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What is the aim for MathLang?

Can we formalise a mathematical text, avoiding as much as possible the
ambiguities of natural language, while still guaranteeing the following four goals?

1. The formalised text looks very much like the original mathematical text (and
hence the content of the original mathematical text is respected).

2. The formalised text can be fully manipulated and searched in ways that respect
its mathematical structure and meaning.

3. Steps can be made to do computation (via computer algebra systems) and
proof checking (via proof checkers) on the formalised text.

4. This formalisation of text is not much harder for the ordinary mathematician
than LATEX. Full formalization down to a foundation of mathematics is not
required, although allowing and supporting this is one goal.

(No theorem prover’s language satisfies these goals.)
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A brief history

• There are two influencing questions:

1. What is the relationship between logic and mathematics
2. What is the relationship between computer science and mathematics.

• Question 1 has been slowly brewing for over 2500 years.

• Question 2, is more recent but is unavoidable since automation and
computation can provide tremendous services to mathematics.

• There are also extensive opportunities from combining progress in logic and
automation/computerisation not only in mathematics but also in other areas:
bio-Informatics, chemistry, music, etc.
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Did logic fail for mathematics?

• As far back as the Greeks, we know that logic was influential in the study and
development of mathematics.

• Aristotle already knew that for a proposition Φ.
– If you give me a proof of Φ, I can check whether this proof really proves Φ.
– But, if you ask me to find a proof of Φ, I may go on forever trying but

without success.

• Aristotle used logic to reason about everything (mathematics, law, farming,
medicine,...)

• Euclid’s geometry’s main feature is the deductive style developed for reasoning
about mathematics.

• In the 17th century, Leibniz wanted to use logic to prove the existence of God.
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Logic and mathematics

In the 19th century, the need for a more precise style in mathematics arose,
because controversial results had appeared in analysis.

• 1821: Many of these controversies were solved by the work of Cauchy. E.g.,
he introduced a precise definition of convergence in his Cours d’Analyse [4].

• 1872: Due to the more exact definition of real numbers given by Dedekind [9],
the rules for reasoning with real numbers became even more precise.

• 1895-1897: Cantor began formalizing set theory [2, 3] and made contributions
to number theory.
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Formal systems in the 19th century

• 1889: Peano formalized arithmetic [26], but did not treat logic or quantification.

• 1879: Frege was not satisfied with the use of natural language in mathematics:

“. . . I found the inadequacy of language to be an obstacle; no matter how
unwieldy the expressions I was ready to accept, I was less and less able,
as the relations became more and more complex, to attain the precision
that my purpose required.”

(Begriffsschrift, Preface)

Frege therefore presented Begriffsschrift [11], the first formalisation of logic
giving logical concepts via symbols rather than natural language.
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Formal systems in the 19th century

“[Begriffsschrift’s] first purpose is to provide us with the most reliable test
of the validity of a chain of inferences and to point out every presupposition
that tries to sneak in unnoticed, so that its origin can be investigated.”

(Begriffsschrift, Preface)

• 1892-1903 Frege’s Grundgesetze der Arithmetik [13, 17], could handle
elementary arithmetic, set theory, logic, and quantification.

• Also in 1900, Hilbert, posed a list of problems at a conference in Paris.

• One very important question was: Can any logical statement have a proof or
be disproved.

• More than 30 years later, this question was negatively answered by Turing
(Turing machines), Goedel (incompleteness results) and Church (λ-calculus).
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And so, the birth of computation machines, and limits of

computability

• The first half of the 20th century saw a surge of different formalisms and saw
the birth of computers (Turing machines, Von Neumann’s machine, etc).

• E.g., the discovery of Russell’s paradox was the reason for the invention of the
first type theory.

• There was a competition between set/type/category theory as a better
foundation for mathematics.

• The second half of the 20th century would see a surge of programming
languages and softwares for mathematics.
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Can we solve/compute everything?

• Turing answered the question in terms of a computer. Turing’s machines are
so powerful: anything that can ever be computed even on the most powerful
computers, can also be computed on a Turing machine.

• Church invented the λ-calculus, a language for programming. λ-calculus is
so powerful: anything that can ever be computed can be described in the
λ-calculus.

• Goedel’s result meant that no absolute guarantee can be given that many
significant branches of mathematics are entirely free of contradictions.

• This meant that: we can compute a very small (countable) amount compared
to what we will never be able to compute (uncountable).

• Hilbert’s dream was shattered. According to the great historian of Mathematics
Ivor Grattan-Guinness, Hilbert behaved coldly towards Goedel.
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• Frege was the first most precise logician. He wanted symbols to replace natural
language everywhere.

• Self-application of functions was at the heart of Russell’s paradox 1902 [30].

• To avoid paradox Russell controled function application via type theory.

• Russell [31] 1903 gives the first type theory: the Ramified Type Theory (rtt).

• But, types existed since the time of Euclid (325 B.C.).

• rtt is used in Russell and Whitehead’s Principia Mathematica [34] 1910–1912.

• Simple theory of types (stt): Ramsey [28] 1926, Hilbert and Ackermann [19]
1928.

• Church’s simply typed λ-calculus λ→ [7] 1940 = λ-calculus + stt.
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Prehistory of Types (Begriffsschrift’s functions)

• The generalisation of the concept of function made the system more abstract
and less intuitive.

• Frege was aware of some typing rule that does not allow to substitute functions
for object variables or objects for function variables:

• “if the [. . . ] letter [sign] occurs as a function sign, this circumstance
[should] be taken into account.” (Begriffsschrift, Section 11)

• “ Now just as functions are fundamentally different from objects, so also
functions whose arguments are and must be functions are fundamentally
different from functions whose arguments are objects and cannot be
anything else. I call the latter first-level, the former second-level.”(Function and Concept, pp. 26–27)
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Prehistory of Types (Begriffsschrift’s functions)

In Function and Concept he was aware of the fact that making a difference
between first-level and second-level objects is essential to prevent paradoxes:

“The ontological proof of God’s existence suffers from the fallacy of treating
existence as a first-level concept.”

(Function and Concept, p. 27, footnote)

The above discussion on functions and arguments shows that Frege did indeed
avoid the paradox in his Begriffsschrift.
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Prehistory of Types (Grundgesetze’s functions)

The Begriffsschrift, however, was only a prelude to Frege’s writings.

• In Grundlagen der Arithmetik [12] he argued that mathematics can be seen as
a branch of logic.

• In Grundgesetze der Arithmetik [13, 17] he described the elementary parts of
arithmetic within an extension of the logical framework of Begriffsschrift.

• Frege approached the paradox threats for a second time at the end of Section
2 of his Grundgesetze.

• He did not want to apply a function to itself, but to its course-of-values.
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Prehistory of Types (Grundgesetze’s functions)

“the function Φ(x) has the same course-of-values as the function Ψ(x)” if:

“the functions Φ(x) and Ψ(x) always have the same value for the same
argument.”

(Grundgesetze, p. 7)

• Note that functions Φ(x) and Ψ(x) may have equal courses-of-values even if
they have different definitions. E.g., x ∧ ¬x, and x↔ ¬x.

• Frege denoted the course-of-values of a function Φ(x) by ὲΦ(ε). The definition
of equal courses-of-values could therefore be expressed as

ὲf(ε) = ὲg(ε)←→ ∀a[f(a) = g(a)]. (1)

In modern terminology, we could say that the functions Φ(x) and Ψ(x) have
the same course-of-values if they have the same graph.
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Prehistory of Types (Grundgesetze’s functions)

• The notation ὲΦ(ε) may be the origin of Russell’s notation x̂Φ(x) for the class
of objects that have the property Φ.

• According to a paper by Rosser [29], the notation x̂Φ(x) has been at the basis
of the current notation λx.Φ(x).

• Church is supposed to have written ∧xΦ(x) for the function x 7→ Φ(x):
the hat ∧ in front of the x distinguishes this function from the class x̂Φ(x).
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Prehistory of Types (Grundgesetze’s functions)
• Frege treated courses-of-values as ordinary objects.

• As a consequence, a function that takes objects as arguments could have its
own course-of-values as an argument.

• In modern terminology: a function that takes objects as arguments can have
its own graph as an argument.

• BUT, all essential information of a function is contained in its graph.

• A system in which a function can be applied to its own graph should have
similar possibilities as a system in which a function can be applied to itself.

• Frege excluded the paradox threats by forbidding self-application

• but due to his treatment of courses-of-values these threats were able to enter
his system through a back door.
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Prehistory of Types (Russell’s paradox in Grundgesetze)

• In 1902, Russell wrote a letter to Frege [30], informing him that he had
discovered a paradox in his Begriffsschrift.

• WRONG: Begriffsschrift does not suffer from a paradox.

• Russell gave his well-known argument, defining the propositional function

f(x) by ¬x(x).

In Russell’s words: “to be a predicate that cannot be predicated of itself.”

• Russell assumed f(f). Then by definition of f , ¬f(f), a contradiction.
Therefore: ¬f(f) holds. But then (again by definition of f), f(f) holds.
Russell concluded that both f(f) and ¬f(f) hold, a contradiction.
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Prehistory of Types (Russell’s paradox in Grundgesetze)

• 6 days later, Frege wrote [16] that Russell’s derivation of paradox is incorrect.

• Ferge explained that self-application f(f) is not possible in Begriffsschrift.

• f(x) is a function, which requires an object as an argument.
A function cannot be an object in the Begriffsschrift.

• Frege explained that Russell’s argument could be amended to a paradox in
Grundgesetze, using the course-of-values of functions:

Let f(x) = ¬∀ϕ[(ὰϕ(α) = x) −→ ϕ(x)]
I.e. f(x) = ∃ϕ[(ὰϕ(α) = x) ∧ ¬ϕ(x)] hence ¬ϕ(ὰϕ(α))

• Both f(ὲf(ε)) and ¬f(ὲf(ε)) hold.

• Frege added an appendix of 11 pages to the 2nd volume of Grundgesetze in
which he gave a very detailed description of the paradox.
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Prehistory of Types (How wrong was Frege?)
• Due to Russell’s Paradox, Frege is often depicted as the pitiful person whose

system was inconsistent.

• This suggests that Frege’s system was the only one that was inconsistent, and
that Frege was very inaccurate in his writings.

• On these points, history does Frege an injustice.

• Frege’s system was much more accurate than other systems of those days.

• Peano’s work, for instance, was less precise on several points:

• Peano hardly paid attention to logic especially quantification theory;

• Peano did not make a strict distinction between his symbolism and the objects
underlying this symbolism. Frege was much more accurate on this point (see
Frege’s paper Über Sinn und Bedeutung [14]);
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Prehistory of Types (How wrong was Frege?)

• Frege made a strict distinction between a proposition (as an object) and the
assertion of a proposition. Frege denoted a proposition, by −A, and its
assertion by ⊢ A. Peano did not make this distinction and simply wrote A.

Nevertheless, Peano’s work was very popular, for several reasons:

• Peano had able collaborators, and a better eye for presentation and publicity.

• Peano bought his own press to supervise the printing of his own journals Rivista
di Matematica and Formulaire [27]
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Prehistory of Types (How wrong was Frege?)

• Peano used a familiar symbolism to the notations used in those days.

• Many of Peano’s notations, like ∈ for “is an element of”, and ⊃ for logical
implication, are used in Principia Mathematica, and are actually still in use.

• Frege’s work did not have these advantages and was hardly read before 1902

• When Peano published his formalisation of mathematics in 1889 [26] he clearly
did not know Frege’s Begriffsschrift as he did not mention the work, and was
not aware of Frege’s formalisation of quantification theory.
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Prehistory of Types (How wrong was Frege?)

• Peano considered quantification theory to be “abstruse” in [27]:

“In this respect my [Frege] conceptual notion of 1879 is superior to the
Peano one. Already, at that time, I specified all the laws necessary for
my designation of generality, so that nothing fundamental remains to be
examined. These laws are few in number, and I do not know why they
should be said to be abstruse. If it is otherwise with the Peano conceptual
notation, then this is due to the unsuitable notation.”

([15], p. 376)
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Prehistory of Types (How wrong was Frege?)

• In the last paragraph of [15], Frege concluded:

“. . . I observe merely that the Peano notation is unquestionably more
convenient for the typesetter, and in many cases takes up less room
than mine, but that these advantages seem to me, due to the inferior
perspicuity and logical defectiveness, to have been paid for too dearly —
at any rate for the purposes I want to pursue.”

(Ueber die Begriffschrift des Herrn Peano und meine eigene, p. 378)
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Prehistory of Types (paradox in Peano and Cantor’s systems)

• Frege’s system was not the only paradoxical one.

• The Russell Paradox can be derived in Peano’s system as well, by defining the

class K
def
= {x | x 6∈ x} and deriving K ∈ K ←→ K 6∈ K.

• In Cantor’s Set Theory one can derive the paradox via the same class (or set,
in Cantor’s terminology).
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Prehistory of Types (paradoxes)

• Paradoxes were already widely known in antiquity.

• The oldest logical paradox: the Liar’s Paradox “This sentence is not true”,
also known as the Paradox of Epimenides. It is referred to in the Bible (Titus
1:12) and is based on the confusion between language and meta-language.

• The Burali-Forti paradox ([1], 1897) is the first of the modern paradoxes. It is
a paradox within Cantor’s theory on ordinal numbers.

• Cantor was aware of the Burali-Forti paradox but did not think it would render
his system incoherent.

• Cantor’s paradox on the largest cardinal number occurs in the same field. It
was discovered by Cantor around 1895, but was not published before 1932.

Saarbruecken, Germany 24



Prehistory of Types (paradoxes)

• Logicians considered these paradoxes to be out of the scope of logic:

– The Liar’s Paradox can be regarded as a problem of linguistics.
– The paradoxes of Cantor and Burali-Forti occurred in what was considered in

those days a highly questionable part of mathematics: Cantor’s Set Theory.

• The Russell Paradox, however, was a paradox that could be formulated in all
the systems of the end of the 19th century (except for Frege’s Begriffsschrift).

• Russell’s Paradox was at the very basics of logic.

• It could not be disregarded, and a solution to it had to be found.

• In 1903-1908, Russell suggested the use of types to solve the problem [32].
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Prehistory of Types (vicious circle principle)

When Russell proved Frege’s Grundgesetze to be inconsistent, Frege was not the
only person in trouble. In Russell’s letter to Frege (1902), we read:

“I am on the point of finishing a book on the principles of mathematics”

(Letter to Frege, [30])

Russell had to find a solution to the paradoxes, before finishing his book.

His paper Mathematical logic as based on the theory of types [32] (1908), in
which a first step is made towards the Ramified Theory of Types, started with a
description of the most important contradictions that were known up till then,
including Russell’s own paradox. He then concluded:
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Prehistory of Types (vicious circle principle)

“In all the above contradictions there is a common characteristic, which we
may describe as self-reference or reflexiveness. [. . . ] In each contradiction
something is said about all cases of some kind, and from what is said a new
case seems to be generated, which both is and is not of the same kind as
the cases of which all were concerned in what was said.”

(Ibid.)

Russell’s plan was, to avoid the paradoxes by avoiding all possible self-references.
He postulated the “vicious circle principle”:

Saarbruecken, Germany 27



Ramified Type Theory

“Whatever involves all of a collection must not be one of the collection.”

(Mathematical logic as based on the theory of types)

• Russell applies this principle very strictly.

• He implemented it using types, in particular the so-called ramified types.

• The type theory of 1908 was elaborated in Chapter II of the Introduction to
the famous Principia Mathematica [34] (1910-1912).
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Ramified Type Theory and Principia

• In the Principia, mathematics was founded on logic, as far as possible.

• The logical part of Principia was based on the works of Frege (acknowledged
by Whitehead and Russell in the preface, and can be seen throughout the
description of Type Theory).

• The notion of function is based on Frege’s Abstraction Principles.

• The Principia notation x̂f(x) for a class looks very similar to Frege’s ὲf(ε) for
course-of-values.
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And so!! different theories, different formalisms

• Translations of Mathematics into logic (Hilbert, Ackermann, Weyl, Russell,
Whitehead, Frege, etc.) showed that no logic is fully satisfactory.

• Firt order logics? Higher order logics? Predicative logics/ impredicative ones?

• There are different set theories: well-founded, non well-founded, with/without
foundation axiom/axiom of choice, etc.

• There are different type theories: simple, polymorphic, dependent,etc.

• There are arguments that category theory can serve parts of mathematics
better than type theory or set theory.

• And new logics, set/type/category theories are regularly being developed.

• Worst, the ordinary mathematician is not interested in any of this progress.
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Common Mathematical Language of mathematicians: Cml

+ Cml is expressive: it has linguistic categories like proofs and theorems.

+ Cml has been refined by intensive use and is rooted in long traditions.

+ Cml is approved by most mathematicians as a communication medium.

+ Cml accommodates many branches of mathematics, and is adaptable to new
ones.

– Since Cml is based on natural language, it is informal and ambiguous.

– Cml is incomplete: Much is left implicit, appealing to the reader’s intuition.

– Cml is poorly organised: In a Cml text, many structural aspects are omitted.

– Cml is automation-unfriendly: A Cml text is a plain text and cannot be easily
automated.
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A Cml-text

From chapter 1, § 2 of E. Landau’s Foundations of Analysis [Lan51].

Theorem 6. [Commutative Law of Addition]

x + y = y + x.

Proof Fix y, and let M be the set of all
x for which the assertion holds.

I) We have

y + 1 = y
′
,

and furthermore, by the construction in
the proof of Theorem 4,

1 + y = y
′
,

so that
1 + y = y + 1

and 1 belongs to M.
II) If x belongs to M, then

x + y = y + x,

Therefore

(x + y)′ = (y + x)′ = y + x
′
.

By the construction in the proof of
Theorem 4, we have

x
′ + y = (x + y)′,

hence

x
′ + y = y + x

′
,

so that x
′ belongs to M. The assertion

therefore holds for all x. 2
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The problem with formal logic
• No logical language has the criteria expected of a language of mathematics.

– A logical language does not have mathematico-linguistic categories, is not
universal to all mathematicians, and is not a good communication medium.

– Logical languages make fixed choices (first versus higher order, predicative
versus impredicative, constructive versus classical, types or sets, etc.). But
different parts of mathematics need different choices and there is no universal
agreement as to which is the best formalism.

– A logician reformulates in logic their formalization of a mathematical-text as
a formal, complete text which is structured considerably unlike the original,
and is of little use to the ordinary mathematician.

– Mathematicians do not want to use formal logic and have for centuries done
mathematics without it.

• So, mathematicians kept to Cml.

• We would like to find an alternative to Cml which avoids some of the features
of the logical languages which made them unattractive to mathematicians.
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What are the options for computerization?

Computers can handle mathematical text at various levels:

• Images of pages may be stored. While useful, this is not a good representation
of language or knowledge.

• Typesetting systems like LATEX can be used.

• Document representations like OMDoc can be used.

• Formal logics used by theorem provers can be used.

We are gradually developing a system named MathLang which we hope will
eventually allow building a bridge between the latter 3 levels.

This talk aims at discussing the motivations rather than the details.
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The issues with typesetting systems

+ A system like LATEX provides good defaults for visual appearance, while allowing
fine control when needed.

+ LATEX supports commonly needed document structures, while allowing custom
structures to be created.

– Unless the mathematician is amazingly disciplined, the logical structure of
symbolic formulas is not represented at all.

– The logical structure of mathematics as embedded in natural language text is
not represented. Automated discovery of the semantics of natural language
text is still too primitive and requires human oversight.
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LATEX example
draft documents ✓

public documents ✓

computations and proofs ✗
\begin{theorem}[Commutative Law of Addition]\label{theorem:6}

$$x+y=y+x.$$

\end{theorem}
\begin{proof}

Fix $y$, and $\mathfrak{M}$ be the set of all $x$ for which the

assertion holds.

\begin{enumerate}
\item We have $$y+1=y’,$$

and furthermore, by the construction in

the proof of Theorem~\ref{theorem:4}, $$1+y=y’,$$

so that $$1+y=y+1$$

and $1$ belongs to $\mathfrak{M}$.
\item If $x$ belongs to $\mathfrak{M}$, then $$x+y=y+x,$$

Therefore

$$(x+y)’=(y+x)’=y+x’.$$

By the construction in the proof of

Theorem~\ref{theorem:4}, we have $$x’+y=(x+y)’,$$

hence

$$x’+y=y+x’,$$

so that $x’$ belongs to $\mathfrak{M}$.
\end{enumerate}
The assertion therefore holds for all $x$.

\end{proof}
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The differences of OMDoc

OMDoc attempts to solve some of the difficulties of typesetting systems.

+ Translation to LATEX (still needed) or MathML can handle visual appearance.

– Precise appearance control must work through a translation (difficult!).

+ OMDoc supports commonly needed document structures.

+ The tree structure of symbolic formulas is represented.

– The semantics of symbolic formulas is not represented.

– Type checking symbolic formulas (beyond arity) must be outside OMDoc.

– The logical structure of mathematics as embedded in natural language text
is still not represented. There are ways to associate symbolic formulas with
natural language text, but no way to check their consistency.
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The beginnings of computerized formalization

• In 1967 the famous mathematician de Bruijn began work on logical languages
for complete books of mathematics that can be fully checked by machine.

• People are prone to error, so if a machine can do proof checking, we expect
fewer errors.

• Most mathematicians doubted de Bruijn could achieve success, and computer
scientists had no interest at all.

• However, he persevered and built Automath (AUTOmated MATHematics).

• Today, there is much interest in many approaches to proof checking for
verification of computer hardware and software.

• Many theorem provers have been built to mechanically check mathematics and
computer science reasoning (e.g. Isabelle, HOL, Coq, etc.).
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Full formalization difficulties: choices

A Cml-text is structured differently from a fully formalized text proving the same
facts. Making the latter involves extensive knowledge and many choices:

• The choice of the underlying logical system.

• The choice of how concepts are implemented (equational reasoning,
equivalences and classes, partial functions, induction, etc.).

• The choice of the formal foundation: a type theory (dependent?), a set theory
(ZF? FM?), a category theory? etc.

• The choice of the proof checker: Automath, Isabelle, Coq, PVS, Mizar, ...

An issue is that one must in general commit to one set of choices.
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Full formalization difficulties: informality

Any informal reasoning in a Cml-text will cause various problems when fully
formalizing it:

• A single (big) step may need to expand into a (series of) syntactic proof
expressions. Very long expressions can replace a clear Cml-text.

• The entire Cml-text may need reformulation in a fully complete syntactic
formalism where every detail is spelled out. New details may need to be woven
throughout the entire text. The text may need to be “turned inside out”.

• Reasoning may be obscured by proof tactics, whose meaning is often ad hoc
and implementation-dependent.

Regardless, ordinary mathematicians do not find the new text useful.
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Coq example

draft documents ✗
public documents ✗

computations and proofs ✓

From Module Arith.Plus of Coq standard library (http://coq.inria.fr/).

Lemma plus_sym : (n,m:nat)(n+m)=(m+n).

Proof.

Intros n m ; Elim n ; Simpl_rew ; Auto with arith.

Intros y H ; Elim (plus_n_Sm m y) ; Simpl_rew ; Auto with arith.

Qed.
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The Goal: Open borders between mathematics, logic and

computation

• Ordinary mathematicians avoid formal mathematical logic.

• Ordinary mathematicians avoid proof checking (via a computer).

• Ordinary mathematicians may use a computer for computation: there are over
1 million people who use Mathematica (including linguists, engineers, etc.).

• Mathematicians may also use other computer forms like Maple, LaTeX, etc.

• But we are not interested in only libraries or computation or text editing.

• We want freedeom of movement between mathematics, logic and computation.

• At every stage, we must have the choice of the level of formalilty and the
depth of computation.
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MathLang

draft documents ✓
public documents ✓

computations and proofs ✓
• A MathLang text captures the grammatical and reasoning aspects of

mathematical structure for further computer manipulation.
• A weak type system checks MathLang documents at a grammatical level.
• A MathLang text remains close to its Cml original, allowing confidence that

the Cml has been captured correctly.
• We have been developing ways to weave natural language text into MathLang.
• MathLang aims to eventually support all encoding uses.
• The Cml view of a MathLang text should match the mathematician’s

intentions.
• The formal structure should be suitable for various automated uses.

Saarbruecken, Germany 43



Some points to consider

• We do not at all assume/prefer one type/logical theory instead of another.

• The formalisation of a language of mathematics should separate the questions:

– which type/logical theory is necessary for which part of mathematics
– which language should mathematics be written in.

• Mathematicians don’t usually know or work with type/logical theories.

• Mathematicians usually do mathematics (manipulations, calculations, etc), but
are not interested in general in reasoning about mathematics.

• The steps used for computerising books of mathematics written in English,
as we are doing, can also be followed for books written in Arabic, French,
German, or any other natural language.

• MathLang aims to support non-fully-formalized mathematics practiced by the
ordinary mathematician as well as work toward full formalization.
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• MathLang aims to handle mathematics as expressed in natural language as
well as symbolic formulas.

• MathLang aims to do some amount of type checking even for non-fully-
formalized mathematics. This corresponds roughly to grammatical conditions.

• MathLang aims for a formal representation of Cml texts that closely
corresponds to the Cml conceived by the ordinary mathematician.

• MathLang aims to support automated processing of mathematical knowledge.

• MathLang aims to be independent of any foundation of mathematics.

• MathLang allows anyone to be involved, whether a mathematician, a computer
engineer, a computer scientist, a linguist, a logician, etc.

• MathLang allows more accurate translation between different languages whithin
the mathematical dictionary.
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