
Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Traditional and Non Traditional lambda calculi

Fairouz Kamareddine

July 2009

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Syntax
Semantics
Manipulating Expressions
Variables and substitutions
Free and bound variables
Subterms and substitution
Grafting and substitution
Ordered list of variables
Identifying terms modulo bound variables
Syntactic identity revised
Exercises

◮ Aims To acquaint the students with the syntax and semantics
of lambda calculus and reduction strategies. Solving mutually
recursive equations and fixed point theorems. Substitution,
call by name, call by value, termination.

◮ Learning Outcomes Competence in lambda calculus, different
variable techniques (de Bruijn indices, combinator variables),
semantics of small programs.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Syntax
Semantics
Manipulating Expressions
Variables and substitutions
Free and bound variables
Subterms and substitution
Grafting and substitution
Ordered list of variables
Identifying terms modulo bound variables
Syntactic identity revised
Exercises

◮ Main References

1. Chris Hankin, An introduction to lambda calculi for computer
scientists. King’s college publications, Texts in Computing,
Volume 2, 164 pages. ISBN 0-9543006-5-3.

2. Mike Gordon, Programming Language Theory and
Implementation. Prentice Hall. ISBN 0-13-730409-9.

3. Henk Barendregt, the syntax and semantics of the lambda
calculus. North-Holland.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Syntax
Semantics
Manipulating Expressions
Variables and substitutions
Free and bound variables
Subterms and substitution
Grafting and substitution
Ordered list of variables
Identifying terms modulo bound variables
Syntactic identity revised
Exercises

Functions as first class objects

◮ Functional programming is based on the notion of function
and of function application.

◮ In functional programming, functions are first class objects
and they can be applied to themselves, or to other functions
leading either other functions as result.

◮ For example, add is a function that takes two numbers and
returns a number.

◮ add 1 is also a function that takes a number and adds 1 to it.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Syntax
Semantics
Manipulating Expressions
Variables and substitutions
Free and bound variables
Subterms and substitution
Grafting and substitution
Ordered list of variables
Identifying terms modulo bound variables
Syntactic identity revised
Exercises

Polymorphic functions

◮ In addition to this higher order nature of functions in
functional programming, we have the polymorphic nature,
which enables us to write one function only and specialise the
function to whichever type we are working with.

◮ For example, the identity function which takes numbers and
return numbers, takes lists and returns lists, etc.

◮ So we can have:
IdN : N 7→ N
IdLists : Lists 7→ Lists

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Syntax
Semantics
Manipulating Expressions
Variables and substitutions
Free and bound variables
Subterms and substitution
Grafting and substitution
Ordered list of variables
Identifying terms modulo bound variables
Syntactic identity revised
Exercises

One simple language can represent all that

◮ It might be surprising to know that notions of higher order,
polymorphism, functional application, recursion and many
other functional programming notions can be captured in a
very precise way in a very simple language.

◮ This simple language contains simply functional abstraction
and functional application.

◮ In the next few lectures we will see how we can capture parts
of functional programming in such a language, the type free
λ- calculus.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Syntax
Semantics
Manipulating Expressions
Variables and substitutions
Free and bound variables
Subterms and substitution
Grafting and substitution
Ordered list of variables
Identifying terms modulo bound variables
Syntactic identity revised
Exercises

The syntax of the λ-calculus

◮ Let V = {x , y , z , x ′, y ′, z ′, x1, y1, z1, . . . } be an infinite set of
term variables. Elements of V are also called object variables.
They are the real variables which will appear in the terms.

◮ We let v , v ′, v ′′, v1, v2, · · · range over V.
We call v , v ′, v ′′, v1, v2, · · · , meta-variables.
These are variables used to talk about the object variables.

◮ The set of classical λ-terms or λ-expressions M is given by:
M ::= V | (λV.M) | (MM).

◮ Hence, an element of M is either a variable or an abstraction
or an application.

◮ We let A,B ,C · · · range over M.
Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Syntax
Semantics
Manipulating Expressions
Variables and substitutions
Free and bound variables
Subterms and substitution
Grafting and substitution
Ordered list of variables
Identifying terms modulo bound variables
Syntactic identity revised
Exercises

Examples

◮ (λx .x)

◮ (λy .y)

◮ (λx .(xx))

◮ (λx .(λy .x))

◮ (λx .(λy .(xy)))

◮ ((λx .x)(λx .x)).

◮ ((λx .(xx))(λx .(xx))).

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Syntax
Semantics
Manipulating Expressions
Variables and substitutions
Free and bound variables
Subterms and substitution
Grafting and substitution
Ordered list of variables
Identifying terms modulo bound variables
Syntactic identity revised
Exercises

The meaning of λ-expressions

◮ This simple language is surprisingly rich. Its richness comes
from the freedom to create and apply (higher order) functions
to other functions (and even to themselves).

◮ To explain the meaning of these three sorts of expressions, let
us imagine a model D where every λ-expression denotes an
element of that model (which is a function).

◮ I.e., the meaning of expressions is a function : M 7→ D.

◮ For this to work, we need an an interpretation function or an
environment σ which maps every variable of V into a specific
element of the model D. I.e. σ : V 7→ D.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Syntax
Semantics
Manipulating Expressions
Variables and substitutions
Free and bound variables
Subterms and substitution
Grafting and substitution
Ordered list of variables
Identifying terms modulo bound variables
Syntactic identity revised
Exercises

Models of the λ-calculus

◮ Such a model was not obvious for more than forty years.

◮ In fact, for a domain D to be a model of λ-calculus, it requires
that the set of functions from D to D be included in D.

◮ Moreover, we know from Cantor’s theorem that the domain D
is much smaller than the set of functions from D to D.

◮ Dana Scott was armed by this theorem in his attempt to show
the non-existence of the models of the λ-calculus.

◮ To his surprise, he proved the opposite of what he set out to
show. He found in 1969 a model which has opened the door
to an extensive area of research in computer science.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Syntax
Semantics
Manipulating Expressions
Variables and substitutions
Free and bound variables
Subterms and substitution
Grafting and substitution
Ordered list of variables
Identifying terms modulo bound variables
Syntactic identity revised
Exercises

◮ Here is the intuitive meaning of the three λ-expressions:
◮ Variables Functions denoted by variables are determined by

what the variables are bound to in the environment σ.
◮ Function application Let A and B are λ-expressions. The

expression (AB) denotes the result of applying the function
denoted by A to the function denoted by B.

◮ Abstraction Let v be a variable and A be an expression which
may or may not contain occurrences of v . Then, in an
environment σ, (λv .A) denotes the function that maps an
input value a to the output value which denotes the meaning
of A in the environment σ where v is bound to a.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Syntax
Semantics
Manipulating Expressions
Variables and substitutions
Free and bound variables
Subterms and substitution
Grafting and substitution
Ordered list of variables
Identifying terms modulo bound variables
Syntactic identity revised
Exercises

Environments and the meaning of variables

◮ Expressions have variables, and variables take values
depending on the environment.

◮ Assume model D.

◮ Let ENV = {σ | σ : V 7→ D} be the collection of
environments.

◮ For example, if D contains the natural numbers, then one σ
could take x to 1, y to 2, z to 3, etc.

◮ In that case, the meaning of x is σ(x) = 1, the meaning of y
is σ(y) = 2, etc.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Syntax
Semantics
Manipulating Expressions
Variables and substitutions
Free and bound variables
Subterms and substitution
Grafting and substitution
Ordered list of variables
Identifying terms modulo bound variables
Syntactic identity revised
Exercises

The meaning of application

◮ The meaning of (AB) is the functional application of the
meaning of A to the meaning of B .

◮ So, if the meaning of A is the identity function, and the
meaning of B is the number 3 then the meaning of (AB) is
the application of the identity function to 3 which gives 3.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Syntax
Semantics
Manipulating Expressions
Variables and substitutions
Free and bound variables
Subterms and substitution
Grafting and substitution
Ordered list of variables
Identifying terms modulo bound variables
Syntactic identity revised
Exercises

The meaning of abstraction

◮ The meaning of (λv .A) in an environment σ, is to be the
function which takes an object a and returns the function
which denotes the meaning of A in the environment σ where
v is bound to a.

◮ For example, (λx .x) denotes the identity function.

◮ (λx .(λy .x)) denotes the function which takes two arguments
and returns the first.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Syntax
Semantics
Manipulating Expressions
Variables and substitutions
Free and bound variables
Subterms and substitution
Grafting and substitution
Ordered list of variables
Identifying terms modulo bound variables
Syntactic identity revised
Exercises

The semantic function

◮ Let D be a model of the λ-calculus, a ∈ D and σ ∈ ENV. We

define σ(a/v)(v ′) =

{
a if v = v ′

σ(v ′) if v 6= v ′

◮ We define ‖ . ‖:MtimesENV 7→ D as follows:

◮ ‖ v ‖σ= σ(v).

◮ ‖ (AB) ‖σ=‖ A ‖σ (‖ B ‖σ).

◮ ‖ (λv .A) ‖σ= f : D 7→ D where f (a) =‖ A ‖σ(a/v).

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Syntax
Semantics
Manipulating Expressions
Variables and substitutions
Free and bound variables
Subterms and substitution
Grafting and substitution
Ordered list of variables
Identifying terms modulo bound variables
Syntactic identity revised
Exercises

Notational convention

◮ As parentheses are cumbersome, we will use the following
notational convention:

1. Functional application associates to the left. So
ABC denotes ((AB)C).

2. The body of a λ is anything that comes after it. So,
instead of (λv .(A1A2 . . . An)), we write λv .A1A2 . . . An.

3. A sequence of λ’s is compressed to one. So
λxyz .t denotes λx .(λy .(λz.t)).

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Syntax
Semantics
Manipulating Expressions
Variables and substitutions
Free and bound variables
Subterms and substitution
Grafting and substitution
Ordered list of variables
Identifying terms modulo bound variables
Syntactic identity revised
Exercises

◮ As a consequence of these notational conventions we get:

1. Parentheses may be dropped: (AB) and (λv .A) are written
AB and λv .A.

2. Application has priority over abstraction: λx .yz means λx .(yz)
and not (λx .y)z.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Syntax
Semantics
Manipulating Expressions
Variables and substitutions
Free and bound variables
Subterms and substitution
Grafting and substitution
Ordered list of variables
Identifying terms modulo bound variables
Syntactic identity revised
Exercises

Syntactic identity

◮ We say that A ≡ B iff A and B are exactly the same.

◮ For example, x ≡ x , λx .x ≡ λx .x .

◮ But x 6≡ y , λx .x 6≡ λy .y .

◮ Note that if AB ≡ A′B ′ then A ≡ A′ and B ≡ B ′.

◮ Also, if λv .A ≡ λv ′.A′ then v ≡ v ′ and A ≡ A′.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Syntax
Semantics
Manipulating Expressions
Variables and substitutions
Free and bound variables
Subterms and substitution
Grafting and substitution
Ordered list of variables
Identifying terms modulo bound variables
Syntactic identity revised
Exercises

Manipulating expressions

◮ We need to manipulate λ-expressions in order to get values.

◮ For example, we need to apply (λx .x) to y to obtain y .

◮ To do so, we must replace all occurrences of x in the body x
of the function by the argument y .

◮ For this, we use the β-rule which says that (λv .A)B evaluates
to the body A where v is substituted by B , written A[v := B].

◮ This is written as: (λv .A)B →β A[v := B].

◮ However, one has to be careful.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Syntax
Semantics
Manipulating Expressions
Variables and substitutions
Free and bound variables
Subterms and substitution
Grafting and substitution
Ordered list of variables
Identifying terms modulo bound variables
Syntactic identity revised
Exercises

The meaning of λxy .xy

◮ Recall that x 6≡ y .

◮ ‖ λxy .xy ‖σ= f where f (a) =‖ λy .xy ‖σ(a/x).

◮ But, ‖ λy .xy ‖σ(a/x)= g where g(b) =‖ xy ‖σ(a/x)(b/y).
But
‖ xy ‖σ(a/x)(b/y)=‖ x ‖σ(a/x)(b/y) (‖ y ‖σ(a/x)(b/y)) = a(b).

◮ Hence, ‖ λxy .xy ‖σ= f where f (a) = g where g(b) = a(b).

◮ Hence, ‖ λxy .xy ‖σ= f which if given two arguments a and b
produces a(b).

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Syntax
Semantics
Manipulating Expressions
Variables and substitutions
Free and bound variables
Subterms and substitution
Grafting and substitution
Ordered list of variables
Identifying terms modulo bound variables
Syntactic identity revised
Exercises

The meaning of λxz .xz

◮ Recall that x 6≡ z .

◮ ‖ λxz .xz ‖σ= f where f (a) =‖ λz .xz ‖σ(a/x).

◮ But, ‖ λz .xz ‖σ(a/x)= g where g(b) =‖ xz ‖σ(a/x)(b/z).
But
‖ xz ‖σ(a/x)(b/z)=‖ x ‖σ(a/x)(b/z) (‖ z ‖σ(a/x)(b/z)) = a(b).

◮ Hence, ‖ λxz .xz ‖σ= f where f (a) = g where g(b) = a(b).

◮ Hence, ‖ λxz .xz ‖σ= f which if given two arguments a and b
produces a(b).

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Syntax
Semantics
Manipulating Expressions
Variables and substitutions
Free and bound variables
Subterms and substitution
Grafting and substitution
Ordered list of variables
Identifying terms modulo bound variables
Syntactic identity revised
Exercises

◮ Hence, the meaning of λxy .xy is equal to the meaning of
λxz .xz .

◮ Hence, the meaning of (λxy .xy)y is equal to the meaning of
(λxz .xz)y .

◮ Now, if (λxy .xy)y →β λy .yy and (λxz .xz)y →β λz .yz then
the meaning of λy .yy must be equal to the meaning of λz .yz .

◮ This is not the case however. The meaning of λy .yy is not
equal to the meaning of λz .yz . We will see this on the next
slide.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Syntax
Semantics
Manipulating Expressions
Variables and substitutions
Free and bound variables
Subterms and substitution
Grafting and substitution
Ordered list of variables
Identifying terms modulo bound variables
Syntactic identity revised
Exercises

The meaning of λy .yy and of λz .yz

◮ Recall that y 6≡ z .

◮ ‖ λy .yy ‖σ= f where f (a) =‖ yy ‖σ(a/y)= a(a).

◮ ‖ λz .yz ‖σ= g where
g(a) =‖ yz ‖σ(a/z)=‖ y ‖σ(a/z) (a) =‖ y ‖σ (a).

◮ Since f (a) = a(a) and g(a) =‖ y ‖σ (a), obviously, f 6= g .

◮ Hence, the meaning of ‖ λy .yy ‖σ 6= the meaning of
‖ λz .yz ‖σ

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Syntax
Semantics
Manipulating Expressions
Variables and substitutions
Free and bound variables
Subterms and substitution
Grafting and substitution
Ordered list of variables
Identifying terms modulo bound variables
Syntactic identity revised
Exercises

Variables and Substitution

◮ Evaluating (λxz .xz)y to λz .yz is perfectly acceptable.
There is no problem with (λxz .xz)y →β λz .yz .

◮ But evaluating (λxy .xy)y to λy .yy is not acceptable.
We should not accept (λxy .xy)y →β λy .yy .

◮ We define the notions of free and bound variables which will
play an important role in avoiding the problem above.

◮ In fact, the λ is a variable binder, just like ∀ in logic.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Syntax
Semantics
Manipulating Expressions
Variables and substitutions
Free and bound variables
Subterms and substitution
Grafting and substitution
Ordered list of variables
Identifying terms modulo bound variables
Syntactic identity revised
Exercises

Free and Bound variables

◮ Take the two expressions x and λx .x .
◮ In the second expression, the variable x is bound, so that the

whole expression would not depend on x .
◮ In fact we could replace x by any other variable everywhere

and would still get an expression with the same meaning.
λx .x has the same meaning as λy .y .

◮ In the expression x however, x is free and cannot be replaced
by another variable without changing the meaning of the
expression.

◮ Even though λx .x is the same function as λy .y , x is not the
same as y .

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Syntax
Semantics
Manipulating Expressions
Variables and substitutions
Free and bound variables
Subterms and substitution
Grafting and substitution
Ordered list of variables
Identifying terms modulo bound variables
Syntactic identity revised
Exercises

◮ For a λ-term C , the set of free variables FV (C) is defined
inductively as follows:

FV (v) =def {v}
FV (λv .A) =def FV (A) \ {v}
FV (AB) =def FV (A) ∪ FV (B)

◮ An occurrence of v in A is free if it is not within the scope of
a λ, otherwise it is bound.

◮ For example, in (λx .yx)(λy .xy), the first occurrence of y is
free whereas the second is bound. Moreover, the first
occurrence of x is bound whereas the second is free.

◮ In λy .x(λx .yx) the first occurrence of x is free whereas the
second is bound.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Syntax
Semantics
Manipulating Expressions
Variables and substitutions
Free and bound variables
Subterms and substitution
Grafting and substitution
Ordered list of variables
Identifying terms modulo bound variables
Syntactic identity revised
Exercises

◮ For a λ-term C , the set of bound variables BV (C), is defined
inductively as follows:

BV (v) =def ∅
BV (λv .A) =def BV (A) ∪ {v}
BV (AB) =def BV (A) ∪ BV (B)

◮ A closed term is a λ-term in which all variables are bound.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Syntax
Semantics
Manipulating Expressions
Variables and substitutions
Free and bound variables
Subterms and substitution
Grafting and substitution
Ordered list of variables
Identifying terms modulo bound variables
Syntactic identity revised
Exercises

◮ Free and bound variables are important in the λ-calculus:
◮ Almost all λ-calculi identify terms that only differ in the name

of their bound variables.
◮ For example, since λx .x and λy .y have the same meaning (the

identity function), they are usually identified.
◮ We will see more on this when we will introduce α-conversion.

◮ Substitution has to be handled with care due to the distinct
roles played by bound and free variables.

◮ After substitution, no free variable can become bound.
◮ For example, (λy .xy)[x := y] must not return λy .yy , but

something like λz.yz .
◮ λy .yy and λz.yz have different meanings.
◮ λz.yz is obtained by renaming the bound y in λy .xy to z, and

then performing the substitution.
◮ There is no point in substituting for a bound variable.

What is the point of turning (λx .x)[x := y] into λy .y?
Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Syntax
Semantics
Manipulating Expressions
Variables and substitutions
Free and bound variables
Subterms and substitution
Grafting and substitution
Ordered list of variables
Identifying terms modulo bound variables
Syntactic identity revised
Exercises

Recalling Free and Bound variables

◮ Recall the definition of FV and BV .

◮ For example:
FV (x) = {x} BV (x) = ∅
FV (λx .x) = ∅ BV (λx .x) = {x}
FV (λx .y) = {y} BV (λx .y) = {x}
FV (λyx .y) = ∅ BV (λyx .y) = {x , y}
FV ((λx .y)(λy .y)) = {y} BV ((λx .y)(λy .y)) = {x , y}
FV ((λx .x)x) = {x} BV ((λx .x)x) = {x}

◮ Note that a variable v can be in both FV (A) and BV (A).

◮ For example, x ∈ FV ((λx .x)x) and x ∈ BV ((λx .x)x).

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Syntax
Semantics
Manipulating Expressions
Variables and substitutions
Free and bound variables
Subterms and substitution
Grafting and substitution
Ordered list of variables
Identifying terms modulo bound variables
Syntactic identity revised
Exercises

Subterms

◮ We define the notion of subterms

Subterms(v) = {v}
Subterms(λv .A) = Subterms(A) ∪ {λv .A}
Subterms(AB) = Subterms(A) ∪ Subterms(B) ∪ {AB}

◮ For example:
Subterms((λx .x)(yz)) = {x , y , z , λx .x , yz , (λx .x)(yz)}

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Syntax
Semantics
Manipulating Expressions
Variables and substitutions
Free and bound variables
Subterms and substitution
Grafting and substitution
Ordered list of variables
Identifying terms modulo bound variables
Syntactic identity revised
Exercises

Trees of terms

◮ We can draw the terms graphically as trees. We use δ for
application:

t

t

t

t

t

t

λx

δ
δ

x y z
�

�
�

�@
@

@
@�

�

Figure: The tree of (λx .x)(yz)

◮ Note that subterms are easy to see now. They are all the
subtrees of the tree of a term.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Syntax
Semantics
Manipulating Expressions
Variables and substitutions
Free and bound variables
Subterms and substitution
Grafting and substitution
Ordered list of variables
Identifying terms modulo bound variables
Syntactic identity revised
Exercises

Scope and Occurrences

◮ We say that v is in the scope of λv in C if
λv .A ∈ Subterms(C) and v ∈ FV (A).

◮ For example, take λxy .xy .
◮ y is in the scope of λy in λxy .xy because:

λy .xy ∈ Subterms(λxy .xy) and y ∈ FV (xy).
◮ x is in the scope of λx in λxy .xy because:

λxy .xySubterms(λxy .xy) and x ∈ FV (λy .xy).
◮ We can talk about the occurrences of a variable v in an

expression A where we take into account the existence of v in
A discounting the v ’s in the λv ’s.

◮ For example, x occurs twice in (λx .x)x but zero times in λx .y .

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Syntax
Semantics
Manipulating Expressions
Variables and substitutions
Free and bound variables
Subterms and substitution
Grafting and substitution
Ordered list of variables
Identifying terms modulo bound variables
Syntactic identity revised
Exercises

Free and bound occurrences

◮ An occurrence of a variable v in a λ-expression A is free if
that occurrence is not within the scope of a λv in A,
otherwise it is bound.

◮ In (λx .yx)(λy .xy), the first occurrence of y is free whereas
the second is bound. Moreover, the first occurrence of x is
bound whereas the second is free.

◮ In λy .x(λx .yx) the first occurrence of x is free whereas the
second is bound.

◮ In (λx .x)x , the first occurrence of x is bound, yet the second
occurrence is free.

◮ A closed expression is an expression in which all occurrences
of variables are bound.Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Syntax
Semantics
Manipulating Expressions
Variables and substitutions
Free and bound variables
Subterms and substitution
Grafting and substitution
Ordered list of variables
Identifying terms modulo bound variables
Syntactic identity revised
Exercises

Grafting

◮ Recall that the λ-expressions represent programs and that we
evaluate these programs via the β-rule:

(λv .A)B →β A[v := B]

◮ Recall that taking A[v := B] as grafting (the repalcement of
all free occurrences of v in A by B) is problematic.

◮ (λxz .xz)y →β (λz .xz)[x := y] ≡ λz .yz is acceptable.
◮ But (λxy .xy)y →β (λy .xy)[x := y] ≡ λy .yy is not acceptable.
◮ In λy .xy , before replacing x by y , we need to rename the

bound variable z .
◮ So, we define substitution to take this into account.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Syntax
Semantics
Manipulating Expressions
Variables and substitutions
Free and bound variables
Subterms and substitution
Grafting and substitution
Ordered list of variables
Identifying terms modulo bound variables
Syntactic identity revised
Exercises

Substitution

◮ For any A,B , v , we define A[v := B] to be the result of
substituting B for every free occurrence of v in A, as follows:

1. v [v := B] ≡ B
2. v ′[v := B] ≡ v ′ if v 6≡ v ′

3. (AC)[v := B] ≡ A[v := B]C [v := B]
4. (λv .A)[v := B] ≡ λv .A
5. (λv ′.A)[v := B] ≡ λv ′.A[v := B] if v 6≡ v ′

and (v ′ 6∈ FV (B) or v 6∈ FV (A))
6. (λv ′.A)[v := B] ≡ λv ′′.A[v ′ := v ′′][v := B] if v 6≡ v ′

and (v ′ ∈ FV (B) and v ∈ FV (A))
and v ′′ 6∈ FV (AB)

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Syntax
Semantics
Manipulating Expressions
Variables and substitutions
Free and bound variables
Subterms and substitution
Grafting and substitution
Ordered list of variables
Identifying terms modulo bound variables
Syntactic identity revised
Exercises

Examples

1. x [x := λz .z] ≡ λz .z .

2. y [x := λz .z] ≡ y .

3. (xz)[x := λz .z] ≡ (λz .z)z .

4. (λx .x)[x := (λz .z)y] ≡ λx .x .
5. ◮ (λy .xy)[x := (λz.z)x1] ≡ λy .(λz.z)x1y .

Note that y 6∈ FV ((λz.z)x1).
Hence, no free variable of (λz.z)x1 will become bound by λy
after substitution.

◮ The following is NOT CORRECT:
(λy .xy)[x := (λz.z)y] ≡ λy .(λz.z)yy .
The free y in (λz.z)y became bound in λy .(λz.z)yy .

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Syntax
Semantics
Manipulating Expressions
Variables and substitutions
Free and bound variables
Subterms and substitution
Grafting and substitution
Ordered list of variables
Identifying terms modulo bound variables
Syntactic identity revised
Exercises

How do we find v ′′ in clause 6?

◮ So, (λy .xy)[x := (λz .z)y] must be 6≡ λy .(λz .z)yy .
◮ Note that y ∈ FV ((λz .z)y) and x ∈ FV (xy). Hence, we need

to use clause 6 to do the substitution (λy .xy)[x := (λz .z)y].
◮ For clarity, let us take the simpler example: (λy .xy)[x := y].

By clause 6, we can rename the y of (λy .xy) to anyone of the
infinite number of variables in V as long as as we don’t
rename it to x . So, we can have:

◮ (λy .xy)[x := y] ≡ λx ′.(xy)[y := x ′][x := y] ≡ λx ′.yx ′ or
◮ (λy .xy)[x := y] ≡ λy ′.(xy)[y := y ′][x := y] ≡ λy ′.yy ′ or
◮ (λy .xy)[x := y] ≡ λz.(xy)[y := z][x := y] ≡ λz.yz etc.

◮ This creates problems. (λy .xy)[x := y] can be anyone of an
infinite set of expressions. Which one is the official result?

◮ By our definition of syntactic equality,Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Syntax
Semantics
Manipulating Expressions
Variables and substitutions
Free and bound variables
Subterms and substitution
Grafting and substitution
Ordered list of variables
Identifying terms modulo bound variables
Syntactic identity revised
Exercises

◮ One way to get a unique result in the last clause of the above
definition would be to order the list of variables V and then to
take v ′′ to be the first variable in the ordered list V which is
different from v and v ′ and which occurs after all the free
variables of AB .

◮ For example, if the ascending order in V is

x , y , z , x ′, y ′, z ′, x ′′, y ′′, z ′′, . . .

◮ then (λy .xy)[x := y] can only be (λz .yz) since z is the first
variable of the ordered list which is after all the free variables
of y and x .

◮ This however has its own complications.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Syntax
Semantics
Manipulating Expressions
Variables and substitutions
Free and bound variables
Subterms and substitution
Grafting and substitution
Ordered list of variables
Identifying terms modulo bound variables
Syntactic identity revised
Exercises

◮ In the case when terms are identified modulo the names of
their bound variables, then in the last clause of the above
definition, any v ′′ 6∈ FV (AB) can be taken.

◮ I.e., if we take λx ′.yx ′ to be the same as λy ′.yy ′, λz .yz , etc.,
then any chosen v ′′ 6∈ FV (AB) can be taken.

◮ This is what we will do in our course. We will identify terms
modulo the names of their bound variables.

◮ We treat λx ′.yx ′, λy ′.yy ′, λz .yz , etc. to be the same term.
◮ This changes our earlier definition of syntactic identity.

Now, λx ′.yx ′ ≡ λy ′.yy ′ ≡ λz .yz .
◮ We say that such terms are equal up to the name of bound

variables. We will come back to this after defining
α-reduction.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Syntax
Semantics
Manipulating Expressions
Variables and substitutions
Free and bound variables
Subterms and substitution
Grafting and substitution
Ordered list of variables
Identifying terms modulo bound variables
Syntactic identity revised
Exercises

◮ With our assumption that terms are equal up to the name of
bound variables, we will review our two examples that invoke
clause 6 of substitution.

◮ Example 1:
◮ (λy .xy)[x := y] ≡ λz.yz (where we renamed y to z in λy .xy).
◮ We could also rename y to x3 say, and we get:

(λy .xy)[x := y] ≡ λx3.yx3.

◮ Example 2:
◮ (λy .xy)[x := (λz.z)y] ≡ λz.(λz.z)yz (where we renamed y to

z in λy .xy).
◮ We could also rename y to x3 say, and we get:

(λy .xy)[x := (λz.z)y] ≡ λx3.(λz.z)yx3.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Syntax
Semantics
Manipulating Expressions
Variables and substitutions
Free and bound variables
Subterms and substitution
Grafting and substitution
Ordered list of variables
Identifying terms modulo bound variables
Syntactic identity revised
Exercises

Syntactic identity revised

◮ Now we review the definition of syntactic identity given in
Lecture 2.

◮ We say that A ≡ B iff A and B are exactly the same up to the
name of their bound variables.

◮ I.e., A and B only differ in the name of their bound variables.

◮ For example, x ≡ x , λx .x ≡ λy .y , but x 6≡ y .

◮ It remains that if AB ≡ A′B ′ then A ≡ A′ and B ≡ B ′.

◮ If λv .A ≡ λv ′.A′ then A′ ≡ A[v := v ′].

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Syntax
Semantics
Manipulating Expressions
Variables and substitutions
Free and bound variables
Subterms and substitution
Grafting and substitution
Ordered list of variables
Identifying terms modulo bound variables
Syntactic identity revised
Exercises

Exercises

◮ 1. Find the meaning of the following expressions:
1. (λx .x)
2. (λx .(xx))
3. (λx .(λy .x))
4. (λx .(λy .(xy)))
5. ((λx .x)(λx .x))

◮ 2. Simplify the following expressions:
1. (λx .(xy))
2. ((λy .y)(λx .(xy)))
3. ((λx .(xy))(λx .(xy)))
4. (λx .(λy .x))
5. (λx .(λy .(λz.((xz)(yz)))))

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Syntax
Semantics
Manipulating Expressions
Variables and substitutions
Free and bound variables
Subterms and substitution
Grafting and substitution
Ordered list of variables
Identifying terms modulo bound variables
Syntactic identity revised
Exercises

◮ 3. Insert the full amount of parenthesis in the following:

1. y ′x(yz)(λx ′.x ′y)
2. (λxyz.xz(yz))x ′y ′z ′

3. x ′(λxyz.xz(yz))y ′z ′

◮ 4. Write in SML, a recursive type of the expressions of the
λ-calculus.

◮ 5. Write in SML, a function free which checks whether a
variable is free in a λ-expression.

◮ 6. Write in SML, a function freeVars which finds the free
variables of a λ-expression.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Syntax
Semantics
Manipulating Expressions
Variables and substitutions
Free and bound variables
Subterms and substitution
Grafting and substitution
Ordered list of variables
Identifying terms modulo bound variables
Syntactic identity revised
Exercises

Exercises

◮ 7. Use the definition of substitution (clauses 1..6) to evaluate
the following (show all the evaluation steps):

1. (λy .x(λx .x))[x := λy .yx].
2. (y(λz.xz))[x := (λy .zy)].

◮ 8. Write in SML, a function subterms which finds the
subterms of a λ-expression.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Syntax
Semantics
Manipulating Expressions
Variables and substitutions
Free and bound variables
Subterms and substitution
Grafting and substitution
Ordered list of variables
Identifying terms modulo bound variables
Syntactic identity revised
Exercises

◮ 9. Write in SML, a function findme which takes a variable v
and a list l of variables and returns a new variable which is
different from v and which does not occur in l .

◮ 10. Write in SML, a function subs which does substitution
A[v := B] as we defined it on unclean terms.

◮ 11. Run and test the SML functions we have written so far
(i.e., free, freeVars, subterms, findme and subs).

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Cleaning up terms
Substitution on clean terms
Alpha reduction
Beta reduction
Eta reduction
convertibility
Extensionality
Normal forms
Weakly and Strongly normalising
Exercises

◮ Recall the definition of terms: M ::= V | (λV.M) | (MM).

◮ Recall our definition of FV and BV .

◮ Recall also that we take terms modulo the name of bound
variables. I.e., λx .x ≡ λy .y .

◮ Now, BV does not make much sense anymore.
◮ BV (λx .x) = {x} and BV (λy .y) = {y}.
◮ So, if λx .x ≡ λy .y , shouldn’t BV (λx .x) = BV (λy .y)?

◮ Although BV (A) does not make sense anymore, we can still
speak of a bound occurrence of avariable.

◮ It is the occurrence that matter. So in λx .x◦, the x◦ is bound.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Cleaning up terms
Substitution on clean terms
Alpha reduction
Beta reduction
Eta reduction
convertibility
Extensionality
Normal forms
Weakly and Strongly normalising
Exercises

Cleaning up terms

◮ Look at (λv ′.A)[v := B].
◮ If v ′ ∈ FV (B), we can rename it to v ′′. We write

(λv ′′.A[v ′ := v ′′])[v := B].
◮ We can choose this v ′′ so that v ′′ 6∈ FV (B).
◮ For example, we can rename (λy .xy)[x := y] to

(λz.xz)[x := y] where z 6∈ FV (y).
◮ Hence, in (λv ′.A)[v := B], we can assume that v ′ 6∈ FV (B).
◮ We can even assume that in a substitution context A[v := B],

no variable occurs both free and bound.
◮ Also, in (λv ′.A)[v := B], we can assume that v 6≡ v ′.

◮ Otherwise, we can rename v ′ to another variable.
◮ We can even assume that in A[v := B], λv .C 6∈ Subterms(A).
◮ So, instead of (λyx .yx)[x := y] we can write (λyz.yz)[x := y].

◮

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Cleaning up terms
Substitution on clean terms
Alpha reduction
Beta reduction
Eta reduction
convertibility
Extensionality
Normal forms
Weakly and Strongly normalising
Exercises

Clean terms

◮ The above conventions for cleaning terms (are called the
Barendregt convention).

◮ Cleaned up terms following the Barendregt convention are
called clean terms.

◮ In clean terms, no variable is both free and bound.
◮ On clean terms, every substitution A[x := B] is clean in that

no variable occurs both free and bound.
◮ (λx .x)x is not clean because x occurs both as free and as

bound.
◮ (λy .y)x is clean. No variable occurs both as free and as

bound.
◮ (λx .xy)[y := x] is not clean because x is free in the x ofFairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Cleaning up terms
Substitution on clean terms
Alpha reduction
Beta reduction
Eta reduction
convertibility
Extensionality
Normal forms
Weakly and Strongly normalising
Exercises

Substitution on clean terms

◮ On clean terms, we can simplify substitution.
◮ Clause 4 is no longer needed. We don’t write (λv .A)[v := B].
◮ Clause 6 is no longer needed. Whenever we write

(λv ′.A)[v := B], we assume that v 6≡ v ′ and that v ′ 6∈ FV (B).
◮ Now, substitution can be simplified (or cleaned) as follows:

For any A,B , v , we define A[v := B] to be the result of
substituting B for every free occurrence of v in A, as follows:

1. v [v := B] ≡ B
2. v ′[v := B] ≡ v ′ if v 6≡ v ′

3. (AC)[v := B] ≡ A[v := B]C [v := B]
5′. (λv ′.A)[v := B] ≡ λv ′.A[v := B]

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Cleaning up terms
Substitution on clean terms
Alpha reduction
Beta reduction
Eta reduction
convertibility
Extensionality
Normal forms
Weakly and Strongly normalising
Exercises

Why is the new clean definition of substitution correct?

◮ (λy .xy)[x := y] is not clean because y occurs as bound (in
λy .xy and as free (in the y of [x := y]). We need to use
instead the clean version (λz .xz)[x := y].

◮ With this clean version, we use clause 5’ to substitute followed
by clause 3.
(λz .xz)[x := y] ≡ λz .(xz)[x := y] ≡ λz .yz .

◮ Not only is clean substitution clearer and tidier, but it makes
the proofs about the λ-calculus much simpler.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Cleaning up terms
Substitution on clean terms
Alpha reduction
Beta reduction
Eta reduction
convertibility
Extensionality
Normal forms
Weakly and Strongly normalising
Exercises

◮ So we have assumed that terms are equivalent up to the
renaming of their bound variables. So, λx .x ≡ λy .y .

◮ If no further restrictions are imposed on our terms (i.e.,
variables can occur both free and bound in the same term),
then we need to use the notion of substitution defined on the
non-clean terms (clauses 1..6).

◮ If on the other hand, terms are assumed to be clean (as in the
Barendregt convention) then substitution can be simplified so
that clauses 4+5+6 are replaced by clause 5’.

◮ Note that in implementations, we cannot assume the terms
are clean. There is no magic to automatically clean terms on
a machine following the Barendregt convention.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Cleaning up terms
Substitution on clean terms
Alpha reduction
Beta reduction
Eta reduction
convertibility
Extensionality
Normal forms
Weakly and Strongly normalising
Exercises

The substitution Lemma

◮ We have an important lemma for substitution (which holds
both for clean and unclean terms):

◮ Lemma: Let A,B ,C ∈M, v , v ′, ∈ V.
For v 6≡ v ′ and v 6∈ FV(C), we have that:
A[v := B][v ′ := C] ≡ A[v ′ := C][v := B [v ′ := C]].

◮ The proof is by induction on the structure of A.
◮ Do this proof yourself and compare how easy it is if we use

clean terms and check that it gets complicated if we don’t use
clean terms.

◮ For example: since x 6∈ FV ((λz .z)x1) we have
◮ (xy)[x := λz.yz][y := (λz.z)x1] ≡ (λz.((λz.z)x1)z)((λz.z)x1)
◮ (xy)[y := (λz.z)x1][x := (λz.yz)[y := (λz.z)x1]] ≡

(λz.((λz.z)x)z)((λz.z)x).
Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Cleaning up terms
Substitution on clean terms
Alpha reduction
Beta reduction
Eta reduction
convertibility
Extensionality
Normal forms
Weakly and Strongly normalising
Exercises

Reduction

◮ Three notions of reduction will be studied in this section.

◮ The first is α-reduction which identifies terms up to variable
renaming.

◮ The second is β-reduction which evaluates λ-terms.

◮ The third is η-reduction which is used to identify functions
that return the same values for the same arguments
(extensionality).

◮ β-reduction is used in every λ-calculus, whereas η-reduction
and α-reduction may or may not be used.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Cleaning up terms
Substitution on clean terms
Alpha reduction
Beta reduction
Eta reduction
convertibility
Extensionality
Normal forms
Weakly and Strongly normalising
Exercises

◮ Now, look at (λv ′.A). By our assumption that terms are
equivalent up to the name of their bound variables, we can
rename v ′ to any v ′′ we want, as long as v ′′ 6∈ FV (A).

◮ For example, we can rename the y of λy .xy to anything,
except to x , since x ∈ FV (xy).

◮ We call this renaming α-reduction.

◮ We write this as a rule as follows:

λv ′.A→α λv ′′.A[v ′ := v ′′] if v ′′ 6∈ FV (A)

◮ Note that the condition v ′′ 6∈ FV (A) is needed to avoid
making free variables into bound ones.

◮ For example, λy .xy →α λz .xz but λy .xy 6→α λx .xx .

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Cleaning up terms
Substitution on clean terms
Alpha reduction
Beta reduction
Eta reduction
convertibility
Extensionality
Normal forms
Weakly and Strongly normalising
Exercises

◮ But, what do we do in (λy .xy)y? How do we rename the y of
λy .xy to somthing else, say z?

◮ Also, in λx .(λy .xy)y?
◮ We use the so-called compatibility rules:

◮
A→α B

AC →α BC

◮
A→α B

CA→α CB

◮
A→α B

λx .A→α λx .B
◮ So λy .xy →α λz .xz
◮ (λy .xy)y →α (λz .xz)y
◮ λx .(λy .xy)y →α λx .(λz .xz)y

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Cleaning up terms
Substitution on clean terms
Alpha reduction
Beta reduction
Eta reduction
convertibility
Extensionality
Normal forms
Weakly and Strongly normalising
Exercises

Transitivity and reflexivity

◮ Now, look at (λy .xy)(λz .z)

◮ (λy .xy)(λz .z)→α (λy1.xy1)(λz .z)

◮ (λy1.xy1)(λz .z)→α (λy1.xy1)(λz1.z1)

◮ So, (λy .xy)(λz .z)→α (λy1.xy1)(λz .z)→α (λy1.xy1)(λz1.z1)

◮ We say: (λy .xy)(λz .z)→→α (λy1.xy1)(λz1.z1)

◮ Also, we would like: A→→α A.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Cleaning up terms
Substitution on clean terms
Alpha reduction
Beta reduction
Eta reduction
convertibility
Extensionality
Normal forms
Weakly and Strongly normalising
Exercises

Alpha reduction

◮ →α is defined to be the least compatible relation closed under
the axiom:

(α) λv .A→α λv ′.A[v := v ′] where v ′ 6∈ FV (A)

◮ We call λv .A an α-redex and we say that λv .A α-reduces to
λv ′.A[v := v ′].

◮ λx .x→αλy .y . λx .x is an α-redex and λx .x α-reduces to λy .y .
◮ λx .xy 6→α λy .yy .
◮ We define →→α to be the reflexive transitive closure of →α.
◮ λz .(λx .x)x→→αλz .(λy .y)x .

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Cleaning up terms
Substitution on clean terms
Alpha reduction
Beta reduction
Eta reduction
convertibility
Extensionality
Normal forms
Weakly and Strongly normalising
Exercises

◮ Compatibility rules for β are defined similarly to those for α.

◮
A→β B

AC →β BC

◮
A→β B

CA→β CB

◮
A→β B

λx .A→β λx .B

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Cleaning up terms
Substitution on clean terms
Alpha reduction
Beta reduction
Eta reduction
convertibility
Extensionality
Normal forms
Weakly and Strongly normalising
Exercises

Beta reduction

◮ →β is defined to be the least compatible relation closed under
the axiom:

(β) (λv .A)B→βA[v := B]

◮ We say that (λv .A)B is a β-redex and that (λv .A)B
β-reduces to A[v := B].

◮ (λx .x)(λz .z)→βλz .z

◮ We write →→β for the reflexive transitive closure of →β.

◮ (λx .λy .λz .xz(yz))(λx .x)(λx .x)y →→β yy .

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Cleaning up terms
Substitution on clean terms
Alpha reduction
Beta reduction
Eta reduction
convertibility
Extensionality
Normal forms
Weakly and Strongly normalising
Exercises

◮ Here is a lemma about the interaction of β-reduction and
substitution:
Lemma: Let A,B ,C ,D ∈M.

1. If C →β D then A[x := C]→→β A[x := D] .
2. If A→β B then A[x := C]→β B[x := C] .

◮ Proof: 1. By induction on the structure of A.
2. By induction on the derivation A→β B using the
substitution lemma.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Cleaning up terms
Substitution on clean terms
Alpha reduction
Beta reduction
Eta reduction
convertibility
Extensionality
Normal forms
Weakly and Strongly normalising
Exercises

Eta reduction

◮ We define compatibility for η similarly to that of β and α.
◮ →η is defined to be the least compatible relation closed under

the axiom:

(η) λv .Av→ηA for v 6∈ FV (A)

◮ When v 6∈ FV (A), we say that λv .Av is an η-redex and that
λv .Av η-reduces to A.

◮ λx .(λz .z)x→ηλz .z.
◮ λx .xx 6→η x .
◮ We use →→η to denote the reflexive, transitive closure of →η.
◮ For example: λy .(λx .(λz .z)x)y →→η λz .z .

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Cleaning up terms
Substitution on clean terms
Alpha reduction
Beta reduction
Eta reduction
convertibility
Extensionality
Normal forms
Weakly and Strongly normalising
Exercises

Let us summarize our reduction relations

◮ Recall the three reduction axioms we have so far:
(α) λv .A→α λv ′.A[v := v ′] where v ′ 6∈ FV (A)
(β) (λv .A)B→βA[v := B]
(η) λv .Av→ηA for v 6∈ FV (A)

◮ Let r ∈ {β, α, η}. We said that:
→r is the least compatible relation closed under axiom (r).

◮ I.e., A→r B if and only if one of the following holds:
◮ A is the lefthand side of axiom (r) and B is its righthand side.

◮

A1 →r A2

A ≡ A1C →r A2C ≡ B

◮

A1 →r A2

A ≡ CA1 →r CA2 ≡ BFairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Cleaning up terms
Substitution on clean terms
Alpha reduction
Beta reduction
Eta reduction
convertibility
Extensionality
Normal forms
Weakly and Strongly normalising
Exercises

Examples of →r where r is β

◮ (λxyz .xyz)(λx .xx)→β λyz .(λx .xx)yz

◮
(λxyz .xyz)(λx .xx)→β λyz .(λx .xx)yz

(λxyz .xyz)(λx .xx)(λx .x) →β (λyz .(λx .xx)yz)(λx .x)

◮
(λxyz .xyz)(λx .xx)→β λyz .(λx .xx)yz

(λx .x)((λxyz .xyz)(λx .xx)) →β (λx .x)(λyz .(λx .xx)yz)

◮
(λxyz .xyz)(λx .xx)→β λyz .(λx .xx)yz

λx ′.(λxyz .xyz)(λx .xx)→β λx ′.λyz .(λx .xx)yz

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Cleaning up terms
Substitution on clean terms
Alpha reduction
Beta reduction
Eta reduction
convertibility
Extensionality
Normal forms
Weakly and Strongly normalising
Exercises

Examples of →r where r is β

◮ Note that (λxyz .xyz)(λx .xx) 6→β (λxyz .xyz)(λx .xx).

◮ This is why we introduce a reflexive relation →→β which
contains →β and where A→→β A for any A.

◮ Hence, (λxyz .xyz)(λx .xx)→→β (λxyz .xyz)(λx .xx).

◮ Note also that, even though
(λxyz .xyz)(λx .xx)→β (λyz .(λx .xx)yz)→β (λyz .yyz),
(λxyz .xyz)(λx .xx) 6→β (λyz .yyz).

◮ This is why we also make →→β transitive.
◮ I.e., if A→→β B and B →→β C then A→→β C .
◮ Hence, (λxyz .xyz)(λx .xx)→→β (λyz .yyz).

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Cleaning up terms
Substitution on clean terms
Alpha reduction
Beta reduction
Eta reduction
convertibility
Extensionality
Normal forms
Weakly and Strongly normalising
Exercises

◮ So, for any r ∈ {β, α, η}, we define →→r to be the reflexive
transitive closure of →r .

◮ This means that:
◮

A→r B

A→→r B

◮ A→→r A

◮

A→→r B B →→r C

A→→r C
◮ Lemma

◮ →→r is compatibe:
A→→r B

AC →→r BC

A→→r B

CA→→r CB

A→→r B

λx .A→→r λx .B
Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Cleaning up terms
Substitution on clean terms
Alpha reduction
Beta reduction
Eta reduction
convertibility
Extensionality
Normal forms
Weakly and Strongly normalising
Exercises

◮ You can think of →r as computation rules. When A computes
to B , it is not necessarily the case that B computes to A.

◮ E.g., (λxyz .xyz)(λx .xx)→β (λyz .(λx .xx)yz).
But, (λyz .(λx .xx)yz) 6→β (λxyz .xyz)(λx .xx).

◮ We introduce symmetry. We define =r to be the smallest
reflexive, transitive and symmetric relation which contains →r .

◮ A =r A
A =r B B =r C

A =r C

A =r B

B =r A

A→r B

A =r B
◮ If A =r B , we say that A and B are r -convertible.
◮ Lemma: =r is compatibe.

◮

A =r B

AC =r BC

A =r B

CA =r CB

A =r B

λx .A =r λx .B
◮ Recall that A ≡ B iff A and B are syntactically identical up to

the name of their bound variables. Hence, A ≡ B iff A =α B .

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Cleaning up terms
Substitution on clean terms
Alpha reduction
Beta reduction
Eta reduction
convertibility
Extensionality
Normal forms
Weakly and Strongly normalising
Exercises

◮ If A→β B or A→η B , we write A→βη B .
◮ We define →→βη to be the reflexive transitive closure of →βη.
◮ We define =βη to be the reflexive, symmetric and transitive

closure of →βη.
◮ Again, →→βη and =βη are compatible.
◮ η-conversion equates two terms that have the same behaviour

as functions and implies extensionality.
◮ Lemma [Extensionality]: Assume v 6∈ FV (A) and v 6∈ FV (B).

If Av =βη Bv then A =βη B .
◮ Proof: Assume v 6∈ FV (A), v 6∈ FV (B) and Av =βη Bv .

◮ By compatibility, λv .Av =βη λv .Bv .
◮ λv .Av =βη A by (η), since v 6∈ FV (A)
◮ λv .Bv =βη B by (η), since v 6∈ FV (B)
◮ Hence, A =βη B, since =βη is an equivalence relation.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Cleaning up terms
Substitution on clean terms
Alpha reduction
Beta reduction
Eta reduction
convertibility
Extensionality
Normal forms
Weakly and Strongly normalising
Exercises

In Normal Form

◮ We say that A is in β-normal form, if there are no β-redexes
in A.

◮ λx .zx is in β-normal form.
◮ We say that A is in η-normal form, if there are no η-redexes in

A.
◮ λx .zx is not in η-normal form. But, λx .xx is in η-normal form.
◮ We say that A is in βη-normal form, if there are no β-redexes

and no η-redexes in A.
◮ λx .xx is in βη-normal form.
◮ Let r ∈ {β, η, βη}. Then, A is in r -normal form iff there are

no r -redexes in A. I.e., there is no B such that A→r B .
Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Cleaning up terms
Substitution on clean terms
Alpha reduction
Beta reduction
Eta reduction
convertibility
Extensionality
Normal forms
Weakly and Strongly normalising
Exercises

Has Normal Form

◮ Let r ∈ {β, η, βη}.
◮ We say that A has an r -normal form B if A =r B and B is in

r -normal form.
◮ For example, (λxyz .xyz)(λx .xx)(λx .x)x is not in β-normal

form, but it has a β-normal form x .
◮ Not all terms have normal forms.
◮ (λx .xx)(λx .xx) is not in β-normal form and there is no B

such that (λx .xx)(λx .xx) =β B and B is in β-normal form.
◮ (λx .xx)(λx .xx) does not have a β-normal form.
◮ We will see this later. For now, note that:

(λx .xx)(λx .xx) →β (λx .xx)(λx .xx) →β (λx .xx)(λx .xx).......
Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Cleaning up terms
Substitution on clean terms
Alpha reduction
Beta reduction
Eta reduction
convertibility
Extensionality
Normal forms
Weakly and Strongly normalising
Exercises

Weakly and Strongly normalising terms

◮ A term A is strongly r -normalising if there are no infinite
r -reduction sequences starting at A.

◮ (λx .xx)(λx .xx) is not strongly β-normalising because:
(λx .xx)(λx .xx) →β (λx .xx)(λx .xx) →β (λx .xx)(λx .xx).......

◮ A term A is weakly r -normalising if there is a B in normal
form such that A→→r B .

◮ (λx .xx)(λy .y)z is weakly β-normalising:
(λx .xx)(λy .y)z →→β z .

◮ Is (λz .y)((λx .xx)(λx .xx)) weakly β-normalising?
◮ Lemma: If A is strongly r -normalising then A is weakly

r -normalising and A has an r -normal form.
Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Cleaning up terms
Substitution on clean terms
Alpha reduction
Beta reduction
Eta reduction
convertibility
Extensionality
Normal forms
Weakly and Strongly normalising
Exercises

Exercises

◮ 1. For each of the following items, say whether it is clean or
not. If not, say why not and give the clean version.

1. (λxy .xy)(λz.z)y .
2. (λxy .xy)(λx .x).
3. (λxy .xy)[y := z].
4. (λz.yz)[y := z].

◮ 2. β-reduce the following until there are no more β-redexes:
1. (λxyz.xyz)(λx .xx)(λx .x)x
2. (λxyz.xyz)(λx .xx)(λx .xx)x (λx .xx)(λx .xx)
3. (λx .z)((λx .xx)(λx .xx))

◮ 3. Reduce (λxyz .xz(yz))(λx .x)(λx .x) until no β- or η-redexes
remain.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Cleaning up terms
Substitution on clean terms
Alpha reduction
Beta reduction
Eta reduction
convertibility
Extensionality
Normal forms
Weakly and Strongly normalising
Exercises

◮ 4. Show that λzx .(λy .y)x →η λzy .y .

◮ 5. Is (λz .y)((λx .xx)(λx .xx)) weakly β-normalising? Is it
strongly β-normalising? Explain your answer.

◮ 6. Write in SML a function beta redex which checks whether
a term is a β-redex.

◮ 7. Write in SML a function eta redex which checks whether a
term is a η-redex.

◮ 8. Write in SML a function hasbeta redex which checks
whether a term has a β-redex.

◮ 9. Write in SML a function haseta redex which checks
whether a term has a η-redex.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Propeties of terms

Church-Rosser
Standardisation
Left or right redexes
Standardisation theorem
Normalisation theorem
Exercises

Propeties of terms

◮ Let r ∈ {β, η, βη}.
◮ Does every expression have a r -normal form?

can we keep reducing an expression until we reach a normal
form?
Is every expression weakly r -normalising?
Is every expression strongly r -normalising?

◮ Recall that an expression A is weakly r -normalising if A→→r B
where B is in r -normal form.

◮ So, if A→→r B1 and A→→r B2 where B1 and B2 are in
r -normal form, is it the case that B1 ≡ B2?
Are normal forms unique?

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Propeties of terms

Church-Rosser
Standardisation
Left or right redexes
Standardisation theorem
Normalisation theorem
Exercises

We will see that:

◮ Not all expressions have β-normal forms.
◮ If an r -normal form exists it is unique for r ∈ {β, η, βη}.
◮ The order of reduction will affect our reaching of a normal

form of the expression.
◮ Sometime, a term may have a normal form, but we may not

find this normal form if we use a reduction path which does
not terminate.

◮ Sometime, the choice of redexes to be reduced does not affect
the termination of our computation. Sometime, this choice
may lead our computation to loop.

◮ There is a reduction strategy however which will us to
terminate and find the final value (if such a value exists).Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Propeties of terms

Church-Rosser
Standardisation
Left or right redexes
Standardisation theorem
Normalisation theorem
Exercises

◮ (λx .xx)(λx .xx) is not weakly β-normalising (and hence is not
strongly β-normalising).

◮ We can reduce in different orders:
(λy .(λx .x)(λz .z))xy→β(λy .λz .z)xy→β(λz .z)y→βy and
(λy .(λx .x)(λz .z))xy→β((λx .x)(λz .z))y→β(λz .z)y→βy

◮ We omit the word weakly. So, when we say β-normalising, we
mean weakly β-normalising.

◮ A term may be β-normalising but not strongly β-normalising:
(λy .z)((λx .xx)(λx .xx))→βz yet
(λy .z)((λx .xx)(λx .xx))→β(λy .z)((λx .xx)(λx .xx))→β . . .

◮ A term may grow after reduction:
(λx .xxx)(λx .xxx) →β (λx .xxx)(λx .xxx)(λx .xxx)

→β (λx .xxx)(λx .xxx)(λx .xxx)(λx .xxx)

→β . . .Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Propeties of terms

Church-Rosser
Standardisation
Left or right redexes
Standardisation theorem
Normalisation theorem
Exercises

◮ Over expressions whose evaluation does not terminate, there
is little we can do, so let us restrict our attention to those
expressions whose evaluation terminates.

◮ β- and η-reduction can be seen as defining the steps that can
be used for evaluating expressions to values.

◮ The values are intended to be themselves terms that cannot
be reduced any further.

◮ Luckily, all orders lead to the same value (or normal form) of
the expression for r -reduction where r ∈ {β, βη}.

◮ That is, if an expression r -reduces in two different ways to two
values, then those values, if they are in r -normal form are the
same (up to α-conversion).

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Propeties of terms

Church-Rosser
Standardisation
Left or right redexes
Standardisation theorem
Normalisation theorem
Exercises

◮ Here are some ways to reduce (λxyz .xz(yz))(λx .x)(λx .x).

◮ In all cases, the same final answer is obtained.

◮ (λxyz .xz(yz))(λx .x)(λx .x)→β(λyz .(λx .x)z(yz))(λx .x)→β

(λyz .z(yz))(λx .x)→βλz .z((λx .x)z)→βλz .zz .

◮ (λxyz .xz(yz))(λx .x)(λx .x)→β(λyz .(λx .x)z(yz))(λx .x)→β

λz .(λx .x)z((λx .x)z)→βλz .z((λx .x)z)→βλz .zz .

◮ (λxyz .xz(yz))(λx .x)(λx .x)→β(λyz .(λx .x)z(yz))(λx .x)→β

λz .(λx .x)z((λx .x)z)→βλz .(λx .x)zz→βλz .zz .

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Propeties of terms

Church-Rosser
Standardisation
Left or right redexes
Standardisation theorem
Normalisation theorem
Exercises

Church-Rosser: Let r ∈ {β, βη}

◮ We would like that if A r -reduces to B and to C , then B and
C r -reduce to the same term D.

◮ Luckily, the λ-calculus satisfies this property which is called
the Church-Rosser property.

◮ Theorem: ∀A,B ,C ∈M ∃D ∈M such that:
(A →→r B ∧ A →→r C)⇒ (B →→r D ∧ C →→r D) .

◮ This theorem says that the results of reductions do not
depend on the order in which they are done:

B C

A
�

��	

@
@@R

�
��	

@
@@R

r r

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Propeties of terms

Church-Rosser
Standardisation
Left or right redexes
Standardisation theorem
Normalisation theorem
Exercises

◮ In arithmetic, you can think of this as follows:

3 + 3 1 + 5

1 + 2 + 3
�

��	

@
@@R

�
��	

@
@@R

+

+

+

+

6

@
@R

�
�	

@@R ��	

◮ In λ-calculus:

(λx .xx)(λx .x)x (λz .(λx .x)(λx .x)z)x

(λz .(λx .xx)(λx .x)z)x
�

��	

@
@@R

β

β

β

β

(λx .x)(λx .x)x

@
@R

�
�	

@@R ��	

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Propeties of terms

Church-Rosser
Standardisation
Left or right redexes
Standardisation theorem
Normalisation theorem
Exercises

Corollaries

◮ Programs have unique values: If A→→β B and A→→β C
where B and C are in β-normal forms, then B ≡ C .

B C

A
�

��	

@
@@R

�
��	

@
@@R

β β

◮ Equal programs have the same value: If A =β B then there is
a C such that A→→β C and B →→β C .

=βA B

@ �@ �
Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Propeties of terms

Church-Rosser
Standardisation
Left or right redexes
Standardisation theorem
Normalisation theorem
Exercises

Corollaries continued

◮ A program reduces to its β-normal form: If A has a β-normal
form B then A→→β B .

◮ Normal forms are unique: If A has two β-normal forms B1 and
B2 then B1 ≡ B2.

◮ If A is in β-normal form, and if A =β B , then B →→β A.

◮ If A =β B then either both A and B have the same β-normal
form, or neither one has a β-normal form.

◮ λ-calculus is consistent: There are A,B such that A 6=β B .
◮ Proof: Let A ≡ λx .x and B ≡ λxy .y . If A =β B then

A ≡ B, but this is not the case. Hence A 6=β B.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Propeties of terms

Church-Rosser
Standardisation
Left or right redexes
Standardisation theorem
Normalisation theorem
Exercises

◮ So far we have answered two important questions.
1. Terms evaluate to unique values.
2. The λ-calculus is not trivial in the sense that it has more than

one element.

◮ Let us recall however that a term may have a β-normal form
yet the evaluation order we use may not find this β-normal
form. Remember (λy .z)((λx .xx)(λx .xx))

◮ Hence the question now is: given a term that has a β-normal
form, can we find this β-normal form?

◮ This is an important question because to be able to compute
with the λ-caluclus, we must be able to find the β-normal
form of a term if it exists.

◮ Luckily we have a positive result to this question.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Propeties of terms

Church-Rosser
Standardisation
Left or right redexes
Standardisation theorem
Normalisation theorem
Exercises

◮ That is, if a term has a β-normal form then there is a
reduction strategy that finds this β-normal form.

◮ The positive result is given by the normalisation theorem
which tells us that blind alleys in a reduction can be avoided
by reducing the a kind of leftmost β-redex whose beginning λ
is as far to the left as possible.

◮ Let A have the two β-redexes R1, R2. We say that R1 is to
the left (resp. right) of R2 in A if the λ of R1 is to the left
(resp. right) of the λ of R2 in A.

◮ For example, Let A ≡ (λy .(λz .z)x)((λxy .x)x).
Let R ≡ A, R1 ≡ (λz .z)x and R2 ≡ (λxy .x)x .
R is to the left of R1 and R2. R1 is to the left of R2.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Propeties of terms

Church-Rosser
Standardisation
Left or right redexes
Standardisation theorem
Normalisation theorem
Exercises

Standardisation theorem

◮ A reduction path A0
R0→β A1

R1→β A2 . . . is standard if for any
pair (Ri ,Ri+1), the λ of the redex Ri+1 comes from a λ in Ai

which is to the right of the λ of of Ri in Ai .
◮ (λx .(λy .xy)z)(λz .z)→β (λy .(λz .z)y)z →β (λz .z)z →β z is

standard.
◮ (λx .(λy .xy)z)(λz .z)

•
→β (λx .xz)(λz .z)→β (λz .z)z →β z is

not standard.
◮ (λx .(λy .xy)z)(λz .z)→β (λy .(λz .z)y)z

•
→β (λy .y)z →β z is

not standard.
◮ A standard path, is a reduction path where one reduces from

left to right.
◮ Standardisation theorem: If A→→β B then there is a standardFairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Propeties of terms

Church-Rosser
Standardisation
Left or right redexes
Standardisation theorem
Normalisation theorem
Exercises

Normalisation theorem

◮ The leftmost β-reduction strategy is the reduction strategy
that always β-reduces in a term A, the redex that is to the left
of all other redexes in A.

◮ A reduction strategy strat is β-normalising if, for any term A
which has a β-normal form, β-reducing A using strat will lead
to the β-normal of A.

◮ Normalisation Theorem: The leftmost β-reduction strategy is
β-normalising.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Propeties of terms

Church-Rosser
Standardisation
Left or right redexes
Standardisation theorem
Normalisation theorem
Exercises

Exercises

1. For each of the following terms, find its β-normal form if it
exists or show that it does not have a β-normal form.

1.1 (λx .xxx)(λx .xx)(λx .x)
1.2 (λx .xxx)(λx .x)

2. Now, it is urgent that you go to the lab and run and test all
the SML functions you have written so far.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Leftmost Outermost
Rightmost
Head β-normal forms
Call by Name
Call by Leftmost and Value
Call by Rightmost and Value
Exercises

Leftmost Outermost

◮ Leftmost outermost β-redex The leftmost outermost β-redex
of a term is the β-redex whose λ is the leftmost λ of the
term.

◮ lmo(v) = undefined
◮ lmo(λv .A) = lmo(A)
◮ lmo(AB) = AB if AB is a β-redex
◮ lmo(AB) = lmo(A) if AB is not a β-redex and lmo(A) is

defined
◮ lmo(AB) = lmo(B) if AB is not a β-redex and lmo(A) is

undefined
◮ (λz .z((λx .x)z))((λx .x)(λy .x)z) →β,lmo

((λx .x)(λy .x)z)((λx .x)(((λx .x)(λy .x))z)) →β,lmo

(λy .x)z((λx .x)((λx .x)(λy .x)z)) →β,lmoFairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Leftmost Outermost
Rightmost
Head β-normal forms
Call by Name
Call by Leftmost and Value
Call by Rightmost and Value
Exercises

Rightmost

◮ Rightmost β-redex The rightmost β-redex of a term is the
β-redex whose λ is the rightmost λ of the term.

◮ rm(v) = undefined
◮ rm(λv .A) =def rm(A)
◮ rm(AB) = rm(B) if rm(B) is defined
◮ rm(AB) = AB if rm(B) is undefined and AB is a β-redex
◮ rm(AB) = rm(A) if rm(B) is undefined and AB is not a

β-redex
◮ (λz .z((λx .x)z))((λx .x)(λy .x)z)→β,rm

(λz .z((λx .x)z))((λy .x)z)→β,rm

(λz .z((λx .x)z))x →β,rm

x((λx .x)x)→β,rm xx
◮ Note that reducing (λz .z((λx .x)z))((λx .x)(λy .x)z) using the

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Leftmost Outermost
Rightmost
Head β-normal forms
Call by Name
Call by Leftmost and Value
Call by Rightmost and Value
Exercises

Leftmost outermost always reaches a β-normal form if it
exists whereas rightmost may not

◮ The leftmost outermost redex of (λy .z)((λx .xx)(λx .xx)) is
the whole term itself and not ((λx .xx)(λx .xx)).

◮ The rightmost redex of (λy .z)((λx .xx)(λx .xx)) is
((λx .xx)(λx .xx)).

◮ Recall that (λy .z)((λx .xx)(λx .xx)) has a β-normal form z .
◮ If we use the leftmost outermost strategy, we can reach this

β-normal form. (λy .z)((λx .xx)(λx .xx))→β,lmo z
◮ If we use the rightmost strategy, we will never reach the

β-normal form. We will instead loop:
(λy .z)((λx .xx)(λx .xx))→β,rm

(λy .z)((λx .xx)(λx .xx))→
Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Leftmost Outermost
Rightmost
Head β-normal forms
Call by Name
Call by Leftmost and Value
Call by Rightmost and Value
Exercises

Leftmost outermost leads to longer reductions paths than
rightmost

◮ (λx .xxxx)((λy .y)z)→β,lmo

((λy .y)z)((λy .y)z)((λy .y)z)((λy .y)z) →β,lmo

z((λy .y)z)((λy .y)z)((λy .y)z)→β,lmo

zz((λy .y)z)((λy .y)z)→β,lmo

zzz((λy .y)z)→β,lmo

zzzz

◮ (λx .xxxx)((λy .y)z)→β,rm

(λx .xxxx)z →β,rm

zzzz .

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Leftmost Outermost
Rightmost
Head β-normal forms
Call by Name
Call by Leftmost and Value
Call by Rightmost and Value
Exercises

Head β-normal forms

◮ A is in head β-normal form if and only if
A ≡ λx1x2..xn.yA1A2..Am.
Note that A1,A2, ..Am may still have β-redexes.

◮ Example: λx1x2.z((λx .x)y)(λx .x) is in head β-normal form.

◮ Note that this term still has a β-redex (λx .x)y .

◮ We reach the head β-normal by using the head reduction
strategy which always reduces the head β-redex until no head
β-redex exists.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Leftmost Outermost
Rightmost
Head β-normal forms
Call by Name
Call by Leftmost and Value
Call by Rightmost and Value
Exercises

◮ The head β-redex is defined as follows:
◮ h(v) = undefined
◮ h(λv .A) = h(A)
◮ h(AB) = AB if AB is a β-redex
◮ h(AB) = h(A) if AB is not a β-redex and h(A) is defined
◮ h(AB) = undefined if AB is not a β-redex and h(A) is

undefined

◮ (λx .xxxx)((λy .y)z)→β,h

((λy .y)z)((λy .y)z)((λy .y)z)((λy .y)z) →β,h

z((λy .y)z)((λy .y)z)((λy .y)z)

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Leftmost Outermost
Rightmost
Head β-normal forms
Call by Name
Call by Leftmost and Value
Call by Rightmost and Value
Exercises

Call by Name

◮ The call by name reduction strategy reduces the leftmost
outermost redex, but not inside abstractions.

◮ Under the call by name strategy, abstractions are normal
forms.

◮ The call by name reduction strategy always reduces the redex
found by the function n:

◮ n(v) = undefined
◮ n(λv .A) = undefined
◮ n(AB) = AB if AB is a β-redex
◮ n(AB) = n(A) if AB is not a β-redex and n(A) is defined
◮ n(AB) = n(B) if AB is not a β-redex and n(A) is undefined

◮ (λx .λy .(λz .z)xy)((λx .x)x ′)→β,n

λy .(λz .z)((λx .x)x ′)y
Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Leftmost Outermost
Rightmost
Head β-normal forms
Call by Name
Call by Leftmost and Value
Call by Rightmost and Value
Exercises

Call by Leftmost and Value

◮ The call by leftmost and value reduction strategy reduces the
leftmost outermost redex, but where the argument is a value
and where no reductions take place inside abstractions.

◮ Under the call by leftmost and value strategy, abstractions are
values.

◮ The call by leftmost and value reduction strategy always
reduces the redex found by the function lv :

◮ lv(v) = undefined
◮ lv(λv .A) = undefined
◮ lv(AB) = lv(B) if AB is a β-redex and B has a β-redex
◮ lv(AB) = AB if AB is a β-redex and B does not have a

β-redex
◮ lv(AB) = lv(A) if AB is not a β-redex and lv(A) is defined

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Leftmost Outermost
Rightmost
Head β-normal forms
Call by Name
Call by Leftmost and Value
Call by Rightmost and Value
Exercises

◮ (λx .λy .(λz .z)xy)((λx .x)x ′)→β,lv

(λx .λy .(λz .z)xy)x ′ →β,lv

λy .(λz .z)x ′y

◮ (λx .xx((λx .x)x))((λy .y)z)→β,lv

(λx .xx((λx .x)x))z →β,lv

zz((λx .x)z)

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Leftmost Outermost
Rightmost
Head β-normal forms
Call by Name
Call by Leftmost and Value
Call by Rightmost and Value
Exercises

Call by Rightmost and Value

◮ The call by rightmost and value reduction strategy reduces
the rightmost redex , but where the argument and the
function are values

◮ rmv(v) = undefined
◮ rmv(λv .A) =def rmi(A)
◮ rmv(AB) = rmv(B) if rmv(B) is defined
◮ rmv(AB) = rmv(A) if rmv(B) is undefined and rmv(A) is

defined
◮ rmv(AB) = AB if rmv(B) and rmv(A) are undefined and AB

a β-redex
◮ rmv(AB) = undefined if AB has no β-redex.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Leftmost Outermost
Rightmost
Head β-normal forms
Call by Name
Call by Leftmost and Value
Call by Rightmost and Value
Exercises

◮ (λz .z((λx .x)z))((λx .x)(λy .x)z)→β,rmv

(λz .z((λx .x)z))((λy .x)z)→β,rmv

(λz .z((λx .x)z))x →β,rmv

(λz .zz)x →β,rmv

xx

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Leftmost Outermost
Rightmost
Head β-normal forms
Call by Name
Call by Leftmost and Value
Call by Rightmost and Value
Exercises

Exercises

◮ 1. For each of the following terms, say whether it is strongly
β-normalising, weakly β-normalising and whether it has a
β-normal form (and in this case, give the β-normal form). In
all cases, you must either prove your answer or give a
counterexample.

1. (λx .xxxx)(λx .xxx)((λx .xx)(λx .x))
2. (λx .xxxx)(λx .xxx)(λx .xx)(λx .x)
3. (λx .xxxx)((λx .xxx)(λx .xx))(λx .x)
4. (λx .xxxx)((λx .xxx)((λx .xx)(λx .x)))

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Substitution using de Bruijn indices
Exercises

de Bruijn indices

◮ De Bruijn noted that due to the fact that terms as λx .x and
λy .y are the same, one can find a λ-notation modulo
α-conversion.

◮ Following de Bruijn, one can abandon variables and use
indices instead.

◮ The idea of de Bruijn indices is to remove all the variable
indices of the λ’s and to replace their occurrences in the body
of the term by the number which represents how many λ’s
one has to cross before one reaches the λ binding the
particular occurrence at hand.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Substitution using de Bruijn indices
Exercises

◮ λx .x is replaced by λ1. That is, x is removed, and the x of
the body x is replaced by 1 to indicate the λ it refers to.

◮ λx .λy .xy is replaced by λλ21. That is, the x and y of λx and
λy are removed whereas the x and y of the body xy are
replaced by 2 and 1 respectively in order to refer back to the
λs that bind them.

◮ Similarly, λz .(λy .y(λx .x))(λx .xz) is replaced by
λ(λ1(λ1))(λ12).

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Substitution using de Bruijn indices
Exercises

◮ Note that the above terms are all closed.

◮ What do we do if we had a term that has free variables?

◮ For example, how do we write λx .xz using de Bruijn’s indices?

◮ In the presence of free variables, a free variable list which
orders the variables must be assumed.

◮ For example, assume we take x , y , z , . . . to be the free
variable list where x comes before y which is before z , etc.

◮ Then, in order to write terms using de Bruijn indices, we use
the same procedure above for all the bound variables. For a
free variable however, say z , we count as far as possible the
λ’s in whose scope z is, and then we continue counting in the
free variable list using the order assumed.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Substitution using de Bruijn indices
Exercises

◮ λx .xz translates into λ14.

◮ (λx .xz)y translates into (λ14)2.

◮ (λx .xz)x translates into (λ14)1.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Substitution using de Bruijn indices
Exercises

The syntax of the λ-calculus with de Bruijn indices

◮ We define Λ, the set of terms with de Bruijn indices, as
follows:

Λ ::= N | (ΛΛ) | (λΛ)
◮ We use similar notational conventions as before:

◮ Functional application associates to the left. So
ABC denotes ((AB)C).

◮ The body of a λ is anything that comes after it. So,
instead of (λ(A1A2 . . . An)), we write λA1A2 . . .An.

◮ Note here that we cannot compress a sequence of λ’s to one.
λλ12 is not the same as λ12. The first is λz .λy .yz and the
second is λy .yx .

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Substitution using de Bruijn indices
Exercises

The trees of terms: λx .λy .zxy and λλ521

r r r r r r r r

r r

λz λy λx λx λy δ δ z

y x

�
�

�

r r r r r r r r

r r

λ λ λ λ λ δ δ 5

1 2

�
�

�
Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Substitution using de Bruijn indices
Exercises

How do we do β-reduction?

◮ Note that (λx .λy .zxy)(λx .yx) translates to (λλ521)(λ31)

◮ Note that λy ′.z(λx .yx)y ′ translates to λ4(λ41)1.

◮ Since (λxλy .zxy)(λx .yx)→β λy ′.z(λx .yx)y ′, we want that
(λλ521)(λ31)→β λ4(λ41)1.

◮ The body of λλ521 is λ521 and the variable bound by the
first λ of λλ521 is the 2.

◮ But (λ521)[2 := λ31] does not give λ4(λ41)1.

◮ What is (λ521)[2 := λ31]? Is it λ5(λ31)1?

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Substitution using de Bruijn indices
Exercises

In order to define β-reduction (λA)B →β? using de Bruijn indices.
We must:

◮ find in A the occurrences n1, . . . nk of the variable bound by
the λ of λA.
For example, in λ1(λ2(λ3)), all of 1, 2 and 3 are bound by
the first λ. In normal notation this is: λx .x(λy .x(λz .x)).

◮ decrease the variables of A to reflect the disappearance of the
λ from λA.
For example, (λ12)3 must return 3 1.
I.e., (λy .yx)z must return zx .

◮ replace the occurrences n1, . . . nk in A by updated versions of
B which take into account that variables in B may appear
within the scope of extra λs in A.
For example, (λλ2)3 must return λ4.
I.e., (x y x)z must return y z .

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Substitution using de Bruijn indices
Exercises

◮ Let us, in order to simplify things say that the β-rule is
(λA)B →β A{{1← B}} and let us define A{{1← B}} in a
way that all the work is carried out.

◮ The meta-updating functions U i
k : Λ→ Λ for k ≥ 0 and i ≥ 1

are defined inductively as follows:

U i
k(AB) ≡ U i

k(A)U i
k(B)

U i
k(λA) ≡ λ(U i

k+1(A))

U i
k(n) ≡

{
n + i− 1 if n > k
n if n ≤ k .

◮ The intuition behind U i
k is the following: k tests for free

variables and i − 1 is the value by which a variable, if free,
must be incremented.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Substitution using de Bruijn indices
Exercises

The meta-substitutions at level i , for i ≥ 1 , of a term B ∈ Λ in a
term A ∈ Λ , denoted A{{i← B}} , is defined inductively on A as
follows:

◮
(A1A2){{i← B}} ≡ (A1{{i← B}}) (A2{{i← B}})
(λA){{i← B}} ≡ λ(A{{i + 1← B}})

n{{i← B}} ≡

n− 1 if n > i
U i

0(B) if n = i
n if n < i .

◮ For example (λ521){{1←(λ31)}} ≡ λ4(λ41)1

◮ Hence (λλ521)(λ31)→β λ4(λ41)1.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Substitution using de Bruijn indices
Exercises

Exercises

◮ 1. For each of the terms A below do the following:
Translate A to a term A′ using de Bruijn indices. β-reduce A
to a β-normal form B . β-reduce A′ to a β-normal form B ′.
Translate B to a term B ′′ using de Bruijn indices. Note that
B ′ ≡ B ′′.

1. A ≡ (λx .x)y .
2. A ≡ (λxy .xy)y .
3. A ≡ (λxy .xy)(λz.zx).

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Substitution using de Bruijn indices
Exercises

◮ 2. For each of the terms A below do the following:
Translate A to a term A′ using de Bruijn indices. β-reduce A
to a β-normal form B . β-reduce A′ to a β-normal form B ′.
Translate B to a term B ′′ using de Bruijn indices. Note that
B ′ ≡ B ′′.

1. A ≡ (λx .y)x .
2. A ≡ (λxy .yx)(λx .x).
3. A ≡ (λxy .xy)(λz.zx).

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Representing propositional logic in the λ-calculus
Representing pairing and projection in the λ-calculus
Representing Church’s numerals and arithmetic in the λ-calculus
Exercises

Representing propositional logic in the λ-calculus

◮ true ≡ λxy .x
false ≡ λxy .y
not ≡ λx .x false true

cond ≡ λxyz .xyz
and ≡ λxy .cond x y false

or ≡ λxy .cond x true y
◮ We show that not true =β false:

not true ≡ (λx .x false true)true→β true false true ≡
(λxy .x) false true→β (λy .false)true→β false.

◮ As an exercise, show that: not false =β true

cond true AB =β A cond false AB =β B
and true false =β false and true true =β true

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Representing propositional logic in the λ-calculus
Representing pairing and projection in the λ-calculus
Representing Church’s numerals and arithmetic in the λ-calculus
Exercises

Representing pairing and projection in the λ-calculus

◮ pair ≡ λxyz .zxy
fst ≡ λx .x true

snd ≡ λx .x false

n-tuple ≡ λx1, x2 . . . xn.pair x1 (pair x2 . . . (pair xn−1 xn) . . .)
pos1n ≡ λx .fst x
pos2n ≡ λx .fst(snd x)
posin ≡ λx .fst(snd(. . . (snd

︸ ︷︷ ︸

i−1 times

x) . . .)) for i < n

posnn ≡ λx . snd(snd(. . . (snd
︸ ︷︷ ︸

n−1 times

x) . . .))

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Representing propositional logic in the λ-calculus
Representing pairing and projection in the λ-calculus
Representing Church’s numerals and arithmetic in the λ-calculus
Exercises

◮ We show that fst(pair A B) =β A:
fst(pair A B) ≡ (λx .x true)(pair A B)→β (pair A B)true ≡
((λxyz .zxy)A B)true→β ((λyz .zAy) B)true→β

(λz .zAB)true→β trueAB ≡ (λxy .x)AB →β (λy .A)B →β A.

◮ We show that snd(pair A B) =β B :
snd(pair A B) ≡ (λx .x false)(pair A B)→β (pair A B)false ≡
((λxyz .zxy)A B)false→β ((λyz .zAy) B)false→β

(λz .zAB)false→β falseAB ≡ (λxy .y)AB →β (λy .y)B →β B

◮ Show that posin(pair A1 . . . (pair An−1 An) . . .)) =β Ai for
1 ≤ i ≤ n.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Representing propositional logic in the λ-calculus
Representing pairing and projection in the λ-calculus
Representing Church’s numerals and arithmetic in the λ-calculus
Exercises

Representing Church’s numerals and arithmetic in the
λ-calculus

◮ 0 ≡ λyx .x
1 ≡ λyx .yx
2 ≡ λyx .y(yx)
. . .
n ≡ λyx .ynx where ynx ≡ y(y(. . . (y

︸ ︷︷ ︸

n times

x)))

succ ≡ λzyx .zy(yx)
add ≡ λzz ′yx .zy(z ′yx)
iszero ≡ λz .z(λx .false)true

times ≡ λzyx .z(yx)
prefn ≡ λyz .pair false(cond(fst z)(snd z)(y(snd z)))

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Representing propositional logic in the λ-calculus
Representing pairing and projection in the λ-calculus
Representing Church’s numerals and arithmetic in the λ-calculus
Exercises

Exercises

◮ 1. Show that not false =β true

cond true AB =β A cond false AB =β B
and true false =β false and true true =β true

and false false =β false and false true =β false

or true false =β true or true true =β true

or false false =β false or false true =β true

◮ 2. Show that posin(pair A1 . . . (pair An−1 An) . . .)) =β Ai for
1 ≤ i ≤ n.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Representing propositional logic in the λ-calculus
Representing pairing and projection in the λ-calculus
Representing Church’s numerals and arithmetic in the λ-calculus
Exercises

3.Show that:

1. succ n =β n + 1

2. iszero 0 =β true

3. iszero(succ n) =β false

4. add n m =β n + m

5. times n m =βη nxm

6. prefn y(pair z x) =β pair false(cond z x(y x))

7. prefn y(pair true x) =β pair false x
8. prefn y(pair false x) =β pair false (y x)

9. (prefn y)n(pair false x) =β pair false (ynx)

10. (prefn y)n(pair true x) =β pair false (yn−1x) if n > 0

11. pre(succ n) =β n

12. pre 0 =β 0

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Representing propositional logic in the λ-calculus
Representing pairing and projection in the λ-calculus
Representing Church’s numerals and arithmetic in the λ-calculus
Exercises

4.Assume the following:
0′ ≡ λx .x
1′ ≡ pair false 0′

2′ ≡ pair false 1′

. . .
(n + 1)′ ≡ pair false n′

1. Define succ′, iszero′, pre′ such that:

2. succ′ n′ =β (n + 1)′

3. iszero′ 0′ =β true

4. iszero′(succ′ n′) =β false

5. pre′(succ′ n′) =β n′.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Fix point Theorem

◮ We can prove that: (ym)n =β ynxm.
◮ Recall again that times ≡ λzyx .z(yx) and take the following

proof that times n m =βη nxm:

times n m ≡ (λzyx .z(yx))n m

→→β λx .n(m x)
≡ λx .n((λzy .zmy)x)
→β λx .n(λy .xmy)
→η λx .n(xm)
≡ λx .(λzy .zny)(xm)
→β λx .(λy .(xm)ny)
→η λx .(xm)n

=β λx .xnxm

=η λx .λy .xnxmy
≡ nxmFairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Fix point Theorem

◮ But we should not depend on η.

◮ Can we define
mult ≡ λxy .cond (iszero x) 0 (add y (mult (pre x) y))

◮ But this means that mult is defined in terms of mult. How
can this be done?

◮ The solution comes from the fixed-point theorem: In the
lambda calculus, we have fixed point finders.

◮ These are λ-expressions (say Fix) such that for any expression
A, we have:
Fix A =β A(Fix A).

◮ That is: Fix A is a fixed point of A.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Fix point Theorem

◮ Find mult ≡ λxy .cond (iszero x) 0 (add y (mult (pre x) y))?
◮ The solution comes from the fixed-point theorem: In the

lambda calculus, we have fixed point finders.
◮ These are λ-expressions (say Fix) such that for any A, we

have: Fix A =β A(Fix A). That is: Fix A is a fixed point of A.
◮ So, how do we use Fix to find mult?
◮ Define multfn ≡ λzxy .cond (iszero x) 0 (add y (z (pre x) y)).
◮ Then, we define mult ≡ Fix multfn.
◮ By Fixed point theorem, Fix multfn =β multfn(Fix multfn).
◮ Hence, mult ≡ Fix multfn =β multfn(Fix multfn) =β

multfn(mult) =β λxy .cond(iszerox)0(addy (mult(prex)y))
◮ Hence, mult =β λxy .cond (iszero x)0 (add y (mult (pre x) y))
◮ And we have mult which really works like multiplication.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Fix point Theorem

◮ One might still think that we could have kept to times and
forget completely about mult.

◮ But then take fact which we intend to work as follows:
fact x =β cond(iszero x) 1 (mult x (fact (pre x)))

◮ Assume fact ≡ λx .cond(iszero x) 1 (mult x (fact (pre x)))

◮ fact occurs on the left hand and right side of the equation.

◮ So, we are defining fact in terms of fact.

◮ fact, like mult must be defined by a fixed point operator.

◮ We define factfn ≡ λzx .cond(iszero x) 1 (mult x (z (pre x)))

◮ So, we take fact ≡ Fix factfn.

◮ By fixed point theorem: Fix factfn =β factfn(Fix factfn).

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Fix point Theorem

◮ fact ≡ Fix factfn =β factfn(Fix factfn) =β factfn(fact)

◮ Hence, fact =β factfn(fact) ≡
(λzx .cond(iszero x) 1 (mult x (z (pre x))))(fact) =β

λx .cond(iszero x) 1 (mult x (fact (pre x)))

◮ So: fact x =β cond(iszero x) 1 (mult x (fact (pre x)))

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Fix point Theorem

◮ What is Fix? Is it unique? The answer is no. Fix is not unique.

◮ There are infinitely many fixed point operators.

◮ YCurry ≡ λx .(λy .x(yy))(λy .x(yy)).

◮ Theorem: YCurry is a fixed point finder.

◮ Proof: YCurryA ≡ (λx .(λy .x(yy))(λy .x(yy)))A =β

(λy .A(yy))(λy .A(yy)) =β A((λy .A(yy))(λy .A(yy))) =β

A(YCurryA).

◮ Hence YCurry is a fixed point operator.

◮ We also say that YCurry is a fixed point finder.

◮ We also say that YCurry is a fixed point combinator.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Fix point Theorem

◮ Fixed point theorem: In the λ-calculus, every λ-expression A
has a fixed point A′ such that AA′ =β A′

◮ The fixed point is found by a fixed point operator (say Fix)
such that for any A, the fixed point of A is Fix A.

◮ Fix can be YCurry , or any other one of an infinite number of
fixed point combinators.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Fix point Theorem

◮ The fixed point theorem is powerful for recursive functions
and equations.

◮ Theorem: In the λ-calculus, for any λ-expression A and for
any n ≥ 0, the equation xy1y2 . . . yn =β A (where yi 6≡ x for
1 ≤ i ≤ n) can be solved for x .

◮ I.e., there is a B such that By1y2 . . . yn =β A[x := B]

◮ Proof: Let B ≡ Fix (λxy1y2 . . . yn.A).
Hence By1y2 . . . yn ≡ (Fix (λxy1y2 . . . yn.A))y1y2 . . . yn =β

(λxy1y2 . . . yn.A)(Fix (λxy1y2 . . . yn.A))y1y2 . . . yn =β

A[x := Fix (λxy1y2 . . . yn.A)][y1 := y1] . . . [yn := yn] ≡
A[x := B][y1 := y1] . . . [yn := yn] ≡ A[x := B].

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Fix point Theorem

Examples

◮ Solve xy =β x in x.

◮ Solution: Let B ≡ Fix(λxy .x).

◮ Now we prove that By =β B as follows:

By ≡ Fix(λxy .x)y =
fixed point theorem
β

(λxy .x)(Fix(λxy .x))y =β Fix(λxy .x) ≡ B

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Fix point Theorem

Examples

◮ Solve xy =β yx in x.
◮ Solution: Let B ≡ Fix(λxy .yx).
◮ Now we prove that By =β yB as follows:

By ≡ Fix(λxy .yx)y =
fixed point theorem
β

(λxy .yx)(Fix(λxy .yx))y =β y(Fix(λxy .yx)) ≡ yB .
◮ Solve zxy =β xyz in z.
◮ Solution: Let B ≡ Fix(λzxy .xyz).
◮ Now we prove that Bxy =β xyB as follows:

Bxy ≡ Fix(λzxy .xyz)xy =
fixed point theorem
β

(λzxy .xyz)(Fix(λzxy .xyz))xy =β xy(Fix(λzxy .xyz)) ≡ xyB .
Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Fix point Theorem

The fixed point theorem

◮ Fixed point theorem: In the λ-calculus, every λ-expression A
has a fixed point A′ such that AA′ =β A′

◮ The fixed point is found by a fixed point operator (say Fix)
such that for any A, the fixed point of A is Fix A.

◮ Fix can be any one of an infinite number of fixed point
combinators.

◮ Y ≡ λf .(λx .f (xx))(λx .f (xx)) is a fixed point combinator
◮ YA ≡ (λf .(λx .f (xx))(λx .f (xx))A) =β

(λx .A(xx))(λx .A(xx)) =β A((λx .A(xx))(λx .A(xx))) =β

A(YA).

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Fix point Theorem

◮ The fixed point theorem is powerful for recursion.
◮ Corollary/Theorem: In the λ-calculus, for any λ-expression A

and for any n ≥ 0, the equation xy1y2 . . . yn =β A can be
solved for x .

◮ There is a B such that By1y2 . . . yn =β A[x := B]
◮ Example:Solve xy =β x in x.

◮ Solution: Let B ≡ Y (λxy .x).
◮ Now we prove that By =β B as follows:

By ≡ Y (λxy .x)y =
fixed point theorem
β

(λxy .x)(Y (λxy .x))y =β Y (λxy .x) ≡ B
◮ Example: Solve xy =β yx in x.

◮ Solution: Let B ≡ Y (λxy .yx).
◮ Now we prove that By =β yB as follows:

By ≡ Y (λxy .yx)y =
fixed point theorem
β

(λxy .yx)(Y (λxy .yx))y =β y(Y (λxy .yx)) ≡ yB.
Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Fix point Theorem

YKlop is a fixed point finder:YKlopA ≡ A(YKlopA)

1. Let YKlop ≡ $$$$$$$$$$$$$$$$$$$$$$$$$$
︸ ︷︷ ︸

26 times

where $ ≡

λ abcdefghijklmnopqstuvwxyzr
︸ ︷︷ ︸

26 arguments

.r(thisisafixedpointcombinator
︸ ︷︷ ︸

27 arguments

)

2. YKlopA ≡ $$$$$$$$$$$$$$$$$$$$$$$$$$
︸ ︷︷ ︸

26 times

A ≡

$ $$$$$$$$$$$$$$$$$$$$$$$$$
︸ ︷︷ ︸

25 times

A ≡

(λ abcdefghijklmnopqstuvwxyzr
︸ ︷︷ ︸

26 arguments

.r(thisisafixedpointcombinator
︸ ︷︷ ︸

27 arguments

))

$$$$$$$$$$$$$$$$$$$$$$$$$
︸ ︷︷ ︸

AFairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Lists
Undecidability of halting
Exercises

Lists

◮ Let us define lists as λ-expressions where [] is the empty list.
◮ There does not exist a λ-expression null such that

null A =β

{
true if A =β []
false otherwise

◮ Proof Assume null existed.
◮ Let [] be the empty list and let l be a list such that l 6=β [].
◮ Let foo ≡ λx .cond (null x) l [].
◮ Let W be a solution in x of x =β foo x .
◮ W exists by the corollary of the fixed point theorem.
◮ W =β foo W =β cond (null W) l [].
◮ Case W =β [] then (null W) =β true and W =β l . Absurd.
◮ Case W 6= [] then (null W) = false and W = []. Absurd.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Lists
Undecidability of halting
Exercises

◮ Because null does not exist, we have to find a way to represent
lists in a way which accommodates information of nullity in it.

◮ Let null ≡ fst.

◮ Let ⊥ be a solution to xy =β x in x .

◮ Let [] ≡ pair true⊥

◮ Let [E] ≡ pair false (pair E [])

◮ Let [E1,E2, . . . ,En] ≡ pair false (pair E1 [E2, . . . ,En])

◮ Let hd ≡ λx .cond (null x)⊥ (fst(snd x))

◮ Let tl ≡ λx .cond (null x)⊥ (snd(snd x))

◮ Let cons ≡ λxy .pair false (pair x y)

◮ Note that we did not use recursion for cons.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Lists
Undecidability of halting
Exercises

null [] =β true and null (cons x l) =β false

◮ null [] ≡ fst [] ≡ fst (pair true⊥) =β true.

◮ null (cons x l) ≡ fst (cons x l) ≡
fst ((λxy .pair false (pair x y))x l) =β

fst (pair false (pair x l)) =β false.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Lists
Undecidability of halting
Exercises

hd (cons x l) =β x

◮ hd (cons x l) ≡ (λx .cond (null x)⊥ (fst(snd x)))(cons x l) =β

cond (null (cons x l))⊥ (fst(snd (cons x l))) =β

cond false⊥ (fst(snd (cons x l))) =β fst(snd (cons x l)) ≡
fst(snd ((λxy .pair false (pair x y)) x l)) =β

fst(snd (pair false (pair x l))) =β fst(pair x l) =β x .

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Lists
Undecidability of halting
Exercises

tl (cons x l) =β l

◮ tl (cons x l) ≡ (λx .cond (null x)⊥ (snd(snd x)))(cons x l) =β

cond (null (cons x l))⊥ (snd(snd (cons x l))) =β

cond false⊥ (snd(snd (cons x l))) =β snd(snd (cons x l)) ≡
snd(snd ((λxy .pair false (pair x y)) x l)) =β

snd(snd (pair false (pair x l))) =β snd(pair x l) =β l .

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Lists
Undecidability of halting
Exercises

Append

◮ Define append which takes two lists and appends them
together.

◮ For example, append [1, 2] [3, 4] =β [1, 2, 3, 4]

◮ We want
append x y =β cond (null x) y (cons (hd x)(append (tl x) y)).

◮ This is a recursive equation. Let append be a solution in z to
the equation: z x y =β cond (null x) y (cons (hd x)(z (tl x) y)).

◮ append exists by the corollary of the fixed point theorem and
append x y =β cond (null x) y (cons (hd x)(append (tl x) y)).

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Lists
Undecidability of halting
Exercises

Undecidability of Having a normal Form

◮ There is no hasnf such that

hasnf A =β

{
true if A has a normal form
false otherwise

◮ Proof: Assume hasnf exists.
◮ Let I ≡ λx .x and Ω ≡ (λx .xx)(λx .xx).
◮ I has a normal form and Ω does not have a normal form.
◮ By Church-Rosser, if A =β B then either both A and B have

a normal form, or none of them has a anormal form.
◮ Let foo ≡ λx .cond (hasnf x) Ω I .
◮ Let W be a solution in z of z = foo z .

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Lists
Undecidability of halting
Exercises

◮ W exists by the corollary of the fixed point theorems.

◮ W =β foo W =β cond (hasnf W) Ω I .

◮ If hasnfW =β true then W =β Ω. Absurd by Church-Rosser.

◮ If hasnfW =β false then W =β I . Absurd by Church-Rosser.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Lists
Undecidability of halting
Exercises

Undecidability of Halting

◮ Remember that A halts iff A has a normal form.
◮ Hence, there is no λ-expression halts such that

halts A =β

{
true if A halts
false otherwise

◮ Otherwise halts would be hasnf and we said that hasnf is
not definable in the λ-calculus.

◮ Hence the λ-calculus does not allow the representation of the
non-computable function halts.

◮ In fact, the λ-calculus only allows representing functions
which are computable.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Lists
Undecidability of halting
Exercises

Exercises

◮ 1.Solve zxy =β z in z .
◮ 2. Construct a λ-term eq such that

eq m n =β cond (iszero m) (iszero n)
(cond (iszero n) false (eq (pre m) (pre n))).

◮ 3. Let Y be YCurry where YCurry ≡ λz .(λx .z(xx))(λx .z(xx))
is a fixed point operator. Show that Y1 ≡ Y (λyz .z(yz)) is a
fixed point operator.

◮ 4. Let YTuring ≡ ZZ where Z ≡ λzx .x(zzx). Show that
YTuring is a fixed point combinator.

◮ 5. Let $ ≡
λabcdefghijklmnopqstuvwxyzr .r(thisisafixedpointcombinator).
Let YKlop ≡ $$$$$$$$$$$$$$$$$$$$$$$$$$ (i.e., YKlop is aFairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Lists
Undecidability of halting
Exercises

Exercises

◮ 6. Define reverse which takes a list and reverses the order of
its elements. For example: reverse [1, 2, 3] =β [3, 2, 1].

◮ 7. Show that the function equal below is undefinable as a
λ-expression:

equal E1 E2 =β

{
true if E1 =β E2

false otherwise

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Test One
Test Two

Test One

Let K ≡ λxy .x , S ≡ λxyz .xz(yz) and B ≡ λxyz .x(yz). Simplify
each of the following terms: i.e., for each N below, find the
simplest possible M such that N =β M.

◮ BXYZ . [3]
Solution: BXYZ ≡ (λxyz .x(yz))XYZ =β X (YZ).

◮ SKSKSK. [4]
Solution:
SKSKSK ≡ (λxyz .xz(yz))KSKSK =β KK(SK)SK ≡
(λxy .x)K(SK)SK =β KSK ≡ (λxy .x)SK =β S.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Test One
Test Two

◮ Construct a λ-term F such that for any λ-terms M,N we
have FMN =β M(NM)N. [3]
Solution: Let F ≡ λxy .x(yx)y . Then FMN =β M(NM)N.

◮ Construct a λ-term F such that for any λ-terms M,N and L,
we have FMNL =β N(λx .FM)(λyz .yLM). [6]
Solution: Let E ≡ λfmnl .n(λx .fm)(λyz .ylm). Then, take
F ≡ YE where Y is a fixed point operator. Hence, by fixed
point theorem, YE =β E (YE). Hence, F =β EF . Now,
FMNL =β EFMNL ≡ (λfmnl .n(λx .fm)(λyz .ylm))FMNL =β

N(λx .FM)(λyz .yLM).

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Test One
Test Two

◮ Let Y be a fixed point operator and let Y1 be Y (λyf .f (yf)).
Show that Y1 is a fixed point operator. [6]

Solution: Y1E ≡ (Y (λyf .f (yf)))E
F .P.theorem

=β

(λyf .f (yf))(Y (λyf .f (yf)))E =β

E ((Y (λyf .f (yf)))E) =β E (Y1E).
◮ Is there a finite or an infinite number of fixed point operators?

[3]
Solution: Since by above we could take Y and make a new
F.P. operator Y1 which is different from Y , we can do the
same with Y1 to get Y2 and the same with Y2, etc. We can
show that all these Yi ’s are different. (I don’t expect a formal
proof of this as long as it is mentioned so the students are
aware that they need to show the Yi to be different).

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Test One
Test Two

◮ Explain what you understand by normal order reduction and
by applicative order reduction. Compare these two reduction
orders. [3]
Solution: According to the call by value strategy, an argument
is called only if it is a value (a normal form). According to the
call by name strategy, an argument is called without first
computing its value. Normal order reduction is guaranteed to
reach a normal form if it exists. Applicative order however,
might get stuck forever evaluating a term that is not strongly
normalising (but may be normalising). For example, if normal
order is used, (λy .z)((λx .xx)(λx .xx)) will yield z ; it will never
terminate on the other hand, if applicative order is used.
Applicative order however can reach a normal form faster than
normal order. Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Test One
Test Two

◮ Reduce the following terms using first applicative order and
then normal order. What can you deduce?

1. (λy .z)((λx .xx)(λx .xx)). [3]
Solution:
Applicative:
(λy .z)((λx .xx)(λx .xx))→β (λy .z)((λx .xx)(λx .xx))→β

(λy .z)((λx .xx)(λx .xx)) . . .
Normal: (λy .z)((λx .xx)(λx .xx))→β z.

2. (λx .xx)((λy .y)(λz.z)). [4]
Solution:
Applicative: (λx .xx)((λy .y)(λz.z))→β (λx .xx)(λz.z)→β

(λz.z)(λz.z)→βλz.z.
Normal:
(λx .xx)((λy .y)(λz.z))→β ((λy .y)(λz.z))((λy .y)(λz .z))→β

(λz.z)((λy .y)(λz.z))→β (λy .y)(λz.z)→βλz.z.

We deduce that applicative order is faster, but normal orderFairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Test One
Test Two

◮ Let I ≡ λx .x . Simplify each of the following terms: i.e., for
each N below, find the simplest possible M such that
N =β M.

1. (λxyz.zyx)aa(λpq.q). [3]
Solution:
(λxyz.zyx)aa(λpq.q) =β (λpq.q)aa =β a.

2. (λyz.zy)((λx .xxx)(λx .xxx))(λw .I). [3]
Solution:
(λyz.zy)((λx .xxx)(λx .xxx))(λw .I) =β

(λw .I)((λx .xxx)(λx .xxx)) =β I .

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Test One
Test Two

◮ The λ-calculus à la de Bruijn is given by: Λ ::= N|AB |λA
where numbers refer to the binding λ. For example,
λ1 represents λx .x ,
λλ12 represents λx .λy .yx ,
λλ21 represents λx .λy .xy , etc.
Write down what the following terms represent:

1. λλλ123 [2]
Solution: λx .λy .λz.zyx

2. λλ1 [2]
Solution: λx .λy .y

3. λλλ13(23) [2]
Solution: λx .λy .λz.zx(yx)

4. λλλ1(23). [2]
Solution: λx .λy .λz.z(yx).

5. Can you think of a way to deal with terms like λ2? [1]
Solution: We need an ordered free variable list and then we

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Test One
Test Two

◮ Consider the following definitions:
let 0 ≡ λfx .x
let 1 ≡ λfx .fx
let 2 ≡ λfx .f (fx)
. . .
let n ≡ λfx .f (f (. . . (fx) . . .)) where f is applied n times to x
let succ ≡ λnfx .nf (fx)
let true ≡ λxy .x
let false ≡ λxy .y
let iszero ≡ λn.n(λx .false)true

1. Show iszero 0 =β true and iszero(succ n) =β false. [6]
Solution: iszero 0 ≡ (λn.n(λx .false)true)0 =β

0(λx .false)true =β (λfx .x)(λx .false)true =β true.
And iszero(succ n) ≡ (λn.n(λx .false)true)(succ n) =β

(succ n)(λx .false)true ≡ (λnfx .nf (fx))n(λx .false)true =
Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Test One
Test Two

2. Can you evaluate iszero true to either true or false? [3]
Solution: No!
iszero true ≡ (λn.n(λx .false)true)true =β

true(λx .false)true ≡
(λxy .x)(λx .false)true =β λx .false
which is different from true and from false.

3. Let E be a λ-term. Can you evaluate iszero E to either true

or false? [2]
Solution: No not always. Take the above item as an example
where E ≡ true.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Test One
Test Two

4. Show that we cannot define in the λ-calculus the λ-term zero

such that:

zero E =β

{
true if E =β 0

false otherwise

[5]
Solution: Assume zero is λ-definable.
Let E ≡ λx .cond(zero x)n 0 where n 6=β 0.
Let W be a solution for x =β Ex . Hence,
W =β EW =β cond(zero W)n 0.

◮ Case W =β 0 then W =β cond true n 0 =β n 6=β 0. Absurd.
◮ Case W 6=β 0 then W =β cond false n 0 =β 0. Absurd.

Hence zero is not λ-definable.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Test One
Test Two

5. What is the difference between zero and iszero? [3]
Solution: zero tests every element giving us only true or
false.
iszero only gives true or false for numbers.

6. Recall that the λ-term cond works as follows:
cond true E1E2 =β E1

cond false E1E2 =β E2

Find a λ-term eq such that:
eq m n =β

cond(iszerom)(iszeron)(cond(iszeron)false(eq(prem)(pren))).
[6]

Solution: Let E ≡
λfmn.cond(iszerom)(iszeron)(cond(iszeron)false(f (prem)(pren))).
Let eq ≡ YE where Y is a fixed point operator. Then, by theFairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Test One
Test Two

Test Two

◮ For each of the following terms, find its normal form if it
exists. Otherwise, show that the term does not have a normal
form.

1. (λx .xxx)(λx .xx)(λx .x) [3]
Solution: (λx .xxx)(λx .xx)(λx .x)→β

(λx .xx)(λx .xx)(λx .xx)(λx .x)→β

(λx .xx)(λx .xx)(λx .xx)(λx .x)
This is an infinite reduction. This is the only way we can
reduce the term. Hence, the term does not have a normal
form.

2. (λx .xxx)(λx .x) [2]
Solution: (λx .xxx)(λx .x)→β

(λx .x)(λx .x)(λx .x)→β

(λx .x)(λx .x)→
Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Test One
Test Two

◮ For each of the following statements, give two terms M1 and
M2 which satisfy it, explaining why each of M1, M2 and
M1M2 has (or does not have) a normal form.

1. M1 and M2 have normal forms but M1M2 does not. [3]
Solution:M1 ≡ λx .xx ≡ M2. Both M1 and M2 are in normal
form since they have no β-redexes.
M1M2 →β M1M2 →β M1M2 →β Since this is the only
possible reduction sequence from M1M2, we conclude that
M1M2 does not have a normal form.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Test One
Test Two

2. M1M2 has a normal form but M1 does not. [3]
Solution: Take M1 ≡ λx .Cond(iszero x)1((λx .xx)(λx .xx))
and M2 ≡ 0. Obviously M1M2 →→β 1 and hence, has a normal
form. But M1 does not have a normal form since by the above
item, M1 →β M1 →β . . . and there are no reductions of M1

which will contract (λx .xx)(λx .xx) to a normal form or to
contract M1M2 to get rid of (λx .xx)(λx .xx).

3. M1M2 has a normal form but M2 does not. [3]
Solution: Take M1 ≡ λx .1 and M2 ≡ (λx .xx)(λx .xx).
M1M2 →β 1 in normal form, but M2 does not have a normal
form by 1. above.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Test One
Test Two

◮ Give all the possible ways to reduce
(λxyz .xz(yz))(λx .x)(λx .x) to normal form. [5]
Solution:

◮ (λxyz.xz(yz))(λx .x)(λx .x)→β(λyz.(λx .x)z (yz))(λx .x)→β

(λyz.z(yz))(λx .x)→βλz.z((λx .x)z)→βλz.zz.
◮ (λxyz.xz(yz))(λx .x)(λx .x)→β(λyz.(λx .x)z(yz))(λx .x)→β

λz.(λx .x)z((λx .x)z)→βλz.z((λx .x)z)→βλz.zz.
◮ (λxyz.xz(yz))(λx .x)(λx .x)→β(λyz.(λx .x)z(yz))(λx .x)→β

λz.(λx .x)z((λx .x)z)→βλz.(λx .x)zz→βλz.zz.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Test One
Test Two

◮ Let I ≡ λx .x and S ≡ λxyz.xz(yz).
Find a λ-term M such that MS =β MISS . [6]
Solution: We solve zy =β zIyy in z . Let E ≡ λzy .zIyy and let
M ≡ Fix E . Hence, by the fixed point operator,
MS =β EMS ≡ (λzy .zIyy)MS =β MISS .

◮ Explain the fixed point theorem and how it helps solve
recursive equations.
Solution: The fixed point theorem states that there is a fixed
point operator Fix such that for any expression E , we have
Fix E =β E (Fix E).
To solve in x a recursive equation xx1 . . . xn =β Φ, we take the
expression E to be λxx1 . . . xn.Φ and then we know by the
fixed point theorem that there is a fixed point X of E such
that X =β EX . Hence, Xx1 . . . xn =β EXx1 . . . xn =βFairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Test One
Test Two

◮ Find an X such that Xx = X . [3]
Solution: Let E ≡ λyx .y and let by the fixed point theorem,
X ≡ Fix E . Hence, by the fixed point operator, X =β EX .
Hence, Xx =β EXx ≡ (λyx .y)Xx =β X .

◮ Solve in x the equation xy =β yx . [5]
Solution: Let E ≡ λxy .yx and let by the fixed point theorem,
X ≡ Fix E . Hence, by the fixed point operator, X =β EX .
Hence, Xy =β EXy ≡ (λxy .yx)Xy =β yX .

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Test One
Test Two

◮ Take the Turing fixed point operator
Θ ≡ (λxy .y(xxy))(λxy .y(xxy)).
Show that for Θ, we have indeed that ΘM →β M(ΘM). [4]
Solution: ΘM ≡ (λxy .y(xxy))(λxy .y(xxy))M →β

(λy .y((λxy .y(xxy))(λxy .y(xxy))y))M →β

M((λxy .y(xxy))(λxy .y(xxy))M) ≡ M(ΘM).
◮ Let Y ≡ λf .(λx .f (xx))(λx .f (xx)). Is it the case that

YM →→β M(YM)? If yes, give the reduction steps from YM
to M(YM). If no, say why not. [2]
Solution: No. YM →β (λx .M(xx))(λx .M(xx)) →β

M((λx .M(xx))(λx .M(xx))). It is not clear how we can get
from here by →→β to M(YM). No formal proof is expected to
be given here.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Test One
Test Two

◮ Give the outermost redex and the innermost redex of each of
the following (careful, you are asked for the outermost and
not the leftmost outermost; also, you are asked for the
innermost and not the rightmost innermost):

1. (λy .z)((λx .xx)(λx .xx)). [3]
Solution: The outermost redex is (λy .z)((λx .xx)(λx .xx)).
The innermost redex is ((λx .xx)(λx .xx)).

2. (λyz.(λx .x)z(yz))(λx .x). [3]
Solution: The outermost redex is (λyz.(λx .x)z(yz))(λx .x).
The innermost redex is (λx .x)z.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Test One
Test Two

◮ De Bruijn wrote the λ-calculus in a different way. He wrote
the argument before the function and used [x] instead of λx .
Here is the translation from the classical λ-calculus you
studied into de Bruijn’s notation via I.

I(v) =def v ,

I(λv .B) =def [v]I(B),

I(AB) =def (I(B))I(A)

De Bruijn called items of the form (A) and [v] applicator
wagon respectively abstractor wagon, or simply wagon.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Test One
Test Two

◮ Translate the following terms in de Bruijn’s notation giving for
each translation the abstractor wagons as well as the
applicator wagons.

1. (λx .(λy .xy))z. [5]
Solution: (λx .(λy .xy))z translates to (z)[x]yx .
Abstractor wagons are: [x] and [y].
Applicator wagons are: (z) and (y).

2. (λx .(λy .λz.zD)C)BA. [7]
Solution: (λx .(λy .λz.zD)C)BA translates to
(A′)(B ′)[x](C ′)[y][z](D ′)z.
Abstractor wagons are: [x], [y] and [z].
Applicator wagons are: (A′), (B ′), (C ′), (D ′) and those inside
them.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Test One
Test Two

◮ De Bruijn also wrote the substitution A[v := B] as [v := B]A.
In de Bruijn’s notation, the β-rule (λv .A)B →β A[v := B]
becomes: (B)[v]A→β [v := B]A

1. Give the β-redexes in both the classical and in the de Bruijn’s
notation for each of the terms (λx .(λy .xy))z and
(λx .(λy .λz.zD)C)BA. Say which redexes in the classical
notation correspond to which redexes in de Bruijn’s notation.
[6]
Solution:
In (λx .(λy .xy))z, the only β-redex is:

◮ in classical: (λx .(λy .xy))z .
◮ in de Bruijn’s: (z)[x]yx .

The redexes correspond to one-another.
In (λx .(λy .λz.zD)C)BA, the β-redexes are:

◮ in classical: (λx .(λy .λz .zD)C)B and (λy .λz .zD)C .
◮ in de Bruin’s: (B ′)[x](C ′)[y][z](D ′)z and (C ′)[y][z](D ′)z .

The first of these corresponds to the first and the second to
Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Test One
Test Two

2. What do you notice about redexes in de Bruijn’s notation? [3]
Solution: We notice that a redex is a lot clearer in de Bruijn’s
notation. Note for example how in (λx .(λy .xy))z the z is
away from its matching λx , whereas in (z)[x]yx , the
wagons (z) and [x] are next to each other.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Test One
Test Two

3. Assume A, B , C , D and AD are in normal forms. Reduce to
normal forms each of the terms (λx .(λy .λz .zD)C)BA and
(A′)(B ′)[x](C ′)[y][z](D ′)z in both the classical usual notation
and in de Bruijn’s notation using at each step, the outermost
redex. [6]
Solution:

Classical Notation De Bruijn’s Notation

(
◦

λx .(
+
λy .

−

λz .zD)
+
C)

◦

B)
−

A
−

(A′)
◦

(B ′)
◦

[x]
+

(C ′)
+

[y]
−

[z] (D ′)z

↓β ↓β

((
+
λy .

−

λz .zD)
+
C)

−

A
−

(A′)
+

(C ′)
+

[y]
−

[z] (D ′)z

↓β ↓β

(
−

λz .zD)
−

A
−

(A′)
−

[z](D ′)zFairouz Kamareddine Traditional and Non Traditional lambda calculi

Some Basics
Reduction

Meta Theory
Reduction Strategies

de Bruijn indices
Representation of basic objects

Fixed points
Undecidability Results

Tests

Test One
Test Two

4. We define in de Bruijn’s calculus, a segment to be a sequence
(possibly empty) of wagons. For example, (y)[x][z](A) is a
segment.
We say that a segment S is well-balanced if and only if either
S = ∅ or S = (M)S1[v]S2 where S1 and S2 are well-balanced.
For example, (y)(z)(x)[y][z][x] is well-balanced.
Give the well-balanced segments of the translations you gave
above for (λx .(λy .xy))z and (λx .(λy .λz .zD)C)BA. [7]
Solution: (z)[x] is the only well-balanced segment in the
translation of (λx .(λy .xy))z .
(A′)(B ′)[x](C ′)[y][z], (B ′)[x](C ′)[y], (B ′)[x], (C ′)[y] are the
only well-balanced segments in the translation of
(λx .(λy .λz .zD)C)BA.

Fairouz Kamareddine Traditional and Non Traditional lambda calculi

	Some Basics
	Syntax
	Semantics
	Manipulating Expressions
	Variables and substitutions
	Free and bound variables
	Subterms and substitution
	Grafting and substitution
	Ordered list of variables
	Identifying terms modulo bound variables
	Syntactic identity revised
	Exercises

	Reduction
	Cleaning up terms
	Substitution on clean terms
	Alpha reduction
	Beta reduction
	Eta reduction
	convertibility
	Extensionality
	Normal forms
	Weakly and Strongly normalising
	Exercises

	Meta Theory
	Propeties of terms
	
	Church-Rosser
	Standardisation
	Left or right redexes
	Standardisation theorem
	Normalisation theorem
	Exercises

	Reduction Strategies
	Leftmost Outermost
	Rightmost
	Head -normal forms
	Call by Name
	Call by Leftmost and Value
	Call by Rightmost and Value
	Exercises

	de Bruijn indices
	Substitution using de Bruijn indices
	Exercises

	Representation of basic objects
	Representing propositional logic in the -calculus
	Representing pairing and projection in the -calculus
	Representing Church's numerals and arithmetic in the -calculus
	Exercises

	Fixed points
	Fix point Theorem

	Undecidability Results
	Lists
	Undecidability of halting
	Exercises

	Tests
	Test One
	Test Two

