
The formalisation and computerization of

languages of mathematics: The case for

interleaving natural language with the formal

language and how can this be computerised

Fairouz Kamareddine
www.macs.hw.ac.uk/~fairouz/talks/talks2004/leipzig-tutorials04.pdf∗

3-4 May 2004

∗Parts of this talk are based on Kamareddine [2001]; Kamareddine et al. [2002]; Kamaredine and Nederpelt [2004],
and on joint work with Maarek and Wells in Kamaredine et al. [2004b,a]

University of Leipzig

A Century of Complexity

1900 2000

Main way information
travels in society:

paper electric signals, radio

Number of parts in
complex machine:

10,000 (locomotive) 1,000,000,000 (CPU)

Worst consequences of
single machine failure:

100s die end of all life?

Likelihood a machine
includes a computer:

very low very high

University of Leipzig 1

The Need for Formalism

• Because of the increasing interdependency of systems and the faster and
more automatic travel of information, failures can have a wide impact. So
correctness is important.

• Modern technological systems are just too complicated for humans to reason
about unaided, so automation is needed.

• Systems have so many possible states that testing is often impractical. It
seems that proofs are needed to cover infinitely many situations.

• So some kind of formalism is needed to aid in design and to ensure safety.

University of Leipzig 2

What Kind of Formalisms?

A reasoning formalism should at least be:

• Correct: Only correct statements can be “proven”.

• Adequate: Needed properties in the problem domain can be stated and proved.

• Feasible: The resources (money, time) used in stating and proving needed
properties must be within practical limits.

University of Leipzig 3

What Kind of Formalisms?

Assuming a minimally acceptable formalism, we would also like it to be:

• Efficient: Costs of both the reasoning process and the thing being reasoned
about should be minimized.

• Supportive of reuse: Slight specification changes should not force reproving
properties for an entire system. Libraries of pre-proved statements should be
well supported.

• Elegant: The core of the reasoning formalism should be as simple as possible,
to aid in reasoning about the formalism itself.

University of Leipzig 4

ULTRA Research ThemesU seful

L ogics
Logic is the foundation for rigorous reasoning. There is an ongoing search for
better logics and for better methods for verifying the correctness of logics.

T ypes
Types are a foundation for making logics more flexible without losing correctness
and safety. Types are also being used increasingly often for analyzing complex
higher-order systems.

R ewriting
Rewriting is using rules of logic, mathematics, or computation in a stepwise
manner. Rewriting theory supports reasoning about equivalences between
propositions or programs and efficient computation strategies.

and their

A utomation
Modern theories of logic, types, and rewriting and the systems to which they
are applied have become so complicated that automation is essential.

University of Leipzig 5

A pplications
Systems of logic, types, and rewriting have applications in the design
and implementation of programming languages and theorem provers, in
mathematics and in natural language.

University of Leipzig 6

Proofs? Logics? What are they?

• A proof is the guarantee of some statement provided by a rigorous explanation
stated using some logic.

• A logic is a formalism for statements and proofs of statements. A logic usually
has axioms (statements “for free”) and rules for combining already proven
statements to prove more statements.

• For example, this is provable in the logic PROP:

A, B, A → B → C ` C

This is not:
A, B, A → D → C 6` C

• Why do we believe the explanation of a proof? Because a proved statement is
derived step by step from explicit assumptions using a trusted logic.

University of Leipzig 7

Logic is an Area of Active Research

• New logics are regularly invented for specialized purposes. Known logics may
be too inflexible for the task. Or they may be too flexible, interfering with
automated proof search.

• Broken logics are regularly invented. A recent example: The 1988 version of the
OCL (Object Constraint Language) sublanguage of UML (Unified Modelling
Language) had Russell’s paradox of a nearly a century earlier! It is still not
known if the revised OCL and/or UML is consistent.

• There has been an explosion of new logics in the 20th century. How do we
know which ones to trust?

University of Leipzig 8

• Assume a problem Π,

– If you give me an algorithm to solve Π, I can check whether this algorithm
really solves Π.

– But, if you ask me to find an algorithm to solve Π, I may go on forever
trying but without success.

• But, this result was already found by Aristotle (384–322 B.C.) who wanted a
set of rules that would be powerful enough for most intuitively valid proofs.
Aristotle correctly stated that proof search is harder than proof checking:

Assume a proposition Φ.

– If you give me a proof of Φ, I can check whether this proof really proves Φ.
– But, if you ask me to find a proof of Φ, I may go on forever trying but

without success.

• Much later than Aristotle, Leibniz (1646–1717) conceived of automated
deduction, i.e., to find

University of Leipzig 9

– a language L in which arbitrary concepts could be formulated, and
– a machine to determine the correctness of statements in L.

Such a machine can not work for every statement according to Aristotle and
(later results by) Gödel and Turing.

University of Leipzig 10

Exercises
• Let b be the barber in village v who shaves all and only those men in v who

do not shave themselves. Does b shave himself or does he not?

• Let R be the set of all and only those sets which do not contain themselves.
Which statement is true: R ∈ R or R 6∈ R?

• Let G be the set of all and only those finite games (i.e. games which end
after a finite number of moves) between two players. Let hg (hypergame) be
a game between two players which works as follows: player 1 chooses a game
g from G, and then g is played between player 2 and player 1. I.e. player 1
chooses g, player 2 makes the first move, player 1 makes the second move and
so on.

– Show that hg is a finite game between two players, and hence include hg in
G.

– Show that G is no longer the set of finite games between two players.

• Take the sentence s to be: “I am not true”. Is such a sentence true or false?

University of Leipzig 11

What are Types?
• Euclid’s Elements (circa 325 B.C.) begins with:

1. A point is that which has no part;
2. A line is breadthless length.

...
15. A circle is a plane figure contained by one line such that all the straight

lines falling upon it from one point among those lying within the figure are
equal to one another.

• Although the above seems to merely define points, lines, and circles, more
importantly it distinguishes between them.

This prevents undesired reasoning, like considering whether two points (instead
of two lines) are parallel.

• Undesired reasoning? Euclid would have said: impossible reasoning. When
considering whether objects are parallel, intuition implicitly forced Euclid to
think about the type of the objects. Because intuition does not support parallel
points, Euclid does not even try such reasoning.

University of Leipzig 12

Why Types are Needed for Logic
• Mathematical systems have become less intuitive, for several reasons:

– very complex or abstract
– formal
– Something without intuition is using the system: a computer.

• Non-intuitive systems are vulnerable to paradoxes. The human brain’s built-in
type machinery can fail to warn against an impossible situation. Reasoning
can proceed obtaining results that may be wrong or paradoxical.

• Example: Russell [1902] and Frege [1902] showed that Naive Set Theory had
a paradox. Let S be “the set of all sets which do not contain themselves”.
Then, both of these are provable:

S ∈ S S /∈ S

• Russell [1908] Russell began the use of types to solve this problem.

University of Leipzig 13

A Quick Introduction to Rewriting

We all know how to do algebra:

(a + b) − a by rule x + y = y + x
= (b + a) − a by rule x − y = x + (−y)

= (b + a) + (−a) by rule (x + y) + z = x + (y + z)

= b + (a + (−a)) by rule x + (−x) = 0

= b + 0 by rule x + 0 = x
= b

Rewriting is the action of replacing a subexpression which is matched by an
instance of one side of a rule by the corresponding instance of the other side of
the same rule. If you know algebra, you understand the basics of rewriting.

University of Leipzig 14

Important Issues in Rewriting

• Orientation: Usually, most rules can only be used from left to right as
in x + 0 → x. Forward use of the oriented rules represents progress in
computation. Unoriented rules usually do trivial work as in x + y = y + x.

• Termination: It is desirable to show that rewriting halts, i.e., to avoid infinite
sequences of the form P → P1 → P2 → · · · .

• Confluence: It is desirable that the result of rewriting is independent of the
order in the rules used. For example, 1 + 2 + 3 should rewrite to 6, no matter
how we evaluate it.

University of Leipzig 15

The invention of computers and computability
• Types have always existed in mathematics, but not explicited until 1879. Euclid

avoided impossible situations (e.g., two parallel points) via classes/types.

• In 19th century, controversies in analysis led to logical precision.
(Cauchy, Dedekind, Cantor, Peano, Frege).

• In 1900, Hilbert posed an impressive list of difficult questions.

• One important question was: given a formula of predicate logic, can we decide
whether the formula is true or false?

• It took more than 30 years to answer this is impossible: Turing Machines,
Goedel’s incompleteness and Church’s λ-calculus.

• f is computable iff f can be computed on a Turing Machine.

• f is computable iff f can be definable in the λ-calculus.

• Types, Logics, and Rewriting have become the heart of Computer Science.

University of Leipzig 16

Higher-Order Rewriting and Logic

• Church’s λ-calculus provides higher-order rewriting, allowing equations like:

f((λx. x + (1/x))5) = f(5 + (1/5)) = f(5 + 0.2) = f(5.2)

• Church [1940b] introduced the simply typed λ-calculus (STLC) and on top of
it his Simple Type Theory (CSTT) to provide paradox-free logic. The modern
descendant of CSTT is the so-called “higher-order logic” (HOL).

University of Leipzig 17

The Convergence of Logics, Types, and Rewriting

• Heyting [1934a], Kolmogorov [1932a], Curry and Feys [1958a] (improved by
Howard [1980a]), and de Bruijn (Kamareddine et al. [2003]) all observed the
“propositions as types” or “proofs as terms” (PAT) correspondence.

• In PAT, not only is the λ-calculus embedded in the propositions as in HOL,
but the structure of proofs is also given by another level of λ-terms. λ-terms
are viewed as proofs of the propositions represented by their types.

• Advantages of PAT include:

– better proof manipulation,
– better independent proof checking,
– the extraction of computer programs from proofs, and
– proving the consistency of the logic via the termination of the rewriting

system.

University of Leipzig 18

The Goal: Open borders between mathematics, linguistics,

logic and computation

• Ordinary mathematicians avoid formal mathematical logic.

• Ordinary mathematicians avoid proof checking (via a computer).

• Ordinary mathematicians may use a computer for computation: there are over
1 million people who use mathematica (including linguists, engineers, etc.).

• Mathematicians may also use other computer forms like Maple, Latex, etc.

• But we are not interested in only libraries or computation or text editing.

• We want freedeom of movement between mathematics, linguistics, logic and
computation.

• At every stage, we must have the choice of the level of formalilty and the
depth of computation.

University of Leipzig 19

Common Mathematical Language of mathematicians: Cml

+ Cml is expressive: it has linguistic categories like proofs and theorems.

+ Cml has been refined by intensive use and is rooted in long traditions.

+ Cml is approved by most mathematicians as a communication medium.

+ Cml accommodates many branches of mathematics, and is adaptable to new
ones.

– Since Cml is based on natural language, it is informal and ambiguous.

– Cml is incomplete: Much is left implicit, appealing to the reader’s intuition.

– Cml is poorly organised: In a Cml text, many structural aspects are omitted.

– Cml is automation-unfriendly: A Cml text is a plain text and cannot be easily
automated.

University of Leipzig 20

A Cml-text

From chapter 1, § 2 of E. Landau’s Foundations of Analysis Landau [1951].

Theorem 6. [Commutative Law of Addition]

x + y = y + x.

Proof Fix y, and M be the set of all x
for which the assertion holds.

I) We have

y + 1 = y
′
,

and furthermore, by the construction in

the proof of Theorem 4,

1 + y = y
′
,

so that
1 + y = y + 1

and 1 belongs to M.

II) If x belongs to M, then

x + y = y + x,

Therefore

(x + y)
′
= (y + x)

′
= y + x

′
.

By the construction in the proof of
Theorem 4, we have

x
′
+ y = (x + y)

′
,

hence

x′ + y = y + x′,

so that x′ belongs to M. The assertion

therefore holds for all x. 2

University of Leipzig 21

LATEX code
draft documents ✓

public documents ✓

computations and proofs ✗
\begin{theorem}[Commutative Law of Addition]\label{theorem:6}

$$x+y=y+x.$$

\end{theorem}
\begin{proof}

Fix y, and \mathfrak{M} be the set of all x for which the

assertion holds.

\begin{enumerate}
\item We have $$y+1=y’,$$

and furthermore, by the construction in

the proof of Theorem~\ref{theorem:4}, $$1+y=y’,$$

so that $$1+y=y+1$$

and 1 belongs to \mathfrak{M}.
\item If x belongs to \mathfrak{M}, then $$x+y=y+x,$$

Therefore

$$(x+y)’=(y+x)’=y+x’.$$

By the construction in the proof of

Theorem~\ref{theorem:4}, we have $$x’+y=(x+y)’,$$

hence

$$x’+y=y+x’,$$

so that $x’$ belongs to \mathfrak{M}.
\end{enumerate}
The assertion therefore holds for all x.

\end{proof}

University of Leipzig 22

The problem with formal logic
• Frege, Begriffsschrift: I found the inadequacy of language to be an obstacle;

no matter how unwieldy the expressions I was ready to accept, I was less and
less able, as the relations became more and more complex, to attain precision

• In 1879, he wrote the Begriffsschrift, whose first purpose is to provide us with
the most reliable test of the validity of a chain of inferences.

• He wrote the Grundlagen and Grundgesetze der Arithmetik where mathematics
is seen as a branch of logic and arithmetic is described in Begriffsschrift.

• In 1902, Russell wrote a letter to Frege (Heijenoort [1967]) informing him of
a paradox (see Kamareddine et al. [2002]).

• To avoid the paradox, Russell used type theory in the famous Principia
Mathematica (Whitehead and Russell [19101, 19272]) where mathematics was
founded on logic.

• Advances were also made in set theory Zermelo [1908], category theory
(MacLane [1972]), etc., each being advocated as a better foundation for
mathematics.

University of Leipzig 23

• But, none of the logical languages of the 20th century satisfies the criteria
expected of a language of mathematics.

– A logical language does not have mathematico-linguistic categories, is not
universal to all mathematicians, and is not a satisfactory communication
medium.

– Logical languages make fixed choices (first versus higher order, predicative
versus impredicative, constructive versus classical, types or sets, etc.). But
different parts of mathematics need different choices and there is no universal
agreement as to which is the best formalism.

– A logician writes in logic their understanding of a mathematical-text as a
formal, complete text which is structured considerably unlike the original,
and is of little use to the ordinary mathematician.

– Mathematicians do not want to use formal logic and have for centuries done
mathematics without it.

• So, mathematicians kept to Cml.

• We would like to find an alternative to Cml which avoids some of the features
of the logical languages which made them unattractive to mathematicians.

University of Leipzig 24

The problem with fully checked proofs (on computer)

• In 1967 the famous mathematician de Bruijn began work on logical languages
for complete books of mathematics that can be fully checked by machine.

• People are prone to error, so if a machine can do proof checking, we expect
fewer errors.

• Most mathematicians doubted de Bruijn could achieve success, and computer
scientists had no interest at all.

• However, he persevered and built Automath (AUTOmated MATHematics).

• Today, there is much interest in many approaches to proof checking for
verification of computer hardware and software.

• Many theorem provers have been built to mechanically check mathematics and
computer science reasoning (e.g. Isabelle, HOL, Coq, etc.).

University of Leipzig 25

• A Cml-text is structured differently from a computer-checked text proving the
same facts. Making the latter involves extensive knowledge and many choices:

– First, the needed choices include:
∗ The choice of the underlying logical system.
∗ The choice of how concepts are implemented (equational reasoning,

equivalences and classes, partial functions, induction, etc.).
∗ The choice of the formal system: a type theory (dependent?), a set theory

(ZF? FM?), a category theory? etc.
∗ The choice of the proof checker: Automath, Isabelle, Coq, PVS, Mizar...

– Any informal reasoning in a Cml-text will cause headaches as it is hard to
turn a big step into a (series of) syntactic proof expressions.

– Then the Cml-text is reformulated in a fully complete syntactic formalism
where every detail is spelled out. Very long expressions replace a clear
Cml-text. The new text is useless to ordinary mathematicians.

• So, automation is user-unfriendly for the mathematician/computer scientist.

• It is the hope that the alternative to Cml may help in dividing the jump from
informal mathematics to a fully formal one into smaller more informed steps.

University of Leipzig 26

Coq

draft documents ✗
public documents ✗

computations and proofs ✓

From Module Arith.Plus of Coq standard library (http://coq.inria.fr/).

Lemma plus_sym : (n,m:nat)(n+m)=(m+n).

Proof.

Intros n m ; Elim n ; Simpl_rew ; Auto with arith.

Intros y H ; Elim (plus_n_Sm m y) ; Simpl_rew ; Auto with arith.

Qed.

University of Leipzig 27

Where do we start? de Bruijn’s Mathematical Vernacular MV

• De Bruijn’s Automath not just [...] as a technical system for verification
of mathematical texts, it was rather a life style with its attitudes towards
understanding, developing and teaching mathematics....The way mathematical
material is to be presented to the system should correspond to the usual way
we write mathematics. The only things to be added should be details that are
usually omitted in standard mathematics.

• MV is faithful to Cml yet is formal and avoids ambiguities.

• MV is close to the usual way in which mathematicians write.

• MV has a syntax based on linguistic categories not on set/type theory.

• MV is weak as regards correctness: the rules of MV mostly concern linguistic
correctness, its types are mostly linguistic so that the formal translation into
MV is satisfactory as a readable, well-organized text.

University of Leipzig 28

Problems with MV

• MV makes many logical and mathematical choices which are best postponed.

• MV incorporates certain correctness requirements, there is for example a
hierarchy of types corresponding with sets and subsets.

• MV is already on its way to a full formalization, while we want to remain
closer to a given informal mathematical content.

• We want a formal language MathLang which •has the advantages of Cml

but not its disadvantages and •respects Cml content.

• The above items mean that MV fails in this aim.

University of Leipzig 29

What is the aim for MathLang?

Can we formalise a Cml text avoiding as much as possible the ambiguities of
natural language while still guaranteeing the following four goals?

1. The formalised text looks very much like the original Cml text (and hence the
content of the original Cml text is respected).

2. The formalised text can be fully manipulated and searched.

3. Steps can be made to do computation (via computer algebra systems) and
proof checking (via proof checkers) on the formalised text.

4. This formalisation of text is as simple a process to the mathematician as LATEX
is.

University of Leipzig 30

Starting point for MathLang: MV and WTT
• MV is the driving force behind MathLang. But MV fails on goal 1.

• Weak Type Theory, WTT Kamaredine and Nederpelt [2004], started from MV,
but attempted to avoid its problems.

• WTT was intended as a a 2nd language for mathematicians which satisfies
many criteria:

a1. WTT is formal, suitable for computerization.

a2. WTT helps mathematicians precisely identify the structure where they work.

a3. WTT makes an expert/teacher/student aware of the complexity of a
mathematical notion.

a4. WTT encourages thinking about the interdependencies of notions (e.g., in
which part of the chapter the definition holds), so WTT texts are better
structured than Cml texts.

University of Leipzig 31

a5. WTT respects all linguistic categories in the special ways they are used by
mathematicians, e.g., nouns, adjectives, etc.

a6. WTT does not restrict the mathematician to set/type/category theory.

a7. Unlike set/type theory, WTT has basic notions needed for text such as
definition, theorem, step in a proof, section, etc.

a8. The ambiguities in the Cml-texts disappear in the translation to WTT. For
example, the anaphoric obscurities in Cml are resolved in WTT by the strict
context management.

a9. Although the Cml text and its initial translation into WTT are incomplete,
WTT has additional levels supporting more rigor.

One can define further translations into more logically complete versions.

University of Leipzig 32

Improvements of MathLang over WTT

• Although WTT succeeds in many ways and is a considerable improvement on
MV, it still fails on goal 1. A WTT text is not close to its original Cml.

• MathLang starts from WTT, extends its syntax and adds natural language as
a top level.

• A MathLang text remains close to its original Cml.

• The Cml-text is covered exactly in its formal version in the MathLang-text.

• We are using MathLang to translate two Cml-
books Landau [1951]; Heath [1956]

University of Leipzig 33

Syntax of type free lambda calculus

• V = {x, y, z, . . . } is an infinite set of term variables. We let v, v1, v2, v
′, v′′, · · ·

range over V

• M ::= V | (λV .M) | (MM). We let A, B,C · · · range over M.

• Examples (λx.x), (λx.(xx)), (λx.(λy.x)), (λx.(λy.(xy))), and
((λx.x)(λx.x)).

• This simple language is surprisingly rich. Its richness comes from the freedom to
create and apply functions, especially higher order functions to other functions
(and even to themselves).

University of Leipzig 34

Meaning of Terms
• Assume a model D of the lambda calculus. Let ENV = {σ | σ : V 7→ D}
• Variables The meaning of a variable is determined by what the variable is

bound to in the environment.

• Expressions have variables and variables take values according to environment.

• Example, if V = {x, y, z} and if D contains all natural numbers, then one
possible environment might be σ where σ(x) = 1, σ(y) = 3 and σ(z) = 1.

• Function application If A and B are λ-expressions, then so is (AB). This
expression denotes the result of applying the function denoted by A to the
meaning of B.

• For example, if A denotes the identity function and B denotes the number 3
then AB denotes identity applied to 3 which is 3.

• Abstraction λv.A denotes the function which takes an object a and returns
the result of applying the function denoted by A in an environment in which
V denotes a.

University of Leipzig 35

The semantic function

• Let σ(a/v) : V 7→ D where
σ(a/v)(v′) = σ(v′) if v 6= v′ and σ(a/v)(v) = a

• Let [] : M 7→ ENV 7→ D.

• [v]σ = σ(v).

• [AB]σ = [A]σ([B]σ).

• [(λv.A)]σ = f where f : D 7→ D and f(a) = [A]σ(a/v).

• Example: [(λx.x)]σ = f where f(a) = [x]σ(a/x) = σ(a/x)(x) = a.

• Hence, (λx.x) denotes the identity function.

University of Leipzig 36

Exercises

• Exercise, show that (λx.(λy.x)) denotes the function which takes two
arguments and returns the first.

• Represent the following mathematical functions in the λ-calculus:

1. f : x → g where g : y → x + y.
2. f : x → x + y and g : y → x + y.
3. The function f that takes three functions g, h, k and composes them.
4. The function f that takes a function g and iterates it five times.

• Describe the functions denoted by (λx.(λy.(xy))), (λx.(λy.y)) and
(λx.(λy.x)).

University of Leipzig 37

Notational Conventions

• Functional application associates to the left. So ABC denotes ((AB)C).

• The body of a λ is anything that comes after it. So, instead of
(λv.(A1A2 . . . An)), we write λv.A1A2 . . . An.

• A sequence of λ’s is compressed to one, so λxyz.t denotes λx.(λy.(λz.t)).

As a consequence of these notational conventions we get:

• Parentheses may be dropped: (AB) and (λv.A) are written AB and λv.A.

• Application has priority over abstraction: λx.yz means λx.(yz) and not
(λx.y)z.

University of Leipzig 38

Free and Bound Variables

• Evaluating (λfx.fx)g to λx.gx is perfectly acceptable but evaluating
(λfx.fx)x to λx.xx is not.

• Check the meaning of these two expressions. λx.gx takes a and applies g to
a. λx.xx takes a and applies it to itself.

• Also, (λfx.fx) is the same as (λfy.fy) but is it correct to evaluate (λfx.fx)x
to λx.xx and (λfy.fy)x to λy.xy? Shouldn’t (λfx.fx)x be equal to
(λfy.fy)x?

• We define the notions of free and bound variables which will play an important
role in avoiding the problem above. The free x in (λfx.fx)x should remain
free in the result.

University of Leipzig 39

•

FV (v) =def {v} BV (v) =def ∅
FV (λv.A) =def FV (A) − {v} BV (λv.A) =def BV (A) ∪ {v}
FV (AB) =def FV (A) ∪ FV (B) BV (AB) =def BV (A) ∪ BV (B)

• Exercise: In (λy.x(λx.x)) which variables are bound and which are free?

University of Leipzig 40

Substitution

• For any A, B, v, we define A[v := B] to be the result of substituting B for
every free occurrence of v in A, as follows:

v[v := B] ≡ B
v′[v := B] ≡ v if v 6≡ v′

(AC)[v := B] ≡ A[v := B]C[v := B]
(λv.A)[v := B] ≡ λv.A
(λv′.A)[v := B] ≡ λv′.A[v := B]

if v′ 6≡ v and (v′ 6∈ FV (B) or v 6∈ FV (A))
(λv′.A)[v := B] ≡ λv′′.A[v′ := v′′][v := B]

if v′ 6≡ v and (v′ ∈ FV (B) and v ∈ FV (A))

• So, in (λx.fx)[f := x], as x ∈ FV (x) and f ∈ FV (fx), we use last clause
and get (λx.fx)[x := y][f := x] = (λy.fy)[f := x] = (λy.xy).

• Calculate (λx.y)[y := x]. Why do we disallow the result to be λx.x?

University of Leipzig 41

An easier alternative

• Use Barendregt’s convention (BC) where in any term, free variables are called
differently from bound variables.

• So, (λfx.fx)x must be written as (λfy.fy)x or (λfz.fz)x, etc. and hence
reducing (λfy.fy)x results correctly in λy.fy.

• Similarly, (λx.y)[y := x] must be rewritten to (λz.y)[y := x]

University of Leipzig 42

Exercises

• Evaluate:

1. (λx.xy)[x := λz.z]
2. (λy.x(λx.x))[x := λy.yx]
3. (y(λz.xz))[x := λy.zy]

• Check that:

– (λy.yx)[x := z] ≡ λy.yz,
– (λy.yx)[x := y] ≡ λz.zy,
– (λy.yz)[x := λz.z] ≡ λy.yz.

University of Leipzig 43

ALPHA Reduction

• Compatibility

A → B

AC → BC

A → B

CA → CB

A → B

λv.A → λv.B

• →α is defined to be the least compatible relation closed under the axiom:

(α) λv.A →α λv′.A[v := v′] where v′ 6∈ FV (A)

• →→α is the reflexive, transitive closure of →α.

• =α is the reflexive, transitive, symmetric closure of →α.

University of Leipzig 44

• λx.x→αλy.y but it is not the case that λx.xy→αλy.yy.
Moreover, λz.(λx.x)x→→αλz.(λy.y)x.

• λx.x =α λy.y.

University of Leipzig 45

BETA Reduction

• →β is defined to be the least compatible relation closed under the axiom:

(β) (λv.A)B→βA[v := B]

• →β is the reflexive transitive closure of →β.

• =β is the reflexive transitive, symmetric closure of →β.

• We say that A is in β-normal form if there is no B such that A→βB.

• Check that:

– (λx.x)(λz.z)→βλz.z,
– (λy.(λx.x)(λz.z))xy →β y,
– both λz.z and y are β-normal forms.

University of Leipzig 46

Exercises

• Give the sets of free and bound variables of the following λ-terms and for each
variable occurrence, say whether it is bound or free:

1. λx.λy.(λy.(λz.z)λy.z)y
2. (λx.(λy.λz.pq)y)xz
3. λx.yz(λyz.y)x

For each of the above terms apply β-reduction until no β-redexes can be found.

University of Leipzig 47

Metatheory
• Some Programs loop/don’t terminate: (λx.xx)(λx.xx) does not have a normal

form.

• We can evaluate programs in different orders, but always get the same final
result:
(λy.(λx.x)(λz.z))xy→β(λy.λz.z)xy→β(λz.z)y→βy and
(λy.(λx.x)(λz.z))xy→β((λx.x)(λz.z))y→β(λz.z)y→βy

• The order we use to evaluate programs can affect termination:
A term may be normalising but not strongly normalising:
(λy.z)((λx.xx)(λx.xx))→βz yet
(λy.z)((λx.xx)(λx.xx))→β(λy.z)((λx.xx)(λx.xx))→β . . .

• A program may grow after reduction:

(λx.xxx)(λx.xxx) →β (λx.xxx)(λx.xxx)(λx.xxx)

→β (λx.xxx)(λx.xxx)(λx.xxx)(λx.xxx)

→β . . .

University of Leipzig 48

• If an expression β-reduces in two different ways to two values, then those
values, if they are in β-normal form are the same (up to α-conversion).

• (λxyz.xz(yz))(λx.x)(λx.x)→β(λyz.(λx.x)z(yz))(λx.x)→β

(λyz.z(yz))(λx.x)→βλz.z((λx.x)z)→βλz.zz.

• (λxyz.xz(yz))(λx.x)(λx.x)→β(λyz.(λx.x)z(yz))(λx.x)→β

λz.(λx.x)z((λx.x)z)→βλz.z((λx.x)z)→βλz.zz.

• (λxyz.xz(yz))(λx.x)(λx.x)→β(λyz.(λx.x)z(yz))(λx.x)→β

λz.(λx.x)z((λx.x)z)→βλz.(λx.x)zz→βλz.zz.

• Church-Rosser Theorem
∀A,B,C ∈ M ∃D ∈ M : (A →→β B ∧ A →→β C) ⇒ (B →→β D ∧ C →→β

D) .

University of Leipzig 49

Call by Name and Call by Value
• Normal Order/Call by name: At every stage, reduce the leftmost-outermost

redex. E.g., (λy.y)((λx.x)1) → (λx.x)1 → 1.

• Applicative Order/Call by value: At every stage, reduce the leftmost-innermost
redex. E.g., (λy.y)((λx.x)1) → (λy.y)1 → 1.

• If a program terminates, call by name reduction will reach final value but call
by value may not. Call by value is faster than call by name.

• Call by Name: (λy.z)((λx.xx)(λx.xx))→βz yet

• Call by Value: (λy.z)((λx.xx)(λx.xx))→β(λy.z)((λx.xx)(λx.xx))→β . . .

• Call by Value: (λx.xx)((λy.y)(λz.z)) → (λx.xx)(λz.z) → (λz.z)(λz.z) →
(λz.z).

• Call by Name: (λx.xx)((λy.y)(λz.z)) → ((λy.y)(λz.z))((λy.y)(λz.z)) →
(λz.z)((λy.y)(λz.z)) → (λy.y)(λz.z) → (λz.z)

University of Leipzig 50

Booleans in λ-calculus

true ≡ λxy.x
false ≡ λxy.y
not ≡ λx.x false true
and ≡ λxy.xy false
or ≡ λxy.x true y
if M then N1 else N2 ≡ MN1N2

and true true =β true true false
=β (λxy.x) true false
=β (λy. true) false
=β true

if true then N1 else N2 =β true N1N2

=β (λy.N1)N2

=β N1 Note that y 6∈ FV (N1)

University of Leipzig 51

Numerals in λ-calculus

• 0 ≡ λxy.y, 1 ≡ λxy.xy, 2 ≡ λxy.x(xy) and so on.

S ≡ λxyz.xy(yz)
A ≡ λxyzp.xz(yzp)
M ≡ λxyz.x(yz)
E ≡ λxy.yx
Z ≡ λx.x(true false)true

Sn =β n + 1
Amn =β m + n
Z0 =β true
Z(Sn) =β false

University of Leipzig 52

Recursion in λ-calculus

• a is a fixed point of E if Ea = a.

• Every program E (term of λ-calculus) has a fixed point:

• Let Y = (λf.(λx.f(xx))(λx.f(xx))) and let a = (Y E).

• Ea = a: because: a = (Y E) = (λf.(λx.f(xx))(λx.f(xx)))E =
(λx.E(xx))(λx.E(xx)) = E((λx.E(xx))(λx.E(xx))) = E(Y E) = Ea.

• With the presence of fixed points, we can solve recursive equations;

• fact ≡ λx. if Zx then 1 else Mx(fact (Px))

• fact is defined in terms of itself.

University of Leipzig 53

• Let E ≡ λyx. if Zx then 1 else Mx(y(Px)).
As we see, E is defined in terms of things that already exist and not in terms
of itself.

• Now, we take fact ≡ (Y E), and so, as E(Y E) = (Y E) we have:
fact = E(fact) = λx. if Zx then 1 else Mx(fact (Px)).

University of Leipzig 54

PAIRING in λ-calculus

pair ≡ λxyz.zxy
fst ≡ λx.x true
snd ≡ λx.x false

It is easy to prove that

• fst(pair AB) = A

• snd(pair AB) = B

• fst(pair AB) = (λx.x true)(pair AB) = (pair AB) true = pair AB true =
(λxyz.zxy)AB true = true AB = (λxy.x)AB = A.

• snd(pair AB) = (λx.x false)(pair AB) = (pair AB) false = pair AB false =
(λxyz.zxy)AB false = false AB = (λxy.y)AB = B.

University of Leipzig 55

LISTS in λ-calculus

• The equation xy = x has a solution ⊥ where ⊥y = ⊥ for any y.

• Le E = λxy.x and let ⊥ = Y E. Then Y E = E(Y E).
So, ⊥ = E⊥ and ⊥y = E⊥y = (λxy.x)⊥y = ⊥.

null ≡ fst
[] ≡ pair true ⊥
[E] ≡ pair false (pair E [])
[E1, . . . , En] ≡ pair false (pair E1 [E2, . . . En])

• Exercise: null [] = true and null [E1, . . . , En] = false

• null [] = fst(pair true ⊥) = true .

• null [E1, . . . , En] = fst(pair false (pair E1 [E2, . . . En])) = false

University of Leipzig 56

hd ≡ λl. if (null l) then ⊥ else (fst (snd l))
tl ≡ λl. if (null l) then ⊥ else (snd (snd l))
cons ≡ λxl. pair false (pair x l)

Exercises:

• null (cons xl) = fst ((λxl. pair false (pair xl))xl) = fst (pair false (pair xl)) =
false

• snd (cons x l) = snd (pair false (pair x l)) = (pair x l)

• hd (cons x l) = (λl. if (null l) then ⊥ else (fst (snd l)))(cons x l) =
if (null (cons x l)) then ⊥ else (fst (snd (cons x l))) =
if false then ⊥ else (fst (snd (cons x l))) =
fst (snd (cons x l)) = fst (pair x l) = x

University of Leipzig 57

• tl (cons x l) = (λl. if (null l) then ⊥ else (snd (snd l)))(cons x l) =
if (null (cons x l)) then ⊥ else (snd (snd (cons x l))) =
if false then ⊥ else (snd (snd (cons x l))) =
snd (snd (cons x l)) = snd (pair x l) = l

University of Leipzig 58

• Find a λ-expression append such that

append x y = if (null x) then y else (cons(hd x)(append (tl x)y)

• Let E = λaxy. if (null x) then y else (cons (hd x)(a(tl x)y) and let append
= Y E.

• Then, append xy = Y Exy = E(Y E)xy = E(append)xy =
(λaxy. if (null x) then y else (cons (hd x)(a(tl x)y)))append xy =
if (null x) then y else (cons (hd x)(append(tl x)y)

University of Leipzig 59

UNDECIDABILITY of HALTING

• Note that ⊥ loops: ⊥ = Y E = E(Y E) = E(E(Y E)) = E(E(E(Y E)))

• Let halts E = true if E has a normal form and halts E = false otherwise.

• halts is Not definable in the λ-calculus.

• Assume the contrary (i.e. halts is a λ-term), then

• Let foo = λx. if (halts x) then ⊥ else 0.

• Let W be a solution to x = foo x. Hence, W = foo W =
if (halts W) then ⊥ else 0.

• Case halts W is true then W = if (halts W) then ⊥ else 0 = ⊥.
Absurd as ⊥ does not have normal form.

University of Leipzig 60

• Case halts W is false then W = if (halts W) then ⊥ else 0 = 0.
Absurd as 0 does have a normal form.

• Hence, what we assumed is false and so, halts is not a lambda term.

University of Leipzig 61

“propositions as types” or “proofs as terms”

• In this method proofs are first-class citizens of the logical system, whilst for
many other logical systems, proofs are rather complex objects outside the logic
(for example: derivation trees), and therefore cannot be easily manipulated.

• Heyting [1934a] describes the proof of an implication a ⇒ b as: Deriving a
solution for the problem b from the problem a.

• Kolmogorov [1932a] is even more explicit, and describes a proof of a ⇒ b as
the construction of a method that transforms each proof of a into a proof of b.

• This means that a proof of a ⇒ b can be seen as a (constructive) function
from the proofs of a to the proofs of b.

• In other words, the proofs of the proposition a ⇒ b form exactly the set of
functions from the set of proofs of a to the set of proofs of b.

University of Leipzig 62

• This suggests to identify a proposition with the set of its proofs.

Now types are used to represent these sets of proofs. An element of such a
set of proofs is represented as a term of the corresponding type.

This means that propositions are interpreted as types, and proofs of a
proposition a as terms of type a.

• Pat was, independently from Heyting and Kolmogorov, discovered by Curry
and Feys [1958a]

• Curry describes the so-called F-objects, which correspond more or less to the
simple types of Church [1940b].

University of Leipzig 63

pat with Howard
Howard [1980a] follows Curry and Feys [1958a] and combines it with Tait’s
correspondence between cut elimination and β-reduction of λ-terms Tait [1965].

Example 1. The following derivation of a proposition B:

[A]

D1

B D2

A → B A
B

can be transformed into:

D2

A

D1

B

University of Leipzig 64

We can decorate the two derivations above with λ-terms that represent proofs.
This results in the following two deductions:

[x:A]

D1

T : B D2

(λx:A.T) : (A → B) S : A
((λx:A.T)S) : B

D2

S : A

D1

T [x:=S] : B

We see that the proof transformation exactly corresponds to the β-reduction

(λx:A.T)S →β T [x:=s]

University of Leipzig 65

Church’s Simply Typed λ-calculus λ→ 1940
• Types • Basic individuals/propositions • Arrows α → β

Examples of types: (α → β) → (β → γ), α → (β → γ), Bool → Bool.

• Terms variables, AB, λx:α.A.

• (β) (λx:α.A)B →β A[x := B].

• Start If (x : α) ∈ Γ then Γ ` x : α.

• →-introduction If Γ, x:α ` A : β then Γ ` λx:α.A : α → β

• →-elimintation If Γ ` A : α → β and Γ ` B : α then Γ ` AB : β

• λx : α.x : α → α.

λx : (α → β).x : (α → β) → (α → β).

λx : α.λy : β.x : α → (β → α).

University of Leipzig 66

•
x : α ` x : α start

` λx : α.x : α → α →-introduction

•

x : α → β ` x : α → β start
` λx : α → β.x : (α → β) → (α → β) →-introduction

•

x : α, y : β ` x : α start
x : α ` λy : β.x : β → α →-introduction

` λx : α.(λy : β.x) : α → (β → α) →-introduction

• But, λx :?.xx cannot be typed.

University of Leipzig 67

• In λ→, the function which takes f : N → N and x : N and returns f(f(x)) is:

λf : N → N.λx : N.f(f(x))

and has type
(N → N) → (N → N)

• If we want the same function on booleans, we would need to write:

λf : B → B.λx : B.f(f(x))

which has type
(B → B) → (B → B)

• Instead of repeating the work, we can write the Polymorphic doubling function
as:

λα : ∗.λf : α → α.λx : α.f(f(x))

University of Leipzig 68

• Now, we can instantiate α to what we need:

• α = N then:
(λα : ∗.λf : α → α.λx : α.f(f(x)))N = λf : N → N.λx : N.f(f(x)).

• α = B then:
(λα : ∗.λf : α → α.λx : α.f(f(x)))B = λf : B → B.λx : B.f(f(x)).

• α = (B → B) then: (λα : ∗.λf : α → α.λx : α.f(f(x)))(B → B) =
λf : (B → B) → (B → B).λx : (B → B).f(f(x)).

• So, types can be abstracted over (like for terms) and we can pass types as
arguments (like for terms).

• But, as we have new terms like λα : ∗.λf : α → α.λx : α.f(f(x)), we need to
say what their types is.

• The type of this function is: Πα : ∗.(α → α) → (α → α).

University of Leipzig 69

Common features of modern types and functions

• We can construct a type by abstraction. (Write α : ∗ for α is a type)

– λy : α.y, the identity over α has type α → α
– λα : ∗.λy : α.y, the polymorphic identity has type Πα : ∗.α → α

• We can instantiate types. E.g., if α = N, then the identity over N

– (λy : α.y)[α := N] has type (α → α)[α := N] or N → N.
– (λα : ∗.λy : α.y)N has type (Πα : ∗.α → α)N = (α → α)[α := N] or

N → N.

• (λx:α.A)B →β A[x := B] (Πx:α.A)B →Π A[x := B]

• Write α → α as Πy : α.α when y not free in α.

University of Leipzig 70

Are we getting into self-application/Trouble?
• ML treats let val id = (fn x ⇒ x) in (id id) end as this polymorphic term

(λid:(Πα:∗. α → α). id(β → β)(id β))(λα:∗. λx:α. x)

• The polymorphic identity function can be applied to its type too:
(λα : ∗.λy : α.y)(Πα : ∗.α → α) →β λy : (Πα : ∗.α → α).y

• So, we can now apply this result to polymorphic identity:
(λy : (Πα : ∗.α → α).y)(λα : ∗.λy : α.y) →β (λα : ∗.λy : α.y)

• Problem??

(λα : ∗.λy : α.y)(Πα : ∗.α → α)(λα : ∗.λy : α.y) →β (λα : ∗.λy : α.y)

• THE NEW SYSTEM IS VERY SAFE.

Subject Reduction: If Γ ` A : α and A →β A′ then Γ ` A′ : α.

Termination: If Γ ` A : α then both A and α terminate.

University of Leipzig 71

The Barendregt Cube

• Syntax: A ::= v | ∗ | 2 | AB | λv:A.B | Πv:A.B

• Formation rule:
Γ ` A : s1 Γ, x:A ` B : s2

Γ ` Πx:A.B : s2
if (s1, s2) ∈ R

Simple Poly-
morphic

Depend-
ent

Constr-
uctors

Related
system

λ→ (∗, ∗) λτ

λ2 (∗, ∗) (2, ∗) F
λP (∗, ∗) (∗,2) aut-QE, LF
λω (∗, ∗) (2,2) POLYREC
λP2 (∗, ∗) (2, ∗) (∗,2)
λω (∗, ∗) (2, ∗) (2,2) Fω
λPω (∗, ∗) (∗,2) (2,2)
λC (∗, ∗) (2, ∗) (∗,2) (2,2) CC

University of Leipzig 72

The Barendregt Cube

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

λ→ λP

λ2 λP2

λω λPω

λCλω

t t

tt

t t

tt

-

6

��������1

(∗, 2) ∈ R

(2,2) ∈ R

(2, ∗) ∈ R

University of Leipzig 73

Typing Polymorphic identity needs (2, ∗)

• y : ∗ ` y : ∗ y : ∗, x:y ` y : ∗
y : ∗ ` Πx:y.y : ∗ by (Π) (∗, ∗)

• y : ∗, x : y ` x : y y : ∗ ` Πx:y.y : ∗
y : ∗ ` λx : y.x : Πx:y.y

by (λ)

• ` ∗ : 2 y : ∗ ` Πx:y.y : ∗
` Πy : ∗.Πx:y.y : ∗ by (Π) (2, ∗)

• y : ∗ ` λx : y.x : Πx:y.y ` Πy : ∗.Πx:y.y : ∗
` λy : ∗.λx : y.x : Πy : ∗.Πx:y.y

by (λ)

University of Leipzig 74

The refined Barendregt Cube

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
��

�
�

��

�����������

�����������

�������
����

�������
����

�������
����

λ→ λP

λ2 λP2

λω λPω

λCλω

r r

rr

r r

rr

-

6

���������1

-

6

������������������1

(∗,
2
) ∈

R

(2, ∗) ∈ R

(2, ∗) ∈ P

(∗,
2
) ∈

P

(2,2) ∈ P

(2,2) ∈ R

University of Leipzig 75

ML in the refined Cube

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

�
�

�
��

����������������

����������������

����������
�����

����������
�����

����������
�����

λ→ λP

λ2 λP2

λω λPω

λCλω

Aut-68 Aut-QEML

LFt t

tt

t t

tt

t tt

t

University of Leipzig 76

MathLang

draft documents ✓
public documents ✓

computations and proofs ✓

• MathLang describes the grammatical and reasoning structure of mathematical
texts

• A weak type system checks MathLang documents at a grammatical level

• MathLang eventually should support all encoding uses

University of Leipzig 77

CML

MathLang
XML text

Valid MathLang
XML text

MathLang
CML output

Translating

MathLang
Checking

MathLang XSL
transforming

Adding
NL

If typing
error

Adding
NL

Documents

User's
actions

Computer's
actions

Figure 1: Translation

University of Leipzig 78

Weak Type Theory

In Weak Type Theory (or Wtt) we have the following linguistic categories:

• On the atomic level: variables, constants and binders,

• On the phrase1 level: terms T , sets S, nouns N and adjectives A,

• On the sentence level: statements P and definitions D,

• On the discourse level: contexts ΓI , lines l and books B.

There is a hierarchy between these levels: atoms are part of phrases; atoms and
phrases are part of sentences; and discourses are built from sentences.

1According to the Concise Oxford Dictionary, a phrase is a group of words forming a conceptual unit, but not a
sentence, a discourse is a connected series of utterances.

University of Leipzig 79

Abstract Syntax of WTT

We use abstract syntax for the description of the various syntactic categories.

Example: B = ∅ | B ◦ l expresses that a book is either the empty book or a
book B followed by a line l. By convention, ∅ ◦ l is written as l.

Binders are in the abstract form: BZ(E), where the subscript Z is a declaration

introducing a (bound) variable and its type, e.g. x ∈ N.

• ∑
x∈{0,1,...,10}(x

2) and ∀x∈N(x ≥ 0) are examples of formulas with binders.

• The binding symbol for set comprehension, {. . . | . . .}, fits in this format after
a slight modification. E.g., write {x ∈ R|x > 5} as Setx∈R(x > 5). For

uniformity, our standard for set notation will be the latter one.

University of Leipzig 80

level Main abstract syntax Meta-
category symbol

atomic variables V = VT |VS|VP x
constants C = CT |CS|CN |CA|CP c
binders B = BT |BS|BN |BA|BP b

phrase terms T = CT (
→
P)|BT

Z(E)|VT t

sets S = CS(
→
P)|BS

Z(E)|VS s

nouns N = CN(
→
P)|BN

Z (E)|AN n

adjectives A = CA(
→
P)|BA

Z(E) a

sentence statements P = CP (
→
P)|BP

Z(E)|VP S
definitions D = Dϕ|DP D

Dϕ = CT (
→
V) := T |CS(

→
V) := S|

CN(
→
V) := N|CA(

→
V) := A

DP = CP (
→
V) := P

discourse contexts ΓI = ∅ | ΓI,Z | ΓI, P Γ
lines l = ΓI . P | ΓI . D l
books B = ∅ | B ◦ l B

Figure 2: Main categories of syntax of WTT
University of Leipzig 81

Other category abstract syntax Meta-
symbol

expressions E = T |S|N |P E

parameters P = T |S|P (note:
→
P is a list of Ps) P

typings T = S : SET |S : STAT |T : S|T : N|T : A T
declarations Z = VS : SET |VP : STAT |VT : S|VT : N Z

Figure 3: Categories of syntax of WTT

University of Leipzig 82

Constants of WTT

The set C = CT |CS|CN |CA|CP is fixed, infinite and is disjoint from the set of
variables. C is divided into the following five disjoint subsets:

(CT) Constants for terms , (CS) Constants for sets ,
(CN) Constants for nouns , (CA) Constants for adjectives ,
(CP) Constants for statements

A constant is always followed by a parameter list . We denote this as C(
→
P).

This list has for each constant a fixed length ≥ 0, the arity of the constant.
Parameters P are either terms, sets or statements: P = T |S|P.

University of Leipzig 83

Examples of constants of WTT

(CT) Constants for terms with parameter lists:
π, the centre of C, 3 + 6, the arithmetic mean of 3 and 6, d(x, y), ∇f .

The constants are: π, the centre, +, the arithmetic mean, d and ∇.

The parameter lists are: (), (C), (3, 6), (3, 6), (x, y) and (f), resp.

(CS) Constants for sets with parameter lists: N, AC, V → W , A ∪ B.

(where AC is the complement of A). The constants are: N, C, →, ∪.

The parameter lists are: (), (A), (V,W), (A, B).

(CN) Constants for nouns with parameter lists: a triangle,
an eigenvalue of A, an edge of 4ABC, a reflection of V with respect to l.

The constants are: a triangle, an eigenvalue, an edge, a reflection.

University of Leipzig 84

The parameter lists are: (), (A), (4ABC), (V, l).

(CA) Constants for adjectives with parameter lists: prime, surjective, Abelian,
continuous on [a, b].

The constants are: prime, surjective, Abelian, continuous.

The parameter lists are: (), (), (), ([a, b]).

(CP) Constants for statements with parameter lists:
P lies between Q and R, 5 ≥ 3, p ∧ q, ¬∀x∈N(x > 0).

The constants are: lies between, ≥, ∧, ¬.

The parameter lists are: (P,Q,R), (5, 3), (p, q), (∀x∈N(x > 0)).2

2Note that the parameters in parameter lists are either terms or sets . Only in the case of statements the
parameters may be statements as well, as is shown in the last two examples.

University of Leipzig 85

Two special constants ↑ and ↓ of WTT

↑ lifts a noun to the corresponding set, ↓ does the opposite.

Here are examples of these constants:

(CS) (a natural number)↑= N, (a divisor of 4)↑= {1, 2, 4},3
(Nounx∈R(x > 5))↑= Setx∈R(x > 5).

(CN) Z↓ is an integer , (Setx∈R2(|x| = 1))↓ is Nounx∈R2(|x| = 1) or
a point on the unit circle.

3Here again, we used sugaring. We write, {1, 2, 4} for Setn∈N(n = 1 ∨ n = 2 ∨ n = 4). However, the
notation with Set is the only official Wtt-format.

University of Leipzig 86

Binders of WTT
B = BT |BS|BN |BA|BP where:

(BT) Binders giving terms, (BS) Binders giving sets ,
(BA) Binders giving adjectives , (BP) Binders giving statements ,
(BN) Binders giving nouns,

In BZ(E), the body E is one of four categories E = T |S|N |P .

Examples:

• BT
Z(E) = minZ(T)|∑Z(T)|limZ(T)|

∫
Z(T)|λZ(T)|λZ(S)|ιZ(P)| . . .

• BS
Z(E) = SetZ(P)|⋃Z(S)|ιZ(P)| . . .

• BN
Z (E) = NounZ(P)|AbstZ(T)|AbstZ(S)|AbstZ(N)| . . .

• BA
Z(E) = AdjZ(P)| . . .

• BP
Z(E) = ∀Z(P)| . . .

University of Leipzig 87

The λ-binder of WTT

The format of an expression bound by Church’s λ-binder is: λZ(T/S). Here
λZ(T) is a term-valued function and λZ(S) is a set-valued function. Examples:

(E ≡ T) The term λx∈R(x2) denotes the squaring function on the reals.

(E ≡ S) The term λn∈NSetk∈N(k ≤ n) sends a natural number n to the set
{0, 1, . . . , n}.

University of Leipzig 88

The ι-binder of WTT

Russell’s ι is used for a definite description: the such and such, such that
The general format for an expression bound with the ι-binder is: ιZ(P). The
result of the binding of a sentence by means of ι can either be a term or a set
(therefore we find ιZ(P) both in the BT - and in the BS-list). For example:

• The term ιn∈N(2 < n < π) describes natural number 3.

• The set ιU : SET (3 ∈ U ∧ |U | = 1) describes the singleton set {3} (or
Setn∈N(n = 3) in unsugared format). (The declaration U : SET expresses
that U is a set.)

University of Leipzig 89

The Noun-binder of WTT

Next to set comprehension, we allow noun comprehension, i.e. the construction
of a noun.

For noun comprehension we introduce the binder Noun. It is used for an indefinite

description: a such and such, such that

Hence, the general format of a phrase with Noun-binder is: NounZ(P), i.e. a noun
saying of Z that P .

Examples:

• The noun Nounx∈R(5 < x < 10) is a real number between 5 and 10 .

• NounV : SET (|V | = 2) is a set with two elements.

University of Leipzig 90

The Abst-binder of WTT

The Abst-binder abstracts from a term T , a set S or a noun N and delivers a
noun. It is the formal counterpart of the modifier for some One may read
AbstZ(T/S/N) as a term T , or a set S, or a noun N , for some Z.

Here are examples of the three kinds of nouns AbstZ(T/S/N):

(E ≡ T) Abstn∈N(n2) represents a term n2 for some natural number n, i.e. the square
of some natural number .

(E ≡ S) Abstn∈NSetx∈R(x > n) represents a set {x ∈ R|x > n} for some natural
number n, i.e. an interval of the form (n,∞), with n ∈ N.

(E ≡ N) Abstn∈NNounx∈R(10n ≤ x < 10n+1) represents a real number in the interval
[10n, 10n + 1) for some n, i.e. a non-negative real number which, written in
decimal notation, has a zero at the position just before the decimal point.

University of Leipzig 91

The Adj-binder of WTT

• Adjectives can be constructed with the Adj-binder.

• One can read AdjZ(P) as: the adjective saying of Z that P .

• E.g.: Adjn∈N
(∃k∈N(n = k2 + 1)) is an adjective saying of a natural number

that it is a square plus 1.

• One could give this adjective a name, say oversquare and hence say things like
5 is oversquare or Let m be an oversquare number .

University of Leipzig 92

Phrases of WTT

Phrases can be terms, sets, nouns or adjectives:

T = CT (
→
P)|BT

Z(E)|VT S = CS(
→
P)|BS

Z(E)|VS

N = CN (
→
P)|BNZ (E)|AN A = CA(

→
P)|BAZ(E).

We already gave examples of CT (
→
P), CS(

→
P), CN(

→
P) and CA(

→
P) and of BT

Z(E),
BS
Z(E), BN

Z (E) and BA
Z(E).

The combination AN gives a (new) noun which is a combination of an adjective
and a noun. E.g.: isosceles triangle, convergent series.

University of Leipzig 93

Statements of WTT

Abstract syntax for the category of statements is: P = CP (
→
P)|BP

Z(E)|VP .

Examples of CP (
→
P) and of BP

Z(E) (with the ∀-binder for BP) were already given.

The abstract syntax for the set T of typing statements (T ⊆ P) is:
T = S : SET |S : STAT |T : S|T : N|T : A.

Examples of these cases include: Setn∈N(n ≤ 2) : SET , p ∧ q : STAT , 3 ∈ N,4

AB : an edge of 4ABC, λx∈R(x2) : differentiable.

4As this example shows, we often replace t : s by t ∈ s, with abuse of notation.

University of Leipzig 94

Definitions of WTT

• The category D = Dϕ|DP of definitions introduces new constants.

• We distinguish between phrase definitions Dϕ and statement definitions DP .

• Phrase definitions fix a constant representing a phrase.

• Statement definitions introduce a constant embedded in a statement.

• In definitions, the defined constant is separated from the phrase or statement
it represents by the symbol “:=”.

University of Leipzig 95

Phrase definitions of WTT
We take Dϕ = CT (

→
V) := T | CS(

→
V) := S | CN(

→
V) := N | CA(

→
V) := A

Examples of phrase definitions are:

(C ≡ CT) the arithmetic mean of a and b := ιz∈R(z = 1
2(a + b)),

(C ≡ CS) R
+ := Setx∈R(x > 0),

(C ≡ CN) a unit of G with respect to · := Noune∈G(∀a∈G(a · e = e · a = a))

(C ≡ CA) prime := Adjn∈N
(n > 1 ∧ ∀k,l∈N(n = k · l ⇒ k = 1 ∨ l = 1)).

The variable lists in the four examples are: (a, b), (), (G, ·), (). These variables
must be introduced (declared) in a context.

For the first definition, such a context can be e.g. a : R, b : R.

For the third definition the context is: G : SET , · : G → G.

University of Leipzig 96

Statement definitions of WTT

DP = CP (
→
V) := P is the category of statement definitions defining constant

CP .

For example in a context like: Let a and b be lines:

(C ≡ CP) a is parallel to b := ¬∃P : a point(P lies on a ∧ P lies on b).

University of Leipzig 97

Contexts of WTT

A context Γ is a list of declarations Z and statements P :

ΓI = ∅ | ΓI,Z | ΓI, P.

A declaration in a context represents the introduction of a variable of a known
type.

A statement in a context stands for an assumption.

University of Leipzig 98

Lines of WTT

A line l contains either a statement or a definition, relative to a context:

l = ΓI . P | ΓI . D.

The symbol . is a separation marker between the context and the statement or
definition.

Here are two examples of lines:

A statement line: x : N, y : N, x < y . x2 < y2 ,

A definition line: x : R, x > 0 . ln(x) := ιy∈R(ey = x) .

University of Leipzig 99

Books of WTT

A book B is a list of lines: B = ∅ | B ◦ l.

A simple example of a book consisting of two lines is the following:

x : R, x > 0 . ln(x) := ιy∈R(ey = x) ◦

∅ . ln(e3) = 3 .

University of Leipzig 100

MathLang’s Grammatical categories

They extend those of WTT with blocks and flags.

T terms

S sets

N nouns

A adjectives

P statements

D definitions

Z declarations

Γ contexts with flags

L lines

K blocks

B books

University of Leipzig 101

The Grammatical Categories of MathLang

Let M be the set of ..., y a natural number,... if x belongs to M

S T N
Z Z

Γ

then x + y = y + x

T S

T T T T

P

T T
P

L

Figure 4: A mathematical line and its grammatical categories

University of Leipzig 102

CML MathLang
document

MathLang
formal structure

Later
computations

Similar

Translation
Automatic

computations

CML
produced

Figure 5: Translation process of MathLang

University of Leipzig 103

Derivation rules of WTT

(1) B is a weakly well-typed book: ` B :: B.

(2) Γ is a weakly well-typed context relative to book B: B ` Γ :: ΓI.

(3) t is a weakly well-typed term, etc., relative to book B and context Γ:

B; Γ ` t :: T, B; Γ ` s :: S, B; Γ ` n :: N,
B; Γ ` a :: A, B; Γ ` p :: P, B; Γ ` d :: D

OK(B; Γ). stands for: ` B :: B, and B ` Γ :: ΓI

University of Leipzig 104

A preface for a book B could look like:

constant name weak type constant name weak type
R S ∪ S × S → S√

T → T ≥ T × T → P
+ T × T → T ∧ P × P → P

• R has no parameters and is a set.

• √
is a constant with one parameter, a term, delivering a term.

• ≥ is a constant with two parameters, terms, delivering a statement.

• prefcons(B) = {R,
√

, +,∪,≥,∧}.

University of Leipzig 105

• dvar(∅) = ∅ dvar(Γ′, x : W) = dvar(Γ′), x dvar(Γ′, P) = dvar(Γ′)

OK(B; Γ), x ∈ VT/S/P, x ∈ dvar(Γ)
B; Γ ` x :: T/S/P

(var)

B; Γ ` n :: N , B; Γ ` a :: A
B; Γ ` an :: N

(adj−noun)

` ∅ :: B
(emp−book)

B; Γ ` p :: P
` B ◦ Γ . p :: B

B; Γ ` d :: D
` B ◦ Γ . d :: B

(book−ext)

University of Leipzig 106

Example in WTT
Cml: the square root of the third power of a natural number

WTT: Abstn:N(
√

n3)

The preface is:

constant name weak type
(i) 3 T → T
(ii)

√
T → T

(iii) N S
(iv) Abst T → N

The categories are:

subexp category subexp category subexp category

n T n T Abstn:N(
√

n3) N
n3 T N S√

n3 T n : N Z

We need to derive B; Γ ` Abstn:N(
√

n3) :: N for some B and Γ.

But it is clear that B = Γ = ∅.

University of Leipzig 107

Example in WTT

(1) ` ∅ :: B (emp−book)
(2) ∅ ` ∅ :: ΓI (emp−cont, 1)
(3) ∅; ∅ ` N :: S (ext−cons, 1, 2, iii)
(4) ∅ ` n : N :: ΓI (term−decl, 1, 2, 3, ∗)
(5) ∅;n : N ` n :: T (var, 1, 4, ∗)
(6) ∅;n : N ` n3 :: T (ext−cons, 1, 4, i, 5)

(7) ∅;n : N `

√
n3 :: T (ext−cons, 1, 4, ii, 6)

(8) ∅; ∅ ` Abstn:N(
√

n3) :: N (bind, 1, 4, iv, 7)

Figure 6: Derivation that Abstn:N(
√

n3) is a noun

University of Leipzig 108

Example 2 in WTT

Our second example concerns a text with a definition and its application:

Definition A Fermat-sum is a natural number which is the sum of two squares of natural numbers.

Lemma The product of a square and a Fermat-sum is a Fermat-sum.

A Wtt-translation could be the following small Wtt-book B of two lines (both
with an an empty context), one a definition and the other a statement. So the
abstract format of B is: ∅ . D ◦ ∅ . S:

a Fermat-sum := Nounn∈N∃k∈N∃l∈N(n = k2 + l2)

∀u: a square∀v: a Fermat-sum(uv : a Fermat-sum)

University of Leipzig 109

Example 2 in MathLang

The original Cml text is given by figure 7. Our translation of this text into
MathLang is shown in figure 8. Figure 9 is the Cml output we obtain from this
encoding.

Definition 2. A Fermat-sum is a natural number which is the sum of
two squares of natural numbers.

Lemma 3. The product of a square and a Fermat-sum is a Fermat sum.

Figure 7: Fermat-sum example: original text

University of Leipzig 110

Fermat-sum () :=

Noun

n : N

∃ k : N , ∃ l : N , n = k
2

+ l
2

(1)

∀ u : square , ∀ v : Fermat-sum , u ∗ v : Fermat-sum (2)

Figure 8: Fermat-sum example: symbolic structural view of MathLang

University of Leipzig 111

Definition 4. [Fermat-sum]

A Fermat-sum is

a natural number which is the sum of two squares of natural numbers . 1

Lemma 5.

The product of a square and a Fermat-sum is a Fermat-sum . 2

Figure 9: Fermat-sum example: Cml view of MathLang

University of Leipzig 112

Comparaison with other work

CML MathLang's
approach

OMDoc's
approach

TPs'
approach

Figure 10: Approaches

University of Leipzig 113

• The formalisation of a language of mathematics should separate the questions:

– which type theory is necessary for which part of mathematics
– which language should mathematics be written in.

• Mathematicians don’t usually know or work with type theories.

• Mathematicians usually do mathematics (manipulations, calculations, etc), but
are not interested in general in reasoning about mathematics.

University of Leipzig 114

Another MathLang example

T Terms S Sets N Nouns P Statements Z Declarations Γ Context

Let M be a set ,

y and x are natural numbers ,

if x belongs to M

then x + y = y + x

University of Leipzig 115

MathLang Checking

T Terms S Sets N Nouns P Statements Z Declarations Γ Context

Let M be a set ,

y and x are natural numbers ,

if x belongs to M

then x + y ⇐ error

University of Leipzig 116

Another MathLang example

blocks flags references

Theorem 6. [Commutative Law of Addition]
x + y = y + x.

Proof Fix y, and M be the set of

all x for which the assertion holds.
I) We have

y + 1 = y′,

and furthermore, by the

construction in the proof
of Theorem 4,

1 + y = y
′
,

so that

1 + y = y + 1

and 1 belongs to M.

II) If x belongs to M, then

x + y = y + x,

Therefore

(x + y)′ = (y + x)′ = y + x′.

By the construction in

the proof of Theorem 4, we have

x
′
+ y = (x + y)

′
,

hence

x
′
+ y = y + x

′
,

so that x′ belongs

to M. The assertion therefore
holds for all x.

University of Leipzig 117

MathLang skeleton
x : N, y : N �Th6(x, y) := x + y = y + x (97)

Proof Theorem 6 {2.5.4}
Proof Theorem 6 part I {2.5.4.1}

y : N

M : SET

∀x:MTh6(x, y)

(Def +(38)) �y + 1 = y′ (98)

{2.5.1} �1 + y = y′ (99)

(98), (99) �1 + y = y + 1 (100)

(100) �Th6(1, y) (101)
(101) �1 : M (102)

Proof Theorem 6 part II {2.5.4.2}

x : M

Th6(x, y) �x + y = y + x (103)

(103) �(x + y)′ = (y + x)′ (104)

(Def +(39)) �(y + x)′ = y + x′ (105)

(104), (105) �(x + y)′ = y + x′ (106)

{2.5.2} �x′ + y = (x + y)′ (107)

(107), (Def +(39)) �x′ + y = y + x′ (108)

(108) �Th6(x′, y) (109)

(109) �x′ : M (110)

Ax5(M, (102), (110)) �N ⊂ M (111)

(111) �∀x:N∀y:NTh6(x, y) (112)

University of Leipzig 118

References

Alonzo Church. A formulation of the simple theory of types. J. Symbolic Logic, 5:56–68, 1940b.

H. B. Curry and R. Feys. Combinatory Logic I. Studies in Logic and the Foundations of Mathematics. North-Holland,
Amsterdam, 1958a.

G. Frege. Letter to Russell. English translation in Heijenoort [1967], pages 127–128, 1902.

T.L. Heath. The Thirteen Books of Euclid’s Elements. Dover Publications, Inc., New York, 1956.

J. van Heijenoort, editor. From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931. Harvard

University Press, Cambridge, Massachusetts, 1967.

A. Heyting. Mathematische Grundlagenforschung. Intuitionismus. Beweistheorie. Ergebnisse der Mathematik und
ihrer Grenzgebiete. Springer-Verlag, Berlin, 1934a.

W. A. Howard. The formulaes-as-types notion of construction. In J. R[oger] Hindley and J[onathan] P. Seldin, editors,
To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism, pages 479–490. Academic

Press, 1980a. ISBN 0-12-349050-2. An earlier version was privately circulated in 1969.

University of Leipzig 119

F. Kamareddine. Reviewing the classical and the de Bruijn notation for λ-calculus and Pure Type Systems. J. Logic
Comput., 11(3):363–394, 2001.

F. Kamareddine, L. Laan, and R. P. Nederpelt. Types in logic and mathematics before 1940. Bulletin of Symbolic

Logic, 8(2):185–245, June 2002.

F. Kamareddine, T. Laan, and R. Nederpelt. Automath and pure type systems. In Thirty five years of automating
mathematics, volume 28 of Applied Logic Series, pages 71–123. Kluwer, 2003.

F. Kamaredine, M Maarek, and J.B. Wells. Flexible encoding of mathematics on the computer. 2004a.

F. Kamaredine, M Maarek, and J.B. Wells. Mathlang: An experience driven language of mathematics. Electronic
Notes in Theoretical Computer Science 93C, pages 123–145, 2004b.

F. Kamaredine and R.P. Nederpelt. A refinement of de bruijn’s formal language of mathematics. Logic, Language
and Information, 2004.

A. N. Kolmogorov. Zur Deutung der Intuitionistischen Logik. Mathematisches Zeitschrift, 35:58–65, 1932a.

Edmund Landau. Foundations of Analysis. Chelsea, 1951.

S. MacLane. Categories for the Working Mathematician. pringer, 1972.

University of Leipzig 120

B. Russell. Letter to Frege. English translation in Heijenoort [1967], pages 124–125, 1902.

B. Russell. Mathematical logic as based on the theory of types. American Journal of Mathematics, 30:222–262,
1908. Also in Heijenoort [1967], pages 150–182.

W.W. Tait. Infinitely long terms of transfinite type. In J.N. Crossley and M.A.E. Dummett, editors, Formal Systems
and Recursive Functions, Amsterdam, 1965. North-Holland.

A.N. Whitehead and B. Russell. Principia Mathematica, volume I, II, III. Cambridge University Press, 19101, 19272.

All references are to the first volume, unless otherwise stated.

E. Zermelo. Untersuchungen über die Grundlagen der Mengenlehre. Math. Annalen, 65:261–281, 1908.

University of Leipzig 121

