

Principal Typings for Explicit Substitution*

Daniel Lima Ventura, Mauricio Ayala-Rincón Departamento de Matemática, Universidade de Brasília Brasília D.F., Brazil Fairouz Kamareddine ULTRA Group, Heriot-Watt University Edinburgh, Scotland

Computability in Europe - CiE 2008 June 18, 2008, Athens

* Supported by the Brazilian Research Foundation (CNPq) and Coordination of Higher Education (CAPES)

Universidade de Brasília

Background Principal Typing for λdB Principal Typing for ES Conclusions and Future Work

Outline

2 Principal Typing for λdB

Principal Typing

Let $A \vdash M : \tau$ be a type judgement in some type system S

• $\Theta = \langle A, \tau \rangle$ is a typing of M in S ($S \Vdash M : \Theta$).

Principal Typing

Let $A \vdash M : \tau$ be a type judgement in some type system S

- $\Theta = \langle A, \tau \rangle$ is a typing of M in S ($S \Vdash M : \Theta$).
- Θ is a **principal typing** (PT) of *M* if $S \Vdash M : \Theta$ and Θ "represents" any other possible typing of *M*.

Principal Typing

Let $A \vdash M : \tau$ be a type judgement in some type system S

- $\Theta = \langle A, \tau \rangle$ is a typing of M in S ($S \Vdash M : \Theta$).
- Θ is a **principal typing** (PT) of *M* if $S \Vdash M : \Theta$ and Θ "represents" any other possible typing of *M*.
- PT property allows compositional type inference

Given term M and context A, τ is a **principal type** of M if it represents any other possible type of M in A.

Given term M and context A, τ is a **principal type** of M if it represents any other possible type of M in A.

Principal Type: $A \vdash M$:?

Given term M and context A, τ is a **principal type** of M if it represents any other possible type of M in A.

Principal Type: $A \vdash M$:?

Example $y: \alpha \rightarrow \alpha \vdash \lambda_x.(y \ x) :?$

Given term M and context A, τ is a **principal type** of M if it represents any other possible type of M in A.

Principal Type: $A \vdash M$:?

Example

 $y: \alpha \rightarrow \alpha \vdash \lambda_x.(y \ x) :?$ Answer: $\alpha \rightarrow \alpha$

Given term M and context A, τ is a **principal type** of M if it represents any other possible type of M in A.

```
Principal Type: A \vdash M :?
```

```
Example
```

```
y: \alpha \rightarrow \alpha \vdash \lambda_x.(y x) :?
Answer: \alpha \rightarrow \alpha
```

Example

 $y: \alpha \rightarrow \beta \vdash \lambda_x.(y x) :?$

Given term M and context A, τ is a **principal type** of M if it represents any other possible type of M in A.

```
Principal Type: A \vdash M :?
```

Example

```
y: \alpha \rightarrow \alpha \vdash \lambda_x.(y x) :?
Answer: \alpha \rightarrow \alpha
```

Example

```
y: \alpha \rightarrow \beta \vdash \lambda_x.(y x) :?
Answer: \alpha \rightarrow \beta
```


Principal Typing: $? \vdash M$:?

Are there typings for M? If so which one is principal?

Principal Typing: $? \vdash M$:?

Are there typings for M? If so which one is principal?

Example

 $? \vdash \lambda_x . (y x) :?$

Principal Typing: $? \vdash M$:?

Are there typings for M? If so which one is principal?

Example

 $\begin{aligned} ? \vdash \lambda_{x}.(y \ x) :? \\ \text{Possible typings: } \langle y : \alpha \rightarrow \beta, \alpha \rightarrow \beta \rangle; \\ \langle y : \alpha \rightarrow \alpha, \alpha \rightarrow \alpha \rangle; \text{ and many more} \end{aligned}$

Principal Typing: $? \vdash M$:?

Are there typings for M? If so which one is principal?

Example

 $\begin{array}{l} ? \vdash \lambda_{x}.(y \; x) :? \\ \text{Possible typings: } \langle y : \alpha \rightarrow \beta, \alpha \rightarrow \beta \rangle; \\ \langle y : \alpha \rightarrow \alpha, \alpha \rightarrow \alpha \rangle; \text{ and many more} \\ \text{Principal typing: } \langle y : \alpha \rightarrow \beta, \alpha \rightarrow \beta \rangle \end{array}$

Principal Typing: $? \vdash M$:?

Are there typings for M? If so which one is principal?

Example

 $\begin{array}{l} ? \vdash \lambda_{x}.(y \; x) :? \\ \text{Possible typings: } \langle y: \alpha \rightarrow \beta, \alpha \rightarrow \beta \rangle; \\ \langle y: \alpha \rightarrow \alpha, \alpha \rightarrow \alpha \rangle; \text{ and many more} \\ \text{Principal typing: } \langle y: \alpha \rightarrow \beta, \alpha \rightarrow \beta \rangle \end{array}$

Example

 $? \vdash \lambda_x.(y(y x)):?$

Principal Typing: $? \vdash M$:?

Are there typings for M? If so which one is principal?

Example

 $\begin{array}{l} ? \vdash \lambda_{x}.(y \; x) :? \\ \text{Possible typings: } \langle y: \alpha \rightarrow \beta, \alpha \rightarrow \beta \rangle; \\ \langle y: \alpha \rightarrow \alpha, \alpha \rightarrow \alpha \rangle; \text{ and many more} \\ \text{Principal typing: } \langle y: \alpha \rightarrow \beta, \alpha \rightarrow \beta \rangle \end{array}$

Example

? $\vdash \lambda_x.(y (y x))$:? Possible typings: $\langle y: \alpha \rightarrow \alpha, \alpha \rightarrow \alpha \rangle$; $\langle y: (\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \beta, (\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \beta \rangle$; and many more

Principal Typing: $? \vdash M$:?

Are there typings for M? If so which one is principal?

Example

 $\begin{array}{l} ? \vdash \lambda_{x}.(y \; x) :? \\ \text{Possible typings: } \langle y: \alpha \rightarrow \beta, \alpha \rightarrow \beta \rangle; \\ \langle y: \alpha \rightarrow \alpha, \alpha \rightarrow \alpha \rangle; \text{ and many more} \\ \text{Principal typing: } \langle y: \alpha \rightarrow \beta, \alpha \rightarrow \beta \rangle \end{array}$

Example

? $\vdash \lambda_x.(y (y x))$:? Possible typings: $\langle y: \alpha \rightarrow \alpha, \alpha \rightarrow \alpha \rangle$; $\langle y: (\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \beta, (\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \beta \rangle$; and many more Principal typing: $\langle y: \alpha \rightarrow \alpha, \alpha \rightarrow \alpha \rangle$

Principal Typing versus Principal Type

	Principal Type	Principal Typing
STLC	√ [Hi97]	√ [Wells02]
Hindley/Milner	√ [DM82]	X [Wells02]
System F	?	X [Wells02]
System \mathbb{I}	√ [KW04]	✓ [KW04]

Principal Typing

Definition

For some typing Θ in S let $Terms_{S}(\Theta) = \{M \mid S \Vdash M:\Theta\}$.

Principal Typing

Definition

For some typing Θ in S let $Terms_{S}(\Theta) = \{M \mid S \Vdash M:\Theta\}$.

Definition (Typing's Partial Order) Let $\Theta \leq_{\mathcal{S}} \Theta'$ iff $Terms_{\mathcal{S}}(\Theta) \subseteq Terms_{\mathcal{S}}(\Theta')$

Principal Typing

Definition

For some typing Θ in S let $Terms_S(\Theta) = \{M \mid S \Vdash M:\Theta\}$.

Definition (Typing's Partial Order) Let $\Theta \leq_{\mathcal{S}} \Theta'$ iff $Terms_{\mathcal{S}}(\Theta) \subseteq Terms_{\mathcal{S}}(\Theta')$

Example

Let $\Theta_1 = \langle y: \alpha \rightarrow \beta, \alpha \rightarrow \beta \rangle$ and $\Theta_2 = \langle y: \alpha \rightarrow \alpha, \alpha \rightarrow \alpha \rangle$. Moreover, $\lambda_x.(y \ x)$ is in $Terms(\Theta_1) \cap Terms(\Theta_2)$. And $\lambda_x.x$ is in $Terms(\Theta_2) \setminus Terms(\Theta_1)$.

Principal Typing

Definition

For some typing Θ in S let $Terms_{S}(\Theta) = \{M \mid S \Vdash M : \Theta\}$.

Definition (Typing's Partial Order) Let $\Theta \leq_{\mathcal{S}} \Theta'$ iff $Terms_{\mathcal{S}}(\Theta) \subseteq Terms_{\mathcal{S}}(\Theta')$

Example

Let
$$\Theta_1 = \langle y : \alpha \to \beta, \alpha \to \beta \rangle$$
 and $\Theta_2 = \langle y : \alpha \to \alpha, \alpha \to \alpha \rangle$.
Moreover, $\lambda_x . (y \ x)$ is in $Terms(\Theta_1) \cap Terms(\Theta_2)$.
And $\lambda_x . x$ is in $Terms(\Theta_2) \setminus Terms(\Theta_1)$.
Therefore, $\Theta_1 \leq_S \Theta_2$.

Principal Typing

Definition (General PT [Wells02])

A typing Θ in system S is principal for some term M iff $S \Vdash M:\Theta$ and for all $\Theta', S \Vdash M:\Theta'$ implies $\Theta \leq_S \Theta'$.

Simple Type System

Definition (Simple Types and Contexts) **Types** $\tau ::= \alpha | \tau \to \tau$ **Contexts** $A ::= nil | \tau.A$

Simple Type System

Definition (Simple Types and Contexts)

Types $\tau ::= \alpha | \tau \to \tau$ **Contexts** $A ::= nil | \tau.A$

- |A|: A's length.
- For $A = \tau_1.\tau_2.\cdots.\tau_m$: $A_{< n} = \tau_1.\cdots.\tau_n$
 - $A_{\geq n}^{-} = \tau_n \cdots \tau_m$.nil
- $A_{< n}$ and $A_{> n}$ defined similarly

The System $TA_{\lambda dB}$

Syntax

Terms $M ::= \underline{n} | (M M) | \lambda.M$

Typing Rules
$$A \vdash \underline{n} : \tau$$
 Var $\tau . A \vdash \underline{1} : \tau$ (Var) $\overline{\sigma . A \vdash \underline{n+1} : \tau}$ $(Varn)$ $\overline{A \vdash A : A \vdash M : \tau}$ $(Lambda)$ $\overline{A \vdash M : \sigma \rightarrow \tau}$ $A \vdash N : \sigma$ $A \vdash (M : N) : \tau$ (App)

PT in $TA_{\lambda dB}$

Definition (System Dependent PT in $TA_{\lambda dB}$)

In $TA_{\lambda dB}$, $\Theta = \langle A, \tau \rangle$ is system dependent PT for M iff $TA_{\lambda dB} \Vdash M : \Theta$ and for any $\Theta' = \langle A', \tau' \rangle$, if $TA_{\lambda dB} \Vdash M : \Theta'$, then there exists some type substitution s such that $s(A) = A'_{\leq |A|}.nil$ and $s(\tau) = \tau'$.

PT for $TA_{\lambda dB}$

Theorem (Correspondence for $TA_{\lambda dB}$)

In $TA_{\lambda dB}$, Θ is a system dependent PT for M iff Θ is a general PT for M.

PT for $TA_{\lambda dB}$

Theorem (Correspondence for $TA_{\lambda dB}$)

In $TA_{\lambda dB}$, Θ is a system dependent PT for M iff Θ is a general PT for M.

Theorem (PT for $TA_{\lambda dB}$)

 $TA_{\lambda dB}$ satisfies the PT property.

Type Inference for $TA_{\lambda dB}$ [AyMu2000]

1st Given term M, let M' be its annoted version. Ex: for $M = \lambda.(\underline{2} \ \underline{1}), M' = (\lambda.(\underline{2} \ \underline{A_1} \ \underline{1} \ \underline{A_2}) \ \underline{A_3}) \ \underline{A_4}{T_1}$

Type Inference for $TA_{\lambda dB}$ [AyMu2000]

- 1st Given term M, let M' be its annoted version. Ex: for $M = \lambda.(\underline{2} \ \underline{1}), M' = (\lambda.(\underline{2} \ \underline{A_1} \ \underline{1} \ \underline{A_2}) \ \underline{A_3}) \ \underline{A_4}{T_1}$
- 2nd Let R_0 be the set of subterms of M'. Start using the type inference algorithm on $\langle\!\langle R_0, \varnothing \rangle\!\rangle$

Type Inference for $TA_{\lambda dB}$ [AyMu2000]

- 1st Given term M, let M' be its annoted version. Ex: for $M = \lambda.(\underline{2} \ \underline{1}), M' = (\lambda.(\underline{2} \ \underline{A_1} \ \underline{1} \ \underline{A_2}) \ \underline{A_3}) \ \underline{A_4}{T_1}$
- 2nd Let R_0 be the set of subterms of M'. Start using the type inference algorithm on $\langle\!\langle R_0, \varnothing \rangle\!\rangle$
- 3rd When $\langle\!\langle \emptyset, E \rangle\!\rangle$ is reached, *E* is the set of equations on type and context variables

Type Inference for $TA_{\lambda dB}$ [AyMu2000]

- 1st Given term M, let M' be its annoted version. Ex: for $M = \lambda.(\underline{2} \ \underline{1}), M' = (\lambda.(\underline{2} \ \underline{A_1} \ \underline{1} \ \underline{A_2}) \ \underline{A_3}) \ \underline{A_4}{T_1}$
- 2nd Let R_0 be the set of subterms of M'. Start using the type inference algorithm on $\langle\!\langle R_0, \varnothing \rangle\!\rangle$
- 3rd When $\langle\!\langle \emptyset, E \rangle\!\rangle$ is reached, *E* is the set of equations on type and context variables
- 4th Use a first order unification algorithm to obtain the m.g.u.

Type Inference for $TA_{\lambda dB}$

$$\begin{array}{ll} \text{(Var)} & \langle\!\langle R \cup \{\underline{1}_{\tau}^{A}\}, E \rangle\!\rangle \to \\ & \langle\!\langle R, E \cup \{A = \tau.A'\}\rangle\!\rangle \\ \text{(Varn)} & \langle\!\langle R \cup \{\underline{n}_{\tau}^{A}\}, E \rangle\!\rangle \to \\ & \langle\!\langle R, E \cup \{A = \tau_{1}'. \cdots. \tau_{n-1}'. \tau.A'\}\rangle\!\rangle \\ \text{(Lambda)} & \langle\!\langle R \cup \{(\lambda.M_{\tau_{1}}^{A_{1}})_{\tau_{2}}^{A_{2}}\}, E \rangle\!\rangle \to \\ & \langle\!\langle R, E \cup \{\tau_{2} = \tau^{*} \to \tau_{1}, A_{1} = \tau^{*}.A_{2}\}\rangle\!\rangle \\ \text{(App)} & \langle\!\langle R \cup \{(M_{\tau_{1}}^{A_{1}} N_{\tau_{2}}^{A_{2}})_{\tau_{3}}^{A_{3}}\}, E \rangle\!\rangle \to \\ & \langle\!\langle R, E \cup \{A_{1} = A_{2}, A_{2} = A_{3}, \tau_{1} = \tau_{2} \to \tau_{3}\}\rangle\!\rangle \end{array}$$

Obs: $\tau^\prime\text{,}\ \tau^*$ and A^\prime are fresh variables

The System $TA_{\lambda s_e}$ [KR97]

Syntax

Terms
$$M ::= \underline{n} | (M M) | \lambda . M | M \sigma^{i} M | \varphi_{k}^{j} M$$

Typing Rules

$$\frac{A_{\leq k}.A_{\geq k+i} \vdash M: \tau}{A \vdash \varphi_{k}^{i}M: \tau} (Phi) \quad \frac{A_{\geq i} \vdash N: \sigma \quad A_{< i}.\sigma.A_{\geq i} \vdash M: \tau}{A \vdash M \sigma^{i}N: \tau} (Sigma)$$

Principal Typing for $TA_{\lambda s_e}$ Principal Typing for $TA_{\lambda \sigma}$

PT in $TA_{\lambda s_e}$

Definition (System Dependent PT in $TA_{\lambda s_e}$) In $TA_{\lambda s_e}$, $\Theta = \langle A, \tau \rangle$ is a system dependent PT for M iff $TA_{\lambda s_e} \Vdash M : \Theta$ and for any typing $\Theta' = \langle A', \tau' \rangle$, if $TA_{\lambda s_e} \Vdash M : \Theta'$, then there exists some type substitution s such that $s(A) = A'_{\leq |A|}$. *nil* and $s(\tau) = \tau'$.

PT for $TA_{\lambda s_e}$

Theorem (Correspondence for $TA_{\lambda s_e}$)

In $TA_{\lambda s_e}$, Θ is a system dependent PT for M iff Θ is a general PT for M.

PT for $TA_{\lambda s_e}$

Theorem (Correspondence for $TA_{\lambda s_e}$) In $TA_{\lambda s_e}$, Θ is a system dependent PT for M iff Θ is a general PT for M.

- Theorem (PT for $TA_{\lambda s_e}$)
- $TA_{\lambda s_e}$ satisfies the PT property.

PT for $TA_{\lambda s_e}$

Theorem (Correspondence for $TA_{\lambda s_e}$) In $TA_{\lambda s_e}$, Θ is a system dependent PT for M iff Θ is a general PT for M.

Theorem (PT for $TA_{\lambda s_e}$)

 $TA_{\lambda s_e}$ satisfies the PT property.

A 1

 $A \vdash S' \circ S'' \triangleright A'$

The System $TA_{\lambda\sigma}$ [ACCL91]

 $A \vdash M.S \triangleright \tau.A'$

Syntax Terms $M ::= \underline{1} | (M M) | \lambda . M | M[S]$

Substitution $S ::= id | \uparrow | M.S | S \circ S$

Typing rules Terms

$$\tau.A \vdash \underline{1} : \tau \text{ (var)} \qquad \qquad \frac{\sigma.A \vdash M : \tau}{A \vdash \lambda.M : \sigma \to \tau} \text{ (lambda)}$$

$$\frac{A \vdash M : \sigma \to \tau \quad A \vdash N : \sigma}{A \vdash (M N) : \tau} \text{ (app)} \qquad \frac{A \vdash S \triangleright A' \quad A' \vdash M : \tau}{A \vdash M[S] : \tau} \text{ (clos)}$$
Substitutions
$$A \vdash id \triangleright A \text{ (id)} \qquad \tau.A \vdash \uparrow \triangleright A \text{ (shift)}$$

$$\frac{A \vdash M : \tau \quad A \vdash S \triangleright A'}{A \vdash M \land \tau} \text{ (cons)} \qquad \frac{A \vdash S'' \triangleright A'' \quad A'' \vdash S' \triangleright A'}{A \vdash G' \vdash G'' \vdash A'} \text{ (comp)}$$

Principal Typing for $TA_{\lambda s_e}$ Principal Typing for $TA_{\lambda \sigma}$

PT in $TA_{\lambda\sigma}$

Definition (System Dependent PT in $TA_{\lambda\sigma}$)

In $TA_{\lambda\sigma}$, $\Theta = \langle A, \mathbb{T} \rangle$ is a system dependent PT for M iff $TA_{\lambda\sigma} \Vdash M : \Theta$ and for any typing $\Theta' = \langle A', \mathbb{T}' \rangle$, if $TA_{\lambda\sigma} \Vdash M : \Theta'$, then there exists some type substitution s such that $s(A) = A'_{\leq |A|}.nil$ and: if \mathbb{T} is a type then $s(\mathbb{T}) = \mathbb{T}'$, otherwise $s(\mathbb{T}) = \mathbb{T}'_{\leq |\mathbb{T}|}.nil$.

Principal Typing for $TA_{\lambda s_e}$ Principal Typing for $TA_{\lambda \sigma}$

PT for $TA_{\lambda\sigma}$

Theorem (Correspondence for $TA_{\lambda\sigma}$)

In $TA_{\lambda\sigma}$, Θ is a system dependent PT for M iff Θ is a general PT for M.

Principal Typing for $TA_{\lambda s_e}$ Principal Typing for $TA_{\lambda \sigma}$

PT for $TA_{\lambda\sigma}$

Theorem (Correspondence for $TA_{\lambda\sigma}$)

In $TA_{\lambda\sigma}$, Θ is a system dependent PT for M iff Θ is a general PT for M.

Theorem (PT for $TA_{\lambda\sigma}$)

 $TA_{\lambda\sigma}$ satisfies the PT property.

Type Inference for $TA_{\lambda\sigma}$ [Bo95]

(Var)	$\langle\!\langle R \cup \{ \underline{1}^A_ au \}, E angle\! angle$	$ ightarrow \langle\!\langle R, E \cup \{A = au.A'\} angle angle$
(Lambda	$\langle \langle R \cup \{ (\lambda. M^{A_1}_{\tau_1})^{A_2}_{\tau_2} \}, E \rangle \rangle$	$\rightarrow \langle\!\langle R, E \cup \{\tau_2 = \tau^* \rightarrow \tau_1, A_1 = \tau^*.A_2\} \rangle\!\rangle$
(App)	$\langle\!\langle R \cup \{ (M^{A_1}_{ au_1} \ N^{A_2}_{ au_2})^{A_3}_{ au_3} \}, E angle angle$	$\rightarrow \langle\!\langle R, E \cup \{A_1 = A_2, A_2 = A_3, \tau_1 = \tau_2 \rightarrow \tau_3\}\rangle\!\rangle$
(Clos)	$\langle\!\langle R \cup \{(M_{\tau_1}^{A_1}[S_{A_3}^{A_2}])_{\tau_2}^{A_4}\}, E \rangle\!\rangle$	$\phi \rightarrow \langle\!\langle R, E \cup \{A_1 = A_3, A_2 = A_4, \tau_1 = \tau_2\} \rangle\!\rangle$
(Id)	$\langle\!\langle R \cup \{ \mathit{id}_{A_2}^{A_1} \}, E \rangle\!\rangle$	$\rightarrow \langle\!\langle R, E \cup \{A_1 = A_2\} \rangle\!\rangle$
(Shift)	$\langle\!\langle R \cup \{\uparrow^{A_1}_{A_2}\}, E angle\! angle$	$ ightarrow \langle\!\langle R, E \cup \{A_1 = au'.A_2\} angle angle$
(Cons)	$\langle\!\langle R \cup \{(M_{\tau_1}^{A_1}.S_{A_3}^{A_2})_{A_5}^{A_4}\}, E \rangle\!\rangle$	$\rightarrow \langle\!\langle R, E \cup \{A_1 = A_2, A_2 = A_4, A_5 = \tau_1.A_3\} \rangle\!\rangle$
		$\rangle \rightarrow \langle\!\langle R, E \cup \{A_1 = A_4, A_2 = A_6, A_3 = A_5\} \rangle\!\rangle$

Conclusions

- PT is not a trivial property.
- A system dependent definition of PT for the λ -calculus in de Bruijn notation was proposed and proved correct and $TA_{\lambda dB}$ was proved to satisfy the PT property.
- More importantly, dependent definitions of PT for λs_e and λσ were proposed and proved correct and both type systems were proved to satisfy the PT property.
- In all type systems cosidered the PT property was constructively proved based on the existence of type inference algorithms.
- Since TA_{λse} and TA_{λσ} respectively involve the treatment of a built-in arithmetic theory and *substitution* objects, establishing the PT property was not trivial.

 $\begin{array}{c} {\rm Background} \\ {\rm Principal \ Typing \ for \ } \lambda {\rm dB} \\ {\rm Principal \ Typing \ for \ ES} \\ {\rm Conclusions \ and \ Future \ Work} \end{array}$

M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy.

Explicit Substitutions.

Journal of Functional Programming, 1(4):375-416, 1991. Cambridge University Press.

M. Ayala-Rincón and C. Muñoz.

Explicit Substitutions and All That. Revista Colombiana de Computación, 1(1):47–71, 2000.

P. Borovanský.

Implementation of Higher-Order Unification Based on Calculus of Explicit Substitutions.

LNCS: Proceedings of the 22nd Seminar on Current Trends in Theory and Practice of Informatics (SOFSEM'95), 1012:363–368, 1995. Springer Verlag.

N.G. de Bruijn.

Lambda-Calculus Notation with Nameless Dummies, a Tool for Automatic Formula Manipulation, with Application to the Church-Rosser Theorem.

Indagationes Mathematicae, 34(5):381-392, 1972.

L. Damas and R. Milner.

Principal Type-Schemes for Functional Programs. ACM Symposium on Principles of Programming Languages (POPL'82), 207–212, 1982. ACM Press.

J. R. Hindley.

Basic Simple Type Theory.

Cambridge Tracts in Theoretical Computer Science, 42, 1997. Cambridge University Press.

T. Jim.

What are principal typings and what are they good for? ACM Symposium on Principles of Programming Languages (POPL'96), 42–53, 1996. ACM Press.

 $\begin{array}{c} {\rm Background} \\ {\rm Principal \ Typing \ for \ } \lambda {\rm dB} \\ {\rm Principal \ Typing \ for \ ES} \\ {\rm Conclusions \ and \ Future \ Work} \end{array}$

A.J. Kfoury and J.B. Wells

Principality and type inference for intersection types using expansion variables, *Theoretical Computer Science*, 311(1-3):1–70, 2004. Elsevier.

F. Kamareddine and A. Ríos.

Extending a $\lambda\text{-calculus}$ with explicit substitution which preserves strong normalisation into a confluent calculus on open terms,

Journal of Functional Programming, 7:395-420, 1997. Cambridge University Press.

J.B. Wells

The essence of principal typings,

LNCS: Proceedings of the 29th International Colloquium on Automata, Languages and Programming, 2380:913–925, 2002. Springer-Verlag.

