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The computer revolution

• In less than a half a century, computers have revolutionised the way we all live.

• Google, Wikipedia, and other information and search engines have changed
the way we store and exchange information.

• Computerisation also enables excellent collaborations between different
disciplines (think of Bio-Informatics) and enables new discoveries in different
disciplines.

• This computerisation of information is only at its beginning. We need a lot
of investments in research methods that enable faster, correct, and efficient
information storage and retrieval.

• Information here means every aspect of information (mathematical, medical,
social, educational, law, etc).

• Calculators process numbers, computers process information.
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The languages of Mathematics

Usually, mathematicians ignore formal logic and write mathematics using a certain
language style which we call Cml. Advantages of Cml:

• Expressivity: We can express all sorts of notions.

• Acceptability: Cml is accepted by most mathematicians.

• Traditionality: Cml exists since very long and has been refined with the time.

• Universality: Cml is used everywhere.

• Flexibility: With Cml we can descibe several branches of mathematics
(including new ones).
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The Disadvantage of Cml

• Informal and ambiguous: Cml is based on natural language.

• Incomplete: The author counts on the intuition of the reader.

• Not easy to automate

• Initially, people were worried about ambiguity and incompleteness. Automation
was the outcome of precision.

Brasilià, Novembre 2009 3



Precision and Automation

• The needs to become more precise were strongly felt in the 19th century (e.g.,
think of the problems in Analysis).

• Many of these problems were solved by the work of Cauchy (e.g., his precise
definition of convergence in his Cours d’Analyse).

• Also number systems became more precise with the definition of real numbers
of Dedekind.

• Cantor started the formalisation of set theory and contributed to number
theory.
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Logic, functions, λ-calculus and type theory

• Frege was frustrated by the informalities of Cml.

• The general definition of function was key to his formalisation of logic (1879).

• The application of a function to itself f(x) = ¬x(x) was key to Russell’s
paradox (1902). See [Kamareddine et al., 2002].

• To eliminate the paradox, Russell controlled the application of a function to
an argument by his theory of types.

• Russell (1908) gave the first theory of types rtt. Russell and Whitehead used
rtt in Principia Mathematica (1910–1912).

• simple theory of types (stt): Ramsey (1926), Hilbert and Ackermann (1928).

• In 1928, Church wanted to write a language of functions and logic:

Λ ::= V|(ΛΛ)|λV .Λ|¬Λ|∀V.Λ(V)
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• The combination of functions and logic was paradoxical.
The problem was not with ¬, but ∀.

• In 1932, he eliminated logic and his λ-calcul became a calculus of functions.

• In 1940, he added logic and used types to eliminate the paradoxes. Simply
typed λ-calculus λ→ = λ-calculus + stt (1940).

• The need for precision in the 19th and 20th century led to the development of
computation theory (the invention of the Turing machine, the invention of the
language of computability and the logic of computability and decidability).

• My interests are in the machine, language and logic of computation and the
computerisation of information.
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I started from the λ-calculus (the language) and its model

• It is known that |A| < |A 7→ A| and even |A| < |A 7→ {0, 1}| (Cantor).

• In 1969, Dana Scott wanted to show the non-existence of models of the
λ-calculus.

• Contrary to what he wanted, he constructed a model of the λ-calculus where
D ∼ (D −→ D), where (D −→ D) is the set of continuous functions from D
to D and D is the fixed point of a continuous construction.

• Since Scott domains do not permit logic (they are models of the function
system, the λ-calculus), Peter Aczel intoduced in 1980 “Frege structures”which
are models of both functions and logic.

• My PhD thesis introduced λ-calcluli based on Frege structure, established
soundness and completeness and used these calculi to study pardoxical and self-
referential sentences and to computerise recursion and fixed point operators.
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• This is important for programming. You do want to be as expressive as possible
while having a full control and knowledge of when programs terminate/not.

• LISP is very expressive but you cannot guarantee termination of your programs.

• A number of attempts have been made at finding new programming languages
that have the nice properties (of controling termination, efficiency of time and
space, confluence, etc).

• Restricting the expressiveness of the programming language is not good. Our
programs must be able to express as much as possible.

• My work guarantees that we can have as much expressivity as possible while
being able to handle non terminating programs.
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The next step

• Then, I realised that even though the λ-calculus represents exactly
the computable functions, it is not a sufficient framework to represent
computerisation and to answer efficieny and space issues or to model
programming languages.

• I was also interested in the formalisation and automatisation of mathematics
in particular and information in general.

• Let us repeat the essence of the λ-calculus:
Syntax: Λ ::= V|(ΛΛ)|λV .Λ.
Computation rule: (λx.A)B →β A[x := B]
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The lambda Calculus à la de Bruijn (item notation)

[Kamareddine and Nederpelt, 1995, 1996]

′ : Classical Notation 7→ Notation of de Bruijn
x 7→ x

λx.B 7→ [x]B′

AB 7→ (B′)A′

Example: (λx.λy.xy)z 7→ (z)[x][y](y)x

• In the train (z)[x][y](y), the wagons are (z), [x], [y] and (y).

• The last x in (z)[x][y](y)x is the heart of the term.

• The application wagon (z) and the wagon of abstraction [x] are next to each
other.

• The βrule (λx.A)B →β A[x := B] becomes: (B)[x]A→β [x := B]A
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Reduction in item notation

Classical notation Item Notation

((λx.(λy.λz.zd)c)b)a (a)(b)[x](c)[y][z](d)z

↓β ↓β
((λy.λz.zd)c)a (a)(c)[y][z](d)z

↓β ↓β
(λz.zd)a (a)[z](d)z

↓β ↓β
ad (d)a

(a)(b) [x] (c) [y] [z] (d) z

Each wagon has a partener except (d) which is bachelor.
The parenthesis ((λx.(λy.λz.−−)c)b)a), are ‘[1 [2 [3 ]2 ]1 ]3’, where ‘[i’ and ‘]i’
go together.
The parenthesis of (a)(b)[x](c)[y][z] are much simpler: [[ ][ ]].
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Generalised Reductions

• ((λx.(λy.λz.zd)c)b)a→β((λx.{λz.zd}[y := c])b)a

(a)(b)[x](c)[y][z](d)z→β(a)(b)[x][y := c][z](d)z

• ((λx.(λy.λz.zd)c)b)a→β{(λy.λz.zd)c}[x := b]a

(a)(b)[x](c)[y][z](d)z→β(a)[x:=b](c)[y][z](d)z

• (a)(b)[x](c)[y][z](d)z →֒β(b)[x](c)[y][z := a](d)z
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Some notions of reduction in the literature

Name In Classical Notation In de Bruijn’s notation
((λx.N)P )Q (Q)(P )[x]N

(θ) ↓ ↓
(λx.NQ)P (P )[x](Q)N
(λx.λy.N)P (P )[x][y]N

(γ) ↓ ↓
λy.(λx.N)P [y](P )[x]N

((λx.λy.N)P )Q (Q)(P )[x][y]N
(γC) ↓ ↓

(λy.(λx.N)P )Q (Q)[y](P )[x]N
((λx.λy.N)P )Q (Q)(P )[x][y]N

(g) ↓ ↓
(λx.N [y := Q])P (P )[x][y := Q]N
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A Few Uses of these reductions/term reshuffling

• Regnier [1992] uses θ and γ in analyzing perpetual reduction strategies.

• Term reshuffling is used in [Kfoury et al., 1994; Kfoury and Wells, 1994] in
analyzing typability problems.

• [Nederpelt, 1973; de Groote, 1993; Kfoury and Wells, 1995] use generalised
reduction and/or term reshuffling in relating SN to WN.

• [Ariola et al., 1995] uses a form of term-reshuffling in obtaining a calculus that
corresponds to lazy functional evaluation.

• [Kamareddine and Nederpelt, 1995; Kamareddine et al., 1999, 1998; Bloo
et al., 1996] shows that they could reduce space/time needs.

• [Kamareddine, 2000] shows the conservation theorem for generalised reduction.
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Especially

• Reducing SN to WN: If we want to know that a program always terminate, it
is enough to show that it terminates once only. (Excellent simplification).

• We are now able to analyse the efficieny of time and space of our programs.
Huge investments are made by companies to create faster, shorter and more
efficient programs.

• Controling the reduction strategy so that we do as little work as possible is
also important to save resources. Lazy evaluation of programs is a good step
here.

• Other reduction strategies are important. In programming, there is a tradeoff
between termination and efficiency.

• With our generalised strategies (the most generalised that exist so far), we are
able to choose the right strategy for the right task.
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Canonical Forms [Kamareddine et al., 2001]

• Different programs may lead to the same value and do the same thing. Can
we find the representative program of such a collection?

• YES!

Bachelor [ ]s ()[ ]-paires Bachelor ()s heart
[x1] . . . [xn] (A1)[y1]. . .(Am)[ym] (B1) . . . (Bp) x

• In [Regnier, 1994] and [Kfoury and Wells, 1995]

λx1 · · ·λxn.(λy1.(λy2. · · · (λym.xBp · · ·B1)Am · · · )A2)A1

• For example, the canonical form of:

[x][y](a)[z][x′](b)(c)(d)[y′][z′](e)x

is
[x][y][x′](a)[z](d)[y′](c)[z′](b)(e)x
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How to obtain canonical forms
For M ≡ [x][y](a)[z][x′](b)(c)(d)[y′][z′](e)x:

θ(M): bach. [ ]s ()[ ]-pairs mixed with bach. [ ]s bach. ()s end var
[x][y] (a)[z][x′](d)[y′](c)[z′] (b)(e) x

γ(M): bach. [ ]s ()[ ]-pairs mixed with bach. ()s bach. ()s end var
[x][y][x′] (a)[z](b)(c)[z′](d)[y′] (e) x

θ(γ(M)): bach. [ ]s ()[ ]-pairs bach. ()s end var
[x][y][x′] (a)[z](c)[z′](d)[y′] (b)(e) x

γ(θ(M)): bach. [ ]s ()[ ]-pairs bach. ()s end var
[x][y][x′] (a)[z](d)[y′](c)[z′] (b)(e) x

→θ and →γ are SN and CR. Hence θ-nf and γ-nf are unique.

θ(γ(A)) and γ(θ(A)) are both in canonical form

Note that: θ(γ(A)) =p γ(θ(A)) where →p is the rule

(A1)[y1](A2)[y2]B →p (A2)[y2](A1)[y1]B ify1 /∈ FV(A2)
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Reduction based on the classes of canonical

forms [Kamareddine and Bloo, 2002]

• Given a program, can we find all the programs that are equivalent to it in
terms of termination, efficiency, value, etc?

• YES!

• Let us define [A] = {B | θ(γ(A)) =p θ(γ(B))}.

• When B ∈ [A], we write B ≈equi A.

• We can now even defrine the most ever generalised notion of reduction.

A;βB iff ∃A′ ∈ [A].∃B′ ∈ [B]. A′ →β B′ (with compatibility)

• If A ;β B then ∀A′ ∈ [A].∀B′ ∈ [B]. A′
;β B′.

• →β ⊂→g⊂;β ⊂=β = ≈β.
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The most generalised form of reduction has the important

properties

• ;;β is CR: If A ;;β B and A ;;β C, then ∃D: B ;;β D and C ;;β D.

• Let r ∈ {→β, ;β}. If A ∈ SNr and A′ ∈ [A] then A′ ∈ SNr.

• A ∈ SN;β
iff A ∈ SN→β

.

• We have now a general and powerful way to classify programs according to
their evaluation behaviour and termination.

• Numerous research on guaranteeing separate properties of programs has been
now generalised and unified into one framework: that of generalised reduction
modulo classes.
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So far, we extended the λ-calculus without logic

• We need to add logic to have programs that can describe and do what we
want.

• Can we add logic to our new λ-calculus with generalised reduction modulo
classes?

• Would we still be able to control termination and efficiency?

• Would our new programs be safe and correct?

• Would the final value of the program still be independent of the evaluation
path of the program?

• Yes, we can do all this. Recall that to add logic we need types (to avoid the
paradoxes).
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Simple types: Pascal

• Let f : N→ N and gf : N→ N such that gf(x) = f(f(x)).

Let FN : (N→ N)→ (N→ N) such that FN(f)(x) = gf(x) = f(f(x)).

• In Church’s simply typed lambda calculus we write the function FN as follows:

λf :N→N.λx:N.f(f(x))

• If we want the same function on the booleans B, we write:

the function FB is λf :B→B.λx:B.f(f(x))
the type of the function FB is (B → B)→ (B → B)

• The problems in rtt and stt led to the creation of different type systems,
each with its own functional abstraction power.

• 8 important λ-calculi 1940–1988 were unified in the cube of Barendregt.
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Polymorphism: the typed λ-calculus after Church: ML, Java

• Instead of repeating the work, we take α : ∗ (α is an arbitrary type) and we
define a polymorphic function F as follows:

λα:∗.λf :α→α.λx:α.f(f(x))

We give F the type:
Πα:∗.(α→ α)→ (α→ α)

• This way, F (α) = λf :α→α.λx:α.f(f(x)) : (α→ α)→ (α→ α)

• We can instantiate α according to our need:

– F (N) = λf :N→N.λx:N.f(f(x)) : (N→ N)→ (N→ N)
– F (B) = λf :B→B.λx:B.f(f(x)) : (B → B)→ (B → B)
– F (B → B) = λf :(B→B)→(B→B).λx:(B→B).f(f(x)) :

((B → B)→ (B → B))→ ((B → B)→ (B → B))

Brasilià, Novembre 2009 22



The cube of Barendregt

• Syntax: A ::= x | ∗ |2 |AB | λx:A.B |Πx:A.B

• Formation rule:
Γ ⊢ A : s1 Γ, x:A ⊢ B : s2

Γ ⊢ Πx:A.B : s2
if (s1, s2) ∈ R

Simple Poly-

morphic

Depend-

ent

Constr-

uctors

Related

system

Refs.

λ→ (∗, ∗) λτ [Church, 1940; Barendregt, 1984]

λ2 (∗, ∗) (2, ∗) F [Girard, 1972; Reynolds, 1974]
λP (∗, ∗) (∗, 2) aut-QE, LF [Bruijn, 1968; Harper et al., 1987]

λω (∗, ∗) (2, 2) POLYREC [Renardel de Lavalette, 1991]
λP2 (∗, ∗) (2, ∗) (∗, 2) [Longo and Moggi, 1988]

λω (∗, ∗) (2, ∗) (2, 2) Fω [Girard, 1972]
λPω (∗, ∗) (∗, 2) (2, 2)
λC (∗, ∗) (2, ∗) (∗, 2) (2, 2) CC [Coquand and Huet, 1988]
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The typing rules
(axiom) 〈〉 ⊢ ∗ : 2

(start)
Γ ⊢ A : s x 6∈ dom (Γ)

Γ, x:A ⊢ x : A

(weak)
Γ ⊢ A : B Γ ⊢ C : s x 6∈ dom (Γ)

Γ, x:C ⊢ A : B

(Π)
Γ ⊢ A : s1 Γ, x:A ⊢ B : s2 (s1, s2) ∈ R

Γ ⊢ Πx:A.B : s2

(λ)
Γ, x:A ⊢ b : B Γ ⊢ Πx:A.B : s

Γ ⊢ λx:A.b : Πx:A.B

(convβ)
Γ ⊢ A : B Γ ⊢ B′ : s B =β B′

Γ ⊢ A : B′

(appl)
Γ ⊢ F : Πx:A.B Γ ⊢ a : A

Γ ⊢ Fa : B[x:=a]
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The Barendregt cube
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Our example in the system F of Girard

• If x 6∈ FV (B) we write A→ B instead of Πx:A.B.

• α : ∗, f : α→ α ⊢ λx:α.f(f(x)) : α→ α : ∗
(need the rule (∗, ∗)).

• α : ∗ ⊢ λf :α→α.λx:α.f(f(x)) : (α→ α)→ (α→ α) : ∗
(need the rule (∗, ∗)).

• ⊢ λα:∗.λf :α→α.λx:α.f(f(x)) : Πα:∗.(α→ α)→ (α→ α) : ∗
(need the rule (2, ∗)).
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The programming language ML

• The passage from simple types (λ→) to polymorphic types (λ2) was dictated
by many needs including programming ones.

• λ2 was invented by John Reynolds at Carnegie Mellon (and independently by
Jean-Yves Girard at Paris).

• John Reynolds was building a programming language for which he invented λ2
to act as a foundational calculi.

• A hard question to answer (and took 25 years to answer by Joe Wells) was: Is
type checking decidable in λ2?

• I.e., if you give me a non type-annotated term of λ2, can I find its type?

• This is extremely important because types contain safe programs and so we
need to type our terms to guarantee safety of programs.
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• Because the question of decidability of type checking was hard to answer,
Robin Milner developed his language ML using a small part of λ2 (for which
type checking was known to be decidable).

• This meant that ML is not modelled by λ2 and hence the properties of λ2
cannot be exported to ML.

• A lot of research was done to establish the properties and the power of the
programming language ML.
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ML
• ML treats let val id = (fn x⇒ x) in (id id) end as this Cube term

(λid:(Πα:∗. α→ α). id(β → β)(id β))(λα:∗. λx:α. x)

• To type this in the Cube, the (2, ∗) rule is needed (i.e., λ2).

• ML’s typing rules forbid this expression:
let val id = (fn x⇒ x) in (fn y ⇒ y y)(id id) end
Its equivalent Cube term is this well-formed typable term of λ2:
(λid : (Πα:∗. α→ α).

(λy:(Πα:∗. α→ α). y(β → β)(y β))
(λα:∗. id(α→ α)(id α)))

(λα:∗. λx:α. x)

• Therefore, ML should not have the full Π-formation rule (2, ∗).

• ML has limited access to the rule (2, ∗) enabling some things from λ2 but not
all.

• ML’s type system is none of those of the eight systems of the Cube.
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• We place the type system of ML on our refined Cube (between λ2 and λω).
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LF
• LF [Harper et al., 1987] is often described as λP of the Barendregt Cube.

• Use of Π-formation rule (∗, 2) is very restricted in the practical use of LF.

• The only need for a type Πx:A.B : 2 is when the Propositions-As-Types
principle pat is applied during the construction of the type Πα:prop.∗ of the
operator Prf where for a proposition Σ, Prf(Σ) is the type of proofs of Σ.

prop:∗ ⊢ prop: ∗ prop:∗, α:prop ⊢ ∗:2

prop:∗ ⊢ Πα:prop.∗ : 2
.

• In LF, this is the only point where the Π-formation rule (∗, 2) is used.

• But, Prf is only used when applied Σ:prop. We never use Prf on its own.

• This use is in fact based on a parametric constant rather than on Π-formation.

• Hence, the practical use of LF would not be restricted if we present Prf in a
parametric form, and use (∗,2) as a parameter instead of a Π-formation rule.
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• We will find a more precise position of LF on the Cube (between λ→ and λP ).
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A refined version of the cube [Kamareddine et al., 2003]
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LF, ML, Aut-68, and Aut-QE in the refined version of the

cube
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Logicians versus mathematicians and induction over numbers

• Logician uses ind: Ind as proof term for an application of the induction axiom.
The type Ind can only be described in λR where R = {(∗, ∗), (∗,2), (2, ∗)}:

Ind = Πp:(N→∗).p0→(Πn:N.Πm:N.pn→Snm→pm)→Πn:N.pn (1)

• Mathematician uses ind only with P : N→∗, Q : P0 and R :
(Πn:N.Πm:N.Pn→Snm→Pm) to form a term (indPQR):(Πn:N.Pn).

• The use of the induction axiom by the mathematician is better described by
the parametric scheme (p, q and r are the parameters of the scheme):

ind(p:N→∗, q:p0, r:(Πn:N.Πm:N.pn→Snm→pm)) : Πn:N.pn (2)
• The logician’s type Ind is not needed by the mathematician and the types

that occur in 2 can all be constructed in λR with R = {(∗, ∗)(∗,2)}.

Brasilià, Novembre 2009 35



Logicians versus mathematicians and induction over numbers

• Mathematician: only applies the induction axiom and doesn’t need to know
the proof-theoretical backgrounds.

• A logician develops the induction axiom (or studies its properties).

• (2, ∗) is not needed by the mathematician. It is needed in logician’s approach
in order to form the Π-abstraction Πp:(N→ ∗). · · · ).

• Consequently, the type system that is used to describe the mathematician’s
use of the induction axiom can be weaker than the one for the logician.

• Nevertheless, the parameter mechanism gives the mathematician limited (but
for his purposes sufficient) access to the induction scheme.
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Extending the Cube with parametric constants

• We add parametric constants of the form c(b1, . . . , bn) with b1, . . . , bn terms
of certain types and c ∈ C.

• b1, . . . , bn are called the parameters of c(b1, . . . , bn).

• R allows several kinds of Π-constructs. We also use a set P of (s1, s2) where
s1, s2 ∈ {∗, 2} to allow several kinds of parametric constants.

• (s1, s2) ∈ P means that we allow parametric constants c(b1, . . . , bn) : A where
b1, . . . , bn have types B1, . . . , Bn of sort s1, and A is of type s2.

• If both (∗, s2) ∈ P and (2, s2) ∈ P then combinations of parameters allowed.
For example, it is allowed that B1 has type ∗, whilst B2 has type 2.
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The Cube with parametric constants

• Let (∗, ∗) ⊆ R,P ⊆ {(∗, ∗), (∗, 2), (2, ∗), (2,2)}.

• λRP = λR and the two rules (
→

C-weak) and (
→

C-app):

Γ ⊢ b : B Γ,∆i ⊢ Bi : si Γ,∆ ⊢ A : s
Γ, c(∆) : A ⊢ b : B

(si, s) ∈ P , c is Γ-fresh

Γ1, c(∆):A,Γ2 ⊢ bi:Bi[xj:=bj]
i−1
j=1 (i = 1, . . . , n)

Γ1, c(∆):A,Γ2 ⊢ A : s (if n = 0)
Γ1, c(∆):A, Γ2 ⊢ c(b1, . . . , bn) : A[xj:=bj]

n
j=1

∆ ≡ x1:B1, . . . , xn:Bn.
∆i ≡ x1:B1, . . . , xi−1:Bi−1
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Properties of the Refined Cube

• (Correctness of types) If Γ ⊢ A : B then (B ≡ 2 or Γ ⊢ B :
S for some sort S).

• (Subject Reduction SR) If Γ ⊢ A : B and A→→β A′ then Γ ⊢ A′ : B

• (Strong Normalisation) For all ⊢-legal terms M , we have SN→→β
(M).

• Other properties such as Uniqueness of types and typability of subterms hold.

• λRP is the system which has Π-formation rules R and parameter rules P .

• Let λRP parametrically conservative (i.e., (s1, s2) ∈ P implies (s1, s2) ∈ R).

– The parameter-free system λR is at least as powerful as λRP .
– If Γ ⊢

RP a : A then {Γ} ⊢R {a} : {A} .
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Example

• R = {(∗, ∗), (∗, 2)}

P 1 = ∅ P 2 = {(∗, ∗)} P 3 = {(∗, 2)} P 4 = {(∗, ∗), (∗, 2)}

All λRP i for 1 ≤ i ≤ 4 with the above specifications are all equal in power.

• R5 = {(∗, ∗)} P 5 = {(∗, ∗), (∗, 2)}.

λ→ < λR5P 5 < λP: we can to talk about predicates:

α : ∗,
eq(x:α, y:α) : ∗,
refl(x:α) : eq(x, x),

symm(x:α, y:α, p:eq(x, y)) : eq(y, x),
trans(x:α, y:α, z:α, p:eq(x, y), q:eq(y, z)) : eq(x, z)

.

eq not possible in λ→.
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Using Item Notation in Type Systems

• Now, all items are written inside () instead of using () and [].

• (λx.x)y is written as: (yδ)(λx)x instead of (y)[x]x.

• Πz:∗.(λx:z.x)y is written as: (∗Πz)(yδ)(zλx)x.
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The Barendregt Cube in item notation and class reduction

• The formulation is the same except that terms are written in item notation:

• T = ∗ |2 | V | (T δ)T | (T λV )T | (T ΠV )T .

• The typing rules don’t change although we do class reduction ;β instead of
normal β-reduction →β .

• The typing rules don’t change because =β is the same as ≈β.
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Figure 1: The Barendregt Cube
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Subject Reduction fails

• Most properties including SN hold for all systems of the cube extended with
class reduction. However, SR only holds in λ→ (∗, ∗) and λω (2,2).

• SR fails in λP (∗,2) (and hence in λP2, λPω and λC). Example in paper.

• SR also fails in λ2 (2, ∗) (and hence in λP2, λω and λC):
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Why does Subject Reduction fails

• (y′δ)(βδ)(∗λα)(αλy)(yδ)(αλx)x ;β(βδ)(∗λα)(y′δ)(αλx)x.

• (λα:∗.λy:α.(λx:α.x)y)βy′
;β(λα:∗.(λx:α.x)y′)β

• β : ∗, y′ : β ⊢λ2(λα:∗.λy:α.(λx:α.x)y)βy′: β

• Yet, β : ∗, y′ : β 6⊢λ2(λα:∗.(λx:α.x)y′)β : τ for any τ .

• the information that y′ : β has replaced y : α is lost in (λα:∗.(λx:α.x)y′)β.

• But we need y′ : α to be able to type the subterm (λx:α.x)y′ of
(λα:∗.(λx:α.x)y′)β and hence to type β : ∗, y′ : β ⊢ (λα:∗.(λx:α.x)y′)β : β.
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Solution to Subject Reduction: Use “let

expressions/definitions”

• Definitions/let expressions are of the form: let x : A = B and are added to
contexts exactly like the declarations y : C.

• (def rule) Γ, let x : A = B ⊢c C : D
Γ ⊢c (λx:A.C)B : D[x := A]

• we define Γ ⊢c · =def · to be the equivalence relation generated by:

– if A =β B then Γ ⊢c A =def B
– if let x : M = N is in Γ and if B arises from A by substituting one

particular occurrence of x in A by N , then Γ ⊢c A =def B.
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The (simplified) Cube with definitions and class reduction

(axiom) (app) (abs) and (form) are unchanged.

(start)
Γ ⊢c A : s

Γ, x:A ⊢c x : A

Γ ⊢c A : s Γ ⊢c B : A

Γ, let x : A = B ⊢c x : A
x fresh

(weak)
Γ ⊢c D : E Γ ⊢c A : s

Γ, x:A ⊢c D : E

Γ ⊢c A : s Γ ⊢c B : A Γ ⊢c D : E

Γ, let x : A = B ⊢c D : E
x fresh

(conv) Γ ⊢c A : B Γ ⊢c B′ : S Γ ⊢c B =def B′

Γ ⊢c A : B′

(def) Γ, let x : A = B ⊢c C : D
Γ ⊢c (λx:A.C)B : D[x := A]
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Definitions solve subject reduction

1. β : ∗, y′ : β, let α : ∗ = β ⊢c y′ : β

2. β : ∗, y′ : β, let α : ∗= β ⊢c α =def β

3. β : ∗, y′ : β, let α : ∗ = β ⊢c y′ : α (from 1 and 2)

4. β : ∗, y′ : β, let α : ∗ = β, let x : α = y′ ⊢c x : α

5. β : ∗, y′ : β, let α : ∗ = β ⊢c (λx:α.x)y′ : α[x := y′] = α

β : ∗, y′ : β ⊢c (λα:∗.(λx:α.x)y′)β : α[α := β] = β
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Properties of the Cube with definitions and class Reduction

• ⊢c is a generalisation of ⊢: If Γ ⊢ A : B then Γ ⊢c A : B.

• Equivalent terms have same types:
If Γ ⊢c A : B and A′ ∈ [A], B′ ∈ [B] then Γ ⊢c A′ : B′.

• Subject Reduction for ⊢c and ;;β:
If Γ ⊢c A : B and A ;;β A′ then Γ ⊢c A′ : B.

• Unicity of Types for ⊢c:

– If Γ ⊢c A : B and Γ ⊢c A : B′ then Γ ⊢c B =def B′

– If Γ ⊢c A : B and Γ ⊢c A′ : B′ and Γ ⊢c A =β A′ then Γ ⊢c B =def B′.

• Strong Normalisation of ;;β:
In the Cube, every legal term is strongly normalising with respect to ;;β.
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De Bruijn Indices [de Bruijn, 1972]

• Classical λ-calculus: A ::= x | (λx.B) | (BC)
(λx.A)B →β A[x := B]

• (λx.λy.xy)y →β (λy.xy)[x := y] 6= λy.yy

• (λx.λy.xy)y →β (λy.xy)[x := y] =α (λz.xz)[x := y] = λz.yz

• λx.x and λy.y are the same function. Write this function as λ1.

• Assume a free variable list (say x, y, z, . . . ).

• (λλ2 1)2→β (λ2 1)[1 := 2] = λ(2[2 := 3])(1[2 := 3]) = λ3 1
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Classical λ-calculus with de Bruijn indices

• Let i, n ≥ 1 and k ≥ 0

• A ::= n | (λB) | (BC)
(λA)B →β A{{1← B}}

•
U i

k(AB) = U i
k(A) U i

k(B)

U i
k(λA) = λ(U i

k+1(A))
U i

k(n) =

{

n + i− 1 if n > k
n if n ≤ k .

•
(A1A2){{i← B}} = (A1{{i← B}}) (A2{{i← B}})
(λA){{i← B}} = λ(A{{i + 1← B}})

n{{i← B}} =







n− 1 if n > i
U i

0(B) if n = i
n if n < i .

• Numerous implementations of proof checkers and programming languages have
been based on de Bruijn indices.
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From classical λ-calculus with de Bruijn indices to

substitution calculus λs [Kamareddine and Rios 1995]

• Write A{{n← B}} as Aσn B and U i
k(A) as ϕi

kA.

• A ::= n | (λB) | (BC) | (AσiB) | (ϕi
kB) where i, n ≥ 1 , k ≥ 0 .

σ-generation (λA) B −→ A σ1 B

σ-λ-transition (λA) σiB −→ λ(A σi+1 B)

σ-app-transition (A1 A2) σiB −→ (A1 σiB) (A2 σiB)

σ-destruction nσiB −→







n− 1 if n > i
ϕi

0 B if n = i
n if n < i

ϕ-λ-transition ϕi
k(λA) −→ λ(ϕi

k+1 A)

ϕ-app-transition ϕi
k(A1 A2) −→ (ϕi

k A1) (ϕi
k A2)

ϕ-destruction ϕi
k n −→

{

n + i− 1 if n > k
n if n ≤ k
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1. The s-calculus (i.e., λs minus σ-generation) is strongly normalising,

2. The λs-calculus is confluent and simulates (in small steps) β-reduction

3. The λs-calculus preserves strong normalisation PSN.

4. The λs-calculus has a confluent extension with open terms λse.

• The λs-calculus is the only calculus of substitutions which satisfies all the
above properties 1., 2., 3. and 4.
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λυ [Benaissa et al., 1996]

Terms: Λυt ::= IN | ΛυtΛυt | λΛυt | Λυt[Λυs]
Substitutions: Λυs ::=↑ | ⇑ (Λυs) | Λυt.

(Beta) (λa) b −→ a [b/]

(App) (a b)[s] −→ (a [s]) (b [s])

(Abs) (λa)[s] −→ λ(a [⇑(s)])

(FVar) 1 [a/] −→ a

(RVar) n + 1 [a/] −→ n

(FVarLift) 1 [⇑(s)] −→ 1

(RVarLift) n + 1 [⇑(s)] −→ n [s] [↑]

(VarShift) n [↑] −→ n + 1

λυ satisfies 1., 2., and 3., but does not have a confluent extension on open
terms.
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λσ⇑

Terms: Λσt
⇑ ::= IN | Λσt

⇑Λσt
⇑ | λΛσt

⇑ | Λσt
⇑[Λσs

⇑]
Substitutions: Λσs

⇑ ::= id | ↑ | ⇑ (Λσs
⇑) | Λσt

⇑ · Λσs
⇑ | Λσs

⇑ ◦ Λσs
⇑.

(Beta) (λa) b −→ a [b · id]

(App) (a b)[s] −→ (a [s]) (b [s])

(Abs) (λa)[s] −→ λ(a [⇑(s)])

(Clos) (a [s])[t] −→ a [s ◦ t]

(Varshift1) n [↑] −→ n + 1

(Varshift2) n [↑ ◦ s] −→ n + 1 [s]

(FVarCons) 1 [a · s] −→ a

(RVarCons) n + 1 [a · s] −→ n [s]

(FVarLift1) 1 [⇑(s)] −→ 1

(FVarLift2) 1 [⇑(s) ◦ t] −→ 1 [t]

(RVarLift1) n + 1 [⇑(s)] −→ n[s ◦ ↑]

(RVarLift2) n + 1 [⇑(s) ◦ t] −→ n[s ◦ (↑ ◦ t)]
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λσ⇑ rules continued

(Map) (a · s) ◦ t −→ a [t] · (s ◦ t)

(Ass) (s ◦ t) ◦ u −→ s ◦ (t ◦ u)

(ShiftCons) ↑ ◦ (a · s) −→ s

(ShiftLift1) ↑ ◦ ⇑(s) −→ s ◦ ↑

(ShiftLift2) ↑ ◦ (⇑(s) ◦ t) −→ s ◦ (↑ ◦ t)

(Lift1) ⇑(s)◦ ⇑(t) −→ ⇑(s ◦ t)

(Lift2) ⇑(s) ◦ (⇑(t) ◦ u) −→ ⇑(s ◦ t) ◦ u

(LiftEnv) ⇑(s) ◦ (a · t) −→ a · (s ◦ t)

(IdL) id ◦ s −→ s

(IdR) s ◦ id −→ s

(LiftId) ⇑(id) −→ id

(Id) a [id] −→ a

λσ⇑ satisfies 1., 2., and 4., but does not have PSN.
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How is λse obtained from λs?

• A ::= X | n | (λB) | (BC) | (AσiB) | (ϕi
kB) where i, n ≥ 1 , k ≥ 0 .

• Extending the syntax with open terms without extending then rules loses the
confluence (even local confluence):
((λX)Y )σ11→ (Xσ1Y )σ11 ((λX)Y )σ11→ ((λX)σ11)(Y σ11)

• (Xσ1Y )σ11 and ((λX)σ11)(Y σ11) have no common reduct.

• But, ((λX)σ11)(Y σ11)→→ (Xσ21)σ1(Y σ11)

• Simple: add de Bruijn’s metasubstitution and distribution lemmas to the rules
of λs:
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σ-σ (AσiB) σj C −→ (A σj+1 C) σi (B σj−i+1 C) if i ≤ j

σ-ϕ 1 (ϕi
k A) σj B −→ ϕi−1

k
A if k < j < k + i

σ-ϕ 2 (ϕi
k A) σj B −→ ϕi

k(A σj−i+1 B) if k + i ≤ j

ϕ-σ ϕi
k(A σj B) −→ (ϕi

k+1 A) σj (ϕi
k+1−j B) if j ≤ k + 1

ϕ-ϕ 1 ϕi
k (ϕj

l
A) −→ ϕ

j

l
(ϕi

k+1−j A) if l + j ≤ k

ϕ-ϕ 2 ϕi
k (ϕj

l
A) −→ ϕ

j+i−1
l

A if l ≤ k < l + j

• These extra rules are the rewriting of the well-known meta-substitution (σ−σ)
and distribution (ϕ − σ) lemmas (and the 4 extra lemmas needed to prove
them).
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Where did the extra rules come from?

In de Bruijn’s classical λ-calculus we have the lemmas:

(σ − ϕ 1) For k < j < k + i we have: U i−1
k (A) = U i

k(A){{j←B}} .

(ϕ− ϕ 2) For l ≤ k < l + j we have: U i
k(U

j
l (A)) = U j+i−1

l (A) .

(σ − ϕ 2) For k + i ≤ j we have: U i
k(A){{j←B}} = U i

k(A{{j− i + 1←B}}) .

(σ − σ) [Meta-substitution lemma] For i ≤ j we have:
A{{i←B}}{{j←C}} = A{{j + 1←C}}{{i←B{{j− i + 1←C}}}}.

(ϕ− ϕ 1) For j ≤ k + 1 we have: U i
k+p(U

j
p(A)) = U j

p(U i
k+p+1−j(A)) .

(ϕ− σ) [Distribution lemma]
For j ≤ k + 1 we have: U i

k(A{{j←B}}) = U i
k+1(A){{j←U i

k+1−j(B)}} .

The proof of (σ − σ) uses (σ − ϕ 1) and (σ − ϕ 2) both with k = 0.
The proof of (σ − ϕ 2) requires (ϕ− ϕ 2) with l = 0.
Finally, (ϕ− ϕ 1) with p = 0 is needed to prove (ϕ− σ)).
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Computerising Mathematical Texts with MathLang

• MathLang:Project started in 2000 by Fairouz Kamareddine and J.B. Wells.

• Ph.D. students in the MathLang team: Maarek (10/2002-6/2007), Retel
(11/2004-06/2008), Lamar (10/2006-now), Zengler (01/2008-12/2008).

• There are two influencing questions:

1. What is the relationship between logic and mathematics
2. What is the relationship between computer science and mathematics.

• Question 1 has been slowly brewing for over 2500 years.

• Question 2, is more recent but is unavoidable since automation and
computation can provide tremendous services to mathematics.

• There are also extensive opportunities from combining progress in logic and
automation/computerisation not only in mathematics but also in other areas:
bio-Informatics, chemistry, music, Natural Language, etc.
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The birth of computation machines, and limits of

computability
• The first half of the 20th century saw a surge of different formalisms and saw

the birth of computers (Turing machines, Von Neumann’s machine, etc).

• E.g., the discovery of Russell’s paradox was the reason for the invention of the
first type theory.

• There was a competition between set/type/category theory as a better
foundation for mathematics.

• The second half of the 20th century would see a surge of programming
languages and softwares for mathematics.
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Goals of MathLang: Open borders between mathematics,

logic and computation

• Ordinary mathematicians avoid formal mathematical logic.

• Ordinary mathematicians avoid proof checking (via a computer).

• Ordinary mathematicians may use a computer for computation: there are over
1 million people who use Mathematica (including linguists, engineers, etc.).

• Mathematicians may also use other computer forms like Maple, LaTeX, etc.

• But we are not interested in only libraries or computation or text editing.

• We want freedeom of movement between mathematics, logic and computation.

• At every stage, we must have the choice of the level of formalilty and the
depth of computation.
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Goals of MathLang

Can we formalise a mathematical text, avoiding as much as possible the
ambiguities of natural language, while still guaranteeing the following four goals?

1. The formalised text looks very much like the original mathematical text (and
hence the content of the original mathematical text is respected).

2. The formalised text can be fully manipulated and searched in ways that respect
its mathematical structure and meaning.

3. Steps can be made to do computation (via computer algebra systems) and
proof checking (via proof checkers) on the formalised text.

4. This formalisation of text is not much harder for the ordinary mathematician
than LATEX. Full formalization down to a foundation of mathematics is not
required, although allowing and supporting this is one goal.
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Muito Obrigada
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