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Interest

We prove the Church-Rosser property of the untyped λ-calculus w.r.t. β-
and βη-reductions.

◮ Simplification and generalisation of some semantic proofs of the
Church-Rosser property.
(Based on type interpretations w.r.t. a given type system.)

◮ Only a small portion of the type systems considered are actually
needed.

◮ This portion corresponds to a few simple sets of terms satisfying
simple closure properties.

◮ We obtain a syntactic proof projectable in a semantic framework.
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Steps to prove the Church-Rosser property

Usual steps of a proof of the Church-Rosser property of a λ-calculus:

◮ Definition of the developments.

◮ Proof of the confluence of the developments.

◮ Equivalence between:
◮ the transitive closure of the developments
◮ the reflexive and transitive closure of the reduction relation of the

considered calculus (for example the β-reduction).
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The proofs of the Church-Rosser property can be divided as follows:

◮ First division:
◮ Encoding the development using a reduction relation: Tait and

Martin-Löf [Lév76], Takahashi [Tak89].
◮ Encoding the development using a set of terms: Barendregt et

al. [BBKV76], Ghilezan and Kunčak [GK01], Koletsos and
Stavrinos [KS07].

◮ Second division:
◮ Using a semantic method: Koletsos and Stavrinos [KS07].
◮ Using a syntactic method: Barendregt et al. [BBKV76], Tait and

Martin-Löf [Lév76], Takahashi [Tak89].
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The Church-Rosser property - our contribution

We simplified and extended the semantic proof of Koletsos and
Stavrinos [KS07] to obtain a syntactic proof.

◮ Our proof is based on the encoding of developments using a set of
terms rather than a reduction relation.

◮ We do not deal with types as Ghilezan and Kunčak [GK01] or
Koletsos and Stavrinos [KS07].

◮ Our proof is simpler than other similar syntactic proofs such as the
one of Barendregt et al. [BBKV76].

◮ Our proof of the confluence of developments is parametric (we can
easily prove the finiteness of developments).

◮ Our proof can be seen as a bridge between semantic proofs (e.g., by
Koletsos and Stavrinos) and syntactic proofs (e.g., by Barendregt et
al).
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The Church-Rosser property - our contribution
The needed machinery - the set of terms

The λ-calculus is built on the set of terms Λ and β-reduction:

M ∈ Λ ::= x | λx .M | M1M2 where x ∈ Var

Our developments are based on the following parametric sets of terms:
(Λβ

c ⊂ Λβη
c ⊂ Λ)

For the β-case (Krivine [Kri90]):

M̄ ∈ Λβ
c ::= x̄ | λx̄ .M̄ | cM̄1M̄2 | (λx̄ .M̄1)M̄2

For the βη-case:

M̄ ∈ Λβη
c ::= x̄ | λx̄ .M̄ | cM̄1M̄2 | (λx̄ .M̄1)M̄2 | cM̄

where x̄ ∈ Var \ {c}
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The Church-Rosser property - our contribution
The needed machinery - freezing/unfreezing

◮ A freezing function:
◮ Ψc(x) = Ψc(x)
◮ Ψc(λx .M) = λx .Ψc(M)
◮ Ψc(M1M2) = Ψc(M1)Ψc(M2) if M1 is a λ-abstraction
◮ Ψc(M1M2) = cΨc(M1)Ψc(M2) otherwise

The freezing function freezes the “potential” β-redexes of a term (it
does not freeze the η-redexes).

◮ An erasure relation based on:

cM →c M

This relation enables to unfreeze a frozen term.
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The Church-Rosser property - our contribution
The needed machinery - example

Let M = (λx .xx)(λx .yx).

Ψc(M) = (λx .cxx)(λx .cyx)

Ψc(M) can βη-reduce as follows:

(λx .cxx)(λx .cyx) →η (λx .cxx)(cy) →β c(cy)(cy) = P

M can βη-reduce as follows:

(λx .xx)(λx .yx) →η (λx .xx)y →β yy = Q

We erase the c ’s from P to obtain Q.

c(cy)(cy) →c cy(cy) →c y(cy) →c yy

Kamareddine and Rahli Church-Rosser proofs w.r.t. β and βη-rductions 26 August 2008 8/15



The Church-Rosser property - our contribution
Our developments - developments

The β-case:

M →1 N ⇐⇒ Ψc(M) →∗

β P →∗

c N ∧ c 6∈ fv(M) ∪ fv(N)

The βη-case:

M →2 N ⇐⇒ Ψc(M) →∗

βη P →∗

c N ∧ c 6∈ fv(M) ∪ fv(N)
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The Church-Rosser property - our contribution
The method

Our proof of this property is as follows:
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Comparison with other proofs

We believe our β-developments to be equivalent to those of Church and
Rosser [CR36], Barendregt et al. [BBKV76], Ghilezan and
Kunčak [GK01], Koletsos and Stavrinos [KS07].

◮ Barendregt et al. [BBKV76]: We do not introduce new terms; we do
not need the completeness of developments.

◮ Ghilezan and Kunčak [GK01]: We do not need a type system; the
embedding of developments is simpler.

◮ Koletsos and Stavrinos [KS07]: We do not need a type system; we
do not deal with residuals.

The scheme of our proof method is similar to those cited above.
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Comparison with other proofs

Our β-developments allow strictly more reductions than those of Tait and
Martin-Löf [Lév76].

Let M = (λx .xx)((λz.z)y). We have:

◮ Ψc(M) = (λx .cxx)((λz.z)y) →β c((λz.z)y))((λz.z)y) →β

cy((λz.z)y) →c y((λz.z)y)

◮ M →1 y((λz.z)y)

◮ M 6⇒β y((λz.z)y)

This is because we allow different residuals of the same redex to reduce
independently.
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Comparison with other proofs

Our βη-developments allow strictly more reductions than those of
Takahashi [Tak89].

Let M = λx .y((λz.z)x). We have:

◮ Ψc(M) = λx .cy((λz.z)x) →β λx .cyx →η cy →c y

◮ M = λx .y((λz.z)x) →2 y

◮ M ⇒βη y

This is because we allow the reduction of any η-redex even if it is not the
residual of an η-redex.
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Comparison with other proofs

Hence:

◮ The obtained bridge between syntactic and semantic methods is (for
example) between Barendregt et al. [BBKV76] and Koletsos and
Stavrinos [KS07].

◮ It is not between Takahashi [Tak89] and Koletsos and
Stavrinos [KS07].
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Dunod, 1990.

G. Koletsos and G. Stavrinos.

Church-Rosser property and intersection types.
Australasian Journal of Logic, 2007.

Jean-Jacques Lévy.
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