Realisability Semantics for Intersection Types and Expansion Variables

Fairouz Kamareddine, Karim Nour, Vincent Rahli and J. B. Wells

25 March 2008

Expansion Mechanism - Example

- Expansion: invented for calculating principal typings for λ-terms in type systems with intersection types.
- Expansion variables (E-variables): invented to simplify and help mechanise expansion.
- Let $M=\lambda x \cdot x(\lambda y \cdot y z)$
- M can be assigned the typings:
- $\Phi_{1}=\langle(z: a) \vdash(((a \rightarrow b) \rightarrow b) \rightarrow c) \rightarrow c\rangle$ Principal
- $\Phi_{2}=\left\langle\left(z: a_{1} \sqcap a_{2}\right) \vdash\left(\left(\left(a_{1} \rightarrow b_{1}\right) \rightarrow b_{1}\right) \sqcap\left(\left(a_{2} \rightarrow b_{2}\right) \rightarrow b_{2}\right) \rightarrow c\right) \rightarrow c\right\rangle$
- An expansion operation can obtain Φ_{2} from Φ_{1}.
- In System E, the typing Φ_{1} from above is replaced by:
$\Phi_{3}=\langle(z: e a) \vdash(e((a \rightarrow b) \rightarrow b) \rightarrow c) \rightarrow c\rangle$,
- Φ_{3} differs from Φ_{1} by the insertion of the E-variable e at two places.
- Φ_{2} can be obtained from Φ_{3} by substituting for e the expansion term:
$E=\left(a:=a_{1}, b:=b_{1}\right) \sqcap\left(a:=a_{2}, b:=b_{2}\right)$.

Our goal

- Intersection types were introduced to be able to type more terms than in the Simply Typed Lambda Calculus.
- Intersection types are interpreted by set-theoretical intersection of meanings.
- Expansion variables have been introduced to give a simple formalisation of the expansion mechanism, i.e., as a syntactic object.
- We are interested in the meaning of such a syntactic object.
- What does an expansion variable applied to a type stand for?
- In the presence of expansions, how can the relation between terms and types w.r.t. a type system be described?

The challenge: the difficulties of giving a semantics for expansion variables

- Building a semantics for E-variables turns out to be challenging.
- In many kinds of semantics, the meaning of a type T is calculated by an expression $[T]_{\nu}$ where ν is a valuation.
- To extend this idea to types with E-variables, we would need to devise some space of possible meanings for E -variables.
- Given that a type $e T$ can be turned by expansion into a new type $S_{1}(T) \sqcap S_{2}(T)$, where S_{1} and S_{2} are arbitrary substitutions (or expansions), the situation is complicated.

Context

Because it is unclear how to devise a space of meanings for expansions and E-variables:

- We consider only E-variables without the operation of expansion.
- We develop a space of meanings for types that is hierarchical in the sense of having many degrees.
- We develop a realisability semantics where each use of an E-variable in a type corresponds to an independent degree at which evaluation occurs in the λ-term that is assigned the type.
- In the λ-term being evaluated, the only interaction possible between portions at different degrees is that higher degree portions can be passed around but never applied to lower degree portions.
- Due to problems supporting the ω-type, we restrict attention to the $\lambda /$-calculus.

Our contributions/Outline of the talk

- Outlining the difficulties in giving a semantics for expansions and expansion variables.
- A hierarchical $\lambda /$-calculus where each variable is marked by a natural number degree.
- A realisability semantics for expansion variables which is applied to two intersection type systems.
- The soundness of the semantics for both systems and numerous examples of how our semantics works.
- Outlining why Completeness fails for the first unrestricted type system.
- Outlining why completeness fails for the second restricted type system if more than one expansion variable is used.
- Establishing the completeness for the second type system in the presence of one single expansion variable. This E-variable may be used in many places and may also occur deeply nested.
- The first denotational semantics (using realisability or any other approach) of intersection type systems with E-variables.

The $\lambda I^{\mathbb{N}}$-Calculus

- Define \mathcal{M} (terms), \mathbb{M} (good terms), free variables, degrees, joinability $M \diamond N, \beta$-reduction and + as follows:
- If $x \in \mathcal{V}, n \in \mathbb{N}$, then $x^{n} \in \mathcal{M} \cap \mathbb{M}, F V\left(x^{n}\right)=\left\{x^{n}\right\}$, and $\operatorname{deg}\left(x^{n}\right)=n$.
- If $M, N \in \mathcal{M}$ such that $M \diamond N$ (see below), then
- $(M N) \in \mathcal{M}, F V((M N))=F V(M) \cup F V(N)$ and $\operatorname{deg}((M N))=\min (\operatorname{deg}(M), \operatorname{deg}(N))$ (where min is the minimum)
- If $M \in \mathbb{M}, N \in \mathbb{M}$ and $\operatorname{deg}(M) \leq \operatorname{deg}(N)$ then $(M N) \in \mathbb{M}$.
- If $M \in \mathcal{M}$ and $x^{n} \in F V(M)$, then
- $\left(\lambda x^{n} \cdot M\right) \in \mathcal{M}, F V\left(\left(\lambda x^{n} \cdot M\right)\right)=F V(M) \backslash\left\{x^{n}\right\}$, and $\operatorname{deg}\left(\left(\lambda x^{n} \cdot M_{1}\right)\right)=\operatorname{deg}\left(M_{1}\right)$.
- If $M \in \mathbb{M}$ then $\lambda x^{n} . M \in \mathbb{M}$.
- M and N are joinable $(M \diamond N)$ iff $\forall x \in \mathcal{V}$, if $x^{m} \in F V(M)$ and $x^{n} \in F V(N)$, then $m=n$.
- \triangleright_{β} on \mathcal{M} is defined as the least compatible relation closed under: $\left(\lambda x^{n} . M\right) N \triangleright_{\beta} M\left[x^{n}:=N\right]$ if $\operatorname{deg}(N)=n$.
$\bullet \bullet\left(x^{n}\right)^{+}=x^{n+1} \quad \bullet\left(M_{1} M_{2}\right)^{+}=M_{1}^{+} M_{2}^{+} \quad \bullet\left(\lambda x^{n} . M\right)^{+}=\lambda x^{n+1} \cdot M^{+}$
- Examples (note that $\mathbb{M} \subset \mathcal{M}$ and that in \mathbb{M}, the degree of a function is bigger than the degree of an argument):
- $\lambda x^{1} \cdot y^{0} \notin \mathcal{M}$
- $\lambda x^{1} \cdot x^{1} y^{3} \in \mathcal{M} \cap \mathbb{M}$

$$
\begin{aligned}
& \lambda x^{1} \cdot x^{1} x^{0} \notin \mathcal{M} \\
& \quad \lambda x^{1} \cdot x^{1} y^{0} \in \mathcal{M} \backslash \mathbb{M}
\end{aligned}
$$

The Types

- Atomic types $a, b, c \in \mathcal{A}$, expansion variables $e \in \mathcal{E}$.
- $\ln \mathcal{T}::=\mathcal{A}|\mathcal{T} \rightarrow \mathcal{T}| \mathcal{T} \sqcap \mathcal{T} \mid \mathcal{E} \mathcal{T}$, no restrictions on the arrow.
- $\mathbb{U}::=\mathbb{U} \sqcap \mathbb{U}|\mathcal{E} \mathbb{U}| \mathbb{T}$ where $\mathbb{T}::=\mathcal{A} \mid \mathbb{U} \rightarrow \mathbb{T}$. Here \mathbb{U} does not allow arrows to occur to the left of intersections or expansions.
- $\mathbb{T} \subseteq \mathbb{U} \subseteq \mathcal{T}$. Let T, U, V, W range over \mathcal{T}. Let T range over \mathbb{T}. Let U, V, W range over \mathbb{U}.
- We quotient types by taking Π to be commutative, associative, idempotent, and to satisfy $e\left(U_{1} \sqcap U_{2}\right)=e U_{1} \sqcap e U_{2}$.
- We define the degrees of types function deg: $\mathcal{T} \rightarrow \mathbb{N}$ by:
- $\operatorname{deg}(a)=0$
- $\operatorname{deg}(e U)=\operatorname{deg}(U)+1$
- $\operatorname{deg}(U \rightarrow T)=\min (\operatorname{deg}(U), \operatorname{deg}(T))$
- $\operatorname{deg}(U \sqcap V)=\min (\operatorname{deg}(U), \operatorname{deg}(V))$.
- We define the good types on \mathcal{T} by:
$\bullet a \in \mathcal{A} \Longrightarrow$ a good $\bullet U$ good, $e \in \mathcal{E} \Longrightarrow e U$ good
- U, T good, $\operatorname{deg}(U) \geq \operatorname{deg}(T) \Longrightarrow U \rightarrow T$ good
- $U, V \operatorname{good}, \operatorname{deg}(U)=\operatorname{deg}(V) \Longrightarrow U \sqcap V \operatorname{good}$
- Let $U \in \mathbb{U}$. If $\operatorname{deg}(U)>0$, we define U^{-}as follows: $\left(U_{1} \sqcap U_{2}\right)^{-}=U_{1}^{-} \sqcap U_{2}^{-}$

$$
(e U)^{-}=U
$$

The realisability semantics: saturation and interpretation

 are key; furthermore, good types contain only good termsLet $\mathcal{X}, \mathcal{Y} \subseteq \mathcal{M} . \mathcal{P}(\mathcal{X})$ denotes the powerset of \mathcal{X}.

- $\mathcal{X} \rightsquigarrow \mathcal{Y}=\{M \in \mathcal{M} \mid \forall N \in \mathcal{X}$, if $M \diamond N$ then $M N \in \mathcal{Y}\}$.
- \mathcal{X} is saturated iff whenever $M \triangleright_{\beta}^{*} N$ and $N \in \mathcal{X}$, then $M \in \mathcal{X}$.
- Let $\mathcal{V}=\mathcal{V}_{1} \cup \mathcal{V}_{2}$ where $\mathcal{V}_{1} \cap \mathcal{V}_{2}=\varnothing$ and $\mathcal{V}_{1}, \mathcal{V}_{2}$ are denum. ∞.
- Let $x \in \mathcal{V}_{1}$ and $n \in \mathbb{N}$. We define $\mathcal{N}_{x}^{n}=\left\{x^{n} N_{1} \ldots N_{k} \in \mathbb{M} \mid k \geq 0\right\}$.
- An interpretation $\mathcal{I}: \mathcal{A} \rightarrow \mathcal{P}\left(\mathcal{M}^{0}\right)$ is a function such that $\forall a \in \mathcal{A}$: - $\mathcal{I}(a)$ is saturated and $\quad \bullet \forall x \in \mathcal{V}_{1}, \mathcal{N}_{x}^{0} \subseteq \mathcal{I}(a) \subseteq \mathbb{M}^{0}$.
- Let an interpretation $\mathcal{I}: \mathcal{A} \rightarrow \mathcal{P}\left(\mathcal{M}^{0}\right)$. We extend \mathcal{I} to \mathcal{T} as follows:
- $\mathcal{I}(e U)=\mathcal{I}(U)^{+}=\left\{M^{+} \mid M \in \mathcal{I}(U)\right\}$
- $\mathcal{I}(U \sqcap V)=\mathcal{I}(U) \cap \mathcal{I}(V)$
- $\mathcal{I}(U \rightarrow T)=\mathcal{I}(U) \rightsquigarrow \mathcal{I}(T)$
- Let $U \in \mathcal{T}$. We define the meaning $[U]$ of U by: $[U]=\left\{M \in \mathcal{M} \mid M\right.$ is closed and $M \in \bigcap_{\mathcal{I}}$ interpretation $\left.\mathcal{I}(U)\right\}$.
- Lemma: Type interpretations are saturated and interpretations/meanings of good types contain only good terms.

The typing rules

$$
\begin{gathered}
\frac{T \operatorname{good} \operatorname{deg}(T)=n}{x^{n}:\left\langle\left(x^{n}: T\right) \vdash_{1} T\right\rangle}(a x) \\
\frac{T \operatorname{good}}{x^{0}:\left\langle\left(x^{0}: T\right) \vdash_{2} T\right\rangle}(a x) \\
\frac{M:\left\langle\Gamma,\left(x^{n}: U\right) \vdash_{i} T\right\rangle}{\lambda x^{n} \cdot M:\left\langle\Gamma \vdash_{i} U \rightarrow T\right\rangle}\left(\rightarrow_{l}\right)
\end{gathered}
$$

$$
\begin{gathered}
M_{1}:\left\langle\Gamma_{1} \vdash_{i} U \rightarrow T\right\rangle \quad M_{2}:\left\langle\Gamma_{2} \vdash_{i} U\right\rangle \quad \Gamma_{1} \diamond \Gamma_{2} \\
M_{1} M_{2}:\left\langle\Gamma_{1} \sqcap \Gamma_{2} \vdash_{i} T\right\rangle \\
\frac{M:\left\langle\Gamma_{1} \vdash_{i} U_{1}\right\rangle M:\left\langle\Gamma_{2} \vdash_{i} U_{2}\right\rangle}{M:\left\langle\Gamma_{1} \sqcap \Gamma_{2} \vdash_{i} U_{1} \sqcap U_{2}\right\rangle}(\sqcap) \\
\frac{M:\left\langle\Gamma \vdash_{i} U\right\rangle}{M^{+}:\left\langle e \Gamma \vdash_{i} e U\right\rangle}(\exp) \\
\frac{M:\left\langle\Gamma \vdash_{2} U\right\rangle\left\langle\Gamma \vdash_{2} U\right\rangle \sqsubseteq\left\langle\Gamma^{\prime} \vdash_{2} U^{\prime}\right\rangle}{M:\left\langle\Gamma^{\prime} \vdash_{2} U^{\prime}\right\rangle}(\sqsubseteq)
\end{gathered}
$$

The subtyping rules $\quad \overline{\Phi \sqsubseteq \Phi}($ ref $)$

$$
\begin{gathered}
\frac{\Phi_{1} \sqsubseteq \Phi_{2} \Phi_{2} \sqsubseteq \Phi_{3}}{\Phi_{1} \sqsubseteq \Phi_{3}}(t r) \\
\frac{U_{2} \text { good } \operatorname{deg}\left(U_{1}\right)=\operatorname{deg}\left(U_{2}\right)}{U_{1} \sqcap U_{2} \sqsubseteq U_{1}}\left(\Pi_{e}\right) \\
\frac{U_{1} \sqsubseteq V_{1} \quad U_{2} \sqsubseteq V_{2}}{U_{1} \sqcap U_{2} \sqsubseteq V_{1} \sqcap V_{2}}(\sqcap) \\
\frac{U_{2} \sqsubseteq U_{1} \quad T_{1} \sqsubseteq T_{2}}{U_{1} \rightarrow T_{1} \sqsubseteq U_{2} \rightarrow T_{2}}(\rightarrow) \\
\frac{U_{1} \sqsubseteq U_{2}}{e U_{1} \sqsubseteq e U_{2}}(\sqsubseteq \exp) \\
\frac{U_{1} \sqsubseteq U_{2}}{\Gamma,\left(y^{n}: U_{1}\right) \sqsubseteq \Gamma,\left(y^{n}: U_{2}\right)}(\sqsubseteq c) \\
\frac{U_{1} \sqsubseteq U_{2} \quad \Gamma_{2} \sqsubseteq \Gamma_{1}}{\left\langle\Gamma_{1} \vdash_{2} U_{1}\right\rangle \sqsubseteq\left\langle\Gamma_{2} \vdash_{2} U_{2}\right\rangle}(\sqsubseteq\rangle)
\end{gathered}
$$

Properties of the type systems and the semantics

- Lemma \vdash_{1} / \vdash_{2} accept only good terms/types; degree of M is the same as the degree of its type; if M is typable then its β-redexes can be activated]: Let $i \in\{1,2\}$. If $M:\left\langle\left(x_{i}^{n_{i}}: U_{i}\right)_{n} \vdash_{i} U\right\rangle$, then

1. $\forall 1 \leq i \leq n, U_{i}$ is good and $\operatorname{deg}\left(U_{i}\right)=n_{i} \geq \operatorname{deg}(M)$.
2. U and M are good and $\operatorname{deg}(M)=\operatorname{deg}(U)$.
3. If $\left(\lambda x^{n} . M_{1}\right) M_{2}$ is a subterm of M, then $\operatorname{deg}\left(M_{2}\right)=n$ and hence

$$
\left(\lambda x^{n} \cdot M_{1}\right) M_{2} \triangleright_{\beta} M_{1}\left[x^{n}:=M_{2}\right] .
$$

- Lemma [Soundness of $\vdash_{1} \vdash_{2}$]: Let $i \in\{1,2\}$.
- If $M:\left\langle\left(x_{i}^{n_{i}}: U_{i}\right)_{n} \vdash_{i} U\right\rangle, \mathcal{I}$ an interpretation, $\forall 1 \leq i \leq n N_{i} \in \mathcal{I}\left(U_{i}\right)$, and $M\left[\left(x_{i}^{n_{i}}:=N_{i}\right)_{n}\right] \in \mathcal{M}$ then $M\left[\left(x_{i}^{n_{i}}:=N_{i}\right)_{n}\right] \in \mathcal{I}(U)$.
- If $M:\left\langle() \vdash_{i} U\right\rangle$, then $M \in[U]$.
- Lemma [Subject Reduction fails for \vdash_{1}]: Let distinct $a, b, c \in \mathcal{A}$:

1. $\left(\lambda x^{0} \cdot x^{0} x^{0}\right)\left(y^{0} z^{0}\right) \triangleright_{\beta}\left(y^{0} z^{0}\right)\left(y^{0} z^{0}\right)$
2. $\left(\lambda x^{0} \cdot x^{0} x^{0}\right)\left(y^{0} z^{0}\right):\left\langle y^{0}: b \rightarrow((a \rightarrow c) \sqcap a), z^{0}: b \vdash_{1} c\right\rangle$.
3. It is not possible that

$$
\left(y^{0} z^{0}\right)\left(y^{0} z^{0}\right):\left\langle y^{0}: b \rightarrow((a \rightarrow c) \sqcap a), z^{0}: b \vdash_{1} c\right\rangle
$$

- Lemma [Subject Reduction and expansion hold for \vdash_{2}]: If $M:\left\langle\Gamma \vdash_{2} U\right\rangle$ and $M \triangleright_{\beta}^{*} N$, then $N:\left\langle\Gamma \vdash_{2} U\right\rangle$.
If $N:\left\langle\Gamma \vdash_{2} U\right\rangle$ and $M \triangleright_{\beta}^{*} N$ then $M:\left\langle\Gamma \vdash_{2} U\right\rangle$

Examples (let $a \neq b$)

1. Let $N a t_{0}=(a \rightarrow a) \rightarrow(a \rightarrow a), N a t_{1}=e((a \rightarrow a) \rightarrow(a \rightarrow a))$, $N a t_{1}^{\prime}=e(a \rightarrow a) \rightarrow(e a \rightarrow e a)$ and $N a t_{0}^{\prime}=(e a \rightarrow a) \rightarrow(e a \rightarrow a)$.
2. $[a \rightarrow a]=\left\{M \in \mathbb{M}^{0} / M \triangleright_{\beta}^{*} \lambda y^{0} \cdot y^{0}\right\}$.
3. $[e(a \rightarrow a)]=[e a \rightarrow e a]=\left\{M \in \mathbb{M}^{1} / M \triangleright_{\beta}^{*} \lambda y^{1} \cdot y^{1}\right\}$.
4. $[(a \sqcap(a \rightarrow b)) \rightarrow b]=\left\{M \in \mathbb{M}^{0} / M \triangleright_{\beta}^{*} \lambda y^{0} \cdot y^{0} y^{0}\right\}$.
5. $\left[N a t_{0}\right]=\left\{M \in \mathbb{M}^{0} / M \triangleright_{\beta}^{*} \lambda f^{0} . f^{0}\right.$ or $M \triangleright_{\beta}^{*} \lambda f^{0} . \lambda y^{0} .\left(f^{0}\right)^{n} y^{0}$ where $n \geq 1\}$.
6. $\left[N a t_{1}\right]=\left[N a t_{1}^{\prime}\right]=\left\{M \in \mathbb{M}^{1} / M \triangleright_{\beta}^{*} \lambda f^{1} . f^{1}\right.$ or $M \triangleright_{\beta}^{*} \lambda f^{1} . \lambda x^{1} .\left(f^{1}\right)^{n} y^{1}$ where $\left.n \geq 1\right\}$. (Note that $N a t_{1}^{\prime} \notin \mathbb{U}$.)
7. $\left[N a t_{0}^{\prime}\right]=\left\{M \in \mathbb{M}^{0} / M \triangleright_{\beta}^{*} \lambda f^{0} . f^{0}\right.$ or $\left.M \triangleright_{\beta}^{*} \lambda f^{0} . \lambda y^{1} . f^{0} y^{1}\right\}$.
8. $[(a \sqcap b) \rightarrow a]=\left\{M \in \mathbb{M}^{0} / M \triangleright_{\beta}^{*} \lambda y^{0} \cdot y^{0}\right\}$.
9. It is not possible that $\lambda y^{0} \cdot y^{0}:\left\langle() \vdash_{1}(a \sqcap b) \rightarrow a\right\rangle$.
10. $\lambda y^{0} . y^{0}:\left\langle() \vdash_{2}(a \sqcap b) \rightarrow a\right\rangle$.
11. 8 and 9 mean that we cannot have a completeness result for \vdash_{1}.

The failure of completeness

- The semantics for \vdash_{1} is not complete:

1. $\lambda y^{0} \cdot y^{0} \in[(a \sqcap b) \rightarrow a]=\left\{M \in \mathbb{M}^{0} / M \triangleright_{\beta}^{*} \lambda y^{0} \cdot y^{0}\right\}$
2. it is not possible that $\lambda y^{0} \cdot y^{0}:\left\langle() \vdash_{1}(a \sqcap b) \rightarrow a\right\rangle$.

- The semantics for \vdash_{2} is not complete if we use more than one expansion variable: Let $N a t_{0}^{\prime \prime}=\left(e_{1} a \rightarrow a\right) \rightarrow\left(e_{2} a \rightarrow a\right)$. We have:

1. $\lambda f^{0} . f^{0} \in\left[N a t_{0}^{\prime \prime}\right]$.
2. If $e_{1} \neq e_{2}$, then it is not possible that $\lambda f^{0} \cdot f^{0}:\left\langle() \vdash_{2} N a t_{0}^{\prime \prime}\right\rangle$.

- A crucial property for completeness is: $U^{-}=V^{-} \Longrightarrow U=V$.
- This fails if we have more than one expansion variable: $\left(e_{1} U\right)^{-}=U=\left(e_{2} U\right)^{-}$does not necessarily imply that $e_{1} U=e_{2} U$.
- In the rest of this talk, we assume that the set \mathcal{E} contains only one expansion variable e_{c}.

The proof of completeness for \vdash_{2} with a unique expansion variable

- We define \mathbb{V}_{U} 's such that:
- If $\operatorname{deg}(U)=n$, then $\mathbb{V}_{U} \subseteq\left\{y^{n} \mid y \in \mathcal{V}_{2}\right\}$ and \mathbb{V}_{U} is infinite.
- If $U \neq V$ then $\mathbb{V}_{u} \cap \mathbb{V}_{V}=\varnothing$.
- If $y^{n} \in \mathbb{V}_{U}$, then $y^{n+1} \in \mathbb{V}_{e_{c} U}$.
- If $y^{n+1} \in \mathbb{V}_{U}$, then $y^{n} \in \mathbb{V}_{U^{-}}$.
- We define infinite sets $\mathbb{G}^{n}=\left\{\left(y^{n}: U\right) / U \in \mathbb{U}, \operatorname{deg}(U)=n\right.$ and $\left.y^{n} \in \mathbb{V}_{U}\right\}$ and $\mathbb{H}^{n}=\bigcup_{m \geq n} \mathbb{G}^{m}$.
\mathbb{H}^{n} will contain Γ 's that are crucial for the interpretation \mathbb{I} below.
- We write $M:\left\langle\mathbb{H}^{n} \vdash_{2} U\right\rangle$ iff there is $\Gamma \subset \mathbb{H}^{n}$ where $M:\left\langle\Gamma \vdash_{2} U\right\rangle$.
- We define $\mathcal{V}^{n}=\left\{M \in \mathbb{M}^{n} \mid x^{i} \in F V(M)\right.$ where $x \in \mathcal{V}_{1}$ and $\left.i \geq n\right\}$.
- We let \mathbb{I} be the interpretation defined by: for all type variables $a, \mathbb{I}(a)=\mathcal{V}^{0} \cup\left\{M \in \mathcal{M}^{0} \mid M:\left\langle\mathbb{H}^{0} \vdash_{2} a\right\rangle\right\}$.
- Lemma [II is an interpretation]: $\forall a \in \mathcal{A}, \mathbb{I}(a)$ is saturated and $\forall x \in \mathcal{V}_{1}, \mathcal{N}_{x}^{0} \subseteq \mathbb{I}(a) \subseteq \mathbb{M}^{0}$.
- Lemma: If $U \in \mathbb{U}$ is good and $\operatorname{deg}(U)=n$, then $\mathbb{I}(U)=\mathcal{V}^{n} \cup\left\{M \in \mathbb{M}^{n} \mid M:\left\langle\mathbb{H}^{n} \vdash_{2} U\right\rangle\right\}$.

Completeness

- Let $U \in \mathbb{U}$ be good such that $\operatorname{deg}(U)=n$.

1. $[U]=\left\{M \in \mathbb{M}^{n} \mid M:\left\langle() \vdash_{2} U\right\rangle\right\}$.
2. $[U]$ is stable by reduction:
if $M \in[U]$ and $M \triangleright_{\beta}^{*} N$, then $N \in[U]$.
3. $[U]$ is stable by expansion:
if $N \in[U]$ and $M \triangleright_{\beta}^{*} N$, then $M \in[U]$.

Conclusions

- Expansion may be viewed to work like a multi-layered simultaneous substitution.
- Because the early definitions of expansion were complicated, expansion variables (E-variables) were invented to simplify and mechanize expansion.
- Our aim is to give a denotational semantics for intersection type systems with exapansion variables.
- Denotational semantics helps in reasoning about the properties of an entire type system and of specific typed terms.
- However, E-variables pose serious problems for semantics.
- In this paper we gave a realisability semantics based on a hierarchical lambda calculus.
- These hierarchical levels can be said to accurately capture the intuition behind E -variables: parts of the λ-term that are typed inside the uses of the E-variable-introduction typing rule for a particular E-variable e can interact with each other, and parts outside e can only pass the parts inside e around.

Future work

- Due to the difficulties of treating the ω-type which is free to move on any level of the hierarchy, we considered only the $\lambda /$-calculus (hence without an ω-type).
- Due to the loss of completeness in the presence of more than one expansion variable, we restricted the number of expansion variables to one only.
- Future works include giving a semantics for the whole λ-calculus with an ω-type and an infinite number of expansion variables.
- Furthermore, in addition to the semantics of E-variables, it is important to give a semantics for the expansion operation.

