow [D(x) \rightarrow B]]$$

$$\Gamma \vdash_{\mathcal{E}} (T \ t) : \forall x[D(x) \rightarrow B]$$

(Ext)

The hiding rules allow the formal proofs to be released from the termination part.

$$\Gamma \vdash_{\mathcal{E}} t : A \quad \Gamma \vdash_{\mathcal{E}} e$$

$$\Gamma \vdash_{\mathcal{E}} t : A \vdash e$$

$$\Gamma \vdash_{\mathcal{E}} t : A \vdash e$$

$$\Gamma \vdash_{\mathcal{E}} t : A$$

WOLLIC’02, 30th July-2nd August 2002; Rio de Janeiro, Brazil
Canonical I-proofs

Termination proof of a function f \quad Product Types \quad A new function \tilde{f}

Formal Proof of Totality of f \quad Formal Proof of Totality of \tilde{f}

A new relation $<$
Conclusion

- The ProPre system showed the feasibility of the theory based on "Proofs as Programs".
Conclusion

- The ProPre system showed the feasibility of the theory based on "Proofs as Programs".
- A main issue is the automation of formal proofs.
Conclusion

- The ProPre system showed the feasibility of the theory based on "Proofs as Programs".
- A main issue is the automation of formal proofs.
- We have shown we can go further for the automation of extracted programs.
Conclusion

- The ProPre system showed the feasibility of the theory based on "Proofs as Programs".
- A main issue is the automation of formal proofs.
- We have shown we can go further for the automation of extracted programs.
- It remains the implementation.
The End