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The Goal: Open borders between mathematics, logic and

computation

• Ordinary mathematicians avoid formal mathematical logic.

• Ordinary mathematicians avoid proof checking (via a computer).

• Ordinary mathematicians may use a computer for computation: there are over
1 million people who use mathematica (including linguists, engineers, etc.).

• Mathematicians may also use other computer forms like Maple, Latex, etc.

• But we are not interested in only libraries or computation or text editing.

• We want freedeom of movement between mathematics, logic and computation.

• At every stage, we must have the choice of the level of formalilty and the
depth of computation.
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Common Mathematical Language of mathematicians: Cml

+ Cml is expressive: it has linguistic categories like proofs and theorems.

+ Cml has been refined by intensive use and is rooted in long traditions.

+ Cml is approved by most mathematicians as a communication medium.

+ Cml accommodates many branches of mathematics, and is adaptable to new
ones.

– Since Cml is based on natural language, it is informal and ambiguous.

– Cml is incomplete: Much is left implicit, appealing to the reader’s intuition.

– Cml is poorly organised: In a Cml text, many structural aspects are omitted.

– Cml is automation-unfriendly: A Cml text is a plain text and cannot be easily
automated.
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A Cml-text

From chapter 1, § 2 of E. Landau’s Foundations of Analysis [Lan51].

Theorem 6. [Commutative Law of Addition]

x + y = y + x.

Proof Fix y, and M be the set of all x
for which the assertion holds.

I) We have

y + 1 = y
′
,

and furthermore, by the construction in

the proof of Theorem 4,

1 + y = y
′
,

so that
1 + y = y + 1

and 1 belongs to M.

II) If x belongs to M, then

x + y = y + x,

Therefore

(x + y)
′
= (y + x)

′
= y + x

′
.

By the construction in the proof of
Theorem 4, we have

x
′
+ y = (x + y)

′
,

hence

x′ + y = y + x′,

so that x′ belongs to M. The assertion

therefore holds for all x. 2
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LATEX code
draft documents ✓

public documents ✓

computations and proofs ✗
\begin{theorem}[Commutative Law of Addition]\label{theorem:6}

$$x+y=y+x.$$

\end{theorem}
\begin{proof}

Fix $y$, and $\mathfrak{M}$ be the set of all $x$ for which the

assertion holds.

\begin{enumerate}
\item We have $$y+1=y’,$$

and furthermore, by the construction in

the proof of Theorem~\ref{theorem:4}, $$1+y=y’,$$

so that $$1+y=y+1$$

and $1$ belongs to $\mathfrak{M}$.
\item If $x$ belongs to $\mathfrak{M}$, then $$x+y=y+x,$$

Therefore

$$(x+y)’=(y+x)’=y+x’.$$

By the construction in the proof of

Theorem~\ref{theorem:4}, we have $$x’+y=(x+y)’,$$

hence

$$x’+y=y+x’,$$

so that $x’$ belongs to $\mathfrak{M}$.
\end{enumerate}
The assertion therefore holds for all $x$.

\end{proof}
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The problem with formal logic

• Frege, Begriffsschrift [1]: I found the inadequacy of language to be an obstacle;
no matter how unwieldy the expressions I was ready to accept, I was less and
less able, as the relations became more and more complex, to attain precision

• In 1879, he wrote the Begriffsschrift, whose first purpose is to provide us with
the most reliable test of the validity of a chain of inferences.

• He wrote the Grundlagen and Grundgesetze der Arithmetik where mathematics
is seen as a branch of logic and arithmetic is described in Begriffsschrift.

• In 1902, Russell wrote a letter to Frege [1] informing him of a paradox (see [3]).

• To avoid the paradox, Russell used type theory in the famous Principia
Mathematica [7] where mathematics was founded on logic.

• Advances were also made in set theory [8], category theory [6], etc., each being
advocated as a better foundation for mathematics.
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• But, none of the logical languages of the 20th century satisfies the criteria
expected of a language of mathematics.

– A logical language does not have mathematico-linguistic categories, is not
universal to all mathematicians, and is not a satisfactory communication
medium.

– Logical languages make fixed choices (first versus higher order, predicative
versus impredicative, constructive versus classical, types or sets, etc.). But
different parts of mathematics need different choices and there is no universal
agreement as to which is the best formalism.

– A logician writes in logic their understanding of a mathematical-text as a
formal, complete text which is structured considerably unlike the original,
and is of little use to the ordinary mathematician.

– Mathematicians do not want to use formal logic and have for centuries done
mathematics without it.

• So, mathematicians kept to Cml.

• We would like to find an alternative to Cml which avoids some of the features
of the logical languages which made them unattractive to mathematicians.
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The problem with fully checked proofs (on computer)

• In 1967 the famous mathematician de Bruijn began work on logical languages
for complete books of mathematics that can be fully checked by machine.

• People are prone to error, so if a machine can do proof checking, we expect
fewer errors.

• Most mathematicians doubted de Bruijn could achieve success, and computer
scientists had no interest at all.

• However, he persevered and built Automath (AUTOmated MATHematics).

• Today, there is much interest in many approaches to proof checking for
verification of computer hardware and software.

• Many theorem provers have been built to mechanically check mathematics and
computer science reasoning (e.g. Isabelle, HOL, Coq, etc.).
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• A Cml-text is structured differently from a computer-checked text proving the
same facts. Making the latter involves extensive knowledge and many choices:

– First, the needed choices include:
∗ The choice of the underlying logical system.
∗ The choice of how concepts are implemented (equational reasoning,

equivalences and classes, partial functions, induction, etc.).
∗ The choice of the formal system: a type theory (dependent?), a set theory

(ZF? FM?), a category theory? etc.
∗ The choice of the proof checker: Automath, Isabelle, Coq, PVS, Mizar...

– Any informal reasoning in a Cml-text will cause headaches as it is hard to
turn a big step into a (series of) syntactic proof expressions.

– Then the Cml-text is reformulated in a fully complete syntactic formalism
where every detail is spelled out. Very long expressions replace a clear
Cml-text. The new text is useless to ordinary mathematicians.

• So, automation is user-unfriendly for the mathematician/computer scientist.

• It is the hope that the alternative to Cml may help in dividing the jump from
informal mathematics to a fully formal one into smaller more informed steps.

King’s college, London 8



Coq

draft documents ✗
public documents ✗

computations and proofs ✓

From Module Arith.Plus of Coq standard library (http://coq.inria.fr/).

Lemma plus_sym : (n,m:nat)(n+m)=(m+n).

Proof.

Intros n m ; Elim n ; Simpl_rew ; Auto with arith.

Intros y H ; Elim (plus_n_Sm m y) ; Simpl_rew ; Auto with arith.

Qed.
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Where do we start? de Bruijn’s Mathematical Vernacular MV

• De Bruijn’s Automath not just [...] as a technical system for verification
of mathematical texts, it was rather a life style with its attitudes towards
understanding, developing and teaching mathematics....The way mathematical
material is to be presented to the system should correspond to the usual way
we write mathematics. The only things to be added should be details that are
usually omitted in standard mathematics.

• MV is faithful to Cml yet is formal and avoids ambiguities.

• MV is close to the usual way in which mathematicians write.

• MV has a syntax based on linguistic categories not on set/type theory.

• MV is weak as regards correctness: the rules of MV mostly concern linguistic
correctness, its types are mostly linguistic so that the formal translation into
MV is satisfactory as a readable, well-organized text.
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Problems with MV

• MV makes many logical and mathematical choices which are best postponed.

• MV incorporates certain correctness requirements, there is for example a
hierarchy of types corresponding with sets and subsets.

• MV is already on its way to a full formalization, while we want to remain
closer to a given informal mathematical content.

• We want a formal language MathLang which •has the advantages of Cml

but not its disadvantages and •respects Cml content.

• The above items mean that MV fails in this aim.
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What is the aim for MathLang?

Can we formalise a Cml text avoiding as much as possible the ambiguities of
natural language while still guaranteeing the following four goals?

1. The formalised text looks very much like the original Cml text (and hence the
content of the original Cml text is respected).

2. The formalised text can be fully manipulated and searched.

3. Steps can be made to do computation (via computer algebra systems) and
proof checking (via proof checkers) on the formalised text.

4. This formalisation of text is as simple a process to the mathematician as LATEX
is.
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Starting point for MathLang: MV and WTT
• MV is the driving force behind MathLang. But MV fails on goal 1.

• Weak Type Theory, WTT [4], started from MV, but attempted to avoid its
problems.

• WTT was intended as a a 2nd language for mathematicians which satisfies
many criteria:

a1. WTT is formal, suitable for computerization.

a2. WTT helps mathematicians precisely identify the structure where they work.

a3. WTT makes an expert/teacher/student aware of the complexity of a
mathematical notion.

a4. WTT encourages thinking about the interdependencies of notions (e.g., in
which part of the chapter the definition holds), so WTT texts are better
structured than Cml texts.
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a5. WTT respects all linguistic categories in the special ways they are used by
mathematicians, e.g., nouns, adjectives, etc.

a6. WTT does not restrict the mathematician to set/type/category theory.

a7. Unlike set/type theory, WTT has basic notions needed for text such as
definition, theorem, step in a proof, section, etc.

a8. The ambiguities in the Cml-texts disappear in the translation to WTT. For
example, the anaphoric obscurities in Cml are resolved in WTT by the strict
context management.

a9. Although the Cml text and its initial translation into WTT are incomplete,
WTT has additional levels supporting more rigor.

One can define further translations into more logically complete versions.

King’s college, London 14



Improvements of MathLang over WTT

• Although WTT succeeds in many ways and is a considerable improvement on
MV, it still fails on goal 1. A WTT text is not close to its Cml original.

• MathLang starts from WTT, extends its syntax and adds natural language as
a top level.

• A MathLang text remains close to its Cml original and hence yields reliable
formalizations.
The Cml-text is covered exactly in its formal version in the MathLang-text.
One can easily check this.

• We are using MathLang to translate two Cml-
books [Lan51, Hea56]
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MathLang

draft documents ✓
public documents ✓

computations and proofs ✓

• MathLang describes the grammatical and reasoning structure of mathematical
texts

• A weak type system checks MathLang documents at a grammatical level

• MathLang eventually should support all encoding uses
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CML

MathLang
XML text

Valid MathLang
XML text

MathLang
CML output

Translating

MathLang
Checking

MathLang XSL
transforming

Adding
NL

If typing
error

Adding
NL

Documents

User's
actions

Computer's
actions

Figure 1: Translation
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MathLang’s Grammatical categories

They extend those of WTT with blocks and flags.

T terms

S sets

N nouns

A adjectives

P statements

D definitions

Z declarations

Γ contexts with flags

L lines

K blocks

B books
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The Grammatical Categories of MathLang

Let M be the set of ..., y a natural number,... if x belongs to M

S T N
Z Z

Γ

then x + y = y + x

T S

T T T T

P

T T
P

L

Figure 2: A mathematical line and its grammatical categories
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Derivation rules

(1) B is a weakly well-typed book: ` B :: B.

(2) Γ is a weakly well-typed context relative to book B: B ` Γ :: ΓI.

(3) t is a weakly well-typed term, etc., relative to book B and context Γ:

B; Γ ` t :: T, B; Γ ` s :: S, B; Γ ` n :: N,
B; Γ ` a :: A, B; Γ ` p :: P, B; Γ ` d :: D

OK(B; Γ). stands for: ` B :: B, and B ` Γ :: ΓI
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A preface for a book B could look like:

constant name weak type constant name weak type
R S ∪ S × S → S√

T → T ≥ T × T → P
+ T × T → T ∧ P × P → P

• R has no parameters and is a set.

• √
is a constant with one parameter, a term, delivering a term.

• ≥ is a constant with two parameters, terms, delivering a statement.

• prefcons(B) = {R,
√

, +,∪,≥,∧}.
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• dvar(∅) = ∅ dvar(Γ′, x : W ) = dvar(Γ′), x dvar(Γ′, P ) = dvar(Γ′)

OK(B; Γ), x ∈ VT/S/P, x ∈ dvar(Γ)
B; Γ ` x :: T/S/P

(var)

B; Γ ` n :: N , B; Γ ` a :: A
B; Γ ` an :: N

(adj−noun)

` ∅ :: B
(emp−book)

B; Γ ` p :: P
` B ◦ Γ . p :: B

B; Γ ` d :: D
` B ◦ Γ . d :: B

(book−ext)
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Example
Cml: the square root of the third power of a natural number

MathLang: Abstn:N(
√

n3)

The preface is:

constant name weak type
(i) 3 T → T
(ii)

√
T → T

(iii) N S
(iv) Abst T → N

The categories are:

subexp category subexp category subexp category

n T n T Abstn:N(
√

n3) N
n3 T N S√

n3 T n : N Z

We need to derive B; Γ ` Abstn:N(
√

n3) :: N for some B and Γ.

But it is clear that B = Γ = ∅.
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(1) ` ∅ :: B (emp−book)
(2) ∅ ` ∅ :: ΓI (emp−cont, 1)
(3) ∅; ∅ ` N :: S (ext−cons, 1, 2, iii)
(4) ∅ ` n : N :: ΓI (term−decl, 1, 2, 3, ∗)
(5) ∅;n : N ` n :: T (var, 1, 4, ∗)
(6) ∅;n : N ` n3 :: T (ext−cons, 1, 4, i, 5)

(7) ∅;n : N `

√
n3 :: T (ext−cons, 1, 4, ii, 6)

(8) ∅; ∅ ` Abstn:N(
√

n3) :: N (bind, 1, 4, iv, 7)

Figure 3: Derivation that Abstn:N(
√

n3) is a noun
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Properties of MathLang

• Every variable is declared If B; Γ ` Φ :: W then FV (Φ) ⊆ dvar(Γ).

• Correct subcontexts If B ` Γ :: ΓI and Γ′ ⊆ Γ then B ` Γ′ :: ΓI.

• Correct subbooks If ` B :: B and B′ ⊆ B then ` B′ :: B.

• Free constants are either declared in book or in contexts If B; Γ ` Φ :: W,
then FC(Φ) ⊆ prefcons(B) ∪ defcons(B).

• Types are unique If B; Γ ` A :: W1 and B; Γ ` A :: W2, then W1 ≡ W2.

• Weak type checking is decidable there is a decision procedure for the question
B; Γ ` Φ :: W ?.

• Weak typability is computable there is a procedure deciding whether an answer
exists for B; Γ ` Φ :: ? and if so, delivering the answer.
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Definition unfolding

• Let ` B :: B and Γ . c(x1, . . . , xn) := Φ a line in B.

• We write B ` c(P1, . . . , Pn)
δ→ Φ[xi := Pi].

• Church-Rosser If B ` Φ
δ→→ Φ1 and B ` Φ

δ→→ Φ2 then there exists Φ3

such that B ` Φ1
δ→→ Φ3 andf B ` Φ2

δ→→ Φ3.

• Strong Normalisation Let ` B :: B. For all subformulas Ψ occurring in B,

relation
δ→ is strongly normalizing (i.e., definition unfolding inside a well-typed

book is a well-founded procedure).
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Comparaison with other work

• No theorem provers provide an independent language for describing
mathematical content in such a manner that the goals 1..4 are sufficiently
accounted for.

• Existing mathematical vernaculars are not ready for immediate use, and if
accessible for a mathematical user, then with great difficulty.

• Galina usable as a language of commands for Coq. Not meant as a first step
in formalization as MathLang is.

• The built-in version of the mathematical vernacular of ΩMEGA is meant to
give the user on request a mathematics-like computer view of an already
checked proof. It has the same drawbacks as Galina.

• The basic languages of Mizar and Isar are close to the reliability criterion and
have proven to be suited for expressing large corpora of mathematical content.

King’s college, London 27



Their syntax is, however, rather complicated and requires much of an ordinary
user to become acquainted with it.

• In the Theorema project computer algebra systems, the provers are designed
to imitate the proof style humans employ in their proving attempts. The
proofs can be produced in human-readable style. However, this is done by
post-processing a formal proof in natural language.

• The typed functional programming language GF defines languages such as
fragments of natural languages, programming languages and formal calculi.
GF is based on Martin-Löf’s type theory.

We do not at all assume/prefer one type theory instead of another.
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• The formalisation of a language of mathematics should separate the questions:

– which type theory is necessary for which part of mathematics
– which language should mathematics be written in.

• Mathematicians don’t usually know or work with type theories.

• Mathematicians usually do mathematics (manipulations, calculations, etc), but
are not interested in general in reasoning about mathematics.
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MathLang example

T Terms S Sets N Nouns P Statements Z Declarations Γ Context

Let M be a set ,

y and x are natural numbers ,

if x belongs to M

then x + y = y + x
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MathLang Checking

T Terms S Sets N Nouns P Statements Z Declarations Γ Context

Let M be a set ,

y and x are natural numbers ,

if x belongs to M

then x + y ⇐ error
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MathLang example

blocks flags references

Theorem 6. [Commutative Law of Addition]
x + y = y + x.

Proof Fix y, and M be the set of all

x for which the assertion holds.
I) We have

y + 1 = y′,

and furthermore, by the construction in

the proof of Theorem 4,

1 + y = y′,

so that

1 + y = y + 1

and 1 belongs to M.
II) If x belongs to M, then

x + y = y + x,

Therefore

(x + y)′ = (y + x)′ = y + x′.

By the construction in the proof of

Theorem 4, we have

x′ + y = (x + y)′,

hence

x′ + y = y + x′,

so that x′ belongs to M. The assertion
therefore holds for all x.
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MathLang skeleton

x : N, y : N �Th6(x, y) := x + y = y + x (97)
Proof Theorem 6 {2.5.4}

Proof Theorem 6 part I {2.5.4.1}
y : N

M : SET
∀x:MTh6(x, y)

(Def +(38)) �y + 1 = y′ (98)

{2.5.1} �1 + y = y′ (99)
(98), (99) �1 + y = y + 1 (100)
(100) �Th6(1, y) (101)
(101) �1 : M (102)

Proof Theorem 6 part II {2.5.4.2}
x : M

Th6(x, y) �x + y = y + x (103)

(103) �(x + y)′ = (y + x)′ (104)

(Def +(39)) �(y + x)′ = y + x′ (105)

(104), (105) �(x + y)′ = y + x′ (106)

{2.5.2} �x′ + y = (x + y)′ (107)

(107), (Def +(39)) �x′ + y = y + x′ (108)

(108) �Th6(x′, y) (109)

(109) �x′ : M (110)
Ax5(M, (102), (110)) �N ⊂ M (111)

(111) �∀x:N∀y:NTh6(x, y) (112)
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