
MathLang: A language for Mathematics

Fairouz Kamareddine
www.macs.hw.ac.uk/~fairouz/talks/talks2004/bham04.pdf∗

Friday 28 May 2004

∗Parts of this talk are based on joint work with Laan and Nederpelt (see [18, 19]) and Maarek and Wells
(see [20, 21])

University of Birmingham



Do we need types for Mathematics?

• General definition of function 1879 [9] is key to Frege’s formalisation of logic.

• For Frege, mathematics can be seen as a branch of logic.

• Self-application of functions was at the heart of Russell’s paradox 1902 [28].

• To avoid paradox Russell controled function application via type theory.

• Russell [29] 1903 gives the first type theory: the Ramified Type Theory (rtt).

• But, type theory existed since the time of Euclid (325 B.C.).

• rtt is used in Russell and Whitehead’s Principia Mathematica [32] 1910–1912.

• Simple theory of types (stt): Ramsey [26] 1926, Hilbert and Ackermann [17]
1928.

University of Birmingham 1



• Church’s simply typed λ-calculus λ→ [5] 1940 = λ-calculus + stt.

• Church’s λ→ is at the heart of Montague’s semantics of natural language [8],
of the HOL theorem prover, and of many programming languages.

• The hierarchies of types/orders as found in rtt and stt are unsatisfactory.

• Frege’s functions 6= Principia’s functions 6= λ-calculus functions (1932).

• The notion of function adopted in the λ-calculus is unsatisfactory (cf. [22]).

• Hence, birth of different systems of functions and types, each with different
functional power.

• Advances were also made in set theory [33], category theory [23], etc., each
being advocated as a better foundation for mathematics.

• But, why have mathematicians not taken more notice?

University of Birmingham 2



Prehistory of Types (Euclid)

• Euclid’s Elements (circa 325 B.C.) begins with:

1. A point is that which has no part;
2. A line is breadthless length.

...
15. A circle is a plane figure contained by one line such that all the straight

lines falling upon it from one point among those lying within the figure are
equal to one another.

• 1..15 define points, lines, and circles which Euclid distinguished between.

• Euclid always mentioned to which class (points, lines, etc.) an object belonged.

University of Birmingham 3



Prehistory of Types (Euclid)

• By distinguishing classes of objects, Euclid prevented undesired/impossible
situations. E.g., whether two points (instead of two lines) are parallel.

• Intuition implicitly forced Euclid to think about the type of the objects.

• As intuition does not support the notion of parallel points, he did not even try
to undertake such a construction.

• In this manner, types have always been present in mathematics, although they
were not noticed explicitly until the late 1800s.

• If you studied geometry, then you have an (implicit) understanding of types.

University of Birmingham 4



Prehistory of Types (Paradox Threats)

• From 1800, mathematical systems became less intuitive, for several reasons:

– Very complex or abstract systems.
– Formal systems.
– Something with less intuition than a human using the systems:

a computer or an algorithm.

• These situations are paradox threats. An example is Frege’s Naive Set Theory.

• Not enough intuition to activate the (implicit) type theory to warn against an
impossible situation.

University of Birmingham 5



Prehistory of Types (formal systems in 19th century)

In the 19th century, the need for a more precise style in mathematics arose,
because controversial results had appeared in analysis.

• 1821: Many of these controversies were solved by the work of Cauchy. E.g.,
he introduced a precise definition of convergence in his Cours d’Analyse [4].

• 1872: Due to the more exact definition of real numbers given by Dedekind [7],
the rules for reasoning with real numbers became even more precise.

• 1895-1897: Cantor began formalizing set theory [2, 3] and made contributions
to number theory.

University of Birmingham 6



Prehistory of Types (formal systems in 19th century)

• 1889: Peano formalized arithmetic [24], but did not treat logic or quantification.

• 1879: Frege was not satisfied with the use of natural language in mathematics:

“. . . I found the inadequacy of language to be an obstacle; no matter how
unwieldy the expressions I was ready to accept, I was less and less able,
as the relations became more and more complex, to attain the precision
that my purpose required.”

(Begriffsschrift, Preface)

Frege therefore presented Begriffsschrift [9], the first formalisation of logic
giving logical concepts via symbols rather than natural language.

University of Birmingham 7



Prehistory of Types (formal systems in 19th century)

“[Begriffsschrift’s] first purpose is to provide us with the most reliable test
of the validity of a chain of inferences and to point out every presupposition
that tries to sneak in unnoticed, so that its origin can be investigated.”

(Begriffsschrift, Preface)

• 1892-1903 Frege’s Grundgesetze der Arithmetik [11, 15], could handle
elementary arithmetic, set theory, logic, and quantification.

University of Birmingham 8



Prehistory of Types (Begriffsschrift’s functions)

The introduction of a very general definition of function was the key to the
formalisation of logic. Frege defined the Abstraction Principle.

Abstraction Principle 1.

“If in an expression, [. . . ] a simple or a compound sign has one or more
occurrences and if we regard that sign as replaceable [. . . ] by something
else (but everywhere by the same thing), then we call the part that remains
invariant in the expression a function, and the replaceable part the argument
of the function.”

(Begriffsschrift, Section 9)

University of Birmingham 9



Prehistory of Types (Begriffsschrift’s functions)

• Frege put no restrictions on what could play the role of an argument.

• An argument could be a number (as was the situation in analysis), but also a
proposition, or a function.

• Similarly, the result of applying a function to an argument did not necessarily
have to be a number.

• Functions of more than one argument were constructed by a method that is
very close to the method presented by Schönfinkel [31] in 1924.

University of Birmingham 10



Prehistory of Types (Begriffsschrift’s functions)

With this definition of function, two of the three possible paradox threats occurred:

1. The generalisation of the concept of function made the system more abstract
and less intuitive.

2. Frege introduced a formal system instead of the informal systems that were
used up till then.

Type theory, that would be helpful in distinguishing between the different types
of arguments that a function might take, was left informal.

So, Frege had to proceed with caution. And so he did, at this stage.

University of Birmingham 11



Prehistory of Types (Begriffsschrift’s functions)

Frege was aware of some typing rule that does not allow to substitute functions
for object variables or objects for function variables:

“if the [. . . ] letter [sign] occurs as a function sign, this circumstance
[should] be taken into account.”

(Begriffsschrift, Section 11)

“ Now just as functions are fundamentally different from objects, so also
functions whose arguments are and must be functions are fundamentally
different from functions whose arguments are objects and cannot be anything
else. I call the latter first-level, the former second-level.”

(Function and Concept, pp. 26–27)

University of Birmingham 12



Prehistory of Types (Begriffsschrift’s functions)

In Function and Concept he was aware of the fact that making a difference
between first-level and second-level objects is essential to prevent paradoxes:

“The ontological proof of God’s existence suffers from the fallacy of treating
existence as a first-level concept.”

(Function and Concept, p. 27, footnote)

The above discussion on functions and arguments shows that Frege did indeed
avoid the paradox in his Begriffsschrift.

University of Birmingham 13



Prehistory of Types (Grundgesetze’s functions)

The Begriffsschrift, however, was only a prelude to Frege’s writings.

• In Grundlagen der Arithmetik [10] he argued that mathematics can be seen as
a branch of logic.

• In Grundgesetze der Arithmetik [11, 15] he described the elementary parts of
arithmetic within an extension of the logical framework of Begriffsschrift.

• Frege approached the paradox threats for a second time at the end of Section
2 of his Grundgesetze.

• He did not want to apply a function to itself, but to its course-of-values.

University of Birmingham 14



Prehistory of Types (Grundgesetze’s functions)

“the function Φ(x) has the same course-of-values as the function Ψ(x)” if:

“the functions Φ(x) and Ψ(x) always have the same value for the same
argument.”

(Grundgesetze, p. 7)

• This is expressed as

ὲf(ε) = ὲg(ε)←→ ∀a[f(a) = g(a)]. (1)

In modern terminology, we could say that the functions Φ(x) and Ψ(x) have
the same course-of-values if they have the same graph.

University of Birmingham 15



Prehistory of Types (Grundgesetze’s functions)

• The notation ὲΦ(ε) may be the origin of Russell’s notation x̂Φ(x) for the class
of objects that have the property Φ.

• According to a paper by Rosser [27], the notation x̂Φ(x) has been at the basis
of the current notation λx.Φ(x).

• Church is supposed to have written ∧xΦ(x) for the function x 7→ Φ(x):
the hat ∧ in front of the x distinguishes this function from the class x̂Φ(x).

University of Birmingham 16



Prehistory of Types (Grundgesetze’s functions)

• Frege treated courses-of-values as ordinary objects.

• As a consequence, a function that takes objects as arguments could have its
own course-of-values as an argument.

• BUT, all essential information of a function is contained in its graph.

• A system in which a function can be applied to its own graph should have
similar possibilities as a system in which a function can be applied to itself.

• Frege excluded the paradox threats by forbidding self-application

• but due to his treatment of courses-of-values these threats were able to enter
his system through a back door.

University of Birmingham 17



Prehistory of Types (Russell’s paradox in Grundgesetze)

• In 1902, Russell wrote a letter to Frege [28], informing him that he had
discovered a paradox in his Begriffsschrift.

• WRONG: Begriffsschrift does not suffer from a paradox.

• Russell gave his well-known argument, defining the propositional function

f(x) by ¬x(x).

In Russell’s words: “to be a predicate that cannot be predicated of itself.”

• Russell assumed f(f). Then by definition of f , ¬f(f), a contradiction.
Therefore: ¬f(f) holds. But then (again by definition of f), f(f) holds.
Russell concluded that both f(f) and ¬f(f) hold, a contradiction.

University of Birmingham 18



Prehistory of Types (Russell’s paradox in Grundgesetze)

• 6 days later, Frege wrote [14] that Russell’s derivation of paradox is incorrect.

• Ferge explained that self-application f(f) is not possible in Begriffsschrift.

• f(x) is a function, which requires an object as an argument.
A function cannot be an object in the Begriffsschrift.

• Frege explained that Russell’s argument could be amended to a paradox in
Grundgesetze, using the course-of-values of functions:

Let f(x) = ¬∀ϕ[(ὰϕ(α) = x) −→ ϕ(x)]
I.e. f(x) = ∃ϕ[(ὰϕ(α) = x) ∧ ¬ϕ(x)] hence ¬ϕ(ὰϕ(α))

• Both f(ὲf(ε)) and ¬f(ὲf(ε)) hold.

• Frege added an appendix of 11 pages to the 2nd volume of Grundgesetze in
which he gave a very detailed description of the paradox.

University of Birmingham 19



Prehistory of Types (How wrong was Frege?)
• Due to Russell’s Paradox, Frege is often depicted as the pitiful person whose

system was inconsistent.

• This suggests that Frege’s system was the only one that was inconsistent, and
that Frege was very inaccurate in his writings.

• On these points, history does Frege an injustice.

• Frege’s system was much more accurate than other systems of those days.

• Peano’s work, for instance, was less precise on several points:

• Peano hardly paid attention to logic especially quantification theory;

• Peano did not make a strict distinction between his symbolism and the objects
underlying this symbolism. Frege was much more accurate on this point (see
Frege’s paper Über Sinn und Bedeutung [12]);

University of Birmingham 20



Prehistory of Types (How wrong was Frege?)

• Frege made a strict distinction between a proposition (as an object) and the
assertion of a proposition. Frege denoted a proposition, by −A, and its
assertion by ` A. Peano did not make this distinction and simply wrote A.

Nevertheless, Peano’s work was very popular, for several reasons:

• Peano had able collaborators, and a better eye for presentation and publicity.

• Peano bought his own press to supervise the printing of his own journals Rivista
di Matematica and Formulaire [25]

University of Birmingham 21



Prehistory of Types (How wrong was Frege?)

• Peano used a familiar symbolism to the notations used in those days.

• Many of Peano’s notations, like ∈ for “is an element of”, and ⊃ for logical
implication, are used in Principia Mathematica, and are actually still in use.

• Frege’s work did not have these advantages and was hardly read before 1902

• When Peano published his formalisation of mathematics in 1889 [24] he clearly
did not know Frege’s Begriffsschrift as he did not mention the work, and was
not aware of Frege’s formalisation of quantification theory.

University of Birmingham 22



Prehistory of Types (How wrong was Frege?)

• Peano considered quantification theory to be “abstruse” in [25]:

“In this respect my [Frege] conceptual notion of 1879 is superior to the
Peano one. Already, at that time, I specified all the laws necessary for
my designation of generality, so that nothing fundamental remains to be
examined. These laws are few in number, and I do not know why they
should be said to be abstruse. If it is otherwise with the Peano conceptual
notation, then this is due to the unsuitable notation.”

([13], p. 376)

University of Birmingham 23



Prehistory of Types (How wrong was Frege?)

• In the last paragraph of [13], Frege concluded:

“. . . I observe merely that the Peano notation is unquestionably more
convenient for the typesetter, and in many cases takes up less room
than mine, but that these advantages seem to me, due to the inferior
perspicuity and logical defectiveness, to have been paid for too dearly —
at any rate for the purposes I want to pursue.”

(Ueber die Begriffschrift des Herrn Peano und meine eigene, p. 378)

University of Birmingham 24



Prehistory of Types (paradox in Peano and Cantor’s systems)

• Frege’s system was not the only paradoxical one.

• The Russell Paradox can be derived in Peano’s system as well, by defining the

class K
def
= {x | x 6∈ x} and deriving K ∈ K ←→ K 6∈ K.

• In Cantor’s Set Theory one can derive the paradox via the same class (or set,
in Cantor’s terminology).

University of Birmingham 25



Prehistory of Types (vicious circle principle)

When Russell proved Frege’s Grundgesetze to be inconsistent, Frege was not the
only person in trouble. In Russell’s letter to Frege (1902), we read:

“I am on the point of finishing a book on the principles of mathematics”

(Letter to Frege, [28])

Russell had to find a solution to the paradoxes, before finishing his book.

• Type Theory was the tool for avoiding the paradoxes.

• Types in Principia have a double hierarchy: (simple) types and orders.

• Ramsey/Hilbert and Ackermann removed orders and gave us the simple types.

• Recall that the idea behind simple types was already explained by Frege.

University of Birmingham 26



The Goal: Open borders between mathematics, logic and

computation

• Ordinary mathematicians avoid formal mathematical logic.

• Ordinary mathematicians avoid proof checking (via a computer).

• Ordinary mathematicians may use a computer for computation: there are over
1 million people who use mathematica (including linguists, engineers, etc.).

• Mathematicians may also use other computer forms like Maple, Latex, etc.

• But we are not interested in only libraries or computation or text editing.

• We want freedeom of movement between mathematics, logic and computation.

• At every stage, we must have the choice of the level of formalilty and the
depth of computation.

University of Birmingham 27



Common Mathematical Language of mathematicians: Cml

+ Cml is expressive: it has linguistic categories like proofs and theorems.

+ Cml has been refined by intensive use and is rooted in long traditions.

+ Cml is approved by most mathematicians as a communication medium.

+ Cml accommodates many branches of mathematics, and is adaptable to new
ones.

– Since Cml is based on natural language, it is informal and ambiguous.

– Cml is incomplete: Much is left implicit, appealing to the reader’s intuition.

– Cml is poorly organised: In a Cml text, many structural aspects are omitted.

– Cml is automation-unfriendly: A Cml text is a plain text and cannot be easily
automated.

University of Birmingham 28



A Cml-text

From chapter 1, § 2 of E. Landau’s Foundations of Analysis [Lan51].

Theorem 6. [Commutative Law of Addition]

x + y = y + x.

Proof Fix y, and let M be the set of all
x for which the assertion holds.

I) We have

y + 1 = y
′
,

and furthermore, by the construction in

the proof of Theorem 4,

1 + y = y
′
,

so that
1 + y = y + 1

and 1 belongs to M.

II) If x belongs to M, then

x + y = y + x,

Therefore

(x + y)
′
= (y + x)

′
= y + x

′
.

By the construction in the proof of
Theorem 4, we have

x
′
+ y = (x + y)

′
,

hence

x′ + y = y + x′,

so that x′ belongs to M. The assertion

therefore holds for all x. 2

University of Birmingham 29



LATEX code
draft documents ✓

public documents ✓

computations and proofs ✗
\begin{theorem}[Commutative Law of Addition]\label{theorem:6}

$$x+y=y+x.$$

\end{theorem}
\begin{proof}

Fix $y$, and $\mathfrak{M}$ be the set of all $x$ for which the

assertion holds.

\begin{enumerate}
\item We have $$y+1=y’,$$

and furthermore, by the construction in

the proof of Theorem~\ref{theorem:4}, $$1+y=y’,$$

so that $$1+y=y+1$$

and $1$ belongs to $\mathfrak{M}$.
\item If $x$ belongs to $\mathfrak{M}$, then $$x+y=y+x,$$

Therefore

$$(x+y)’=(y+x)’=y+x’.$$

By the construction in the proof of

Theorem~\ref{theorem:4}, we have $$x’+y=(x+y)’,$$

hence

$$x’+y=y+x’,$$

so that $x’$ belongs to $\mathfrak{M}$.
\end{enumerate}
The assertion therefore holds for all $x$.

\end{proof}

University of Birmingham 30



The problem with formal logic
• No logical languages has the criteria expected of a language of mathematics.

– A logical language does not have mathematico-linguistic categories, is not
universal to all mathematicians, and is not a good communication medium.

– Logical languages make fixed choices (first versus higher order, predicative
versus impredicative, constructive versus classical, types or sets, etc.). But
different parts of mathematics need different choices and there is no universal
agreement as to which is the best formalism.

– A logician writes in logic their understanding of a mathematical-text as a
formal, complete text which is structured considerably unlike the original,
and is of little use to the ordinary mathematician.

– Mathematicians do not want to use formal logic and have for centuries done
mathematics without it.

• So, mathematicians kept to Cml.

• We would like to find an alternative to Cml which avoids some of the features
of the logical languages which made them unattractive to mathematicians.

University of Birmingham 31



The problem with fully checked proofs (on computer)

• In 1967 the famous mathematician de Bruijn began work on logical languages
for complete books of mathematics that can be fully checked by machine.

• People are prone to error, so if a machine can do proof checking, we expect
fewer errors.

• Most mathematicians doubted de Bruijn could achieve success, and computer
scientists had no interest at all.

• However, he persevered and built Automath (AUTOmated MATHematics).

• Today, there is much interest in many approaches to proof checking for
verification of computer hardware and software.

• Many theorem provers have been built to mechanically check mathematics and
computer science reasoning (e.g. Isabelle, HOL, Coq, etc.).

University of Birmingham 32



• A Cml-text is structured differently from a computer-checked text proving the
same facts. Making the latter involves extensive knowledge and many choices:

– First, the needed choices include:
∗ The choice of the underlying logical system.
∗ The choice of how concepts are implemented (equational reasoning,

equivalences and classes, partial functions, induction, etc.).
∗ The choice of the formal system: a type theory (dependent?), a set theory

(ZF? FM?), a category theory? etc.
∗ The choice of the proof checker: Automath, Isabelle, Coq, PVS, Mizar...

– Any informal reasoning in a Cml-text will cause headaches as it is hard to
turn a big step into a (series of) syntactic proof expressions.

– Then the Cml-text is reformulated in a fully complete syntactic formalism
where every detail is spelled out. Very long expressions replace a clear
Cml-text. The new text is useless to ordinary mathematicians.

• So, automation is user-unfriendly for the mathematician/computer scientist.

• It is the hope that the alternative to Cml may help in dividing the jump from
informal mathematics to a fully formal one into smaller more informed steps.

University of Birmingham 33



Coq

draft documents ✗
public documents ✗

computations and proofs ✓

From Module Arith.Plus of Coq standard library (http://coq.inria.fr/).

Lemma plus_sym : (n,m:nat)(n+m)=(m+n).

Proof.

Intros n m ; Elim n ; Simpl_rew ; Auto with arith.

Intros y H ; Elim (plus_n_Sm m y) ; Simpl_rew ; Auto with arith.

Qed.

University of Birmingham 34



Where do we start? de Bruijn’s Mathematical Vernacular MV

• De Bruijn’s Automath not just [...] as a technical system for verification
of mathematical texts, it was rather a life style with its attitudes towards
understanding, developing and teaching mathematics....The way mathematical
material is to be presented to the system should correspond to the usual way
we write mathematics. The only things to be added should be details that are
usually omitted in standard mathematics.

• MV is faithful to Cml yet is formal and avoids ambiguities.

• MV is close to the usual way in which mathematicians write.

• MV has a syntax based on linguistic categories not on set/type theory.

• MV is weak as regards correctness: the rules of MV mostly concern linguistic
correctness, its types are mostly linguistic so that the formal translation into
MV is satisfactory as a readable, well-organized text.

University of Birmingham 35



Problems with MV

• MV makes many logical and mathematical choices which are best postponed.

• MV incorporates certain correctness requirements, there is for example a
hierarchy of types corresponding with sets and subsets.

• MV is already on its way to a full formalization, while we want to remain
closer to a given informal mathematical content.

• We want a formal language MathLang which •has the advantages of Cml

but not its disadvantages and •respects Cml content.

• MV does not respect Cml content.

University of Birmingham 36



What is the aim for MathLang?

Can we formalise a Cml text avoiding as much as possible the ambiguities of
natural language while still guaranteeing the following four goals?

1. The formalised text looks very much like the original Cml text (and hence the
content of the original Cml text is respected).

2. The formalised text can be fully manipulated and searched.

3. Steps can be made to do computation (via computer algebra systems) and
proof checking (via proof checkers) on the formalised text.

4. This formalisation of text is as simple a process to the mathematician as LATEX
is.

University of Birmingham 37



Starting point for MathLang: MV and WTT
• MV is the driving force behind MathLang. But MV fails on goal 1.

• Weak Type Theory, WTT [19], is MV minus the added logic.

• Although WTT succeeds in many ways and is a considerable improvement on
MV, it still fails on goal 1. A WTT text is not close to its Cml original.

• MathLang starts from WTT, extends its syntax and adds natural language as
a top level.

• A MathLang text remains close to its Cml original and hence yields reliable
formalizations.
The Cml-text is covered exactly in its formal version in the MathLang-text.
One can easily check this.

• We are using MathLang to translate two Cml-
books [Lan51, Hea56]

University of Birmingham 38



MathLang

draft documents ✓
public documents ✓

computations and proofs ✓

• MathLang describes the grammatical and reasoning structure of mathematical
texts

• A weak type system checks MathLang documents at a grammatical level

• MathLang eventually should support all encoding uses

University of Birmingham 39



CML

MathLang
XML text

Valid MathLang
XML text

MathLang
CML output

Translating

MathLang
Checking

MathLang XSL
transforming

Adding
NL

If typing
error

Adding
NL

Documents

User's
actions

Computer's
actions

Figure 1: Translation

University of Birmingham 40



Weak Type Theory

In Weak Type Theory (or Wtt) we have the following linguistic categories:

• On the atomic level: variables, constants and binders,

• On the phrase level: terms T , sets S, nouns N and adjectives A,

• On the sentence level: statements P and definitions D,

• On the discourse level: contexts ΓI , lines l and books B.

University of Birmingham 41



level category abstract syntax symbol
atomic variables V = VT |VS|VP x

constants C = CT |CS|CN |CA|CP c
binders B = BT |BS|BN |BA|BP b

phrase terms T = CT (
→
P)|BT

Z(E)|VT t

sets S = CS(
→
P)|BS

Z(E)|VS s

nouns N = CN(
→
P)|BN

Z (E)|AN n

adjectives A = CA(
→
P)|BA

Z(E) a

sentence statements P = CP (
→
P)|BP

Z(E)|VP S
definitions D = Dϕ|DP D

Dϕ = CT (
→
V ) := T |CS(

→
V ) := S|

CN(
→
V ) := N|CA(

→
V ) := A

DP = CP (
→
V ) := P

discourse contexts ΓI = ∅ | ΓI,Z | ΓI, P Γ
lines l = ΓI . P | ΓI .D l
books B = ∅ | B ◦ l B

Figure 2: Main categories of syntax of WTT
University of Birmingham 42



Other category abstract syntax symbol
expressions E = T |S|N |P E

parameters P = T |S|P (note:
→
P is a list of Ps) P

typings T = S : SET |S : STAT |T : S|T : N|T : A T
declarations Z = VS : SET |VP : STAT |VT : S|VT : N Z

Figure 3: Categories of syntax of WTT

University of Birmingham 43



Constants of WTT

C = CT |CS|CN |CA|CP .

C is infinite, C ∩ V = ∅.

(CT ) Constants for terms , (CS) Constants for sets ,
(CN) Constants for nouns , (CA) Constants for adjectives ,
(CP ) Constants for statements

A constant is always C(
→
P). P is term, set or statement: P = T |S|P.

University of Birmingham 44



Examples of constants of WTT

(CT ) Constants for terms:
π,
the centre of C,
3 + 6,
the arithmetic mean of 3 and 6,
d(x, y),
∇ f .

(CS) Constants for sets:
N,
V → W ,
A ∪ B.

University of Birmingham 45



(CN) Constants for nouns:
a triangle,
an eigenvalue of A,
an edge of 4ABC,
a reflection of V with respect to l.

(CA) Constants for adjectives

prime
surjective
Abelian
continuous on [a, b].

(CP ) Constants for statements

P lies between Q and R,
5 ≥ 3 p ∧ q ¬ ∀x∈N(x > 0)

University of Birmingham 46



Binders of WTT
B = BT |BS|BN |BA|BP where:

(BT ) Binders giving terms, (BS) Binders giving sets ,
(BA) Binders giving adjectives , (BP ) Binders giving statements ,
(BN) Binders giving nouns,

In BZ(E), the body E is one of four categories E = T |S|N |P .

Examples:

• BT
Z(E) = minZ(T )|∑Z(T )|limZ(T )|

∫
Z(T )|λZ(T )|λZ(S)|ιZ(P )| . . .

• BS
Z(E) = SetZ(P )|⋃Z(S)|ιZ(P )| . . .

• BN
Z (E) = NounZ(P )|AbstZ(T )|AbstZ(S)|AbstZ(N )| . . .

• BA
Z(E) = AdjZ(P )| . . .

• BP
Z(E) = ∀Z(P )| . . .

University of Birmingham 47



Examples

(E ≡ T ) The term λx∈R(x2) denotes the squaring function on the reals.

(E ≡ S) The term λn∈NSetk∈N(k ≤ n) sends a natural number n to the set
{0, 1, . . . , n}.

• The term ιn∈N(2 < n < π) describes natural number 3.

• The set ιU : SET (3 ∈ U ∧ |U | = 1) describes the singleton set {3}.

University of Birmingham 48



The Noun-binder of WTT

We allow noun comprehension, i.e. the construction of a noun.

The binder Noun is used for an indefinite description:
a such and such, such that . . . .

NounZ(P ), stands for a noun saying of Z that P .

Examples:

• The noun Nounx∈R(5 < x < 10) is a real number between 5 and 10 .

• NounV : SET (|V | = 2) is a set with two elements.

University of Birmingham 49



The Abst-binder of WTT

The Abst-binder abstracts from a term T , a set S or a noun N and delivers a
noun.

Examples:

(E ≡ T ) Abstn∈N(n2) represents a term n2 for some natural number n, i.e. the square
of some natural number .

(E ≡ S) Abstn∈NSetx∈R(x > n) represents a set {x ∈ R|x > n} for some natural
number n, i.e. an interval of the form (n,∞), with n ∈ N.

(E ≡ N ) Abstn∈NNounx∈R(10n ≤ x < 10n+1) represents a real number in the interval
[10n, 10n + 1) for some n, i.e. a non-negative real number which, written in
decimal notation, has a zero at the position just before the decimal point.

University of Birmingham 50



The Adj-binder of WTT

• Adjectives can be constructed with the Adj-binder.

• One can read AdjZ(P ) as: the adjective saying of Z that P .

• E.g.: Adjn∈N
(∃k∈N(n = k2 + 1)) is an adjective saying of a natural number

that it is a square plus 1.

• One could give this adjective a name, say oversquare and hence say things like
5 is oversquare or Let m be an oversquare number .

University of Birmingham 51



Phrases of WTT

Phrases can be terms, sets, nouns or adjectives:

T = CT (
→
P)|BT

Z(E)|VT S = CS(
→
P)|BS

Z(E)|VS

N = CN (
→
P)|BNZ (E)|AN A = CA(

→
P)|BAZ(E).

We already gave examples of CT (
→
P), CS(

→
P), CN(

→
P) and CA(

→
P) and of BT

Z(E),
BS
Z(E), BN

Z (E) and BA
Z(E).

The combination AN gives a (new) noun which is a combination of an adjective
and a noun. E.g.: isosceles triangle, convergent series.

University of Birmingham 52



Statements of WTT

Abstract syntax for the category of statements is: P = CP (
→
P)|BP

Z(E)|VP .

Examples of CP (
→
P) and of BP

Z(E) (with the ∀-binder for BP ) were already given.

The abstract syntax for the set T of typing statements (T ⊆ P ) is:
T = S : SET |S : STAT |T : S|T : N|T : A.

Examples of these cases include: Setn∈N(n ≤ 2) : SET , p ∧ q : STAT , 3 ∈ N,1

AB : an edge of 4ABC, λx∈R(x2) : differentiable.

1As this example shows, we often replace t : s by t ∈ s, with abuse of notation.

University of Birmingham 53



Definitions of WTT

• The category D = Dϕ|DP of definitions introduces new constants.

• We distinguish between phrase definitions Dϕ and statement definitions DP .

• Phrase definitions fix a constant representing a phrase.

• Statement definitions introduce a constant embedded in a statement.

• In definitions, the defined constant is separated from the phrase or statement
it represents by the symbol “:=”.

University of Birmingham 54



Phrase definitions of WTT
We take Dϕ = CT (

→
V ) := T | CS(

→
V ) := S | CN(

→
V ) := N | CA(

→
V ) := A

Examples of phrase definitions are:

(C ≡ CT ) the arithmetic mean of a and b := ιz∈R(z = 1
2(a + b)),

(C ≡ CS) R
+ := Setx∈R(x > 0),

(C ≡ CN ) a unit of G with respect to · := Noune∈G(∀a∈G(a · e = e · a = a))

(C ≡ CA) prime := Adjn∈N
(n > 1 ∧ ∀k,l∈N(n = k · l⇒ k = 1 ∨ l = 1)).

The variable lists in the four examples are: (a, b), ( ), (G, ·), ( ). These variables
must be introduced (declared) in a context.

For the first definition, such a context can be e.g. a : R, b : R.

For the third definition the context is: G : SET , · : G→ G.

University of Birmingham 55



Statement definitions of WTT

DP = CP (
→
V ) := P is the category of statement definitions defining constant

CP .

For example in a context like: Let a and b be lines:

(C ≡ CP ) a is parallel to b := ¬∃P : a point(P lies on a ∧ P lies on b).

University of Birmingham 56



Contexts of WTT

A context Γ is a list of declarations Z and statements P :

ΓI = ∅ | ΓI,Z | ΓI, P.

A declaration in a context represents the introduction of a variable of a known
type.

A statement in a context stands for an assumption.

University of Birmingham 57



Lines of WTT

A line l contains either a statement or a definition, relative to a context:

l = ΓI . P | ΓI .D.

The symbol . is a separation marker between the context and the statement or
definition.

Here are two examples of lines:

A statement line: x : N, y : N, x < y . x2 < y2 ,

A definition line: x : R, x > 0 . ln(x) := ιy∈R(ey = x) .

University of Birmingham 58



Books of WTT

A book B is a list of lines: B = ∅ | B ◦ l.

A simple example of a book consisting of two lines is the following:

x : R, x > 0 . ln(x) := ιy∈R(ey = x) ◦

∅ . ln(e3) = 3 .

University of Birmingham 59



MathLang’s Grammatical categories

They extend those of WTT with blocks and flags.

T terms

S sets

N nouns

A adjectives

P statements

D definitions

Z declarations

Γ contexts with flags

L lines

K blocks

B books

University of Birmingham 60



The Grammatical Categories of MathLang

Let M be the set of ..., y a natural number,... if x belongs to M

S T N
Z Z

Γ

then x + y = y + x

T S

T T T T

P

T T
P

L

Figure 4: A mathematical line and its grammatical categories

University of Birmingham 61



CML MathLang
document

MathLang
formal structure

Later
computations

Similar

Translation
Automatic

computations

CML
produced

Figure 5: Translation process of MathLang

University of Birmingham 62



Derivation rules of WTT

(1) B is a weakly well-typed book: ` B :: B.

(2) Γ is a weakly well-typed context relative to book B: B ` Γ :: ΓI.

(3) t is a weakly well-typed term, etc., relative to book B and context Γ:

B; Γ ` t :: T, B; Γ ` s :: S, B; Γ ` n :: N,
B; Γ ` a :: A, B; Γ ` p :: P, B; Γ ` d :: D

OK(B; Γ). stands for: ` B :: B, and B ` Γ :: ΓI

University of Birmingham 63



A preface for a book B could look like:

constant name weak type constant name weak type
R S ∪ S × S → S√

T → T ≥ T × T → P
+ T × T → T ∧ P × P → P

• R has no parameters and is a set.

• √
is a constant with one parameter, a term, delivering a term.

• ≥ is a constant with two parameters, terms, delivering a statement.

• prefcons(B) = {R,
√

, +,∪,≥,∧}.

University of Birmingham 64



• dvar(∅) = ∅ dvar(Γ′, x : W ) = dvar(Γ′), x dvar(Γ′, P ) = dvar(Γ′)

OK(B; Γ), x ∈ VT/S/P, x ∈ dvar(Γ)
B; Γ ` x :: T/S/P

(var)

B; Γ ` n :: N , B; Γ ` a :: A
B; Γ ` an :: N

(adj−noun)

` ∅ :: B
(emp−book)

B; Γ ` p :: P
` B ◦ Γ . p :: B

B; Γ ` d :: D
` B ◦ Γ . d :: B

(book−ext)

University of Birmingham 65



Example in WTT

Definition 2. A Fermat-sum is a natural number which is the sum of
two squares of natural numbers.

Lemma 3. The product of a square and a Fermat-sum is a Fermat sum.

Figure 6: Fermat-sum example: original text

A Wtt-translation could be the following small Wtt-book B of 2 lines:

a Fermat-sum := Nounn∈N∃k∈N∃l∈N(n = k2 + l2)

∀u: a square∀v: a Fermat-sum(uv : a Fermat-sum)

University of Birmingham 66



Fermat-sum () :=

Noun

n : N

∃ k : N , ∃ l : N , n = k
2

+ l
2

(1)

∀ u : square , ∀ v : Fermat-sum , u ∗ v : Fermat-sum (2)

Figure 7: Fermat-sum example: symbolic structural view of MathLang

University of Birmingham 67



Definition 4. [Fermat-sum]

A Fermat-sum is

a natural number which is the sum of two squares of natural numbers . 1

Lemma 5.

The product of a square and a Fermat-sum is a Fermat-sum . 2

Figure 8: Fermat-sum example: Cml view of MathLang

University of Birmingham 68



Another MathLang example

T Terms S Sets N Nouns P Statements Z Declarations Γ Context

Let M be a set ,

y and x are natural numbers ,

if x belongs to M

then x + y = y + x

University of Birmingham 69



MathLang Checking

T Terms S Sets N Nouns P Statements Z Declarations Γ Context

Let M be a set ,

y and x are natural numbers ,

if x belongs to M

then x + y ⇐ error

University of Birmingham 70



Comparaison with other work

CML
MathLang's

approach
TPs'

approach
OMDoc's

approach
WTT's

approach

Figure 9: Approaches

University of Birmingham 71



Comparaison with other work

• No theorem provers provide an independent language for describing
mathematical content in such a manner that the goals 1..4 are true.

• Existing mathematical vernaculars are not ready for immediate use, and if
accessible for a mathematical user, then with great difficulty.

• Galina usable as a language of commands for Coq. Not meant as a first step
in formalization as MathLang is.

• The built-in version of the mathematical vernacular of ΩMEGA is meant to
give the user on request a mathematics-like computer view of an already
checked proof. It has the same drawbacks as Galina.

• The basic languages of Mizar and Isar preserve the mathematical content and
have proven to be suited for expressing large corpora of mathematical content.
Their syntax is, however, rather complicated and requires much of an ordinary
user to become acquainted with it.

University of Birmingham 72



• In the Theorema project computer algebra systems, the provers are designed
to imitate the proof style humans employ in their proving attempts. The
proofs can be produced in human-readable style. However, this is done by
post-processing a formal proof in natural language.

• The typed functional programming language GF defines languages such as
fragments of natural languages, programming languages and formal calculi.
GF is based on Martin-Löf’s type theory.

University of Birmingham 73



• We do not at all assume/prefer one type theory instead of another.

• The formalisation of a language of mathematics should separate the questions:

– which type theory is necessary for which part of mathematics
– which language should mathematics be written in.

• Mathematicians don’t usually know or work with type theories.

• Mathematicians usually do mathematics (manipulations, calculations, etc), but
are not interested in general in reasoning about mathematics.

University of Birmingham 74



References

[1] C. Burali-Forti. Una questione sui numeri transfiniti. Rendiconti del Circolo
Matematico di Palermo, 11:154–164, 1897. English translation in [16], pages
104–112.

[2] G. Cantor. Beiträge zur Begründung der transfiniten Mengenlehre (Erster
Artikel). Mathematische Annalen, 46:481–512, 1895.

[3] G. Cantor. Beiträge zur Begründung der transfiniten Mengenlehre (Zweiter
Artikel). Mathematische Annalen, 49:207–246, 1897.

[4] A.-L. Cauchy. Cours d’Analyse de l’Ecole Royale Polytechnique. Debure,
Paris, 1821. Also as Œuvres Complètes (2), volume III, Gauthier-Villars, Paris,
1897.

University of Birmingham 75



[5] A. Church. A formulation of the simple theory of types. The Journal of
Symbolic Logic, 5:56–68, 1940.

[6] D.T. van Daalen. The Language Theory of Automath. PhD thesis, Eindhoven
University of Technology, 1980.

[7] R. Dedekind. Stetigkeit und irrationale Zahlen. Vieweg & Sohn,
Braunschweig, 1872.

[8] D.R. Dowty. Introduction to Montague Semantics. Kluwer Academic
Publishers, 1980.

[9] G. Frege. Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache
des reinen Denkens. Nebert, Halle, 1879. Also in [16], pages 1–82.

[10] G. Frege. Grundlagen der Arithmetik, eine logisch-mathematische
Untersuchung über den Begriff der Zahl. , Breslau, 1884.

University of Birmingham 76



[11] G. Frege. Grundgesetze der Arithmetik, begriffschriftlich abgeleitet, volume I.
Pohle, Jena, 1892. Reprinted 1962 (Olms, Hildesheim).

[12] G. Frege. Über Sinn und Bedeutung. Zeitschrift für Philosophie und
philosophische Kritik, new series, 100:25–50, 1892. English translation in [?],
pages 157–177.

[13] G. Frege. Ueber die Begriffschrift des Herrn Peano und meine eigene.
Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft
der Wissenschaften zu Leipzig, Mathematisch-physikalische Klasse 48, pages
361–378, 1896. English translation in [?], pages 234–248.

[14] G. Frege. Letter to Russell. English translation in [16], pages 127–128, 1902.

[15] G. Frege. Grundgesetze der Arithmetik, begriffschriftlich abgeleitet,
volume II. Pohle, Jena, 1903. Reprinted 1962 (Olms, Hildesheim).

[Hea56] Heath. The 13 Books of Euclid’s Elements. Dover, 1956.

University of Birmingham 77



[16] Heijenoort, J. v. (ed.): 1967, From Frege to Gödel: A Source Book
in Mathematical Logic, 1879–1931. Cambridge, Massachusetts: Harvard
University Press.

[17] D. Hilbert and W. Ackermann. Grundzüge der Theoretischen Logik. Die
Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen, Band
XXVII. Springer Verlag, Berlin, first edition, 1928.

[18] Kamareddine, F., L. Laan, and R. Nederpelt: 2002, ‘Types in logic and
mathematics before 1940’. Bulletin of Symbolic Logic 8(2), 185–245.

[19] Kamareddine, F., and R. Nederpelt: 2004, A refinement of de Bruijn’s formal
language of mathematics. Journal of Logic, Language and Information. Kluwer
Academic Publishers.

[20] Kamareddine, F., Maarek, M., and Wells, J.B.: 2004, MathLang: An
experience driven language of mathematics, Electronic Notes in Theoretical
Computer Science 93C, pages 123-145. Elsevier.

University of Birmingham 78



[21] F. Kamaredine, M Maarek, and J.B. Wells. Flexible encoding of mathematics
on the computer. 2004.

[22] F. Kamareddine, T. Laan, and R. Nederpelt. Revisiting the notion of
function. Logic and Algebraic programming, 54:65–107, 2003.

[Lan30] Edmund Landau. Grundlagen der Analysis. Chelsea, 1930.

[Lan51] Edmund Landau. Foundations of Analysis. Chelsea, 1951. Translation
of [Lan30] by F. Steinhardt.

[23] MacLane, S.: 1972, Categories for the Working Mathematician. Springer.

[24] G. Peano. Arithmetices principia, nova methodo exposita. Bocca, Turin,
1889. English translation in [16], pages 83–97.

[25] G. Peano. Formulaire de Mathématique. Bocca, Turin, 1894–1908. 5
successive versions; the final edition issued as Formulario Mathematico.

University of Birmingham 79



[26] F.P. Ramsey. The foundations of mathematics. Proceedings of the London
Mathematical Society, 2nd series, 25:338–384, 1926.

[27] J.B. Rosser. Highlights of the history of the lambda-calculus. Annals of the
History of Computing, 6(4):337–349, 1984.

[28] B. Russell. Letter to Frege. English translation in [16], pages 124–125, 1902.

[29] B. Russell. The Principles of Mathematics. Allen & Unwin, London, 1903.

[30] B. Russell. Mathematical logic as based on the theory of types. American
Journal of Mathematics, 30:222–262, 1908. Also in [16], pages 150–182.

[31] M. Schönfinkel. Über die Bausteine der mathematischen Logik.
Mathematische Annalen, 92:305–316, 1924. Also in [16], pages 355–366.

[32] Whitehead, A. and B. Russell: 19101, 19272, Principia Mathematica, Vol. I,
II, III. Cambridge University Press.

University of Birmingham 80



[33] Zermelo, E.: 1908, ‘Untersuchungen über die Grundlagen der Mengenlehre’.
Math. Annalen 65, 261–281.

University of Birmingham 81


