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Background

I Principal typing allows type inference.

I Intersection types allow expressing polymorphism in a finite way.

I Expansion allows establishing the principal typing property in
intersection type systems.

I Expansion variables (E-variables) simplify and help mechanise
expansion.

I Expansion has been generalised to deal with other type constructors
such as the bang (!) from linear logic.
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Interest

I We would like to cast some light on expansion.

I We use realisability semantics (Kleene). Types are interpreted by
sets of realisers: terms of variants of the λ-calculus.

I Our final aim is to provide a complete realisability semantics for an
intersection type system with expansion.

I First we consider only the expansion variables without the expansion
mechanism.

I The challenge is to devise the space of meanings for E-variables.
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Syntax

In essence our syntax is as follows:

Terms: M ::= x | (M N) | (λx .M)

Types: T ::= a | ω | T1 → T2 | T1 u T2 | eT

Type environments: Γ = (x1 : T1, . . . , xn : Tn).

Typings: Φ ::= 〈Γ ` T 〉 Judgement: M : Φ
(x + y : 〈+ : int → int → int u real → real → real, x : int, y : int ` int〉)
(x + y : 〈+ : int → int → int u real → real → real, x : real, y : real ` real〉)

Typing rules:

x : 〈(x : T ) ` T 〉
var

M : 〈() ` ω〉
ω

M : 〈Γ, (x : T1) ` T2〉
λx .M : 〈Γ ` T1 → T2〉

abs
M : 〈Γ1 ` T1〉 M : 〈Γ2 ` T2〉

M : 〈Γ1 u Γ2 ` T1 u T2〉
u

M1 : 〈Γ1 ` T1 → T2〉 M2 : 〈Γ2 ` T1〉
M1 M2 : 〈Γ1 u Γ2 ` T2〉

app
M : 〈Γ ` T 〉

M : 〈eΓ ` eT 〉
e-app
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Definition of some concepts - Principal Typing

I Principal typing property: A type system satisfies the principal
typing property if for each typable term, there is a typing from which
all other typings can be obtained via some set of operations

I For example: The simply typed lambda calculus, the simply type
lambda sigma calculus, the simply typed lambda se calculus, have
the Principal typing property.

I For example: λx .(y x) : 〈?, ?〉
Possible typings: 〈y :α→β, α→β〉;
〈y :α→α, α→α〉; and many more
Principal typing: 〈y :α→β, α→β〉

I For example: λx .(y (y x)) : 〈?, ?〉
Possible typings: 〈y :α→α, α→α〉;
〈y :(α→β)→α→β, (α→β)→α→β〉; and many more
Principal typing: 〈y :α→α, α→α〉
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Definition of some concepts - Intersection Types

I Intersection type system: Just like the ∀ quantifier, intersection
types allow expressing polymorphism but in a finite way.

I Intersection types are lists of usages: int u real
I In system F, the term M = λf .λx .fx can be assigned the typing:

Φ = 〈() ` ∀a.∀b.(a → b) → a → b〉

I But one might only need to use this term when its first argument f
is a function which returns a string from an int or a real.

I In an intersection type system M can be assigned the typing:

Φ′ = 〈() ` (int u real → string) → int u real → string〉
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Definition of some concepts - Expansion

I Due to the ramification of the intersection types, the usual
operations (substitution, weakening) are not enough anymore to
obtain any typing of a typable (in an intersection type system) term
from a principal one.

I Expansion: Introduced by Coppo, Dezani and Venneri [CDCV80] in
order to restore the principal typing property in such systems
(extensively improved by Carlier and Wells (2008) [Car08])
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Expansion - example

The λ-term: M = (λx .x(λy .yz))

can be assigned the two following typings:

Φ1 = 〈(z : a) ` (((a → b) → b) → c) → c〉 (principal)

Φ2 = 〈(z : a1 u a2) ` (((a1 → b1) → b1) u ((a2 → b2) → b2) → c) → c〉

An expansion operation can obtain Φ2 from Φ1

In System E (Carlier et al. [CPWK04]), the typing Φ1 is replaced by:

Φ3 = 〈(z : ea) ` (e((a → b) → b) → c) → c〉

Φ2 can be obtained from Φ3 by substituting for e the expansion term:

E = (a := a1, b := b1) u (a := a2, b := b2)
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Our aim

Our aim is to find a complete realisability semantics for an intersection
type system with expansion variables.

How do we do that?

I Design of a calculus aiming at the capture of the meaning of an
expansion variable: the encapsulation of a type.

ä λ-calculus indexed with natural numbers/list of natural numbers

I Design of a suitable type interpretation.

ä An expansion variable makes the realisers change level.

I Proof of the soundness and completeness of the semantics w.r.t. a
given type system.
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Previous work [KNRW08]: a first attempt (1)

I In order for our semantics to be informative enough, we have to
distinguish the interpretations of T and eT where T is a type and e
is an expansion variable.

I We used a labelled calculus were variables are labelled by integers
(their levels).

I The application of an expansion variable to the typing of a term
increases the level of the term:

M : 〈Γ ` T 〉
M+ : 〈eΓ ` eT 〉

(exp)
„

example :
y0x0 : 〈(y0 : a → b, x0 : a) ` b〉

y1x1 : 〈(y1 : e(a → b), x1 : ea) ` eb〉

«

I The interpretation of an expansion variable applied to a type allows
to increase the level of the realisers of the type:

I(eT ) = I(T )+

I Hence, M ∈ I(T ) implies M+ ∈ I(T )+ = I(eT )
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Previous work [KNRW08]: a first attempt (2)

I However, the semantics of [KNRW08] did not distinguish between
different expansion variables:

I(e1T ) = I(e2T )

I Our semantics was not complete when considering more than one
expansion variable:

M = λx0.x0

is in the interpretation of

T = (e1a → a) → (e2a → a)

but M is not typable by T .

I In [KNRW08], we showed that our semantics was only complete if a
single expansion variable is used.
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Previous work [KNRW08]: a first attempt (3)

I Even more, since any term M has type ω, the above semantics
of [KNRW08] cannot handle ω (since ω would need to belong to
every possible level).

I So, [KNRW08] dropped ω completely.

I The absence of ω meant that we cannot deal with the whole
λ-calculus.

I We restricted the calculus in [KNRW08] to a labelled version of the
λI -calculus.
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Our solution in this paper (1)

I We have seen in [KNRW08] that if the system has more than one
expansion variable then it is difficult to give it a complete
realisability semantics.

I We have also seen in [KNRW08] that a semantics based on single
indices cannot deal with the universal type ω.

I In order to distinguish between different expansion variables, we
need to modify the realisers.

I The interpretation of an expansion variable applied to a type should
not only allow to increase the level of the realisers of the type, but
should also depend on the considered expansion variable.
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Our solution in this paper (2)

I To each expansion variable we associate a unique label: an integer.
For simplicity: we associate i to ei .

I The interpretation of an expansion variable applied to a type allows
to increase the level of the realisers of the type w.r.t. the label
associated to the expansion variable.

I We consider a set of labelled terms M where labels are lists of
integers (each of them corresponding to an expansion variable).
Example:

λx (1,3,2).λy (1).z�y (1)x (1,3,2)

I The set of terms of the untyped λ-calculus lives at each level L: ML.
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Our solution in this paper (3)

The calculus is a labelled λ-calculus using lists of integers.

We impose some restrictions on terms such as:

I We do not allow a variable to coexist at different levels in a term: if
xL, xK ∈ fv(M) then L = K . This is ensured by the � property.

I We impose this restriction in order to have a suitable relation with a
non-labelled typed λ-calculus.

I Without this restriction we would face problems. For example
(assume a function which erases the labels) :

(λx (2).x�x (2))y (2) = (λx .xx)y →β yy but

(λx (2).x�x (2))y (2) →β x�y (2) and x�y (2) = xy .

I In MN we impose the level of M to be greater than the level of N.
I This restriction is related to the typing of the terms.

We modify slightly the β-reduction rule to adapt it to our calculus.
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Our solution in this paper (4)

e ∈ E = {e0, e1, . . . } a ∈ A
T ∈ T ::= a | U → T U ∈ U ::= T | U1 u U2 | ωL | eU

x� : 〈(x� : T ) ` T 〉
(ax)

M : 〈envω
M ` ωdeg(M)〉

(ω)

M : 〈Γ, (xL : U) ` T 〉
λxL.M : 〈Γ ` U → T 〉

(→I )

M : 〈Γ ` T 〉 xL 6∈ dom(Γ)

λxL.M : 〈Γ ` ωL → T 〉
(→′

I )

M1 : 〈Γ1 ` U → T 〉 M2 : 〈Γ2 ` U〉 Γ1 � Γ2

M1M2 : 〈Γ1 u Γ2 ` T 〉
(→E )

M : 〈Γ ` U1〉 M : 〈Γ ` U2〉
M : 〈Γ ` U1 u U2〉

(uI )

M : 〈Γ ` U〉
M+j : 〈e jΓ ` e jU〉

(e)

M : 〈Γ ` U〉 〈Γ ` U〉 v 〈Γ′ ` U′〉
M : 〈Γ′ ` U′〉

(v)

Φ v Φ
(ref )

Φ1 v Φ2 Φ2 v Φ3

Φ1 v Φ3
(tr)

d(U1) = d(U2)

U1 u U2 v U1
(uE )

U1 v V1 U2 v V2

U1 u U2 v V1 u V2
(u)

U2 v U1 T1 v T2

U1 → T1 v U2 → T2
(→)

U1 v U2

eU1 v eU2
(ve)

U1 v U2

Γ, yL : U1 v Γ, yL : U2

(vc )

U1 v U2 Γ2 v Γ1

〈Γ1 ` U1〉 v 〈Γ2 ` U2〉
(v〈〉)
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Our solution in this paper (5)

Example of a type derivation in our type system:

I v�v� : 〈v� : a u (a → b) ` b〉

I v (0)v (0) : 〈v (0) : e0(a u (a → b)) ` e0b〉

I u� : 〈u� : e0b → c ` e0b → c〉

I u�(v (0)v (0)) : 〈u� : e0b → c , v (0) : e0(a u (a → b)) ` c〉

I λv (0).u�(v (0)v (0)) : 〈u� : e0b → c ` e0(a u (a → b)) → c〉

I λu�.λv (0).u�(v (0)v (0)) : 〈() ` (e0b → c) → (e0(a u (a → b)) → c)〉

I λu(1).λv (1,0).u(1)(v (1,0)v (1,0)) :
〈() ` e1((e0b → c) → (e0(a u (a → b)) → c))〉
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Our solution in this paper (6)

Our semantics:

Let r ∈ {β, βη, h}.
I An r -interpretation I : A 7→ P(M�) is a function such that for all

a ∈ A, I(a) satisfies simple properties such as saturation

We extend an r -interpretation I to U as follows:
I I(ωL) = ML

I I(e iU) = I(U)+i

I I(U1 u U2) = I(U1) ∩ I(U2)
I I(U → T ) = {M ∈M | ∀N ∈ I(U). M � N ⇒ MN ∈ I(T )}

Let r -int = {I | I is an r−interpretation}.

I The meaning [U] of the type U is defined as the intersection of the
interpretations of U.

Kamareddine, Nour, Rahli and Wells realisability semantics of an intersection type system with expansion variables September 3, 2008 18/23



Our solution in this paper (7)

Our type system satisfies these properties (useful to prove the
completeness of our semantics w.r.t. the type system):

I Subject reduction for β and η.

I Subject expansion for β.

We obtain soundness of our semantics w.r.t. the defined type system.

Soundness

Let r ∈ {β, βη, h}. If M : 〈() ` U〉, then M ∈ [U]r

We obtain completeness of our semantics w.r.t. the defined type system.

Completeness

I [U]βη = {M ∈ML / M closed, M B∗
βη N and N : 〈() ` U〉}.

I [U]β = [U]h = {M ∈ML / M : 〈() ` U〉}.
I [U]βη is stable by reduction. I.e., If M ∈ [U]βη and M B∗

βη N then
N ∈ [U]βη.
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Conclusion and Future work

I Expansion may be viewed to work like a multi-layered simultaneous
substitution.

I Expansion is a crucial part of a procedure for calculating principal
typings and helps support compositional type inference.

I In this paper we gave a complete semantics for intersection type
systems with expansion variables.

I In order to overcome the problems of completeness, we changed our
realisability semantics from one which uses indices as natural
numbers to one that uses the indices as lists of natural numbers.

I As far as we know, our work constitutes the first study of a
semantics of intersection type systems with E-variables (using
realisability or any other approach) and of the difficulties involved.
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Conclusion and Future work

In this paper we attempted to answer the questions:

I What does an expansion variable applied to a type stand for?

I What are the realisers of such a type?

I How can the relation between terms and types be described w.r.t. a
type system?

I How can we extend realisability models to a type system with
expansion?
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Conclusion and Future work

I We now have to consider the expansion mechanism as well.

I The study of other semantics than realisability might provide further
useful information on expansion.
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