Restoring Natural Language as a Computerised Mathematics Input Method

Robert Lamar
joint work with
Fairouz Kamareddine Manuel Maarek J. B. Wells
ULTRA group, Heriot-Watt University http://www.macs.hw.ac.uk/ultra/
30 June 2007
Mathematical Knowledge Management conference
RISC, Hagenburg, Austria

A Bit of Mathematics

CML There is an element $-a$ in R such that $a+(-a)=0$ for all a in R.

A Bit of Mathematics

In a variety of languages

CML There is an element $-a$ in R such that $a+(-a)=0$ for all a in R.

Mizar ex b being Element of R st $\mathrm{a}+\mathrm{b}=0$.
Isar $a \in R \Longrightarrow-a \in R \wedge a+-a=0$.
Omega (inverse-exist R op (struct-unit R op)).

A Bit of Mathematics

In a variety of languages

CML There is an element $-a$ in R such that $a+(-a)=0$ for all a in R.

Mizar ex b being Element of R st $\mathrm{a}+\mathrm{b}=0$.
Isar $a \in R \Longrightarrow-a \in R \wedge a+-a=0$.
Omega (inverse-exist R op (struct-unit R op)).

Goal: Smoothing and strengthening transitions.

MathLang grammatical categories

term Common mathematical objects.
set Sets of mathematical objects.
noun Categories to classify terms
adjective Modifiers for nouns
statement Assertions of truth
declaration Type signature designations
definition New symbol introductions
step A group of mathematical assertions.
context Assertions preliminary to a step
" R ", "0", " $a+b "$
" \mathbb{R} "
"ring"
"Abelian"
" $a=b$ "
"Addition is denoted $a+b "$
"A ring is..."
"We have...
... and also..."
"Given a ring R, \ldots "

Example

There is an element - a in R such that $a+(-a)=0$ for all a in R.

Example

There is an element－in R such that回 $+(-$ 回 $)=0$ for all 回 in R 。

Example

There is an element－a in R such that回 $+(-$ 回 $)=0$ for all 回 R 。

Example

There is an element－ R^{a} in such that回 $+(-$ 回 $)=0$ for all 回 in ．

Example

There is an element - 回 in such that回 $+($ 回 $)=0$ for all 回 in ．

Example

There is an element - 回 in such that $\square+\left(\left[-a_{0}\right)=0\right.$ for all a^{a} in .

Example

There is an element - 回 in such that

Example

There is an element - - - in such that $\square+($-回 $)=0$ for all 回 in \mathbb{R}.

Example

Example

There is an element－－国 in R such that回＋（（－回）$)=0$ for all 回 in

Example

There is an element - - - in R such that a $+($-回 $)=0$ for all 回 in R

Example

Anatomy of a box

<interp> contents

Color Grammatical category
Contents Original mathematics
<interp> Logical interpretation

Anatomy of a box

Examples:

<equal> $[$ d is equal to b

<equal> a $=\square$
<ident> 回 $=b$

${ }^{\langle A\rangle} A \quad\langle$ reals $\rangle \mathbb{R}$
<inter> <apples> $A \cap$ <oranges> O

Another Example

$$
a=b=c
$$

Another Example

$$
a b=b=\square
$$

Another Example

$$
\square=\square=\square
$$

Another Example

$$
\square=\square=\square
$$

What next?

Another Example

$$
a=b=c
$$

?

Another Example

$$
a=b=\square
$$

?

What does this mean?
How do we cope?

$$
a=b=c
$$

What does this mean?

How do we cope?

$$
a=b=c
$$

- Compound statement
- Short for " $a=b$ and $b=c$ "
- Must be translated before computerisation

The ULTRA Solution

Syntax Sugaring

Syntax sugaring:

- Common in many computer languages
- Used for pretty-printing
- Eases human use of languages
- Always: nice for computers \longrightarrow nice for humans

The ULTRA Solution

```
Syntax Sugaring vs. Syntax Souring
```

Syntax sugaring:

- Common in many computer languages
- Used for pretty-printing
- Eases human use of languages
- Always: nice for computers \longrightarrow nice for humans

Syntax souring:

- A new transformation: Syntax souring
- Syntax souring solves the problem of $a=b=c$.
- Other direction: nice for humans \longrightarrow nice for computers

The ULTRA Solution

Another look at the problem

$$
a=b=c
$$

- The relation " $=$ " is binary: it takes two arguments
- The term " b ":
- Appears only once
- Is actually provided as argument twice
- Is "shared"
- Goal: tell = to be nice and share

The ULTRA Solution

$$
a=\quad b=c
$$

The ULTRA Solution

$$
\text { 回 }=\quad b=\square
$$

The ULTRA Solution

$$
\square=\square
$$

The ULTRA Solution

$$
\square=<\text { share }>b
$$

The ULTRA Solution

Kinds of Souring

$\begin{array}{lll}\begin{array}{ll}\text { share Natural splitting of single argument } \\ \text { chain More flexible forwarding of entities }\end{array} & \} \text { Duplication } \\ \begin{array}{ll}\text { fold Recursion upon lists } & \\ \text { map Iteration over lists } & \text { List operations } \\ \text { osition Reordering of arguments } & \} \text { Reordering }\end{array}\end{array}$

Kinds of Souring: Duplication share • chain • fold • map • position

Kinds of Souring: Duplication share • chain • fold • map • position

Kinds of Souring: Lists
 share • chain • fold • map • position

Kinds of Souring: Lists

share • chain • fold • map • position

Kinds of Souring: Reordering

 share • chain • fold • map • position

Conclusion

- Five kinds of souring:
share • chain • fold • map • position
- Common goal: elucidating the intent of language
- Future Work:
- Look for other souring needs
- Automate the annotation process
- Identify appropriate granularity for annotation
- Arrive at recommendations/conventions for annotation
- Cope with ellipsis.

$$
\overbrace{x+\ldots+x}^{n \text { times }} \quad 2^{2} \cdot \cdot^{2} \frac{1}{1+\frac{1}{1+\cdots}}
$$

Text and Symbol

Box Annotation

Souring annotation

Souring Examples

Conclusion

