Toward an Object-Oriented Structure for Mathematical Text

Fairouz Kamareddine, Manuel Maarek and Joe Wells

ULTRA Group - Heriot-Watt University

July 16, 2005 Mathematical Knowledge Management 2005 International University Bremen, Germany

・ロト ・ 同ト ・ ヨト ・ ヨト

Computerising mathematical texts

The Common Mathematical Language is

- Meticulous
- Structured
- Coherent
- Is CML reflected in current approaches of computerising Mathematics?

イロト イポト イヨト イヨト

Two examples From Euclid to Bourbaki

Definition 20. Of trilateral figures, an equilateral triangle is that which has its three sides equal, an isosceles triangle that which has two of its sides alone equal, and a scalene triangle that which has its three sides unequal.

Euclid [The 13 Books of Euclid's Elements, Book I]

Definition 1. A set with an associative law of composition, possessing an identity element and under which every elements is invertible, is called a group. [...] A group G is called finite if the underlying set of G is finite [...] A group [with operators] G is called commutative (or Abelian) if its group law is commutative.

N. Bourbaki [Elements of Mathematics - Algebra, volume II, Chapter I, §4]

イロト イポト イヨト イヨト

Two examples From Euclid to Bourbaki

Definition 20. Of trilateral figures, an equilateral triangle is that which has its three sides equal, an isosceles triangle that which has two of its sides alone equal, and a scalene triangle that which has its three sides unequal.

Euclid [The 13 Books of Euclid's Elements, Book I]

Definition 1. A set with an associative law of composition, possessing an identity element and under which every elements is invertible, is called a group. [...] A group G is called finite if the underlying set of G is finite [...] A group [with operators] G is called commutative (or Abelian) if its group law is commutative.

N. Bourbaki [Elements of Mathematics - Algebra, volume II, Chapter I, §4]

・ロト ・ 同ト ・ ヨト ・ ヨト

Mathematical word processing Semantic markup languages Full formalisation Computerising the mathematical vernacular

ATEX

\begin{definition}

Of trilateral figures, an equilateral triangle is that which has its three sides equal, an isosceles triangle that which has two of its sides alone equal, and a scalene triangle that which has its three sides unequal. \end{definition}

\begin{definition}

A set with an associative law of composition, possessing an identity element and under which every elements is invertible, is called a group. [...] A group \$G\$ is called finite if the underlying set of \$G\$ is finite [...] A group [with operators] \$G\$ is called commutative (or Abelian) if its group law is commutative. \end{definition}

Visual representation

Difficult semantic recognition

Mathematical word processing Semantic markup languages Full formalisation Computerising the mathematical vernacular

Semantic markup languages MathML, OpenMath, OMDoc

OpenMath/OMDoc

- Flexible
- Difficult semantic recognition due to the mixture of natural language and structural and symbolic XML
- Manage embedded formal content

Mathematical word processing Semantic markup languages Full formalisation Computerising the mathematical vernacular

Full formalisation

Theorem provers

Our goal differs from full formalisation.

We want to provide a control over presentation and phrasing of the semantic structure. Most mathematical texts are unlikely to be formalized, but might well benefit from computerisation.

Procedural style – such as Coq, Isabelle

- Fully formalised
- Requires expertise
- Formalisation that may not reflect the CML text

Declarative style - such as Mizar

- Fully formalised
- Requires expertise and the Mizar Mathematical Library
- Syntax mimics natural language
- Formal Proof Sketch (a lighter version of Mizar)

<ロ> (四) (四) (三) (三) (三)

Mathematical word processing Semantic markup languages Full formalisation Computerising the mathematical vernacular

Computerising the mathematical vernacular N.G. de Bruijn's MV – WTT – MathLang-WTT – MathLang

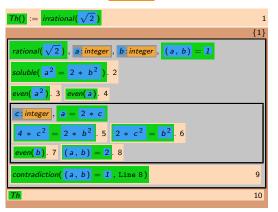
N.G. de Bruijn's Mathematical Vernacular A language with substantives, adjectives and flags

The Weak Type Theory A type system for MV with weak types (TERM, NOUN, ADJ, SET, STAT, LINE and BOOK)

MathLang-WTT A practical evaluation of MV and WTT

- Extends WTT with FLAGS and BLOCKS
- Automates type checking
- Has been used to translate existing CML texts
- Proposes various output-views faithful to CML

MathLang's approach to computerise mathematical texts is to:


- Capture, in a first layer, the grammatical structure of the text
- Represent, in later gradual layers, the semantic and logic of the text

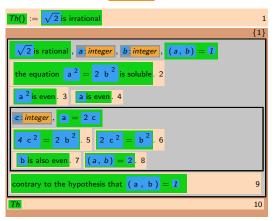
· □ > · (司 > · (日 > · (日 > ·)

Mathematical word processing Semantic markup languages Full formalisation Computerising the mathematical vernacular

Computerising the mathematical vernacular MathLang-WTT – output-view (Example from F. Wiedijk's comparison)

T Terms S Sets Ν Nouns A Adjectives P Statements Z Declarations Γ Contexts L Lines F Flags K Blocks B Books

- Symbolic view
- CML view of symbols


イロト イヨト イヨト イヨト

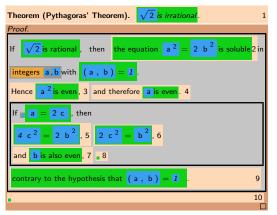
 CML view of the document

Mathematical word processing Semantic markup languages Full formalisation Computerising the mathematical vernacular

Computerising the mathematical vernacular MathLang-WTT – output-view (Example from F. Wiedijk's comparison)

T Terms S Sets Ν Nouns A Adjectives P Statements Z Declarations Γ Contexts L Lines F Flags K Blocks B Books

- Symbolic view
- CML view of symbols


<ロ> (四) (四) (注) (注) (三) (三)

 CML view of the document

Mathematical word processing Semantic markup languages Full formalisation Computerising the mathematical vernacular

Computerising the mathematical vernacular MathLang-WTT – output-view (Example from F. Wiedijk's comparison)

- Symbolic view
- CML view of symbols

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

 CML view of the document

Mathematical word processing Semantic markup languages Full formalisation Computerising the mathematical vernacular

MathLang-WTT Encodings of Euclid's and Bourbaki's examples?

How to faithfully encode a triangle and its sides, a group and its law in MathLang-WTT?

Mathematical word processing Semantic markup languages Full formalisation Computerising the mathematical vernacular

MathLang-WTT Encodings of Euclid's and Bourbaki's examples?

How to faithfully encode a triangle and its sides, a group and its law in MathLang-WTT?

triangle and side, group and law as constants of type NOUN.

Mathematical word processing Semantic markup languages Full formalisation Computerising the mathematical vernacular

MathLang-WTT Encodings of Euclid's and Bourbaki's examples?

How to faithfully encode a triangle and its sides, a group and its law in MathLang-WTT?

triangle and side, group and law as constants of type NOUN.

How to encode the intrinsic relation between a triangle and its lines and between a group and its law?

Mathematical word processing Semantic markup languages Full formalisation Computerising the mathematical vernacular

MathLang-WTT Encodings of Euclid's and Bourbaki's examples?

How to faithfully encode a triangle and its sides, a group and its law in MathLang-WTT?

triangle and side, group and law as constants of type NOUN.

How to encode the intrinsic relation between a triangle and its lines and between a group and its law?

- By parametrising triangle and group with sides and law
 → Constraining & not flexible
- By using a statement "has".

```
has(triangle,line1); has(triangle,line2); has(triangle,line3)
has(group,law)
```

 \rightarrow Verbose & not reliable

Obviously, this kind of fundamental description of mathematical objects needed improvement

Object-oriented approach Examples Multi adjective refinements

Abstraction with nouns and adjectives

• Back to N.G. de Bruijn's informal definitions.

MV's substantives (MathLang-WTT's nouns)

MV's adjectives (MathLang-WTT's adjectives)

MV's names (MathLang-WTT's terms)

(D) (A) (A)

Abstraction with nouns and adjectives

- Back to N.G. de Bruijn's informal definitions.
- Analogy with Object-oriented programming.

MV's substantives (MathLang-WTT's nouns) Classes

MV's adjectives (MathLang-WTT's adjectives) Mixins (functions from classes to classes)

MV's names (MathLang-WTT's terms) **Objects**

(D) (A) (A)

Abstraction with nouns and adjectives

- Back to N.G. de Bruijn's informal definitions.
- Analogy with Object-oriented programming.
- ▶ New design of MathLang with object-oriented features.

MV's substantives (MathLang-WTT's nouns)

Classes

Nouns as classes

MV's adjectives (MathLang-WTT's adjectives) Mixins (functions from classes to classes) Adjectives as mixins

MV's names (MathLang-WTT's terms)

Objects

Terms as objects

MKM05

F. Kamareddine, M. Maarek, J. B. Wells Toward an Object-Oriented Structure for Mathematical Text

Abstraction with nouns and adjectives

- Back to N.G. de Bruijn's informal definitions.
- Analogy with Object-oriented programming.
- New design of MathLang with object-oriented features. Focal

MV's substantives (MathLang-WTT's nouns)

Classes

Nouns as classes

MV's adjectives (MathLang-WTT's adjectives) Mixins (functions from classes to classes)

Adjectives as mixins

MV's names (MathLang-WTT's terms)

Objects

Terms as objects

collection

イロト イヨト イヨト イヨト

species

Abstraction with nouns and adjectives Euclid's example

Definition 20. Of trilateral figures, an equilateral triangle is that which has its three sides equal, an isosceles triangle that which has two of its sides alone equal, and a scalene triangle that which has its three sides unequal. Euclid [The 13 Books of Euclid's Elements, Book I]

Figure and triangle defined as nouns. Trilateral and equilateral defined as adjectives.

(日) (四) (三) (三) (三)

Abstraction with nouns and adjectives Euclid's example

Definition 20. Of trilateral figures, an equilateral triangle is that which has its three sides equal, an isosceles triangle that which has two of its sides alone equal, and a scalene triangle that which has its three sides unequal. Euclid [The 13 Books of Euclid's Elements, Book I]

Figure and triangle defined as nouns. Trilateral and equilateral defined as adjectives.

(日) (四) (三) (三) (三)

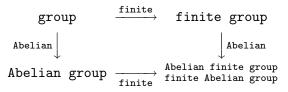
Abstraction with nouns and adjectives Bourbaki's example

MKM05

Definition 1. A set with an associative law of composition, possessing an identity element and under which every elements is invertible, is called a group. [...] A group G is called finite if the underlying set of G is finite [...] A group [with operators] G is called commutative (or Abelian) if its group law is commutative. N. Bourbaki [Elements of Mathematics - Algebra, volume II, Chapter I, §4]

Group defined as a noun. Finite and Abelian defined as adjectives.

(日) (周) (王) (王)


Abstraction with nouns and adjectives Bourbaki's example

Definition 1. A set with an associative law of composition, possessing an identity element and under which every elements is invertible, is called a group. [...] A group G is called finite if the underlying set of G is finite [...] A group [with operators] G is called commutative (or Abelian) if its group law is commutative. N. Bourbaki [Elements of Mathematics - Algebra, volume II, Chapter I, §4]

Group defined as a noun. Finite and Abelian defined as adjectives.

・ロト ・ 同ト ・ ヨト ・ ヨト

Abstraction with nouns and adjectives Multi adjective refinements

- Combine the adjectives *finite* and *Abelian* to obtain either Abelian finite group or finite Abelian group.
- In MathLang both expressions share the same type. Their meaning may differ as the statements introduced by the adjectives may overlap.
- It is possible to define an isosceles equilateral scalene triangle.

Syntax Type system Example

Syntax Sets, category expressions and identifiers

ident, i	=	denumerably infinite set of identifiers
label, l	=	denumerably infinite set of labels
cvar, v	=	denumerably infinite set of category variables
category, c	::=	<pre>term(exp) set(exp) noun(exp) adj(exp, exp) stat dec(category) cvar</pre>
cident, ci	::=	

MKM05

イロン イヨン イヨン イヨン

-2

Syntax Steps

step, s::=phraseBasic unit|label label stepLabelling|step \triangleright stepLocal scoping| $\{\overline{step}\}$ Block

(an arrow on top of a meta-variable represents a sequence of 0 or more meta-variables)

<ロ> (四) (四) (三) (三) (三)

Syntax Type system Example

Syntax Phrases and expressions

phrase, p	::=	exp	
		<i>cident</i> (<i>ident</i>) := <i>exp</i>	Definition
	i	$ident(\overrightarrow{exp}) := exp$	Definition by matching case
	Í	ident ≪ cident	Sub-noun and adjective statement
exp, e	::=	cident(ēxp)	Instance
		ident(category) : exp	Elementhood declaration
		ident(category) : category	Declaration
	Í	Noun { <i>step</i> }	Noun
		Adj(<i>exp</i>) { <i>step</i> }	Adjective
		exp exp	Refinement
		Up <i>exp</i>	Noun lifting
		$\texttt{self} \mid \texttt{super}$	Self and super
		ref <i>label</i>	Referencing

MKM05

▲ロト ▲圖ト ▲屋ト ▲屋ト

-1

Syntax Type system Example

Type system Rules for steps

$$\frac{\vdash s_{1} \colon Step \qquad s_{1} \vdash s_{2} \wr Step \qquad \{s_{1}; s_{2}\} \vdash \{\overrightarrow{s}\} \wr Step}{s_{1} \vdash \{s_{2}; \overrightarrow{s}\} \wr Step} \text{ STEP-COMPOSITION}$$

$$\frac{\vdash s \wr Step \qquad s \vdash s' \wr Step \qquad \{s; s'\} \vdash s'' \wr Step}{s \vdash s' \triangleright s'' \wr Step} \text{ LOCAL-SCOPING}$$

$$\frac{\vdash s \wr Step \qquad s \vdash p \wr Stat/Dec(t)/Def(t)}{s \vdash p \wr Step} \text{ ATOMIC-STEP}$$

$$\frac{\vdash \{\} \wr Step}{\vdash \{\} \wr Step} \text{ EMPTY-STEP}$$

MKM05

・ロト ・ 日 ・ ・ ヨ ・ ・ モ ・

Syntax Type system Example

Type system Rules for noun and adjective expressions

$$\begin{array}{c} \vdash s \mathrel{\bullet} Step \qquad \{s; \ self : \ Term(T)\} \vdash s' \mathrel{\bullet} Step \\ \hline \forall i \in I(s'), \{s; \ self : \ Term(T); \ s'\} \vdash i \mathrel{\bullet} T(i) \\ \hline \hline s \vdash \operatorname{Noun} \{s'\} \mathrel{\bullet} Noun(T) \end{array} \text{ NOUN}$$

$$\begin{array}{c} \vdash s \mathrel{\bullet} Step \qquad s \vdash e \mathrel{\bullet} Noun(T) \\ T \leq T' \qquad \{s; super : Term(T); self : Term(T')\} \vdash s' \mathrel{\bullet} Step \\ \forall i \in I(s'), \{s; super : Term(T); self : Term(T'); s'\} \vdash i \mathrel{\bullet} T'(i) \\ \hline s \vdash \operatorname{Adj}(e) \{s'\} \mathrel{\bullet} Adj(T, T') \end{array} ADJ$$

$$\begin{array}{c|c} \vdash s & \text{Step} & s \vdash e_1 & \text{Adj}(T_1, T_1') \\ \hline s \vdash e_2 & \text{Noun}(T_2)/\text{Set}(T_2)/\text{Term}(T_2) & T_1 \leq T_2 \\ \hline s \vdash e_1e_2 & \text{Noun}(T_1' \uplus T_2)/\text{Set}(T_1' \uplus T_2)/\text{Term}(T_1' \uplus T_2) \end{array}$$
 REFINEMENT

・ロト ・ 日ト ・ モト・・ モト・

Syntax Type system Example

Type system Example of typing – Euclid's example

 Term Terms
 Set Sets
 Noun
 Adj
 Adjectives
 Stat
 Statements

 Def
 Definition
 Step
 Local scopings ▷
 Step
 Blocks { }

Definition 20. Of trilateral figures,

an equilateral triangle is that which has its three sides equal,

an isosceles triangle that which has two of its sides alone equal,

and a scalene triangle that which has its three sides unequal .

<ロ> (四) (四) (三) (三) (三)

Syntax Type system Example

Type system Example of typing – Bourbaki's example

Term Terms Set Sets Noun Nouns Adj Adjectives Stat Statements
Def Definition Step Local scopings ▷ Step Blocks { }

イロト イヨト イヨト イヨト

Future work

- \blacktriangleright Development of a user interface for MathLang based on $T_{E}\!X_{_{\rm MACS}}$
- Adding semantical and logical annotations (with Krzysztof Retel)
- Continue the translations of Euclid's *Elements* and of E. Landau's *Foundation of Analysis*
- Adapt MathLang's weak typing for OpenMath/OMDoc

< 日 > (一) > (二) > ((二) > ((二) > ((L) > ((L)

Future work Conclusion

Conclusion

We saw how the experience-driven development of MathLang led to

- Turning nouns into classes
- Turning adjectives into mixins

MathLang provides an expressive encoding for computerising the symbolic and natural language parts of mathematical text

< 日 > (一) > (二) > ((二) > ((二) > ((L) > ((L)