Linguas y Modeles por el Formalisatione y el Automation del Matemáticas y el Informatica

Fairouz Kamareddine (Universidad de Heriot-Watt, Edimbourgo, RU)

Noviembre 2009

Brasilià, Novembre 2009

The computer revolution

- In less than a half a century, computers have revolutionised the way we all live.
- Google, Wikipedia, and other information and search engines have changed the way we store and exchange information.
- Computerisation also enables excellent collaborations between different disciplines (think of Bio-Informatics) and enables new discoveries in different disciplines.
- This computerisation of information is only at its beginning. We need a lot of investments in research methods that enable faster, correct, and efficient information storage and retrieval.
- Information here means every aspect of information (mathematical, medical, social, educational, law, etc).
- Calculators process numbers, computers process information.

The languages of Mathematics

Usually, mathematicians ignore formal logic and write mathematics using a certain language style which we call CML. Advantages of CML:

- *Expressivity:* We can express all sorts of notions.
- Acceptability: CML is accepted by most mathematicians.
- *Traditionality:* CML exists since very long and has been refined with the time.
- *Universality*: CML is used everywhere.
- *Flexibility*: With CML we can describe several branches of mathematics (including new ones).

The Disadvantage of CML

- Informal and ambiguous: CML is based on natural language.
- *Incomplete:* The author counts on the intuition of the reader.
- Not easy to automate
- Initially, people were worried about ambiguity and incompleteness. Automation was the outcome of precision.

Precision and Automation

- The needs to become more precise were strongly felt in the 19th century (e.g., think of the problems in Analysis).
- Many of these problems were solved by the work of Cauchy (e.g., his precise definition of convergence in his Cours d'Analyse).
- Also number systems became more precise with the definition of real numbers of Dedekind.
- Cantor started the formalisation of set theory and contributed to number theory.

Logic, functions, $\lambda\text{-calculus}$ and type theory

- $\bullet\,$ Frege was frustrated by the informalities of $\rm CML.$
- The general definition of function was key to his formalisation of logic (1879).
- The application of a function to itself $f(x) = \neg x(x)$ was key to Russell's paradox (1902). See [Kamareddine et al., 2002].
- To eliminate the paradox, Russell controlled the application of a function to an argument by his *theory of types*.
- Russell (1908) gave the first theory of types RTT. Russell and Whitehead used RTT in *Principia Mathematica* (1910–1912).
- *simple theory of types* (STT): Ramsey (1926), Hilbert and Ackermann (1928).
- In 1928, Church wanted to write a language of *functions and logic*: $\Lambda ::= \mathcal{V}|(\Lambda\Lambda)|\lambda\mathcal{V}.\Lambda|\neg\Lambda|\forall\mathcal{V}.\Lambda(\mathcal{V})$

- The combination of functions and logic was paradoxical. The problem was not with ¬, but ∀.
- In 1932, he eliminated logic and his λ -calcul became a calculus of functions.
- In 1940, he added logic and used types to eliminate the paradoxes. Simply typed λ -calculus $\lambda \rightarrow = \lambda$ -calculus + STT (1940).
- The need for precision in the 19th and 20th century led to the development of computation theory (the invention of the Turing *machine*, the invention of the *language* of computability and the *logic* of computability and decidability).
- My interests are in the machine, language and logic of computation and the computerisation of information.

I started from the λ -calculus (the language) and its model

- It is known that $|A| < |A \mapsto A|$ and even $|A| < |A \mapsto \{0,1\}|$ (Cantor).
- \bullet In 1969, Dana Scott wanted to show the non-existence of models of the $\lambda\text{-calculus.}$
- Contrary to what he wanted, he constructed a model of the λ -calculus where $D \sim (D \longrightarrow D)$, where $(D \longrightarrow D)$ is the set of continuous functions from D to D and D is the fixed point of a continuous construction.
- Since Scott domains do not permit logic (they are models of the function system, the λ -calculus), Peter Aczel intoduced in 1980 "Frege structures" which are models of both functions and logic.
- My PhD thesis introduced λ -calcluli based on Frege structure, established soundness and completeness and used these calculi to study pardoxical and self-referential sentences and to computerise recursion and fixed point operators.

- This is important for programming. You do want to be as expressive as possible while having a full control and knowledge of when programs terminate/not.
- LISP is very expressive but you cannot guarantee termination of your programs.
- A number of attempts have been made at finding new programming languages that have the nice properties (of controling termination, efficiency of time and space, confluence, etc).
- Restricting the expressiveness of the programming language is not good. Our programs must be able to express as much as possible.
- My work guarantees that we can have as much expressivity as possible while being able to handle non terminating programs.

The next step

- Then, I realised that even though the λ -calculus represents exactly the computable functions, it is not a sufficient framework to represent computerisation and to answer efficieny and space issues or to model programming languages.
- I was also interested in the formalisation and automatisation of mathematics in particular and information in general.
- Let us repeat the essence of the λ -calculus: Syntax: $\Lambda ::= \mathcal{V}|(\Lambda\Lambda)|\lambda\mathcal{V}.\Lambda$. Computation rule: $(\lambda x.A)B \rightarrow_{\beta} A[x := B]$

The lambda Calculus à la de Bruijn (item notation) [Kamareddine and Nederpelt, 1995, 1996]

\mapsto	Notation of de Bruijn
\mapsto	x
\mapsto	[x]B'
\mapsto	(B')A'
	$ \begin{array}{c} \mapsto \\ \mapsto \\ \mapsto \end{array} \\ \mapsto \end{array} $

Example: $(\lambda x.\lambda y.xy)z \mapsto (z)[x]yx$

- In the *train* (z)[x]y, the *wagons* are (z), [x], [y] and (y).
- The last x in (z)[x]yx is the *heart* of the term.
- The *application wagon* (z) and the *wagon of abstraction* [x] are *next to each other*.
- The $\beta rule$ $(\lambda x.A)B \rightarrow_{\beta} A[x := B]$ becomes: $(B)[x]A \rightarrow_{\beta} [x := B]A$

Reduction in item notation

The parenthesis $((\lambda_x.(\lambda_y.\lambda_z. - -)c)b)a)$, are $[1 [2 [3]_2]_1]_3'$, where $[i' and]_i'$ go together.

The parenthesis of (a)(b)[x](c)[y][z] are much simpler: [[][]].

Generalised Reductions

- $((\lambda_x.(\lambda_y.\lambda_z.zd)c)b)a \rightarrow_{\beta}((\lambda_x.\{\lambda_z.zd\}[y:=c])b)a$ $(a)(b)[x](c)[y][z](d)z \rightarrow_{\beta}(a)(b)[x][y:=c][z](d)z$
- $((\lambda_x.(\lambda_y.\lambda_z.zd)c)b)a \rightarrow_{\beta} \{(\lambda_y.\lambda_z.zd)c\}[x := b]a$

 $(a)(b)[x](c)[y][z](d)z \rightarrow_{\beta}(a)[x:=b](c)[y][z](d)z$

• $(a)(b)[x](c)[y][z](d)z \hookrightarrow_{\beta}(b)[x](c)[y][z := a](d)z$

Some notions of reduction in the literature

Name	In Classical Notation	In de Bruijn's notation
	$((\lambda_x.N)P)Q$	(Q)(P)[x]N
(heta)	\downarrow	\downarrow
	$(\lambda_x.NQ)P$	(P)[x](Q)N
	$(\lambda_x.\lambda_y.N)P$	(P)[x][y]N
(γ)	\downarrow	\downarrow
	$oldsymbol{\lambda_y}.(\lambda_x.N)P$	[y](P)[x]N
	$((\lambda_x.\lambda_y.N)P)Q$	(Q)(P)[x][y]N
(γ_C)	\downarrow	\downarrow
	$(\lambda_y.(\lambda_x.N)P)Q$	(Q)[y](P)[x]N
	$((\lambda_x.\lambda_y.N)P)Q$	(Q)(P)[x][y]N
(g)	\downarrow	\downarrow
	$(\lambda_x.N[y:=Q])P$	(P)[x][y := Q]N

A Few Uses of these reductions/term reshuffling

- Regnier [1992] uses θ and γ in analyzing perpetual reduction strategies.
- Term reshuffling is used in [Kfoury et al., 1994; Kfoury and Wells, 1994] in analyzing typability problems.
- [Nederpelt, 1973; de Groote, 1993; Kfoury and Wells, 1995] use generalised reduction and/or term reshuffling in relating SN to WN.
- [Ariola et al., 1995] uses a form of term-reshuffling in obtaining a calculus that corresponds to lazy functional evaluation.
- [Kamareddine and Nederpelt, 1995; Kamareddine et al., 1999, 1998; Bloo et al., 1996] shows that they could reduce space/time needs.
- [Kamareddine, 2000] shows the conservation theorem for generalised reduction.

Especially

- Reducing SN to WN: If we want to know that a program always terminate, it is enough to show that it terminates once only. (Excellent simplification).
- We are now able to analyse the efficieny of time and space of our programs. Huge investments are made by companies to create faster, shorter and more efficient programs.
- Controling the reduction strategy so that we do as little work as possible is also important to save resources. Lazy evaluation of programs is a good step here.
- Other reduction strategies are important. In programming, there is a tradeoff between termination and efficiency.
- With our generalised strategies (the most generalised that exist so far), we are able to choose the right strategy for the right task.

Canonical Forms [Kamareddine et al., 2001]

- Different programs may lead to the same value and do the same thing. Can we find the representative program of such a collection?
- YES!

Bachelor []s	()[]-paires	Bachelor ()s	heart
$[x_1]\ldots[x_n]$	$(A_1)[y_1]\ldots(A_m)[y_m]$	$(B_1)\ldots(B_p)$	x

• In [Regnier, 1994] and [Kfoury and Wells, 1995]

 $\lambda x_1 \cdots \lambda x_n . (\lambda y_1 . (\lambda y_2 . \cdots (\lambda y_m . x B_p \cdots B_1) A_m \cdots) A_2) A_1$

• For example, the canonical form of:

[x][y](a)[z][x'](b)(c)(d)[y'][z'](e)x

is

[x][y][x'](a)[z](d)[y'](c)[z'](b)(e)x

How to obtain canonical forms

For $M \equiv [x][y](a)[z][x'](b)(c)(d)[y'][z'](e)x$:

$\theta(M)$:	bach. []s	()[]-pairs mixed with bach. []s	bach. ()s	end var
	[x][y]	(a)[z][x'](d)[y'](c)[z']	(b)(e)	x
$\gamma(M)$:	bach. []s	()[]-pairs mixed with bach. ()s	bach. ()s	end var
	[x][y][x']	(a)[z](b)(c)[z'](d)[y']	(e)	x
$\theta(\gamma(M))$:	bach. []s	()[]-pairs	bach. ()s	end var
	[x][y][x']	(a)[z](c)[z'](d)[y']	(b)(e)	x
$\gamma(\theta(M))$:	bach. []s	()[]-pairs	bach. ()s	end var
	[x][y][x']	(a)[z](d)[y'](c)[z']	(b)(e)	x

 \rightarrow_{θ} and \rightarrow_{γ} are SN and CR. Hence θ -nf and γ -nf are unique.

 $\theta(\gamma(A))$ and $\gamma(\theta(A))$ are both in *canonical form*

Note that: $\theta(\gamma(A)) =_p \gamma(\theta(A))$ where \rightarrow_p is the rule $(A_1)[y_1](A_2)[y_2]B \rightarrow_p (A_2)[y_2](A_1)[y_1]B$ if $y_1 \notin FV(A_2)$

Reduction based on the classes of canonical forms [Kamareddine and Bloo, 2002]

- Given a program, can we find all the programs that are equivalent to it in terms of termination, efficiency, value, etc?
- YES!
- Let us define $[A] = \{B \mid \theta(\gamma(A)) =_p \theta(\gamma(B))\}.$
- When $B \in [A]$, we write $B \approx_{equi} A$.
- We can now even defrine the most ever generalised notion of reduction. $A \rightsquigarrow_{\beta} B$ iff $\exists A' \in [A] . \exists B' \in [B] . A' \rightarrow_{\beta} B'$ (with compatibility)
- If $A \rightsquigarrow_{\beta} B$ then $\forall A' \in [A]. \forall B' \in [B]. A' \rightsquigarrow_{\beta} B'.$
- $\bullet \ \to_{\beta} \subset \to_{g} \subset \leadsto_{\beta} \subset =_{\beta} = \approx_{\beta}.$

The most generalised form of reduction has the important properties

- \rightsquigarrow_{β} is CR: If $A \rightsquigarrow_{\beta} B$ and $A \rightsquigarrow_{\beta} C$, then $\exists D: B \rightsquigarrow_{\beta} D$ and $C \rightsquigarrow_{\beta} D$.
- Let $r \in \{ \rightarrow_{\beta}, \rightsquigarrow_{\beta} \}$. If $A \in SN_r$ and $A' \in [A]$ then $A' \in SN_r$.
- $A \in SN_{\leadsto_{\beta}}$ iff $A \in SN_{\multimap_{\beta}}$.
- We have now a general and powerful way to classify programs according to their evaluation behaviour and termination.
- Numerous research on guaranteeing separate properties of programs has been now generalised and unified into one framework: that of generalised reduction modulo classes.

So far, we extended the λ -calculus without logic

- We need to add logic to have programs that can describe and do what we want.
- Can we add logic to our new $\lambda\text{-calculus}$ with generalised reduction modulo classes?
- Would we still be able to control termination and efficiency?
- Would our new programs be safe and correct?
- Would the final value of the program still be independent of the evaluation path of the program?
- Yes, we can do all this. Recall that to add logic we need types (to avoid the paradoxes).

Simple types: Pascal

- Let $f : \mathbb{N} \to \mathbb{N}$ and $g_f : \mathbb{N} \to \mathbb{N}$ such that $g_f(x) = f(f(x))$. Let $F_{\mathbb{N}} : (\mathbb{N} \to \mathbb{N}) \to (\mathbb{N} \to \mathbb{N})$ such that $F_{\mathbb{N}}(f)(x) = g_f(x) = f(f(x))$.
- In Church's simply typed lambda calculus we write the function $F_{\mathbb{N}}$ as follows:

$$\lambda_{f:\mathbb{N}\to\mathbb{N}}.\lambda_{x:\mathbb{N}}.f(f(x))$$

• If we want the same function on the booleans \mathcal{B} , we write:

the function $F_{\mathcal{B}}$ is $\lambda_{f:\mathcal{B}\to\mathcal{B}}.\lambda_{x:\mathcal{B}}.f(f(x))$ the type of the function $F_{\mathcal{B}}$ is $(\mathcal{B}\to\mathcal{B})\to(\mathcal{B}\to\mathcal{B})$

- *The problems* in RTT and STT led to the creation of *different type systems*, each with its own *functional abstraction power*.
- 8 important λ -calculi 1940–1988 were unified in the cube of Barendregt.

Polymorphism: the typed λ -calculus after Church: ML, Java

• Instead of repeating the work, we take $\alpha : * (\alpha \text{ is an arbitrary type})$ and we define a polymorphic function F as follows:

$$\lambda_{\alpha:*} \cdot \lambda_{f:\alpha \to \alpha} \cdot \lambda_{x:\alpha} \cdot f(f(x))$$

We give F the type:

$$\Pi_{\alpha:*} (\alpha \to \alpha) \to (\alpha \to \alpha)$$

• This way,
$$F(\alpha) = \lambda_{f:\alpha \to \alpha} . \lambda_{x:\alpha} . f(f(x)) : (\alpha \to \alpha) \to (\alpha \to \alpha)$$

• We can instantiate α according to our need:

$$- F(\mathbb{N}) = \lambda_{f:\mathbb{N}\to\mathbb{N}}.\lambda_{x:\mathbb{N}}.f(f(x)): (\mathbb{N}\to\mathbb{N})\to (\mathbb{N}\to\mathbb{N}) - F(\mathcal{B}) = \lambda_{f:\mathcal{B}\to\mathcal{B}}.\lambda_{x:\mathcal{B}}.f(f(x)): (\mathcal{B}\to\mathcal{B})\to (\mathcal{B}\to\mathcal{B}) - F(\mathcal{B}\to\mathcal{B}) = \lambda_{f:(\mathcal{B}\to\mathcal{B})\to(\mathcal{B}\to\mathcal{B})}.\lambda_{x:(\mathcal{B}\to\mathcal{B})}.f(f(x)): ((\mathcal{B}\to\mathcal{B})\to (\mathcal{B}\to\mathcal{B}))\to ((\mathcal{B}\to\mathcal{B})\to (\mathcal{B}\to\mathcal{B}))$$

The cube of Barendregt

- Syntax: $A ::= x | * | \Box | AB | \lambda x:A.B | \Pi x:A.B$
- Formation rule:

$$\frac{\Gamma \vdash A : s_1 \quad \Gamma, x : A \vdash B : s_2}{\Gamma \vdash \Pi x : A : B : s_2}$$

$$\mathsf{if}\;(s_1,s_2)\in \boldsymbol{R}$$

	Simple	Poly-	Depend-	Constr-	Related	Refs.
		morphic	ent	uctors	system	
$\lambda ightarrow$	(*,*)				$\lambda^{ au}$	[Church, 1940; Barendregt, 1984]
$\lambda 2$	(*,*)	$(\Box, *)$			F	[Girard, 1972; Reynolds, 1974]
λP	(*, *)		$(*,\Box)$		aut-QE, LF	[Bruijn, 1968; Harper et al., 1987]
$\lambda \underline{\omega}$	(*,*)			(\Box,\Box)	POLYREC	[Renardel de Lavalette, 1991]
λ P2	(*,*)	$(\Box, *)$	$(*,\Box)$			[Longo and Moggi, 1988]
$\lambda \omega$	(*,*)	$(\Box, *)$		(\Box,\Box)	$F\omega$	[Girard, 1972]
$\lambda P \underline{\omega}$	(*,*)		$(*,\Box)$	(\Box,\Box)		
λC	(*,*)	$(\square, *)$	$(*,\Box)$	(\Box,\Box)	СС	[Coquand and Huet, 1988]

The typing rules				
(axiom)	$\langle \rangle \vdash * : \Box$			
(start)	$\frac{\Gamma \vdash A: s x \not\in \text{DOM}\left(\Gamma\right)}{\Gamma, x: A \vdash x: A}$			
(weak)	$\frac{\Gamma \vdash A: B \Gamma \vdash C: s x \not\in \operatorname{DOM}\left(\Gamma\right)}{\Gamma, x: C \vdash A: B}$			
(П)	$\frac{\Gamma \vdash A : s_1 \Gamma, x : A \vdash B : s_2 (s_1, s_2) \in \mathbf{R}}{\Gamma \vdash \Pi_{x : A} \cdot B : s_2}$			
(λ)	$\frac{\Gamma, x: A \vdash b: B \Gamma \vdash \Pi_{x:A}.B: s}{\Gamma \vdash \lambda_{x:A}.b: \Pi_{x:A}.B}$			
$(conv_eta)$	$\frac{\Gamma \vdash A : B \Gamma \vdash B' : s B =_{\beta} B'}{\Gamma \vdash A : B'}$			
(appl)	$\frac{\Gamma \vdash F : \Pi_{x:A}.B \Gamma \vdash a : A}{\Gamma \vdash Fa : B[x:=a]}$			

_

The Barendregt cube

Our example in the system F of Girard

- If $x \notin FV(B)$ we write $A \to B$ instead of $\Pi_{x:A}.B$.
- $\alpha : *, f : \alpha \to \alpha \vdash \lambda_{x:\alpha}.f(f(x)) : \alpha \to \alpha : *$ (need the rule (*, *)).
- $\alpha : * \vdash \lambda_{f:\alpha \to \alpha} . \lambda_{x:\alpha} . f(f(x)) : (\alpha \to \alpha) \to (\alpha \to \alpha) : *$ (need the rule (*, *)).
- $\vdash \lambda_{\alpha:*} \cdot \lambda_{f:\alpha \to \alpha} \cdot \lambda_{x:\alpha} \cdot f(f(x)) : \Pi_{\alpha:*} \cdot (\alpha \to \alpha) \to (\alpha \to \alpha) : *$ (need the rule $(\Box, *)$).

The programming language ML

- The passage from simple types (λ→) to polymorphic types (λ2) was dictated by many needs including programming ones.
- $\lambda 2$ was invented by John Reynolds at Carnegie Mellon (and independently by Jean-Yves Girard at Paris).
- John Reynolds was building a programming language for which he invented $\lambda 2$ to act as a foundational calculi.
- A hard question to answer (and took 25 years to answer by Joe Wells) was: Is type checking decidable in $\lambda 2$?
- I.e., if you give me a non type-annotated term of $\lambda 2$, can I find its type?
- This is extremely important because types contain safe programs and so we need to type our terms to guarantee safety of programs.

- Because the question of decidability of type checking was hard to answer, Robin Milner developed his language ML using a small part of $\lambda 2$ (for which type checking was known to be decidable).
- This meant that ML is not modelled by $\lambda 2$ and hence the properties of $\lambda 2$ cannot be exported to ML.
- A lot of research was done to establish the properties and the power of the programming language ML.

ML

- ML treats let val id = (fn $x \Rightarrow x$) in (id id) end as this Cube term $(\lambda id:(\Pi \alpha:*. \alpha \to \alpha). id(\beta \to \beta)(id \beta))(\lambda \alpha:*. \lambda x:\alpha. x)$
- To type this in the Cube, the $(\Box, *)$ rule is needed (i.e., $\lambda 2$).
- ML's typing rules forbid this expression: let val id = (fn x ⇒ x) in (fn y ⇒ y y)(id id) end Its equivalent Cube term is this well-formed typable term of λ2: (λid : (Πα:*. α → α). (λy:(Πα:*. α → α). y(β → β)(y β)) (λα:*. id(α → α)(id α))) (λα:*. λx:α. x)
- Therefore, ML should not have the full Π -formation rule $(\Box, *)$.
- ML has limited access to the rule (\Box,\ast) enabling some things from $\lambda 2$ but not all.
- ML's type system is none of those of the eight systems of the Cube.

• We place the type system of ML on our refined Cube (between $\lambda 2$ and $\lambda \underline{\omega}$).

LF

- LF [Harper et al., 1987] is often described as λP of the Barendregt Cube.
- Use of Π -formation rule $(*, \Box)$ is very restricted in the practical use of LF.
- The only need for a type Πx:A.B : □ is when the Propositions-As-Types principle PAT is applied during the construction of the type Πα:prop.* of the operator Prf where for a proposition Σ, Prf(Σ) is the type of proofs of Σ.

$$\frac{\texttt{prop}:* \vdash \texttt{prop}:*}{\texttt{prop}:* \vdash \Pi \alpha : \texttt{prop}.*: \Box}$$

- In LF, this is the only point where the Π -formation rule $(*, \Box)$ is used.
- But, Prf is only used when applied Σ :prop. We never use Prf on its own.
- This use is in fact based on a parametric constant rather than on Π -formation.
- Hence, the practical use of LF would not be restricted if we present Prf in a parametric form, and use (*, □) as a parameter instead of a Π-formation rule.

• We will find a more precise position of LF on the Cube (between $\lambda \rightarrow \text{ and } \lambda P$).

A refined version of the cube [Kamareddine et al., 2003]

LF, ML, AUT-68, and AUT-QE in the refined version of the cube

Logicians versus mathematicians and induction over numbers

 Logician uses ind: Ind as proof term for an application of the induction axiom. The type Ind can only be described in λR where R = {(*,*), (*,□), (□,*)}:

$$Ind = \Pi p: (\mathbb{N} \to *). p0 \to (\Pi n: \mathbb{N}.\Pi m: \mathbb{N}.pn \to Snm \to pm) \to \Pi n: \mathbb{N}.pn \quad (1)$$

- Mathematician uses ind only with $P : \mathbb{N} \to *, Q : P0$ and $R : (\Pi n:\mathbb{N}.\Pi m:\mathbb{N}.Pn \to Snm \to Pm)$ to form a term $(\operatorname{ind} PQR):(\Pi n:\mathbb{N}.Pn)$.
- The use of the induction axiom by the mathematician is better described by the parametric scheme (p, q and r are the parameters of the scheme):

ind($p:\mathbb{N} \to *, q:p0, r:(\Pi n:\mathbb{N}.\Pi m:\mathbb{N}.pn \to Snm \to pm)$) : Π $n:\mathbb{N}.pn$ (2) • The logician's type Ind is not needed by the mathematician and the types that occur in 2 can all be constructed in $\lambda \mathbf{R}$ with $\mathbf{R} = \{(*,*)(*,\Box)\}$.

Logicians versus mathematicians and induction over numbers

- Mathematician: only *applies* the induction axiom and doesn't need to know the proof-theoretical backgrounds.
- A logician develops the induction axiom (or studies its properties).
- (□,*) is not needed by the mathematician. It is needed in logician's approach in order to form the Π-abstraction Πp:(N→*)...).
- Consequently, the type system that is used to describe the mathematician's use of the induction axiom can be weaker than the one for the logician.
- Nevertheless, the parameter mechanism gives the mathematician limited (but for his purposes sufficient) access to the induction scheme.

Extending the Cube with parametric constants

- We add parametric constants of the form $c(b_1, \ldots, b_n)$ with b_1, \ldots, b_n terms of certain types and $c \in C$.
- b_1, \ldots, b_n are called the *parameters* of $c(b_1, \ldots, b_n)$.
- **R** allows several kinds of Π -constructs. We also use a set P of (s_1, s_2) where $s_1, s_2 \in \{*, \Box\}$ to allow several kinds of parametric constants.
- $(s_1, s_2) \in \mathbf{P}$ means that we allow parametric constants $c(b_1, \ldots, b_n) : A$ where b_1, \ldots, b_n have types B_1, \ldots, B_n of sort s_1 , and A is of type s_2 .
- If both (*, s₂) ∈ *P* and (□, s₂) ∈ *P* then combinations of parameters allowed.
 For example, it is allowed that B₁ has type *, whilst B₂ has type □.

The Cube with parametric constants

- Let $(*,*) \subseteq \mathbf{R}, \mathbf{P} \subseteq \{(*,*), (*,\Box), (\Box,*), (\Box,\Box)\}.$
- $\lambda \mathbf{R} P = \lambda \mathbf{R}$ and the two rules ($\vec{\mathbf{C}}$ -weak) and ($\vec{\mathbf{C}}$ -app):

$$\frac{\Gamma \vdash b: B \quad \Gamma, \Delta_i \vdash B_i: s_i \quad \Gamma, \Delta \vdash A: s}{\Gamma, c(\Delta): A \vdash b: B} (s_i, s) \in \mathbf{P}, c \text{ is } \Gamma \text{-fresh}$$

$$\begin{array}{rcl} \Gamma_1, c(\Delta):A, \Gamma_2 & \vdash & b_i:B_i[x_j:=b_j]_{j=1}^{i-1} & (i=1,\ldots,n) \\ \hline \Gamma_1, c(\Delta):A, \Gamma_2 & \vdash & A:s & (\text{if } n=0) \\ \hline \Gamma_1, c(\Delta):A, \Gamma_2 \vdash c(b_1,\ldots,b_n):A[x_j:=b_j]_{j=1}^n \end{array}$$

$$\Delta \equiv x_1 : B_1, \dots, x_n : B_n.$$

$$\Delta_i \equiv x_1 : B_1, \dots, x_{i-1} : B_{i-1}$$

Properties of the Refined Cube

- (Correctness of types) If $\Gamma \vdash A : B$ then $(B \equiv \Box \text{ or } \Gamma \vdash B : S \text{ for some sort } S)$.
- (Subject Reduction SR) If $\Gamma \vdash A : B$ and $A \rightarrow \beta A'$ then $\Gamma \vdash A' : B$
- (Strong Normalisation) For all \vdash -legal terms M, we have $SN_{\rightarrow}(M)$.
- Other properties such as Uniqueness of types and typability of subterms hold.
- $\lambda \mathbf{R} P$ is the system which has Π -formation rules R and parameter rules P.
- Let λRP parametrically conservative (i.e., (s₁, s₂) ∈ P implies (s₁, s₂) ∈ R).
 The parameter-free system λR is at least as powerful as λRP.
 If Γ⊢_R a : A then {Γ} ⊢_R {a} : {A}.

Example

• $R = \{(*, *), (*, \Box)\}$ $P_1 = \emptyset$ $P_2 = \{(*, *)\}$ $P_3 = \{(*, \Box)\}$ $P_4 = \{(*, *), (*, \Box)\}$ All λRP_i for $1 \le i \le 4$ with the above specifications are all equal in power.

• $R_5 = \{(*, *)\}$ $P_5 = \{(*, *), (*, \Box)\}.$ $\lambda \rightarrow < \lambda R_5 P_5 < \lambda P$: we can to talk about predicates:

$$\begin{array}{rcl} \alpha & : & *, \\ eq(x:\alpha, y:\alpha) & : & *, \\ refl(x:\alpha) & : & eq(x, x), \\ symm(x:\alpha, y:\alpha, p:eq(x, y)) & : & eq(x, x), \\ trans(x:\alpha, y:\alpha, z:\alpha, p:eq(x, y), q:eq(y, z)) & : & eq(x, z) \end{array}$$

eq not possible in $\lambda \rightarrow$.

Using Item Notation in Type Systems

- Now, all items are written inside () instead of using () and [].
- $(\lambda_x . x)y$ is written as: $(y\delta)(\lambda_x)x$ instead of (y)[x]x.
- $\Pi_{z:*} (\lambda_{x:z} x) y$ is written as: $(*\Pi_z)(y\delta)(z\lambda_x)x$.

The Barendregt Cube in item notation and class reduction

- The formulation is the same except that terms are written in item notation:
- $\mathcal{T} = * | \Box | V | (\mathcal{T}\delta)\mathcal{T} | (\mathcal{T}\lambda_V)\mathcal{T} | (\mathcal{T}\Pi_V)\mathcal{T}.$
- The typing rules don't change although we do class reduction \rightsquigarrow_{β} instead of normal β -reduction \rightarrow_{β} .

• The typing rules don't change because $=_{\beta}$ is the same as \approx_{β} .

Figure 1: The Barendregt Cube

Subject Reduction fails

- Most properties including SN hold for all systems of the cube extended with class reduction. However, SR only holds in λ_{\rightarrow} (*,*) and $\lambda_{\underline{\omega}}$ (\Box , \Box).
- SR fails in λP (*, \Box) (and hence in $\lambda P2, \lambda P\underline{\omega}$ and λC). Example in paper.
- SR also fails in $\lambda 2$ (\Box , *) (and hence in $\lambda P2, \lambda \omega$ and λC):

Why does Subject Reduction fails

- $(y'\delta)(\beta\delta)(*\lambda_{\alpha})(\alpha\lambda_{y})(y\delta)(\alpha\lambda_{x})x \rightsquigarrow_{\beta}(\beta\delta)(*\lambda_{\alpha})(y'\delta)(\alpha\lambda_{x})x.$
- $(\lambda_{\alpha:*}.\lambda_{y:\alpha}.(\lambda_{x:\alpha}.x)y)\beta y' \rightsquigarrow_{\beta} (\lambda_{\alpha:*}.(\lambda_{x:\alpha}.x)y')\beta$
- $\beta : *, y' : \beta \vdash_{\lambda 2} (\lambda_{\alpha:*} . \lambda_{y:\alpha} . (\lambda_{x:\alpha} . x) y) \beta y' : \beta$
- Yet, $\beta : *, y' : \beta \not\vdash_{\lambda 2} (\lambda_{\alpha:*} . (\lambda_{x:\alpha} . x) y') \beta : \tau$ for any τ .
- the information that $y':\beta$ has replaced $y:\alpha$ is lost in $(\lambda_{\alpha:*}.(\lambda_{x:\alpha}.x)y')\beta$.
- But we need $y' : \alpha$ to be able to type the subterm $(\lambda_{x:\alpha}.x)y'$ of $(\lambda_{\alpha:*}.(\lambda_{x:\alpha}.x)y')\beta$ and hence to type $\beta:*, y':\beta \vdash (\lambda_{\alpha:*}.(\lambda_{x:\alpha}.x)y')\beta:\beta$.

Solution to Subject Reduction: Use "let expressions/definitions"

• Definitions/let expressions are of the form: let x : A = B and are added to contexts exactly like the declarations y : C.

• (def rule)
$$\frac{\Gamma, \text{let } x : A = B \vdash^{c} C : D}{\Gamma \vdash^{c} (\lambda_{x:A}.C)B : D[x := A]}$$

- we define $\Gamma \vdash^{c} \cdot =_{def} \cdot$ to be the equivalence relation generated by:
 - if $A =_{\beta} B$ then $\Gamma \vdash^{c} A =_{def} B$
 - if let x : M = N is in Γ and if B arises from A by substituting one particular occurrence of x in A by N, then $\Gamma \vdash^{c} A =_{def} B$.

The (simplified) Cube with definitions and class reduction

(axiom) (app) (abs) and (form) are unchanged.
(start)
$$\frac{\Gamma \vdash^{c} A : s}{\Gamma, x: A \vdash^{c} x: A} \qquad \frac{\Gamma \vdash^{c} A : s}{\Gamma, \text{ let } x: A = B \vdash^{c} x: A} \qquad x \text{ fresh}$$
(weak)
$$\frac{\Gamma \vdash^{c} D : E}{\Gamma, x: A \vdash^{c} D : E} \qquad \frac{\Gamma \vdash^{c} A : s}{\Gamma, \text{ let } x: A = B \vdash^{c} D : E} \qquad x \text{ fresh}$$
(conv)
$$\frac{\Gamma \vdash^{c} A : B}{\Gamma \vdash^{c} A : B'} \qquad \frac{\Gamma \vdash^{c} B' : S}{\Gamma \vdash^{c} A : B'}$$
(def)
$$\frac{\Gamma, \text{let } x: A = B \vdash^{c} C : D}{\Gamma \vdash^{c} (\lambda_{x:A} \cdot C)B : D[x := A]}$$

Definitions solve subject reduction

1.
$$\beta : *, y' : \beta$$
, let $\alpha : * = \beta$
2. $\beta : *, y' : \beta$, let $\alpha : * = \beta$
3. $\beta : *, y' : \beta$, let $\alpha : * = \beta$
4. $\beta : *, y' : \beta$, let $\alpha : * = \beta$, let $x : \alpha = y'$ $\vdash^{c} x : \alpha$
5. $\beta : *, y' : \beta$, let $\alpha : * = \beta$
 $\beta : *, y' : \beta$, let $\alpha : * = \beta$
 $\beta : *, y' : \beta$ \vdash^{c} $(\lambda_{\alpha:*} \cdot (\lambda_{x:\alpha} \cdot x)y')\beta : \alpha[\alpha := \beta] = \beta$

Properties of the Cube with definitions and class Reduction

- \vdash^{c} is a generalisation of \vdash : If $\Gamma \vdash A : B$ then $\Gamma \vdash^{c} A : B$.
- Equivalent terms have same types: If $\Gamma \vdash^{c} A : B$ and $A' \in [A]$, $B' \in [B]$ then $\Gamma \vdash^{c} A' : B'$.
- Subject Reduction for \vdash^{c} and \rightsquigarrow_{β} : If $\Gamma \vdash^{c} A : B$ and $A \rightsquigarrow_{\beta} A'$ then $\Gamma \vdash^{c} A' : B$.
- Unicity of Types for ⊢^c:
 - If $\Gamma \vdash^{c} A : B$ and $\Gamma \vdash^{c} A : B'$ then $\Gamma \vdash^{c} B =_{def} B'$
 - If $\Gamma \vdash^{c} A : B$ and $\Gamma \vdash^{c} A' : B'$ and $\Gamma \vdash^{c} A =_{\beta} A'$ then $\Gamma \vdash^{c} B =_{def} B'$.
- Strong Normalisation of $\sim \beta$:

In the Cube, every legal term is strongly normalising with respect to \rightsquigarrow_{β} .

De Bruijn Indices [de Bruijn, 1972]

- Classical λ -calculus: $A ::= x | (\lambda x.B) | (BC)$ $(\lambda x.A)B \rightarrow_{\beta} A[x := B]$
- $(\lambda x.\lambda y.xy)y \rightarrow_{\beta} (\lambda y.xy)[x := y] \neq \lambda y.yy$
- $(\lambda x.\lambda y.xy)y \rightarrow_{\beta} (\lambda y.xy)[x := y] =_{\alpha} (\lambda z.xz)[x := y] = \lambda z.yz$
- $\lambda x.x$ and $\lambda y.y$ are the same function. Write this function as $\lambda 1$.
- Assume a free variable list (say x, y, z, ...).
- $(\lambda\lambda 2\ 1)2 \to_{\beta} (\lambda 2\ 1)[1:=2] = \lambda(2[2:=3])(1[2:=3]) = \lambda 3\ 1$

Classical λ -calculus with de Bruijn indices

- Let $i, n \geq 1$ and $k \geq 0$
- $A ::= n | (\lambda B) | (BC)$ $(\lambda A)B \rightarrow_{\beta} A\{\!\!\{1 \leftarrow B\}\!\!\}$

• $\begin{array}{ll} U^i_k(AB) = U^i_k(A) \, U^i_k(B) \\ U^i_k(\lambda A) = \lambda(U^i_{k+1}(A)) \end{array} \quad \begin{array}{ll} U^i_k(\mathbf{n}) = \left\{ \begin{array}{ll} \mathbf{n} + \mathbf{i} - \mathbf{1} & \text{if } n > k \\ \mathbf{n} & \text{if } n \leq k \end{array} \right. \end{array}$

•
$$(A_1A_2)\{\!\{\mathbf{i} \leftarrow B\}\!\} = (A_1\{\!\{\mathbf{i} \leftarrow B\}\!\})(A_2\{\!\{\mathbf{i} \leftarrow B\}\!\})$$

 $(\lambda A)\{\!\{\mathbf{i} \leftarrow B\}\!\} = \lambda(A\{\!\{\mathbf{i} + \mathbf{1} \leftarrow B\}\!\})$
 $n\{\!\{\mathbf{i} \leftarrow B\}\!\} = \begin{cases} n-1 & \text{if } n > i \\ U_0^i(B) & \text{if } n = i \\ n & \text{if } n < i. \end{cases}$

• Numerous implementations of proof checkers and programming languages have been based on de Bruijn indices.

From classical λ -calculus with de Bruijn indices to substitution calculus λs [Kamareddine and Rios 1995] • Write $A\{\!\{n \leftarrow B\}\!\}$ as $A\sigma^n B$ and $U_k^i(A)$ as $\varphi_k^i A$.

• $A ::= n \mid (\lambda B) \mid (BC) \mid (A\sigma^i B) \mid (\varphi_k^i B)$ where $i, n \ge 1, k \ge 0$.

σ -generation	$(\lambda A) B$	\longrightarrow	$A \sigma^1 B$
σ - λ -transition	$(\lambda A)\sigma^i B$	\longrightarrow	$\lambda(A\sigma^{i+1}B)$
σ -app-transition	$(A_1 A_2) \sigma^i B$	\longrightarrow	$\left(A_1\sigma^iB ight)\left(A_2\sigma^iB ight)$
σ -destruction	n $\sigma^i B$	\longrightarrow	$ \left\{ \begin{array}{ll} {\rm n-1} & {\rm if} \ n>i \\ \varphi_0^i B & {\rm if} \ n=i \\ {\rm n} & {\rm if} \ n$
$arphi$ - λ -transition	$arphi_k^i(\lambda A)$	\longrightarrow	$\lambda(\varphi^i_{k+1}A)$
φ -app-transition	$arphi_k^i(A_1A_2)$	\longrightarrow	$(\varphi^i_k A_1) (\varphi^i_k A_2)$
φ -destruction	$arphi_k^i$ n	\longrightarrow	$\left\{ \begin{array}{ll} \mathtt{n}+\mathtt{i}-\mathtt{1} & \text{if} n>k\\ \mathtt{n} & \text{if} n\leq k \end{array} \right.$

- 1. The s-calculus (i.e., λs minus σ -generation) is strongly normalising,
- 2. The λs -calculus is confluent and simulates (in small steps) β -reduction
- 3. The λs -calculus preserves strong normalisation PSN.
- 4. The λs -calculus has a confluent extension with open terms λse .
- The λs -calculus is the only calculus of substitutions which satisfies all the above properties 1., 2., 3. and 4.

λv [Benaissa et al., 1996]

Terms: $\Lambda v^t ::= \mathsf{IN} \mid \Lambda v^t \Lambda v^t \mid \lambda \Lambda v^t \mid \Lambda v^t [\Lambda v^s]$ Substitutions: $\Lambda v^s ::= \uparrow \mid \Uparrow (\Lambda v^s) \mid \Lambda v^t$.

			F. ()
(Beta)	$(\lambda a)b$	\longrightarrow	$a\left\lfloor b/ ight floor$
(App)	(ab)[s]	\longrightarrow	$\left(a\left[s ight] ight) \left(b\left[s ight] ight)$
(Abs)	$(\lambda a)[s]$	\longrightarrow	$\lambda(a\left[\Uparrow\left(s ight) ight])$
(FVar)	1 $\left[a/ ight]$	\longrightarrow	a
(RVar)	$\mathtt{n+1}\left[a/ ight]$	\longrightarrow	n
(FVarLift)	1 $[\Uparrow(s)]$	\longrightarrow	1
(RVarLift)	$\mathtt{n+1}\left[\Uparrow\left(s ight) ight]$	\longrightarrow	$\mathtt{n}\left[s\right]\left[\uparrow\right]$
(VarShift)	$\mathtt{n}\left[\uparrow ight]$	\longrightarrow	n + 1

 $\lambda \upsilon$ satisfies 1., 2., and 3., but does not have a confluent extension on open terms.

$\begin{array}{ll} & \lambda \sigma_{\uparrow} \\ \text{Terms:} & \Lambda \sigma_{\uparrow}^{t} ::= \mathsf{IN} \mid \Lambda \sigma_{\uparrow}^{t} \Lambda \sigma_{\uparrow}^{t} \mid \lambda \Lambda \sigma_{\uparrow}^{t} \mid \Lambda \sigma_{\uparrow}^{t} [\Lambda \sigma_{\uparrow}^{s}] \\ \text{Substitutions:} & \Lambda \sigma_{\uparrow}^{s} ::= id \mid \uparrow \mid \uparrow (\Lambda \sigma_{\uparrow}^{s}) \mid \Lambda \sigma_{\uparrow}^{t} \cdot \Lambda \sigma_{\uparrow}^{s} \mid \Lambda \sigma_{\uparrow}^{s} \circ \Lambda \sigma_{\uparrow}^{s}. \end{array}$

			[1 . 1]
(Beta)	$(\lambda a) b$	\longrightarrow	$a\left[b\cdot id ight]$
(App)	(a b)[s]	\longrightarrow	$\left(a\left[s ight] ight)\left(b\left[s ight] ight)$
(Abs)	$(\lambda a)[s]$	\longrightarrow	$\lambda(a\left[\Uparrow\left(s ight) ight])$
(Clos)	(a[s])[t]	\longrightarrow	$a\left[s\circ t ight]$
(Varshift 1)	$\mathtt{n}\left[\uparrow ight]$	\longrightarrow	n+1
(Varshift 2)	$\texttt{n}\left[\uparrow\circ s\right]$	\longrightarrow	$\mathtt{n+1}\left[s ight]$
(FVarCons)	1 $[a \cdot s]$	\longrightarrow	a
(RVarCons)	$\mathtt{n+1}\left[a\cdot s\right]$	\longrightarrow	$\mathtt{n}\left[s\right]$
(FVarLift1)	1 $[\Uparrow(s)]$	\longrightarrow	1
(FVarLift2)	$1\left[\Uparrow\left(s ight) \circ t ight]$	\longrightarrow	$1\left[t ight]$
(RVarLift1)	$\mathtt{n+1}\left[\Uparrow\left(s ight) ight]$	\longrightarrow	$\texttt{n}[s \circ \uparrow]$
(RVarLift2)	$\mathtt{n}+\mathtt{1}\left[\Uparrow\left(s\right)\circ t\right]$	\longrightarrow	$\texttt{n}[s \circ (\uparrow \circ t)]$

$\lambda\sigma_{\rm fr}$ rules continued

(Map)	$(a \cdot s) \circ t$	\longrightarrow	$a[t] \cdot (s \circ t)$
(Ass)	$(s \circ t) \circ u$	\longrightarrow	$s \circ (t \circ u)$
(ShiftCons)	$\uparrow \circ (a \cdot s)$	\longrightarrow	S
(ShiftLift1)	$\uparrow \circ \Uparrow(s)$	\longrightarrow	$s\circ\uparrow$
(ShiftLift2)	$\uparrow \circ (\Uparrow (s) \circ t)$	\longrightarrow	$s \circ (\uparrow \circ t)$
(Lift1)	$\Uparrow(s) \circ \Uparrow(t)$	\longrightarrow	$\Uparrow(s \circ t)$
(Lift 2)	$\Uparrow(s) \circ (\Uparrow(t) \circ u)$	\longrightarrow	$\Uparrow \left(s \circ t \right) \circ u$
(LiftEnv)	$\Uparrow(s) \circ (a \cdot t)$	\longrightarrow	$a \cdot (s \circ t)$
(IdL)	$id\circ s$	\longrightarrow	S
(IdR)	$s\circ id$	\longrightarrow	S
(LiftId)	$\Uparrow (id)$	\longrightarrow	id
(Id)	$a\left[id ight]$	\longrightarrow	a

 $\lambda\sigma_{\Uparrow}$ satisfies 1., 2., and 4., but does not have PSN.

How is λse obtained from λs ?

- $A ::= X | n | (\lambda B) | (BC) | (A\sigma^i B) | (\varphi^i_k B)$ where $i, n \ge 1, k \ge 0$.
- Extending the syntax with open terms without extending then rules loses the confluence (even local confluence): $((\lambda X)Y)\sigma^{1}1 \rightarrow (X\sigma^{1}Y)\sigma^{1}1 \qquad ((\lambda X)Y)\sigma^{1}1 \rightarrow ((\lambda X)\sigma^{1}1)(Y\sigma^{1}1)$
- $(X\sigma^1Y)\sigma^11$ and $((\lambda X)\sigma^11)(Y\sigma^11)$ have no common reduct.
- But, $((\lambda X)\sigma^1 1)(Y\sigma^1 1) \longrightarrow (X\sigma^2 1)\sigma^1(Y\sigma^1 1)$
- Simple: add de Bruijn's metasubstitution and distribution lemmas to the rules of λs :

• These extra rules are the rewriting of the well-known meta-substitution $(\sigma - \sigma)$ and distribution $(\varphi - \sigma)$ lemmas (and the 4 extra lemmas needed to prove them).

Where did the extra rules come from?

In de Bruijn's classical
$$\lambda$$
-calculus we have the lemmas:
 $(\sigma - \varphi \ 1)$ For $k < j < k + i$ we have: $U_k^{i-1}(A) = U_k^i(A)\{\!\{\mathbf{j} \leftarrow B\}\!\}$.
 $(\varphi - \varphi \ 2)$ For $l \le k < l + j$ we have: $U_k^i(U_l^j(A)) = U_l^{j+i-1}(A)$.
 $(\sigma - \varphi \ 2)$ For $k + i \le j$ we have: $U_k^i(A)\{\!\{\mathbf{j} \leftarrow B\}\!\} = U_k^i(A\{\!\{\mathbf{j} - \mathbf{i} + \mathbf{1} \leftarrow B\}\!\})$.
 $(\sigma - \sigma)$ [Meta-substitution lemma] For $i \le j$ we have:
 $A\{\!\{\mathbf{i} \leftarrow B\}\!\}\{\!\{\mathbf{j} \leftarrow C\}\!\} = A\{\!\{\mathbf{j} + \mathbf{1} \leftarrow C\}\!\}\{\!\{\mathbf{i} \leftarrow B\{\!\{\mathbf{j} - \mathbf{i} + \mathbf{1} \leftarrow C\}\!\}\}$.
 $(\varphi - \varphi \ 1)$ For $j \le k + 1$ we have: $U_{k+p}^i(U_p^j(A)) = U_p^j(U_{k+p+1-j}^i(A))$.
 $(\varphi - \sigma)$ [Distribution lemma]
For $j \le k + 1$ we have: $U_k^i(A\{\!\{\mathbf{j} \leftarrow B\}\!\}) = U_{k+1}^i(A)\{\!\{\mathbf{j} \leftarrow U_{k+1-j}^i(B)\}\!\}$.
The proof of $(\sigma - \sigma)$ uses $(\sigma - \varphi \ 1)$ and $(\sigma - \varphi \ 2)$ both with $k = 0$.
The proof of $(\sigma - \varphi \ 2)$ requires $(\varphi - \varphi \ 2)$ with $l = 0$.
Finally, $(\varphi - \varphi \ 1)$ with $p = 0$ is needed to prove $(\varphi - \sigma)$).

Computerising Mathematical Texts with MathLang

- MathLang:Project started in 2000 by Fairouz Kamareddine and J.B. Wells.
- Ph.D. students in the MathLang team: Maarek (10/2002-6/2007), Retel (11/2004-06/2008), Lamar (10/2006-now), Zengler (01/2008-12/2008).
- There are two influencing questions:
 - 1. What is the relationship between logic and mathematics
 - 2. What is the relationship between computer science and mathematics.
- Question 1 has been slowly brewing for over 2500 years.
- Question 2, is more recent but is unavoidable since automation and computation can provide tremendous services to mathematics.
- There are also extensive opportunities from combining progress in logic and automation/computerisation not only in mathematics but also in other areas: bio-Informatics, chemistry, music, Natural Language, etc.

The birth of computation machines, and limits of computability

- The first half of the 20th century saw a surge of different formalisms and saw the birth of computers (Turing machines, Von Neumann's machine, etc).
- E.g., the discovery of Russell's paradox was the reason for the invention of the first type theory.
- There was a competition between set/type/category theory as a better foundation for mathematics.
- The second half of the 20th century would see a surge of programming languages and softwares for mathematics.

Goals of MathLang: Open borders between mathematics, logic and computation

- Ordinary mathematicians *avoid* formal mathematical logic.
- Ordinary mathematicians *avoid* proof checking (via a computer).
- Ordinary mathematicians *may use* a computer for computation: there are over 1 million people who use Mathematica (including linguists, engineers, etc.).
- Mathematicians may also use other computer forms like Maple, LaTeX, etc.
- But we are not interested in only *libraries* or *computation* or *text editing*.
- We want *freedeom of movement* between mathematics, logic and computation.
- At every stage, we must have *the choice* of the level of formalilty and the depth of computation.

Goals of MathLang

Can we formalise a mathematical text, avoiding as much as possible the ambiguities of natural language, while still guaranteeing the following four goals?

- 1. The formalised text looks very much like the original mathematical text (and hence the content of the original mathematical text is respected).
- 2. The formalised text can be fully manipulated and searched in ways that respect its mathematical structure and meaning.
- 3. Steps can be made to do computation (via computer algebra systems) and proof checking (via proof checkers) on the formalised text.
- 4. This formalisation of text is not much harder for the ordinary mathematician than $ext{PTEX}$. *Full formalization down to a foundation of mathematics is not required*, although allowing and supporting this is one goal.

Muito Obrigada

Bibliography

- Zena M. Ariola, Matthias Felleisen, John Maraist, Martin Odersky, and Philip Wadler. The call-by-need lambda calculus. In *Conf. Rec. 22nd Ann. ACM Symp. Princ. of Prog. Langs.*, pages 233–246, 1995.
- H.P. Barendregt. *The Lambda Calculus: its Syntax and Semantics*. Studies in Logic and the Foundations of Mathematics 103. North-Holland, Amsterdam, revised edition, 1984.
- Z.E.A. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. λv , a calculus of explicit substitutions which preserves strong normalisation. *Journal of Functional Programming*, 6(5):699–722, 1996.
- Roel Bloo, Fairouz Kamareddine, and Rob Nederpelt. The Barendregt cube with definitions and generalised reduction. *Inform. & Comput.*, 126(2):123–143, May 1996.
- N.G. de Bruijn. The mathematical language AUTOMATH, its usage and some of its extensions. In M. Laudet, D. Lacombe, and M. Schuetzenberger, editors, *Symposium on Automatic Demonstration*, pages 29–61, IRIA, Versailles, 1968. Springer Verlag, Berlin, 1970. Lecture Notes in Mathematics 125; also in [Nederpelt et al., 1994], pages 73–100.
- A. Church. A formulation of the simple theory of types. The Journal of Symbolic Logic, 5:56–68, 1940.
- T. Coquand and G. Huet. The calculus of constructions. *Information and Computation*, 76:95–120, 1988.
- Philippe de Groote. The conservation theorem revisited. In Proc. Int'l Conf. Typed Lambda Calculi and Applications, pages 163–178. Springer, 1993.

- J.-Y. Girard. Interprétation fonctionelle et élimination des coupures dans l'arithmétique d'ordre supérieur. PhD thesis, Université Paris VII, 1972.
- R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. In *Proceedings Second Symposium on Logic in Computer Science*, pages 194–204, Washington D.C., 1987. IEEE.
- F. Kamareddine and R. Bloo. De Bruijn's syntax and reductional behaviour of lambda terms. Submitted, 2002.
- F. Kamareddine, R. Bloo, and R. Nederpelt. On Π -conversion in the λ -cube and the combination with abbreviations. Ann. Pure Appl. Logic, 97(1–3):27–45, 1999.
- F. Kamareddine, T. Laan, and R. P. Nederpelt. Types in logic and mathematics before 1940. *Bulletin of Symbolic Logic*, 8(2):185–245, June 2002.
- F. Kamareddine, T. Laan, and R. P. Nederpelt. Revisiting the λ-calculus notion of function. J. Algebraic & Logic Programming, 54:65–107, 2003.
- Fairouz Kamareddine. Postponement, conservation and preservation of strong normalisation for generalised reduction. *J. Logic Comput.*, 10(5):721–738, 2000.
- Fairouz Kamareddine and Rob Nederpelt. Refining reduction in the λ -calculus. *J. Funct. Programming*, 5(4): 637–651, October 1995.

Fairouz Kamareddine and Rob Nederpelt. A useful λ -notation. Theoret. Comput. Sci., 155(1):85–109, 1996.

- Fairouz Kamareddine, Alejandro Ríos, and J. B. Wells. Calculi of generalised β -reduction and explicit substitutions: The type free and simply typed versions. *J. Funct. Logic Programming*, 1998(5), June 1998.
- Fairouz Kamareddine, Roel Bloo, and Rob Nederpelt. De Bruijn's syntax and reductional equivalence of lambda terms. In Proc. 3rd Int'l Conf. Principles & Practice Declarative Programming, 5–7 September 2001. ISBN 1-58113-388-X.
- A. J. Kfoury and J. B. Wells. A direct algorithm for type inference in the rank-2 fragment of the second-order λ -calculus. In *Proc. 1994 ACM Conf. LISP Funct. Program.*, pages 196–207, 1994. ISBN 0-89791-643-3.
- A. J. Kfoury and J. B. Wells. New notions of reduction and non-semantic proofs of β-strong normalization in typed λ-calculi. In *Proc. 10th Ann. IEEE Symp. Logic in Comput. Sci.*, pages 311-321, 1995. ISBN 0-8186-7050-9. URL http://www.church-project.org/reports/electronic/Kfo+Wel:LICS-1995.pdf.gz.
- Assaf J. Kfoury, Jerzy Tiuryn, and Paweł Urzyczyn. An analysis of ML typability. J. ACM, 41(2):368–398, March 1994.
- G. Longo and E. Moggi. Constructive natural deduction and its modest interpretation. Technical Report CMU-CS-88-131, Carnegie Mellono University, Pittsburgh, USA, 1988.
- Rob Nederpelt. Strong Normalization in a Typed Lambda Calculus With Lambda Structured Types. PhD thesis, Eindhoven, 1973.
- R.P. Nederpelt, J.H. Geuvers, and R.C. de Vrijer, editors. *Selected Papers on Automath*. Studies in Logic and the Foundations of Mathematics **133**. North-Holland, Amsterdam, 1994.

L. Regnier. Une équivalence sur les lambda termes. Theoretical Computer Science, 126:281-292, 1994.

Laurent Regnier. Lambda calcul et réseaux. PhD thesis, University Paris 7, 1992.

- G.R. Renardel de Lavalette. Strictness analysis via abstract interpretation for recursively defined types. *Information and Computation*, 99:154–177, 1991.
- J.C. Reynolds. *Towards a theory of type structure*, volume 19 of *Lecture Notes in Computer Science*, pages 408–425. Springer, 1974.