
Motivations for MathLang

Fairouz Kamareddine∗

Monday 14 November 2005

∗This talk is based on joint work with Laan and Nederpelt (see [1, 2]) and Maarek and Wells (see [3, 4])

T-O-U Workshop



The Goal: Open borders between mathematics, logic and

computation

• Ordinary mathematicians avoid formal mathematical logic.

• Ordinary mathematicians avoid proof checking (via a computer).

• Ordinary mathematicians may use a computer for computation: there are over
1 million people who use Mathematica (including linguists, engineers, etc.).

• Mathematicians may also use other computer forms like Maple, LaTeX, etc.

• But we are not interested in only libraries or computation or text editing.

• We want freedeom of movement between mathematics, logic and computation.

• At every stage, we must have the choice of the level of formalilty and the
depth of computation.

T-O-U Workshop 1



Common Mathematical Language of mathematicians: Cml

+ Cml is expressive: it has linguistic categories like proofs and theorems.

+ Cml has been refined by intensive use and is rooted in long traditions.

+ Cml is approved by most mathematicians as a communication medium.

+ Cml accommodates many branches of mathematics, and is adaptable to new
ones.

– Since Cml is based on natural language, it is informal and ambiguous.

– Cml is incomplete: Much is left implicit, appealing to the reader’s intuition.

– Cml is poorly organised: In a Cml text, many structural aspects are omitted.

– Cml is automation-unfriendly: A Cml text is a plain text and cannot be easily
automated.

T-O-U Workshop 2



A Cml-text

From chapter 1, § 2 of E. Landau’s Foundations of Analysis [Lan51].

Theorem 6. [Commutative Law of Addition]

x + y = y + x.

Proof Fix y, and let M be the set of all
x for which the assertion holds.

I) We have

y + 1 = y
′
,

and furthermore, by the construction in
the proof of Theorem 4,

1 + y = y
′
,

so that
1 + y = y + 1

and 1 belongs to M.
II) If x belongs to M, then

x + y = y + x,

Therefore

(x + y)′ = (y + x)′ = y + x
′
.

By the construction in the proof of
Theorem 4, we have

x
′ + y = (x + y)′,

hence

x
′ + y = y + x

′
,

so that x′ belongs to M. The assertion

therefore holds for all x. 2

T-O-U Workshop 3



What are the options for computerization?

Computers can handle mathematical text at various levels:

• Images of pages may be stored. While useful, this is not a good representation
of language or knowledge.

• Typesetting systems like LATEX can be used.

• Document representations like OMDoc can be used.

• Formal logics used by theorem provers can be used.

We are gradually developing a system named MathLang which we hope will
eventually allow building a bridge between the latter 3 levels.

This talk aims at discussing the motivations rather than the details.

T-O-U Workshop 4



The issues with typesetting systems

+ A system like LATEX provides good defaults for visual appearance, while allowing
fine control when needed.

+ LATEX supports commonly needed document structures, while allowing custom
structures to be created.

– Unless the mathematician is amazingly disciplined, the logical structure of
symbolic formulas is not represented at all.

– The logical structure of mathematics as embedded in natural language text is
not represented. Automated discovery of the semantics of natural language
text is still too primitive and requires human oversight.

T-O-U Workshop 5



LATEX example
draft documents ✓

public documents ✓

computations and proofs ✗
\begin{theorem}[Commutative Law of Addition]\label{theorem:6}

$$x+y=y+x.$$

\end{theorem}
\begin{proof}

Fix $y$, and $\mathfrak{M}$ be the set of all $x$ for which the

assertion holds.

\begin{enumerate}
\item We have $$y+1=y’,$$

and furthermore, by the construction in

the proof of Theorem~\ref{theorem:4}, $$1+y=y’,$$

so that $$1+y=y+1$$

and $1$ belongs to $\mathfrak{M}$.
\item If $x$ belongs to $\mathfrak{M}$, then $$x+y=y+x,$$

Therefore

$$(x+y)’=(y+x)’=y+x’.$$

By the construction in the proof of

Theorem~\ref{theorem:4}, we have $$x’+y=(x+y)’,$$

hence

$$x’+y=y+x’,$$

so that $x’$ belongs to $\mathfrak{M}$.
\end{enumerate}
The assertion therefore holds for all $x$.

\end{proof}

T-O-U Workshop 6



The differences of OMDoc

OMDoc attempts to solve some of the difficulties of typesetting systems.

+ Translation to LATEX (still needed) or MathML can handle visual appearance.

– Precise appearance control must work through a translation (difficult!).

+ OMDoc supports commonly needed document structures.

+ The tree structure of symbolic formulas is represented.

– The semantics of symbolic formulas is not represented.

– Type checking symbolic formulas (beyond arity) must be outside OMDoc.

– The logical structure of mathematics as embedded in natural language text
is still not represented. There are ways to associate symbolic formulas with
natural language text, but no way to check their consistency.

T-O-U Workshop 7



The beginnings of computerized formalization

• In 1967 the famous mathematician de Bruijn began work on logical languages
for complete books of mathematics that can be fully checked by machine.

• People are prone to error, so if a machine can do proof checking, we expect
fewer errors.

• Most mathematicians doubted de Bruijn could achieve success, and computer
scientists had no interest at all.

• However, he persevered and built Automath (AUTOmated MATHematics).

• Today, there is much interest in many approaches to proof checking for
verification of computer hardware and software.

• Many theorem provers have been built to mechanically check mathematics and
computer science reasoning (e.g. Isabelle, HOL, Coq, etc.).

T-O-U Workshop 8



The problem with formal logic
• No logical language has the criteria expected of a language of mathematics.

– A logical language does not have mathematico-linguistic categories, is not
universal to all mathematicians, and is not a good communication medium.

– Logical languages make fixed choices (first versus higher order, predicative
versus impredicative, constructive versus classical, types or sets, etc.). But
different parts of mathematics need different choices and there is no universal
agreement as to which is the best formalism.

– A logician reformulates in logic their formalization of a mathematical-text as
a formal, complete text which is structured considerably unlike the original,
and is of little use to the ordinary mathematician.

– Mathematicians do not want to use formal logic and have for centuries done
mathematics without it.

• So, mathematicians kept to Cml.

• We would like to find an alternative to Cml which avoids some of the features
of the logical languages which made them unattractive to mathematicians.

T-O-U Workshop 9



Full formalization difficulties: choices

A Cml-text is structured differently from a fully formalized text proving the same
facts. Making the latter involves extensive knowledge and many choices:

• The choice of the underlying logical system.

• The choice of how concepts are implemented (equational reasoning,
equivalences and classes, partial functions, induction, etc.).

• The choice of the formal foundation: a type theory (dependent?), a set theory
(ZF? FM?), a category theory? etc.

• The choice of the proof checker: Automath, Isabelle, Coq, PVS, Mizar, ...

An issue is that one must in general commit to one set of choices.

T-O-U Workshop 10



Full formalization difficulties: informality

Any informal reasoning in a Cml-text will cause various problems when fully
formalizing it:

• A single (big) step may need to expand into a (series of) syntactic proof
expressions. Very long expressions can replace a clear Cml-text.

• The entire Cml-text may need reformulation in a fully complete syntactic
formalism where every detail is spelled out. New details may need to be woven
throughout the entire text. The text may need to be “turned inside out”.

• Reasoning may be obscured by proof tactics, whose meaning is often ad hoc
and implementation-dependent.

Regardless, ordinary mathematicians do not find the new text useful.

T-O-U Workshop 11



Coq example

draft documents ✗
public documents ✗

computations and proofs ✓

From Module Arith.Plus of Coq standard library (http://coq.inria.fr/).

Lemma plus_sym : (n,m:nat)(n+m)=(m+n).

Proof.

Intros n m ; Elim n ; Simpl_rew ; Auto with arith.

Intros y H ; Elim (plus_n_Sm m y) ; Simpl_rew ; Auto with arith.

Qed.

T-O-U Workshop 12



Where do we start? de Bruijn’s Mathematical Vernacular MV

• De Bruijn’s Automath not just [...] as a technical system for verification
of mathematical texts, it was rather a life style with its attitudes towards
understanding, developing and teaching mathematics....The way mathematical
material is to be presented to the system should correspond to the usual way
we write mathematics. The only things to be added should be details that are
usually omitted in standard mathematics.

• MV is faithful to Cml yet is formal and avoids ambiguities.

• MV is close to the usual way in which mathematicians write.

• MV has a syntax based on linguistic categories not on set/type theory.

• MV is weak as regards correctness: the rules of MV mostly concern linguistic
correctness, its types are mostly linguistic so that the formal translation into
MV is satisfactory as a readable, well-organized text.

T-O-U Workshop 13



Problems with MV

• MV makes many logical and mathematical choices which are best postponed.

• MV incorporates certain correctness requirements, there is for example a
hierarchy of types corresponding with sets and subsets.

• MV is already on its way to a full formalization, while we want the option of
remaining closer to a given informal mathematical content.

• We want a formal language MathLang which •has the advantages of Cml

but not its disadvantages and •respects Cml content.

• MV does not respect Cml content.

T-O-U Workshop 14



What is the aim for MathLang?

Can we formalise a Cml text, avoiding as much as possible the ambiguities of
natural language, while still guaranteeing the following four goals?

1. The formalised text looks very much like the original Cml text (and hence the
content of the original Cml text is respected).

2. The formalised text can be fully manipulated and searched in ways that respect
its mathematical structure and meaning.

3. Steps can be made to do computation (via computer algebra systems) and
proof checking (via proof checkers) on the formalised text.

4. This formalisation of text is not much harder for the ordinary mathematician
than LATEX. Full formalization down to a foundation of mathematics is not
required, although allowing and supporting this is one goal.

(No theorem prover’s language satisfies these goals.)

T-O-U Workshop 15



Starting point for MathLang: MV and WTT

• MV was an initial inspiration for MathLang. But MV fails on goal 1.

• Weak Type Theory, WTT [2], is MV minus the added logic.

• Although in many ways WTT succeeds and improves on MV, it still fails on
goal 1. A WTT text is not close to its Cml original.

• With MathLang, we start from WTT, add some features, and investigate how
to integrate it with natural language text.

• Our ongoing development of MathLang is driven by testing it in translating
a set of sample texts chosen to cover a large portion of Cml usages, both
current and historical.

T-O-U Workshop 16



MathLang

draft documents ✓
public documents ✓

computations and proofs ✓

• A MathLang text captures the grammatical and reasoning aspects of
mathematical structure for further computer manipulation.

• A weak type system checks MathLang documents at a grammatical level.

• A MathLang text remains close to its Cml original, allowing confidence that
the Cml has been captured correctly.

• We have been developing ways to weave natural language text into MathLang.

• MathLang aims to eventually support all encoding uses.

T-O-U Workshop 17



Process of translation into MathLang

CML MathLang
document

MathLang
formal structure

Later
computations

Similar

Translation
Automatic

computations

CML
produced

• The Cml view of a MathLang text should match the mathematician’s
intentions.

• The formal structure should be suitable for various automated uses.

T-O-U Workshop 18



Linguistic categories in WTT and MathLang

• At the atomic level, WTT has separate syntactic categories for variables,
constants, and binders. The latest MathLang uses one syntactic category and
instead distinguishes these roles via weak types.

• At the phrase level, there are terms, sets, nouns, and adjectives. (Manuel’s
talk will give details on how this is handled in the latest MathLang.)

• At the sentence level, there are statements and definitions.

• At the discourse level, WTT has contexts, lines, books, and prefaces. The
latest MathLang replaces these by blocks and scoping operators.

Generally, each syntactic category has a corresponding weak type.

T-O-U Workshop 19



Examples of linguistic categories

• Terms: the triangle ABC; the center of ABC ; d(x, y ).

• Nouns: a triangle; an edge of ABC; a group.

• Adjectives: equilateral triangle ; prime number ; Abelian group.

• Statements: P lies between Q and R ; 5 ≥ 3 ; AB is an edge of ABC.

• Definition: a number p is prime whenever · · · .

T-O-U Workshop 20



MathLang example

Definition 1. A Fermat-sum is a natural number which is the sum of
two squares of natural numbers.

Lemma 2. The product of a square and a Fermat-sum is a Fermat sum.

In an older MathLang version, the above text could be translated as the following
two lines:

a Fermat-sum := Nounn∈N∃k∈N∃l∈N(n = k2 + l2)

∀u: a square∀v: a Fermat-sum(uv : a Fermat-sum)

We can also give the following interesting views of this example.

T-O-U Workshop 21



MathLang example: Symbolic structure view

Fermat-sum () :=

Noun

n : N

∃ k : N , ∃ l : N , n = k
2

+ l
2

(1)

∀ u : square , ∀ v : Fermat-sum , u ∗ v : Fermat-sum (2)

T-O-U Workshop 22



MathLang example: CML view

Definition 3. [Fermat-sum]

A Fermat-sum is

a natural number which is the sum of two squares of natural numbers . 1

Lemma 4.

The product of a square and a Fermat-sum is a Fermat-sum . 2

T-O-U Workshop 23



Another MathLang example

T Terms S Sets N Nouns P Statements Z Declarations Γ Context

Let M be a set ,

y and x are natural numbers ,

if x belongs to M

then x + y = y + x

T-O-U Workshop 24



Another MathLang example: Type checking

T Terms S Sets N Nouns P Statements Z Declarations Γ Context

Let M be a set ,

y and x are natural numbers ,

if x belongs to M

then x + y ⇐ error

T-O-U Workshop 25



Various approaches to representing mathematics

CML
MathLang's

approach
TPs'

approach
OMDoc's

approach
WTT's

approach

We visually summarize the approaches. Blobs represent natural language text
whose structure is not understood by the computer. A broken blob is text
maintained separately, not as part of the data structure. Triangles represent a
tree-shaped structures understood by the computer. Solid triangles represent
additional computer-checked well-formedness conditions. A heavy solid triangle
represents full formalization.

T-O-U Workshop 26



Additional comparison with other related work

• Galina serves as a command language for Coq, aimed at full formalization.

• The mathematical vernacular of ΩMEGA gives Cml-like views of fully/partially
formalized proofs.

• The basic languages of Mizar and Isar preserve the mathematical content.
They are aimed at full formalization. Their syntax does not give the same
expressive freedom to the mathematician as Cml.

• In the Theorema project computer algebra systems, the provers are designed
to imitate the proof style humans employ in their proving attempts. The
proofs can be produced in human-readable style. However, this is done by
post-processing a fully formal proof.

• The typed functional programming language GF can define languages such as
fragments of natural languages, programming languages, and formal calculi.
GF is based on Martin-Löf’s type theory.

T-O-U Workshop 27



Some points to consider

• We do not at all assume/prefer one type/logical theory instead of another.

• The formalisation of a language of mathematics should separate the questions:

– which type/logical theory is necessary for which part of mathematics
– which language should mathematics be written in.

• Mathematicians don’t usually know or work with type/logical theories.

• Mathematicians usually do mathematics (manipulations, calculations, etc), but
are not interested in general in reasoning about mathematics.

T-O-U Workshop 28



Conclusion

• MathLang aims to support non-fully-formalized mathematics practiced by the
ordinary mathematician as well as work toward full formalization.

• MathLang aims to handle mathematics as expressed in natural language as
well as symbolic formulas.

• MathLang aims to do some amount of type checking even for non-fully-
formalized mathematics. This corresponds roughly to grammatical conditions.

• MathLang aims for a formal representation of Cml texts that closely
corresponds to the Cml conceived by the ordinary mathematician.

• MathLang aims to support automated processing of mathematical knowledge.

• MathLang aims to be independent of any foundation of mathematics.

T-O-U Workshop 29



References

[1] Kamareddine, F., L. Laan, and R. Nederpelt: 2002, ‘Types in logic and
mathematics before 1940’. Bulletin of Symbolic Logic 8(2), 185–245.

[2] Kamareddine, F., and R. Nederpelt: 2004, A refinement of de Bruijn’s formal
language of mathematics. Journal of Logic, Language and Information. Kluwer
Academic Publishers.

[3] Kamareddine, F., Maarek, M., and Wells, J.B.: 2004, MathLang: An
experience driven language of mathematics, Electronic Notes in Theoretical
Computer Science 93C, pages 123-145. Elsevier.

[4] F. Kamaredine, M Maarek, and J.B. Wells. Flexible encoding of mathematics
on the computer. 2004.

T-O-U Workshop 30



[Lan30] Edmund Landau. Grundlagen der Analysis. Chelsea, 1930.

[Lan51] Edmund Landau. Foundations of Analysis. Chelsea, 1951. Translation
of [Lan30] by F. Steinhardt.

T-O-U Workshop 31


