Toward an Object-Oriented Structure for Mathematical Text

Fairouz Kamareddine, Manuel Maarek and Joe Wells

ULTRA Group - Heriot-Watt University

July 16, 2005

Mathematical Knowledge Management 2005
International University Bremen, Germany

Computerising mathematical texts

- The Common Mathematical Language is
- Meticulous
- Structured
- Coherent
- Is CML reflected in current approaches of computerising Mathematics?

Two examples

From Euclid to Bourbaki

Definition 20. Of trilateral figures, an equilateral triangle is that which has its three sides equal, an isosceles triangle that which has two of its sides alone equal, and a scalene triangle that which has its three sides unequal.

$$
\text { Euclid [The } 13 \text { Books of Euclid's Elements, Book I] }
$$

Definition 1. A set with an associative law of composition, possessing an identity element and under which every elements is invertible, is called a group. [...] A group G is called finite if the underlying set of G is finite [...] A group [with operators] G is called commutative (or Abelian) if its group law is commutative.
N. Bourbaki [Elements of Mathematics - Algebra, volume II, Chapter I, §4]

Two examples

From Euclid to Bourbaki

Definition 20. Of trilateral figures, an equilateral triangle is that which has its three sides equal, an isosceles triangle that which has two of its sides alone equal, and a scalene triangle that which has its three sides unequal.

$$
\text { Euclid [The } 13 \text { Books of Euclid's Elements, Book I] }
$$

Definition 1. A set with an associative law of composition, possessing an identity element and under which every elements is invertible, is called a group. [...] A group G is called finite if the underlying set of G is finite [...] A group [with operators] G is called commutative (or Abelian) if its group law is commutative.
N. Bourbaki [Elements of Mathematics - Algebra, volume II, Chapter I, §4]

Mathematical word processing LTEX

AATEX

```
\begin{definition}
    Of trilateral figures, an equilateral triangle is that which has its
    three sides equal, an isosceles triangle that which has two of its
    sides alone equal, and a scalene triangle that which has its three
    sides unequal.
\end{definition}
\begin{definition}
    A set with an associative law of composition, possessing an identity
    element and under which every elements is invertible, is called a
    group. [...] A group $G$ is called finite if the underlying set of
    $G$ is finite [...] A group [with operators] $G$ is called
    commutative (or Abelian) if its group law is commutative.
\end{definition}
```

- Visual representation
- Difficult semantic recognition

Semantic markup languages

MathML, OpenMath, OMDoc

OpenMath/OMDoc

```
<!-- Euclid's example -->
<theory name="Euclid-book-1">
    <symbol id="equilateral-triangle">
        <CMP>An equilateral triangle is [...]
<!-- Bourbaki's example -->
<theory name="Group">
    <symbol id="*">
    <symbol id="E">
        <CMP>A set with <OMOBJ>*</OMOBJ>, associative
            law of composition.
        <FMP>(a*b)*c=a*(b*c)
    <symbol id="e"> [...]
<theory name="FiniteGroup">
    <imports from="Group"> [...]
```

- Flexible
- Difficult semantic recognition due to the mixture of natural language and structural and symbolic XML
- Manage embedded formal content

Full formalisation

Theorem provers

Our goal differs from full formalisation.
We want to provide a control over presentation and phrasing of the semantic structure. Most mathematical texts are unlikely to be formalized, but might well benefit from computerisation.

Procedural style - such as Coq, Isabelle

- Fully formalised
- Requires expertise
- Formalisation that may not reflect the CML text

Declarative style - such as Mizar

- Fully formalised
- Requires expertise and the Mizar Mathematical Library
- Syntax mimics natural language
- Formal Proof Sketch (a lighter version of Mizar)

Computerising the mathematical vernacular N.G. de Bruijn's MV - WTT - MathLang-WTT - MathLang

N.G. de Bruijn's Mathematical Vernacular A language with substantives, adjectives and flags

The Weak Type Theory A type system for MV with weak types (TERM, NOUN, ADJ, SET, STAT, LINE and BOOK)

MathLang-WTT A practical evaluation of MV and WTT

- Extends WTT with FLAGS and BLOCKS
- Automates type checking
- Has been used to translate existing CML texts
- Proposes various output-views faithful to CML

MathLang's approach to computerise mathematical texts is to:

- Capture, in a first layer, the grammatical structure of the text
- Represent, in later gradual layers, the semantic and logic of the text

Mathematical word processing
Semantic markup languages
Full formalisation
Computerising the mathematical vernacular

Computerising the mathematical vernacular

 MathLang-WTT - output-view (Example from F. Wiedijk's comparison)T Terms S Sets N Nouns A Adjectives P Statements Z Declarations [Contexts L Lines F Flags K Blocks B Books

Th() $:=$ irrational $(\sqrt{2})$	1
	\{1\}
rational $(\sqrt{2}), a$ integer, b : integer, $(a, b)=1$	
soluble($\left.a^{2}=2 * b^{2}\right) .2$	
$\operatorname{even}\left(a^{2}\right) \cdot 3$ even(a). 4	
$c:$ integer, $a=2 * c$	
$4 * c^{2}=2 * b^{2} \cdot 52 * c^{2}=b^{2} \cdot 6$	
even $(b) .7 \quad(a, b)=2.8$	
contradiction($(a, b)=1$, Line 8)	9
Th	10

- Symbolic view
- CML view of symbols CML view of the document

Mathematical word processing
Semantic markup languages
Full formalisation
Computerising the mathematical vernacular

Computerising the mathematical vernacular

 MathLang-WTT - output-view (Example from F. Wiedijk's comparison)T Terms S Sets N Nouns A Adjectives P Statements Z Declarations [Contexts L Lines F Flags K Blocks B Books

- Symbolic view
- CML view of symbols
- CML view of the document

Mathematical word processing
Semantic markup languages
Full formalisation
Computerising the mathematical vernacular

Computerising the mathematical vernacular

 MathLang-WTT - output-view (Example from F. Wiedijk's comparison)T Terms S Sets N Nouns A Adjectives P Statements Z Declarations [Contexts L Lines F Flags K Blocks B Books

- Symbolic view
- CML view of symbols
- CML view of the document

Mathematical word processing

MathLang-WTT

Encodings of Euclid's and Bourbaki's examples?

How to faithfully encode a triangle and its sides, a group and its law in MathLang-WTT?

MathLang-WTT

Encodings of Euclid's and Bourbaki's examples?

How to faithfully encode a triangle and its sides, a group and its law in MathLang-WTT?

- triangle and side, group and law as constants of type NOUN.

Mathematical word processing

MathLang-WTT

Encodings of Euclid's and Bourbaki's examples?

How to faithfully encode a triangle and its sides, a group and its law in MathLang-WTT?

- triangle and side, group and law as constants of type NOUN.

How to encode the intrinsic relation between a triangle and its lines and between a group and its law?

MathLang-WTT

Encodings of Euclid's and Bourbaki's examples?
How to faithfully encode a triangle and its sides, a group and its law in MathLang-WTT?

- triangle and side, group and law as constants of type NOUN.

How to encode the intrinsic relation between a triangle and its lines and between a group and its law?

- By parametrising triangle and group with sides and law \rightarrow Constraining \& not flexible
- By using a statement "has".

```
has(triangle,line1); has(triangle,line2); has(triangle,line3)
``` has (group,law)

\section*{\(\rightarrow\) Verbose \& not reliable}

Obviously, this kind of fundamental description of mathematical objects needed improvement

\section*{Abstraction with nouns and adjectives}
- Back to N.G. de Bruijn's informal definitions.

MV's substantives (MathLang-WTT's nouns)

MV's adjectives (MathLang-WTT's adjectives)

MV's names (MathLang-WTT's terms)

\section*{Abstraction with nouns and adjectives}
- Back to N.G. de Bruijn's informal definitions.
- Analogy with Object-oriented programming.

MV's substantives (MathLang-WTT's nouns)

\section*{Classes}

MV's adjectives (MathLang-WTT's adjectives)
Mixins (functions from classes to classes)

MV's names (MathLang-WTT's terms) Objects

\section*{Abstraction with nouns and adjectives}
- Back to N.G. de Bruijn's informal definitions.
- Analogy with Object-oriented programming.
- New design of MathLang with object-oriented features.

MV's substantives (MathLang-WTT's nouns)
Classes

\section*{Nouns as classes}

MV's adjectives (MathLang-WTT's adjectives)
Mixins (functions from classes to classes)
Adjectives as mixins
MV's names (MathLang-WTT's terms)
Objects
Terms as objects

\section*{Abstraction with nouns and adjectives}
- Back to N.G. de Bruijn's informal definitions.
- Analogy with Object-oriented programming.
- New design of MathLang with object-oriented features.

Focal
MV's substantives (MathLang-WTT's nouns)
Classes
Nouns as classes
MV's adjectives (MathLang-WTT's adjectives)
Mixins (functions from classes to classes)
Adjectives as mixins
MV's names (MathLang-WTT's terms)
Objects
Terms as objects

\section*{Abstraction with nouns and adjectives}

\section*{Euclid's example}

Definition 20. Of trilateral figures, an equilateral triangle is that which has its three sides equal, an isosceles triangle that which has two of its sides alone equal, and a scalene triangle that which has its three sides unequal. Euclid [The 13 Books of Euclid's Elements, Book I]

Figure and triangle defined as nouns. Trilateral and equilateral defined as adjectives.
\{ figure := Noun \{ sides:= Up line;
trilateral := Adj (figure) \{ card(self.sides) = 3 \};
triangle := trilateral figure;
equilateral := Adj (triangle) \{
 forall (side1:self.sides,
 forall (side2:self.sides,
 side1.length \(=\) side2.length)) \} \}

\section*{Abstraction with nouns and adjectives}

\section*{Euclid's example}

Definition 20. Of trilateral figures, an equilateral triangle is that which has its three sides equal, an isosceles triangle that which has two of its sides alone equal, and a scalene triangle that which has its three sides unequal. Euclid [The 13 Books of Euclid's Elements, Book I]

Figure and triangle defined as nouns. Trilateral and equilateral defined as adjectives.
\{
```

figure := Noun { sides:= Up line;
contained_by(self,self.sides) };
trilateral := Adj (figure) { card(self.sides) = 3 };
triangle := trilateral figure;
equilateral := Adj (triangle) {
forall (side1:self.sides,
forall (side2:self.sides,
side1.length = side2.length)) } }

```

\section*{Abstraction with nouns and adjectives}

Bourbaki's example

Definition 1. A set with an associative law of composition, possessing an identity element and under which every elements is invertible, is called a group. [...] A group \(G\) is called finite if the underlying set of \(G\) is finite [...] A group [with operators] \(G\) is called commutative (or Abelian) if its group law is commutative. N. Bourbaki [Elements of Mathematics Algebra, volume II, Chapter I, §4]

Group defined as a noun. Finite and Abelian defined as adjectives
```

{ group := Noun { E:set;
{ a:E; b:E } |> * (a,b) :E;
{ a:E; b:E; c:E } |> *(*(a,b),c) = *(a,*(b,c));
e:E;
forall (x:E, invertible(e,x)) };
finite := Adj (group) { finit_set(self.E) };
Abelian := Adj (group) {
{ x:self.E; y:self.E } |>
self.* (x,y) = self.* (y,x) } }

```

\section*{Abstraction with nouns and adjectives}

Bourbaki's example

Definition 1. A set with an associative law of composition, possessing an identity element and under which every elements is invertible, is called a group. [...] A group \(G\) is called finite if the underlying set of \(G\) is finite [...] A group [with operators] \(G\) is called commutative (or Abelian) if its group law is commutative. N. Bourbaki [Elements of Mathematics Algebra, volume II, Chapter I, §4]

Group defined as a noun. Finite and Abelian defined as adjectives.
```

{ group := Noun { E:set; { a:E; b:E } |> * (a,b) :E;
{ a:E; b:E; c:E } |> *(*(a,b),c) = *(a,*(b,c));
e:E;
forall (x:E, invertible(e,x)) };
finite := Adj (group) { finit_set(self.E) };
Abelian := Adj (group) {
{ x:self.E; y:self.E } |>
self.* (x,y) = self.* (y,x) } }

```

\section*{Abstraction with nouns and adjectives}

Multi adjective refinements

- Combine the adjectives finite and Abelian to obtain either Abelian finite group or finite Abelian group.
- In MathLang both expressions share the same type. Their meaning may differ as the statements introduced by the adjectives may overlap.
- It is possible to define an isosceles equilateral scalene triangle.

\section*{Syntax}

Sets, category expressions and identifiers
\begin{tabular}{lll}
ident, & \(=\) & denumerably infinite set of identifiers \\
label, I & \(=\) & denumerably infinite set of labels \\
cvar, \(v\) & \(=\) & denumerably infinite set of category variables \\
category, c & \(::=\) & term(exp) | set(exp) | noun(exp) | adj(exp, exp) \\
cident, ci & \(::=\) & ident \(\mid\) exp.cident
\end{tabular}

\section*{Syntax \\ Steps}
\[
\begin{array}{ccll}
\text { step, s } & ::= & \text { phrase } & \text { Basic unit } \\
& \text { label label step } & \text { Labelling } \\
& \text { step } \triangleright \text { step } & \text { Local scoping } \\
\{\overrightarrow{s t e p}\} & \text { Block }
\end{array}
\]
(an arrow on top of a meta-variable represents a sequence of 0 or more meta-variables)
```

Block: sequence of reasoning statements
{ x.(y+1) = x.y';
x.y' = x.y+x;
x.y+x = x.y+x.1 }
Blocks and sub-blocks
{ --A proof of P by induction--
{ --Proof of the base-- [...]; P(0) };
{ --Proof of the induction-- { n:N; P(n) } |> {[...]; P(n+1) } } }
Local scoping: contextualises one reasoning step
{ --Proof of the contradiction-- [...] }
|> { --Statement proved by contradiction-- [...] }

```

\section*{Syntax}

Phrases and expressions
\begin{tabular}{|c|c|c|}
\hline phrase, p & :: \(=\) & exp \\
\hline & | & cident \((\overrightarrow{i d e n t}):=\exp\) \\
\hline & & ident \((\overrightarrow{e x p}):=\exp\) \\
\hline & | & ident << cident \\
\hline exp, e & \(:=\) & cident \((\overrightarrow{e x p})\) \\
\hline & | & ident(\(\overrightarrow{\text { category }})\) : exp \\
\hline & & ident(\(\overrightarrow{\text { category }}\)) : category \\
\hline & & Noun \(\{\) step \(\}\) \\
\hline & & \(\operatorname{Adj}(\exp)\) \{step \(\}\) \\
\hline & & exp exp \\
\hline & & Up exp \\
\hline & & self | super \\
\hline & & ref label \\
\hline
\end{tabular}

Definition
Definition by matching case Sub-noun and adjective statement Instance
Elementhood declaration
Declaration
Noun
Adjective
Refinement
Noun lifting Self and super
Referencing

\section*{Type system}

Rules for steps
\[
\begin{aligned}
& \frac{\vdash s_{1}: \text { Step } \quad s_{1} \vdash s_{2}: \text { Step } \quad\left\{s_{1} ; s_{2}\right\} \vdash\{\vec{s}\}: \text { Step }}{s_{1} \vdash\left\{s_{2} ; \vec{s}\right\}: \text { Step }} \text { STEP-COMPOSITION } \\
& \frac{\vdash s: \text { Step } \quad s \vdash s^{\prime}: \text { Step } \quad\left\{s ; s^{\prime}\right\} \vdash s^{\prime \prime}: \text { Step }}{s \vdash s^{\prime} \triangleright s^{\prime \prime}: \text { Step }} \text { LOCAL-SCOPING } \\
& \frac{\vdash s: \text { Step } \quad s \vdash p: \operatorname{Stat} / \operatorname{Dec}(t) / \operatorname{Def}(t)}{s \vdash p: \text { Step }} \text { ATOMIC-STEP } \\
& \overline{\vdash\}: \text { Step }} \text { EMPTY-STEP }
\end{aligned}
\]

\section*{Type system}

Rules for noun and adjective expressions
\[
\begin{aligned}
& \vdash s: \text { Step } \quad\{s ; \text { self : Term }(T)\} \vdash s^{\prime}: \text { Step } \\
& \frac{\forall i \in I\left(s^{\prime}\right),\left\{s ; \text { self : Term }(T) ; s^{\prime}\right\} \vdash i: T(i)}{s \vdash \operatorname{Noun}\left\{s^{\prime}\right\}: \operatorname{Noun}(T)} \text { NOUN } \\
& \vdash s: \text { Step } \quad s \vdash e: \operatorname{Noun}(T) \\
& T \leq T^{\prime} \quad\left\{s \text {; super: } \operatorname{Term}(T) \text {; self : Term }\left(T^{\prime}\right)\right\} \vdash s^{\prime}: \text { Step } \\
& \frac{\forall i \in I\left(s^{\prime}\right),\left\{s \text {; super : Term }(T) ; \text { self : Term }\left(T^{\prime}\right) ; s^{\prime}\right\} \vdash i: T^{\prime}(i)}{s \vdash \operatorname{Adj}(e)\left\{s^{\prime}\right\}: \operatorname{Adj}\left(T, T^{\prime}\right)} \text { ADJ } \\
& \vdash s: \text { Step } \quad s \vdash e_{1}: \operatorname{Adj}\left(T_{1}, T_{1}^{\prime}\right) \\
& \frac{s \vdash e_{2}: \operatorname{Noun}\left(T_{2}\right) / \operatorname{Set}\left(T_{2}\right) / \operatorname{Term}\left(T_{2}\right) \quad T_{1} \leq T_{2}}{s \vdash e_{1} e_{2}: \operatorname{Noun}\left(T_{1}^{\prime} \uplus T_{2}\right) / \operatorname{Set}\left(T_{1}^{\prime} \uplus T_{2}\right) / \operatorname{Term}\left(T_{1}^{\prime} \uplus T_{2}\right)} \text { REFINEMENT }
\end{aligned}
\]

\section*{Type system \\ Example of typing - Euclid's example}

Term Terms Set Sets Noun Nouns Adj Adjectives Stat Statements
Def Definition Step Local scopings \(\triangleright\) Step Blocks \{ \}
Definition 20. Of trilateral figures,
an equilateral triangle is that which has its three sides equal,
an isosceles triangle that which has two of its sides alone equal,
and a scalene triangle that which has its three sides unequal .

\section*{Type system}

Example of typing - Bourbaki's example

Term Terms Set Sets Noun Nouns Adj Adjectives Stat Statements Def Definition Step Local scopings \(\triangleright\) Step Blocks \{ \}

\section*{Definition 1.}

A set
with an associative law of composition
possessing an identity element
and under which every elements is invertible, is called a group.
[...]
A group \(G\) is called finite if the underlying set of \(G\) is finite
[...]
A group [with operators] \(G\) is called commutative (or Abelian) if its group law is commutative.

\section*{Future work}
- Development of a user interface for MathLang based on \(\mathrm{T}_{\mathrm{E}} \mathrm{X}_{\text {MACS }}\)
- Adding semantical and logical annotations (with Krzysztof Retel)
- Continue the translations of Euclid's Elements and of E. Landau's Foundation of Analysis
- Adapt MathLang's weak typing for OpenMath/OMDoc

\section*{Conclusion}

We saw how the experience-driven development of MathLang led to
- Turning nouns into classes
- Turning adjectives into mixins

MathLang provides an expressive encoding for computerising the symbolic and natural language parts of mathematical text```

