
(Typed) λ-Calculus and Formalising Mathematics

à la de Bruijn

In honour of De Bruijn’s 90th anniversary

Fairouz Kamareddine (Heriot-Watt University)

5 September 2008

Eindhoven, September 2008

De Bruijn in 1967

• In 1967, an internationally renowned mathematician called N.G. de Bruijn
wanted to do something never done before: use the computer to formally
check the correctness of mathematical books.

• Such a task needs a good formalisation of mathematics, a good competence
in implementation, and extreme attention to all the details so that nothing is
left informal.

• No earlier formalisation of mathematics (Frege, Russell, Whitehead, Hilbert,
Ramsey, etc.) had ever achieved such attention to details.

• Implementing extensive formal systems on the computer was never done before.

• De Bruijn, an extremely original mathematician, did every step his own way,
quickly replacing existing ideas with his own original genious way of thinking,
shaping the road ahead for everyone else to follow.

Eindhoven, September 2008 1

De Bruijn in 1967

• When de Bruijn announced his new project Automath at the start of January
1967, there was mixed reactions:

– We are talking about respected N.G. de Bruijn who is known to produce
ideas of gold so the project was bound to gain support.

– The project is so new, so revolutionary, so, it obviously gained opposition:
∗ Amongst mathematicians: Why is de Bruijn defecting?
∗ Amongst computer scientists: De Bruijn is not a computer scientist so

why is he coming to do a computer scientist’s job?
∗ Amongst logicians: De Bruijn is not a logician and has he also forgotten

about Goedel’s undecidability results?

• But, de Bruijn was ahead of everyone else. He is a living genious whose even
scribbled ideas require a life devotion from us ordinary mortal researchers.

Eindhoven, September 2008 2

• It goes without saying that de Bruijn and his Automath shaped the way.

• It is known that de Bruijn is the father and initiator of Logical frameworks.

• In particular, de Bruijn’s Automath was hugely influential in the development
of the Edinburgh Logical Frameworks.

• Constable’s Nuprl project has been throughout its development, closely
connected to ideas in de Bruijn’s Automath (e.g., telescopes).

• Coquand and Huet’s calculus of constructions and consequently the proof
checker Coq were heavily influenced by de Bruijn’s dependent types, PAT and
Automath.

• De Bruijn was the first to put the Propositions As Types (PAT) idea in practice.

• Barendregt’s cube and Pure Type systems are a beautiful example of the
generality of the typing rules of Automath.

Eindhoven, September 2008 3

• De Bruijn was the first to express the importance of definitions to the
formalisation and proof checking of mathematics. Definitions (also known as
let expressions) have been adopted in other proof checkers and in programming
languges (e.g. ML).

• De Bruijn’s Automath was the first (and remains the only) proof checker in
which an entire book has been fully proof checked by the computer (Mizar is
the next system in which 60% of a book is proof checked).

• There are numerous other gems in de Bruijn’s Automath.

• It has been, and will be for many generations to come, a hard but magical
task to fully decode the genious ideas of de Bruijn in his Automath project.

• In this talk, I will concentrate on some low level details which explain why
every sentence in de Bruijn’s writing is a gem that can help us solve numerous
problems in current research in programming language theory/implementation
and in logical frameworks.

Eindhoven, September 2008 4

De Bruijn Indices [de Bruijn, 1972]

• Classical λ-calculus: A ::= x | (λx.B) | (BC)
(λx.A)B →β A[x := B]

• (λx.λy.xy)y →β (λy.xy)[x := y] 6= λy.yy

• (λx.λy.xy)y →β (λy.xy)[x := y] =α (λz.xz)[x := y] = λz.yz

• λx.x and λy.y are the same function. Write this function as λ1.

• Assume a free variable list (say x, y, z, . . .).

• (λλ2 1)2→β (λ2 1)[1 := 2] = λ(2[2 := 3])(1[2 := 3]) = λ3 1

Eindhoven, September 2008 5

Classical λ-calculus with de Bruijn indices

• Let i, n ≥ 1 and k ≥ 0

• A ::= n | (λB) | (BC)
(λA)B →β A{{1← B}}

•
U i

k(AB) = U i
k(A) U i

k(B)

U i
k(λA) = λ(U i

k+1(A))
U i

k(n) =

{

n + i− 1 if n > k
n if n ≤ k .

•
(A1A2){{i← B}} = (A1{{i← B}}) (A2{{i← B}})
(λA){{i← B}} = λ(A{{i + 1← B}})

n{{i← B}} =

n− 1 if n > i
U i

0(B) if n = i
n if n < i .

• Numerous implementations of proof checkers and programming languages have
been based on de Bruijn indices.

Eindhoven, September 2008 6

From classical λ-calculus with de Bruijn indices to

substitution calculus λs [Kamareddine and Ŕıos, 1995]

• Write A{{n← B}} as Aσn B and U i
k(A) as ϕi

kA.

• A ::= n | (λB) | (BC) | (AσiB) | (ϕi
kB) where i, n ≥ 1 , k ≥ 0 .

σ-generation (λA) B −→ A σ1 B

σ-λ-transition (λA) σiB −→ λ(A σi+1 B)

σ-app-transition (A1 A2) σiB −→ (A1 σiB) (A2 σiB)

σ-destruction nσiB −→

n− 1 if n > i
ϕi

0 B if n = i
n if n < i

ϕ-λ-transition ϕi
k(λA) −→ λ(ϕi

k+1 A)

ϕ-app-transition ϕi
k(A1 A2) −→ (ϕi

k A1) (ϕi
k A2)

ϕ-destruction ϕi
k n −→

{

n + i− 1 if n > k
n if n ≤ k

Eindhoven, September 2008 7

1. The s-calculus (i.e., λs minus σ-generation) is strongly normalising,

2. The λs-calculus is confluent and simulates (in small steps) β-reduction

3. The λs-calculus preserves strong normalisation PSN.

4. The λs-calculus has a confluent extension with open terms λse.

• The λs-calculus is the only calculus of substitutions which satisfies all the
above properties 1., 2., 3. and 4.

Eindhoven, September 2008 8

λυ [Benaissa et al., 1996]

Terms: Λυt ::= IN | ΛυtΛυt | λΛυt | Λυt[Λυs]
Substitutions: Λυs ::=↑ | ⇑ (Λυs) | Λυt.

(Beta) (λa) b −→ a [b/]

(App) (a b)[s] −→ (a [s]) (b [s])

(Abs) (λa)[s] −→ λ(a [⇑(s)])

(FVar) 1 [a/] −→ a

(RVar) n + 1 [a/] −→ n

(FVarLift) 1 [⇑(s)] −→ 1

(RVarLift) n + 1 [⇑(s)] −→ n [s] [↑]

(VarShift) n [↑] −→ n + 1

λυ satisfies 1., 2., and 3., but does not have a confluent extension on open
terms.

Eindhoven, September 2008 9

λσ⇑

Terms: Λσt
⇑ ::= IN | Λσt

⇑Λσt
⇑ | λΛσt

⇑ | Λσt
⇑[Λσs

⇑]
Substitutions: Λσs

⇑ ::= id | ↑ | ⇑ (Λσs
⇑) | Λσt

⇑ · Λσs
⇑ | Λσs

⇑ ◦ Λσs
⇑.

(Beta) (λa) b −→ a [b · id]

(App) (a b)[s] −→ (a [s]) (b [s])

(Abs) (λa)[s] −→ λ(a [⇑(s)])

(Clos) (a [s])[t] −→ a [s ◦ t]

(Varshift1) n [↑] −→ n + 1

(Varshift2) n [↑ ◦ s] −→ n + 1 [s]

(FVarCons) 1 [a · s] −→ a

(RVarCons) n + 1 [a · s] −→ n [s]

(FVarLift1) 1 [⇑(s)] −→ 1

(FVarLift2) 1 [⇑(s) ◦ t] −→ 1 [t]

(RVarLift1) n + 1 [⇑(s)] −→ n[s ◦ ↑]

(RVarLift2) n + 1 [⇑(s) ◦ t] −→ n[s ◦ (↑ ◦ t)]

Eindhoven, September 2008 10

λσ⇑ rules continued

(Map) (a · s) ◦ t −→ a [t] · (s ◦ t)

(Ass) (s ◦ t) ◦ u −→ s ◦ (t ◦ u)

(ShiftCons) ↑ ◦ (a · s) −→ s

(ShiftLift1) ↑ ◦ ⇑(s) −→ s ◦ ↑

(ShiftLift2) ↑ ◦ (⇑(s) ◦ t) −→ s ◦ (↑ ◦ t)

(Lift1) ⇑(s)◦ ⇑(t) −→ ⇑(s ◦ t)

(Lift2) ⇑(s) ◦ (⇑(t) ◦ u) −→ ⇑(s ◦ t) ◦ u

(LiftEnv) ⇑(s) ◦ (a · t) −→ a · (s ◦ t)

(IdL) id ◦ s −→ s

(IdR) s ◦ id −→ s

(LiftId) ⇑(id) −→ id

(Id) a [id] −→ a

λσ⇑ satisfies 1., 2., and 4., but does not have PSN.

Eindhoven, September 2008 11

How is λse obtained from λs?

• A ::= X | n | (λB) | (BC) | (AσiB) | (ϕi
kB) where i, n ≥ 1 , k ≥ 0 .

• Extending the syntax with open terms without extending then rules loses the
confluence (even local confluence):
((λX)Y)σ11→ (Xσ1Y)σ11 ((λX)Y)σ11→ ((λX)σ11)(Y σ11)

• (Xσ1Y)σ11 and ((λX)σ11)(Y σ11) have no common reduct.

• But, ((λX)σ11)(Y σ11)→→ (Xσ21)σ1(Y σ11)

• Simple: add de Bruijn’s metasubstitution and distribution lemmas to the rules
of λs:

Eindhoven, September 2008 12

σ-σ (AσiB) σj C −→ (A σj+1 C) σi (B σj−i+1 C) if i ≤ j

σ-ϕ 1 (ϕi
k A) σj B −→ ϕi−1

k A if k < j < k + i

σ-ϕ 2 (ϕi
k A) σj B −→ ϕi

k(A σj−i+1 B) if k + i ≤ j

ϕ-σ ϕi
k(A σj B) −→ (ϕi

k+1 A) σj (ϕi
k+1−j B) if j ≤ k + 1

ϕ-ϕ 1 ϕi
k (ϕj

l A) −→ ϕ
j
l (ϕi

k+1−j A) if l + j ≤ k

ϕ-ϕ 2 ϕi
k (ϕj

l A) −→ ϕj+i−1
l A if l ≤ k < l + j

• These extra rules are the rewriting of the well-known meta-substitution (σ−σ)
and distribution (ϕ − σ) lemmas (and the 4 extra lemmas needed to prove
them).

Eindhoven, September 2008 13

Where did the extra rules come from?

In de Bruijn’s classical λ-calculus we have the lemmas:

(σ − ϕ 1) For k < j < k + i we have: U i−1
k (A) = U i

k(A){{j←B}} .

(ϕ− ϕ 2) For l ≤ k < l + j we have: U i
k(U

j
l (A)) = U j+i−1

l (A) .

(σ − ϕ 2) For k + i ≤ j we have: U i
k(A){{j←B}} = U i

k(A{{j− i + 1←B}}) .

(σ − σ) [Meta-substitution lemma] For i ≤ j we have:
A{{i←B}}{{j←C}} = A{{j + 1←C}}{{i←B{{j− i + 1←C}}}}.

(ϕ− ϕ 1) For j ≤ k + 1 we have: U i
k+p(U

j
p(A)) = U j

p(U i
k+p+1−j(A)) .

(ϕ− σ) [Distribution lemma]
For j ≤ k + 1 we have: U i

k(A{{j←B}}) = U i
k+1(A){{j←U i

k+1−j(B)}} .

The proof of (σ − σ) uses (σ − ϕ 1) and (σ − ϕ 2) both with k = 0.
The proof of (σ − ϕ 2) requires (ϕ− ϕ 2) with l = 0.
Finally, (ϕ− ϕ 1) with p = 0 is needed to prove (ϕ− σ)).

Eindhoven, September 2008 14

Summary of [de Bruijn, 1972]

• Those who in 1967 said that de Bruijn was not a computer scientist, must
have felt embarassed afterwards.

• De Bruijn’s work not only had serious consequences on the implementation
of numerous programming languages and proof checkers, but also was to
dominate decades of research and hundreds of articles by many researchers.

• Here, I described how his work in [de Bruijn, 1972] influenced research into
calculi of explicit substitutions.

• Next I describe how his novel notation for the λ-calculus influenced notions of
generalised reductions (with implications on theoretical and implementational
aspects of the λ-calculus and programming languages).

Eindhoven, September 2008 15

Lambda Calculus à la de Bruijn

• I(x) = x, I(λx.B) = [x]I(B), I(AB) = 〈I(B)〉I(A)

• (λx.λy.xy)z translates to 〈z〉[x][y]〈y〉x.

• The applicator wagon 〈z〉 and abstractor wagon [x] occur NEXT to each other.

• (λx.A)B →β A[x := B] becomes

〈B〉[x]A→β [x := B]A

• The “bracketing structure” of ((λx.(λy.λz. − −)c)b)a), is ‘[1 [2 [3]2]1]3’,
where ‘[i’ and ‘]i’ match.

• The bracketing structure of 〈a〉〈b〉[x]〈c〉[y][z]〈d〉 is simpler: [[][]].

• 〈b〉[x] and 〈c〉[y] are AT-pairs whereas 〈a〉[z] is an AT-couple.

Eindhoven, September 2008 16

Redexes in de Bruijn’s notation
Classical Notation de Bruijn’s Notation

((λx.(λy.λz.zd)c)b)a 〈a〉〈b〉[x]〈c〉[y][z]〈d〉z

↓β ↓β
((λy.λz.zd)c)a 〈a〉〈c〉[y][z]〈d〉z

↓β ↓β
(λz.zd)a 〈a〉[z]〈d〉z

↓β ↓β
ad 〈d〉a

〈a〉〈b〉 [x] 〈c〉 [y] [z] 〈d〉 z

De Bruijn was the first to introduce local/global/mini reductions into the λ-
calculus.
For further details see: [Bruijn, 1984].
Further study of de Bruijn’s notation can be found in [Kamareddine and Nederpelt,
1995, 1996]

Eindhoven, September 2008 17

Some notions of reduction studied in the literature

Name In Classical Notation In de Bruijn’s notation
((λx.N)P)Q 〈Q〉〈P 〉[x]N

(θ) ↓ ↓
(λx.NQ)P 〈P 〉[x]〈Q〉N
(λx.λy.N)P 〈P 〉[x][y]N

(γ) ↓ ↓
λy.(λx.N)P [y]〈P 〉[x]N

((λx.λy.N)P)Q 〈Q〉〈P 〉[x][y]N
(γC) ↓ ↓

(λy.(λx.N)P)Q 〈Q〉[y]〈P 〉[x]N
((λx.λy.N)P)Q 〈Q〉〈P 〉[x][y]N

(g) ↓ ↓
(λx.N [y := Q])P 〈P 〉[x][y := Q]N

Eindhoven, September 2008 18

A Few Uses of these reductions/term reshuffling

• Regnier [1992] uses θ and γ in analyzing perpetual reduction strategies.

• Term reshuffling is used in [Kfoury et al., 1994; Kfoury and Wells, 1994] in
analyzing typability problems.

• [Nederpelt, 1973; de Groote, 1993; Kfoury and Wells, 1995] use generalised
reduction and/or term reshuffling in relating SN to WN.

• [Ariola et al., 1995] uses a form of term-reshuffling in obtaining a calculus that
corresponds to lazy functional evaluation.

• [Kamareddine and Nederpelt, 1995; Kamareddine et al., 1999, 1998; Bloo
et al., 1996] shows that they could reduce space/time needs.

• [Kamareddine, 2000] shows the conservation theorem for generalised reduction.

• All these works have been heavily influenced by de Bruijn’s Automath whose
λ-notation facilitated the manipulation of redexes.

Eindhoven, September 2008 19

Canonical Forms

• Nice canonical forms look like:

bachelor []s 〈〉[]-pairs, Ai in CF bachelor 〈〉s, Bi in CF end var
[x1] . . . [xn] 〈A1〉[y1]. . .〈Am〉[ym] 〈B1〉 . . . 〈Bp〉 x

• classical:

λx1 · · ·λxn.(λy1.(λy2. · · · (λym.xBp · · ·B1)Am · · ·)A2)A1

• For example, a canonical form of:

[x][y]〈a〉[z][x′]〈b〉〈c)〈d〉[y′][z′]〈e〉x

is
[x][y][x′]〈a〉[z]〈d〉[y′]〈c〉[z′]〈b〉〈e〉x

Eindhoven, September 2008 20

Obtaining Canonical Forms

For M ≡ [x][y]〈a〉[z][x′]〈b〉〈c〉〈d〉[y′][z′]〈e〉x:

θ(M): bach. []s 〈〉[]-pairs mixed with bach. []s bach. 〈〉s end var
[x][y] 〈a〉[z][x′]〈d〉[y′]〈c〉[z′] 〈b〉〈e〉 x

γ(M): bach. []s 〈〉[]-pairs mixed with bach. 〈〉s bach. 〈〉s end var
[x][y][x′] 〈a〉[z]〈b〉〈c〉[z′]〈d〉[y′] 〈e〉 x

θ(γ(M)): bach. []s 〈〉[]-pairs bach. 〈〉s end var
[x][y][x′] 〈a〉[z]〈c〉[z′]〈d〉[y′] 〈b〉〈e〉 x

γ(θ(M)): bach. []s 〈〉[]-pairs bach. 〈〉s end var
[x][y][x′] 〈a〉[z]〈d〉[y′]〈c〉[z′] 〈b〉〈e〉 x

Eindhoven, September 2008 21

Classes of terms modulo reductional behaviour
• Both θ(γ(A)) and γ(θ(A)) are in canonical form.

• θ(γ(A)) =p γ(θ(A)) where →p is the rule

〈A1〉[y1]〈A2〉[y2]B →p 〈A2〉[y2]〈A1〉[y1]B if y1 /∈ FV(A2)

• We define: [A] to be {B | θ(γ(A)) =p θ(γ(B))}.

• One-step class-reduction ;β is the least compatible relation such that:

A;βB iff ∃A′ ∈ [A].∃B′ ∈ [B]. A′ →β B′

• ;β really acts as reduction on classes:

• If A ;β B then forall A′ ∈ [A], forall B′ ∈ [B], we have A′
;β B′.

Eindhoven, September 2008 22

Properties of reduction modulo classes

• ;β generalises →g and →β: →β ⊂→g⊂;β ⊂=β.

• ≈β and =β are equivalent: A ≈β B iff A =β B.

• ;;β is Church Rosser:
If A ;;β B and A ;;β C, then for some D: B ;;β D and C ;;β D.

• Classes preserve SN→β
: If A ∈ SN→β

and A′ ∈ [A] then A′ ∈ SN→β
.

• Classes preserve SN;β
: If A ∈ SN;β

and A′ ∈ [A] then A′ ∈ SN;β
.

• SN→β
and SN;β

are equivalent: A ∈ SN;β
iff A ∈ SN→β

.

Eindhoven, September 2008 23

Typed λ-calculus with single binder

• Let f : N→ N et gf : N→ N such that gf(x) = f(f(x)).

Let FN : (N→ N)→ (N→ N) such that FN(f)(x) = gf(x) = f(f(x)).

• In Church’s simply typed lambda calculus we write the function FN as follows:

λf :N→N.λx:N.f(f(x))

• If we want the same function on the booleans B, we write:

the function FB is λf :B→B.λx:B.f(f(x))
the type of the function FB is (B → B)→ (B → B)

Eindhoven, September 2008 24

Polymorphism: the typed λ-calculus after Church

• Instead of repeating the work, we take: α : ∗ (α is an arbitrary type) and we
define a polymorphic function F as follows:

λα:∗.λf :α→α.λx:α.f(f(x))

We give F the type:
Πα:∗.(α→ α)→ (α→ α)

• This way, F (α) = λf :α→α.λx:α.f(f(x)) : (α→ α)→ (α→ α)

• We can instantiate α according to our need:

– F (N) = λf :N→N.λx:N.f(f(x)) : (N→ N)→ (N→ N)
– F (B) = λf :B→B.λx:B.f(f(x)) : (B → B)→ (B → B)
– F (B → B) = λf :(B→B)→(B→B).λx:(B→B).f(f(x)) :

((B → B)→ (B → B))→ ((B → B)→ (B → B))

Eindhoven, September 2008 25

• This way, types are like functions:

– We can form them by abstraction
– We can instantiate them

• But in the passage from simple to polymorphic types, we have forgotten to
adapt the rule:

(β) (λx:A.b)C → b[x := C]

to a rule which resembles Π:

(Π) (Πx:A.B)C → B[x := C]

• Usually, if b : B, we take (λx:A.b)C : B[x := C] instead of (λx:A.b)C :
(Πx:A.B)C

• De Bruijn’s Automath shows that the rule Π is useful.

Eindhoven, September 2008 26

• It seems that the development of type theory is taking us more and more
towards adopting a similar role for the binders λ et Π.

• Did we really need to separate λ et Π?

• I believe that the separation is artificial and that de Bruijn’s intuition is again
a winner.

• What are the properties of type theories with a single binder which represents
both λ et Π?

Eindhoven, September 2008 27

Notation of Modern type systems
• Let V = V∗ ∪ V2 where V∗ ∩ V2 = ∅. Let s ∈ {∗, 2}.

T ::= s | V | λV:T .T |ΠV:T .T | T T

T♭ ::= s | V | ♭V:T♭
.T♭ | T♭T♭

Note that even though modern type systems have not identified the binders λ
et Π, they have adapted (in T) a common syntax in some sense.

• If A ∈ T , we define A ∈ T♭ by: s ≡ s, x ≡ x, AB ≡ A B,
λx:A.B ≡ Πx:A.B ≡ ♭x:A.B.

• If A ∈ T♭, we define Aλ ∈ T by: sλ ≡ s, xλ ≡ x, (AB)λ ≡ AλBλ,
(♭x:A.B)λ ≡ λx:Aλ.Bλ. We define [A] by {A′ in T |A′ ≡ A}.

• A context Γ is of the form: : x1 : A1, . . . , xn : An. dom (Γ) = {x1, . . . xn}.

• In T we define: 〈〉 ≡ 〈〉 Γ, x : A ≡ Γ, x : A.

• In T♭ we define [Γ] ≡ {Γ′ | Γ′ ≡ Γ}.

Eindhoven, September 2008 28

• We have three systems: (T ,→β), (T ,→βΠ) and (T♭,→♭) with the axioms:

– (λx:A.B)C →β B[x := C]
– (♭x:A.B)C →♭ B[x := C]
– (Πx:A.B)C →Π B[x := C]
– where →βΠ=→β ∪ →Π

• Church-Rosser: Let r ∈ {β, βΠ, ♭}.
If B1 r←← A→→r B2 then ∃C such that B1→→r C r←← B2.

Eindhoven, September 2008 29

The β-cube: Rβ = type rules with 2 binders, →β and (appl)
(axiom) 〈〉 ⊢ ∗ : 2

(start)
Γ ⊢ A : s xs 6∈ dom (Γ)

Γ, xs:A ⊢ xs : A

(weak)
Γ ⊢ A : B Γ ⊢ C : s xs 6∈ dom (Γ)

Γ, xs:C ⊢ A : B

(Π)
Γ ⊢ A : s1 Γ, x:A ⊢ B : s2 (s1, s2) ∈ R

Γ ⊢ Πx:A.B : s2

(λ)
Γ, x:A ⊢ b : B Γ ⊢ Πx:A.B : s

Γ ⊢ λx:A.b : Πx:A.B

(convβ)
Γ ⊢ A : B Γ ⊢ B′ : s B =β B′

Γ ⊢ A : B′

(appl)
Γ ⊢ F : Πx:A.B Γ ⊢ a : A

Γ ⊢ Fa : B[x:=a]

Eindhoven, September 2008 30

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�

β→ βP

β2 βP2

βω
βPω

βC
βω

r r

rr

r r

rr

-

6

�����1

(∗, 2) ∈ R

(2,2) ∈ R

(2, ∗) ∈ R

Figure 1: The β-cube of Barendregt

Eindhoven, September 2008 31

Our example in the system F of Girard

• If x 6∈ FV (B) we write A→ B instead of Πx:A.B.

• α : ∗, f : α→ α ⊢ λx:α.f(f(x)) : α→ α : ∗
(we need the rule (∗, ∗)).

• α : ∗ ⊢ λf :α→α.λx:α.f(f(x)) : (α→ α)→ (α→ α) : ∗
(we need the rule (∗, ∗)).

• ⊢ λα:∗.λf :α→α.λx:α.f(f(x)) : Πα:∗.(α→ α)→ (α→ α) : ∗
(we need the rule (2, ∗)).

Eindhoven, September 2008 32

The π-cube: Rπ = Rβ\ (convβ) ∪ (convβΠ) =

Typing rules with two binders, →βΠ and (appl)

(axiom) (start) (weak) (Π) (λ) (appl)

(convβΠ)
Γ ⊢ A : B Γ ⊢ B′ : s B =βΠ B′

Γ ⊢ A : B′

Eindhoven, September 2008 33

The πi-cube: Rπi
= Rπ\ (appl) ∪ (newappl) =

typing rules with two binders, →βΠ and (newappl)

(axiom) (start) (weak) (Π) (λ)

(convβΠ)
Γ ⊢ A : B Γ ⊢ B′ : s B =βΠ B′

Γ ⊢ A : B′

(newappl)
Γ ⊢ F : Πx:A.B Γ ⊢ a : A

Γ ⊢ Fa : (Πx:A.B)a

Eindhoven, September 2008 34

The ♭-cube: R♭ = Typing rules with one single binder →♭ and

(appl♭)

(axiom) (start) (weak)

(♭1)
Γ ⊢ A : s1 Γ, x:A ⊢ B : s2 (s1, s2) ∈ R

Γ ⊢ ♭x:A.B : s2

(♭2)
Γ, x:A ⊢ b : B Γ ⊢ ♭x:A.B : s

Γ ⊢ ♭x:A.b : ♭x:A.B

(conv♭)
Γ ⊢ A : B Γ ⊢ B′ : s B =♭ B′

Γ ⊢ A : B′

(appl♭)
Γ ⊢ F : ♭x:A.B Γ ⊢ a : A

Γ ⊢ Fa : B[x:=a]

Eindhoven, September 2008 35

♭i-cube: R♭i
= R♭\ (appl♭) ∪ (newappl♭) =

Typing rules with one single binder, →♭ et (newappl♭)

(axiom) (start) (weak) (♭1) (♭2) (conv♭)

(newappl♭)
Γ ⊢ F : ♭x:A.B Γ ⊢ a : A

Γ ⊢ Fa : (♭x : A.B)a

Eindhoven, September 2008 36

6 desirable properties of a type system with reduction r

• Types are correct (TC)
If Γ ⊢ A : B then B ≡ 2 or Γ ⊢ B : s fors ∈ {∗, 2}.

• Subject reduction (SR) If Γ ⊢ A : B and A→→r A′ then Γ ⊢ A′ : B.

• Preservation of types (PT) If Γ ⊢ A : B and B →→r B′ then Γ ⊢ A : B′.

• Strong Normalisation (SN) If Γ ⊢ A : B then SN→r(A) and SN→r(B).

• Subterms are typable (STT) If A is ⊢-legal and if C is a sub-term of A then
C is ⊢-legal.

• Unicity of types

– (UT1) If Γ ⊢ A1 : B1 and Γ ⊢ A2 : B2 and Γ ⊢ A1 =r A2, then
Γ ⊢ B1 =r B2.

– (UT2) If Γ ⊢ B1 : s, B1 =r B2 and Γ ⊢ A : B2 then Γ ⊢ B2 : s.

Eindhoven, September 2008 37

The correspondence between the β-, π- et πi-cubes

• Lemma:

– Γ ⊢β A : B iff Γ ⊢π A : B
– If Γ ⊢β A : B then Γ ⊢πi

A : B.
– If Γ ⊢πi

A : B then Γ ⊢β A : [B]Π
where [B]Π is the Π-normal form of B.

• Lemma: The β-cube and the π-cube satisfy the six properties that are desirable
for type systems.

Eindhoven, September 2008 38

The πi-cube

• The πi-cube loses three of its six properties
Let Γ = z : ∗, x : z. We have that Γ ⊢πi

(λy:z.y)x : (Πy:z.z)x.

– We do not have TC (Πy:z.z)x 6≡ 2 and Γ 6⊢πi
(Πy:z.z)x : s.

– We do not have SR (λy:z.y)x→βΠ x but Γ 6⊢πi
x : (Πy:z.z)x.

– We do not have UT2 ⊢πi
∗ : 2, ∗ =βΠ (Πz:∗.∗)α, α : ∗ ⊢πi

(λz:∗.∗)α :
(Πz:∗.∗)α and 6⊢πi

(Πz:∗.∗)α : 2

• But we have:

– We have UT1
– We have STT
– We have PT
– We have SN
– We have a weak form of TC If Γ ⊢πi

A : B and B does not have a Π-redexe
then either B ≡ 2 or Γ ⊢πi

B : s.
– We have a weak form of SR If Γ ⊢πi

A : B, B is not a Π-redex and
A→→βΠ A′ then Γ ⊢πi

A′ : B.

Eindhoven, September 2008 39

If we eliminate the distinction between λ and Π, it would still

be possible to deduce the role of each binder

An algorithm which transformsa ♭-typing into a β-typing
Let Γ ⊢♭ A : B. We define (Γ ⊢♭ A : B)−1 ∈ [Γ] × [A] × [B] by:
(〈〉 ⊢♭ ∗ : 2)−1 = (〈〉, ∗,2)
(Γ, xs : A ⊢♭ ∗ : 2)−1 = (Γ′, xs : A′, ∗, 2) where (Γ ⊢♭ A : s)−1 = (Γ′, A′, s)
(Γ ⊢♭ xs : C)−1 = (Γ′, xs, C′) where (Γ ⊢♭ C : s)−1 = (Γ′, C′, s)

(Γ ⊢♭ ♭x:A.B : C)−1 =

{

(Γ′,Πx:A′.B′, C′) if C =♭ s2 and i.
(Γ′, λx:A′.B′, C′) if C =♭ ♭x:A.D and ii.

(Γ ⊢♭ Fa : C)−1 = (Γ′, F ′a′, C′) where iii.
Where i, ii, and iii, are evident. We simply write the condition i. For the others
see the article.

i – (Γ ⊢♭ A : s1)
−1 = (Γ′, A′, s1) for an s1 such that (s1, s2) ∈ R,

– (Γ, x : A ⊢♭ B : s2)
−1 = (Γ′′, x : A′′, B′, s2)

– if C ≡ s2 then C ′ ≡ s2 otherwise
if C 6≡ s2 then (Γ ⊢♭ C : s)−1 = (Γ′′′, C′, s) for some s.

Eindhoven, September 2008 40

The isomorphism

• Theorem:

1. if Γ ⊢β A : B then Γ ⊢♭ A : B.
2. if Γ ⊢♭ A : B then

– there is a unique Γ′ ∈ [Γ] such that Γ′ is ⊢β-legal, and
– there is a unique A′ ∈ [A], a unique B′ ∈ [B] such that Γ′ ⊢β A′ : B′.
Moreoever, Γ′, A′ and B′ are constructed by −1 where (Γ ⊢♭ A : B)−1 =
(Γ′, A′, B′).

3. The verification of types in the β-cube is equivalent to the verification of
types in the ♭-cube

Eindhoven, September 2008 41

The ♭-cube

• The ♭-cube has five and a half properties:

– TC
– SR
– STT
– PT
– SN
– UT2
– Of course we do not have UT1 (and we don’t even want it)

Using (2,2): ⊢β λx:∗.x : Πx:∗.∗ and ⊢♭ ♭x:∗.x : ♭x:∗.∗.

Using (2, ∗): ⊢β Πx:∗.x : ∗ and ⊢♭ ♭x:∗.x : ∗.
Note that ♭x:∗.∗ 6=♭ ∗.

Eindhoven, September 2008 42

We have an organised multiplicity of types in the ♭-cube

• Let SN→♭
(B1) and SN→♭

(B2). We say that B1
⋄
=♭ B2 iff nf♭(B1) ≡ ♭i:1..n1

xi:Fi
.B

and nf♭(B2) ≡ ♭i:1..n2
xi:Fi

.B, where n1, n2 ≥ 0.

• Lemma (MOT) If Γ ⊢♭ A1 : B1 and Γ ⊢♭ A2 : B2 and A1 =♭ A2, then

B1
⋄
=♭ B2.

• Hence, the ♭-cube is elegant, and has all the desirable properties (we do not
want UT1, MOT is enough).

Eindhoven, September 2008 43

Example

• Let A ≡ ♭x1:∗.♭x2:♭y:C.∗.♭x3:C.♭x4:x2x3.x2x3

Let B ∈ {♭x1:∗.♭x2:♭y:C.∗.♭x3:C.♭x4:x2x3.∗,
♭x1:∗.♭x2:♭y:C.∗.♭x3:C.∗,
♭x1:∗.♭x2:♭y:C.∗.∗,
♭x1:∗.∗,
∗}.
We have that ⊢♭ A : B

• In the β-cube we have:

⊢β λx1:∗.λx2:Πy:C.∗.λx3:C.λx4:x2x3.x2x3 : Πx1:∗.Πx2:Πy:C.∗.Πx3:C.Πx4:x2x3. ∗

⊢β λx1:∗.λx2:Πy:C.∗.λx3:C.Πx4:x2x3.x2x3 : Πx1:∗.Πx2:Πy:C.∗.Πx3:C. ∗

⊢β λx1:∗.λx2:Πy:C.∗.Πx3:C.Πx4:x2x3.x2x3 : Πx1:∗.Πx2:Πy:C.∗. ∗

⊢β λx1:∗.Πx2:Πy:C.∗.Πx3:C.Πx4:x2x3.x2x3 : Πx1:∗. ∗

⊢β Πx1:∗.Πx2:Πy:C.∗.Πx3:C.Πx4:x2x3.x2x3 : ∗

Note that only Πx1:∗.Πx2:Πy:C.∗.Πx3:C.Πx4:x2x3.x2x3 can be a type. The other
terms cannot.

Eindhoven, September 2008 44

Summary

• If the type system can do all that we want (as we have seen in the ♭-cube),
why separate the levels of types and terms?

• Terms and types are not different. The only difference is the relation that
exists between them. In A : B, the A on the left represents a term, the B on
the right represents a type.

• Even if you do not want to use this system, its existence is already of
significance.

Eindhoven, September 2008 45

Conclusion

• There are still millions of hidden gems in de Bruijn’s Automath.

• Current work include de Bruijn’s subtyping, de Bruijn’s mathematical
vernacular.

• Is it an exageration to say that: “if an idea in logical frameworks is good, it
exists already in Automath. Look enough you will find it.”

• Amazing that a single project (Automath) has resulted in such a treasure of
influential ideas.

• Thank you de Bruijn, and thanks to your extremely modest, and extremely
impressive x-PhD students/researchers (Rob Nederpelt, Bert van Benthem
Jutting, Diedrick van Daalen, Herman Balsters, Jeff Zucker).

• What this group has done is truly impressive.

Eindhoven, September 2008 46

• I am particularly thankful to Rob Nederpelt who throughout decades has
introduced me to the beautiful work in Automath and with whom I had my
most extensive collaboration (and a very close and valuable friendship).

• Keep studying Automath, and keep discovering its beauty.

• Long live de Bruijn and long live Automath.

Eindhoven, September 2008 47

Bibliography

Abadi, Cardelli, Curien, and Levy. The λσ calculus. Functional Programming, 1991.

Zena M. Ariola, Matthias Felleisen, John Maraist, Martin Odersky, and Philip Wadler. The call-by-need lambda
calculus. In Conf. Rec. 22nd Ann. ACM Symp. Princ. of Prog. Langs., pages 233–246, 1995.

Z.E.A. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. λυ, a calculus of explicit substitutions which preserves
strong normalisation. Journal of Functional Programming, 6(5):699–722, 1996.

Roel Bloo, Fairouz Kamareddine, and Rob Nederpelt. The Barendregt cube with definitions and generalised
reduction. Inform. & Comput., 126(2):123–143, May 1996.

N.G. de Bruijn. Generalising automath by means of a lambda-typed lambda calculus. 1984. Also in [Nederpelt et al.,
1994], pages 313–337.

N.G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with
application to the chuirch rosser theorem. In Indagationes Math, pages 381–392. 1972. Also in [Nederpelt et al.,

1994].

Philippe de Groote. The conservation theorem revisited. In Proc. Int’l Conf. Typed Lambda Calculi and Applications,

pages 163–178. Springer, 1993.

Eindhoven, September 2008 48

F. Kamareddine and A. Ŕıos. A λ-calculus à la de bruijn with explicit substitutions. Proceedings of Programming
Languages Implementation and the Logic of Programs PLILP’95, Lecture Notes in Computer Science, 982:45–62,
1995.

F. Kamareddine, R. Bloo, and R. Nederpelt. On Π-conversion in the λ-cube and the combination with abbreviations.
Ann. Pure Appl. Logic, 97(1–3):27–45, 1999.

Fairouz Kamareddine. Postponement, conservation and preservation of strong normalisation for generalised reduction.

J. Logic Comput., 10(5):721–738, 2000.

Fairouz Kamareddine and Rob Nederpelt. Refining reduction in the λ-calculus. J. Funct. Programming, 5(4):
637–651, October 1995.

Fairouz Kamareddine and Rob Nederpelt. A useful λ-notation. Theoret. Comput. Sci., 155(1):85–109, 1996.

Fairouz Kamareddine, Alejandro Ŕıos, and J. B. Wells. Calculi of generalised β-reduction and explicit substitutions:
The type free and simply typed versions. J. Funct. Logic Programming, 1998(5), June 1998.

A. J. Kfoury and J. B. Wells. A direct algorithm for type inference in the rank-2 fragment of the second-order

λ-calculus. In Proc. 1994 ACM Conf. LISP Funct. Program., pages 196–207, 1994. ISBN 0-89791-643-3.

A. J. Kfoury and J. B. Wells. New notions of reduction and non-semantic proofs of β-strong normalization in typed
λ-calculi. In Proc. 10th Ann. IEEE Symp. Logic in Comput. Sci., pages 311–321, 1995. ISBN 0-8186-7050-9.

URL http://www.church-project.org/reports/electronic/Kfo+Wel:LICS-1995.pdf.gz.

Eindhoven, September 2008 49

Assaf J. Kfoury, Jerzy Tiuryn, and Pawe l Urzyczyn. An analysis of ML typability. J. ACM, 41(2):368–398, March
1994.

Rob Nederpelt. Strong Normalization in a Typed Lambda Calculus With Lambda Structured Types. PhD thesis,
Eindhoven, 1973.

R.P. Nederpelt, J.H. Geuvers, and R.C. de Vrijer, editors. Selected Papers on Automath. Studies in Logic and the

Foundations of Mathematics 133. North-Holland, Amsterdam, 1994.

Laurent Regnier. Lambda calcul et réseaux. PhD thesis, University Paris 7, 1992.

Eindhoven, September 2008 50

