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Basic Message

• Logic is OLD. Mathematics is OLD. But, SO IS computerisation.

• Assume a problem Π,
– If you give me an algorithm to solve Π, I can check whether this algorithm

really solves Π.
– But, if you ask me to find an algorithm to solve Π, I may go on forever

trying but without success.

• But, this result was already found by Aristotle: Assume a proposition Φ.
– If you give me a proof of Φ, I can check whether this proof really proves Φ.
– But, if you ask me to find a proof of Φ, I may go on forever trying but

without success.

• In fact, programs are proofs and much of computer science in the early part of
the 20th century was built by mathematicians and logicians.

• There were also important inventions in computer science made by physicists
(e.g., von Neumann) and others, but we ignore these in this talk.
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An example of a computable function/solvable problem

• E.g., 1.5 chicken lay down 1.5 eggs in 1.5 days.

• How many eggs does 1 chicken lay in 1 day?

• 1.5 chicken lay 1.5 eggs in 1.5 days.

• Hence, 1 chicken lay 1 egg in 1.5 days.

• Hence, 1 chicken lay 2/3 egg in 1 day.
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Unsolvability of the Barber problem

• which man barber in the village shaves all and only those men who do not
shave themselves?

• If John was the barber then

– John shaves Bill ⇐⇒ Bill does not shave Bill

– John shaves x ⇐⇒ x does not shave x

– John shaves John ⇐⇒ John does not shave John

• Contradiction.
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Unsolvability of the Russell set problem

• Another unsolvable problem: Give me the Russell set R = {x | x 6∈ x}.

• If R existed then x ∈ R iff x 6∈ x.

– If R ∈ R then
(x 6∈ x)[x := R] and so R 6∈ R.
Contradiction.

– If R 6∈ R then
(x 6∈ x)[x := R] and so R ∈ R.
Contradiction.

• What about the problem:

• Find an algorithm which takes any program P and input x and tells you
whether P halts or loops with input x.
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• Aristotle already knew that for a proposition Φ.
– If you give me a proof of Φ, I can check whether this proof really proves Φ.
– But, if you ask me to find a proof of Φ, I may go on forever trying but

without success.

• Aristotle used logic to reason about everything (law, farming, medicine,...)

• In the old times, Babylonians, Egyptians and Greeks, used to study mathematics
for many purposes (including as a pleasure activity). Their courts had
musicians, poets, math teachers, etc. These teachers already insisted that
Maths must be taught and developed using logic. This would surface again
much later (in the twentieth century) as one of the main themes of the research
of Frege and Russell.

• In the 17th century, Leibniz wanted to use logic to prove the existence of God.
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Why did computer science kick off in the 20th century?

In the 19th century, the need for a more precise style in mathematics arose,
because controversial results had appeared in analysis.

• 1821: Many of these controversies were solved by the work of Cauchy. E.g.,
he introduced a precise definition of convergence in his Cours d’Analyse [4].

• 1872: Due to the more exact definition of real numbers given by Dedekind [9],
the rules for reasoning with real numbers became even more precise.

• 1895-1897: Cantor began formalizing set theory [2, 3] and made contributions
to number theory.
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Formal systems in the 19th century

• 1889: Peano formalized arithmetic [26], but did not treat logic or quantification.

• 1879: Frege was not satisfied with the use of natural language in mathematics:

“. . . I found the inadequacy of language to be an obstacle; no matter how
unwieldy the expressions I was ready to accept, I was less and less able,
as the relations became more and more complex, to attain the precision
that my purpose required.”

(Begriffsschrift, Preface)

Frege therefore presented Begriffsschrift [11], the first formalisation of logic
giving logical concepts via symbols rather than natural language.
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Formal systems in the 19th century

“[Begriffsschrift’s] first purpose is to provide us with the most reliable test
of the validity of a chain of inferences and to point out every presupposition
that tries to sneak in unnoticed, so that its origin can be investigated.”

(Begriffsschrift, Preface)

• 1892-1903 Frege’s Grundgesetze der Arithmetik [13, 17], could handle
elementary arithmetic, set theory, logic, and quantification.

• Also in 1900, Hilbert, posed a list of problems at a conference in Paris.

• One very important question was: Can any logical statement have a proof or
be disproved.

• More than 30 years later, this question was negatively answered by Turing
(Turing machines), Goedel (incompleteness results) and Church (λ-calculus).
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Can we solve/compute everything?

• Turing answered the question in terms of a computer. Turing’s machines are
so powerful: anything that can ever be computed even on the most powerful
computers, can also be computed on a Turing machine.

• Church invented the λ-calculus, a language for programming. λ-calculus is
so powerful: anything that can ever be computed can be described in the
λ-calculus.

• Goedel’s result meant that no absolute guarantee can be given that many
significant branches of mathematics are entirely free of contradictions.

• This meant that: we can compute a very small (countable) amount compared
to what we will never be able to compute (uncountable).

• Hilbert’s dream was shattered. According to the great historian of Mathematics
Ivor Grattan-Guinness, Hilbert behaved coldly towards Goedel.
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How did Logic and mathematics influence programming

languages?

• Frege was the first most precise logician. He wanted symbols to replace natural
language everywhere.

• Self-application of functions was at the heart of Russell’s paradox 1902 [30].

• To avoid paradox Russell controled function application via type theory.

• Russell [31] 1903 gives the first type theory: the Ramified Type Theory (rtt).

• But, type theory existed since the time of Euclid (325 B.C.).

• rtt is used in Russell and Whitehead’s Principia Mathematica [34] 1910–1912.

• Simple theory of types (stt): Ramsey [28] 1926, Hilbert and Ackermann [19]
1928.
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• Church’s simply typed λ-calculus λ→ [7] 1940 = λ-calculus + stt.

• Untyped λ-calculus was adopted in LISP.

• Simply typed λ-calculus was adopted in theorem provers like HOL and was
used to make sense of other programming languages (e.g., pascal).

• Then, simple types were extended to polymorphic (and other) types.

• These are used in programming languages like ML.

• And the search continues for better and better programming languages.

• Types continue to play an influential role in the design and implementation of
programming languages.
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Prehistory of Types (Euclid)

• Euclid’s Elements (circa 325 B.C.) begins with:

1. A point is that which has no part;
2. A line is breadthless length.

...
15. A circle is a plane figure contained by one line such that all the straight

lines falling upon it from one point among those lying within the figure are
equal to one another.

• 1..15 define points, lines, and circles which Euclid distinguished between.

• Euclid always mentioned to which class (points, lines, etc.) an object belonged.
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Prehistory of Types (Euclid)

• By distinguishing classes of objects, Euclid prevented undesired/impossible
situations. E.g., whether two points (instead of two lines) are parallel.

• Intuition implicitly forced Euclid to think about the type of the objects.

• As intuition does not support the notion of parallel points, he did not even try
to undertake such a construction.

• In this manner, types have always been present in mathematics, although they
were not noticed explicitly until the late 1800s.

• If you studied geometry, then you have an (implicit) understanding of types.
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Prehistory of Types (Paradox Threats)

• From 1800, mathematical systems became less intuitive, for several reasons:

– Very complex or abstract systems.
– Formal systems.
– Something with less intuition than a human using the systems:

a computer or an algorithm.

• These situations are paradox threats. An example is Frege’s Naive Set Theory.

• Not enough intuition to activate the (implicit) type theory to warn against an
impossible situation.
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Prehistory of Types (Begriffsschrift’s functions)

The introduction of a very general definition of function was the key to the
formalisation of logic. Frege defined the Abstraction Principle.

Abstraction Principle 1.

“If in an expression, [. . . ] a simple or a compound sign has one or more
occurrences and if we regard that sign as replaceable in all or some of these
occurrences by something else (but everywhere by the same thing), then we
call the part that remains invariant in the expression a function, and the
replaceable part the argument of the function.”

(Begriffsschrift, Section 9)

Programs (or algorithms) are functions.
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Prehistory of Types (Begriffsschrift’s functions)

• Frege put no restrictions on what could play the role of an argument.

• An argument could be a number (as was the situation in analysis), but also a
proposition, or a function.

• Similarly, the result of applying a function to an argument did not necessarily
have to be a number.

• Functions of more than one argument were constructed by a method that is
very close to the method presented by Schönfinkel [33] in 1924.
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Prehistory of Types (Begriffsschrift’s functions)

With this definition of function, two of the three possible paradox threats occurred:

1. The generalisation of the concept of function made the system more abstract
and less intuitive.

2. Frege introduced a formal system instead of the informal systems that were
used up till then.

Type theory, that would be helpful in distinguishing between the different types
of arguments that a function might take, was left informal.

So, Frege had to proceed with caution. And so he did, at this stage.
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Prehistory of Types (Begriffsschrift’s functions)

Frege was aware of some typing rule that does not allow to substitute functions
for object variables or objects for function variables:

“if the [. . . ] letter [sign] occurs as a function sign, this circumstance
[should] be taken into account.”

(Begriffsschrift, Section 11)

“ Now just as functions are fundamentally different from objects, so also
functions whose arguments are and must be functions are fundamentally
different from functions whose arguments are objects and cannot be anything
else. I call the latter first-level, the former second-level.”

(Function and Concept, pp. 26–27)
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Prehistory of Types (Begriffsschrift’s functions)

In Function and Concept he was aware of the fact that making a difference
between first-level and second-level objects is essential to prevent paradoxes:

“The ontological proof of God’s existence suffers from the fallacy of treating
existence as a first-level concept.”

(Function and Concept, p. 27, footnote)

The above discussion on functions and arguments shows that Frege did indeed
avoid the paradox in his Begriffsschrift.
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Prehistory of Types (Grundgesetze’s functions)

The Begriffsschrift, however, was only a prelude to Frege’s writings.

• In Grundlagen der Arithmetik [12] he argued that mathematics can be seen as
a branch of logic.

• In Grundgesetze der Arithmetik [13, 17] he described the elementary parts of
arithmetic within an extension of the logical framework of Begriffsschrift.

• Frege approached the paradox threats for a second time at the end of Section
2 of his Grundgesetze.

• He did not want to apply a function to itself, but to its course-of-values.
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Prehistory of Types (Grundgesetze’s functions)

“the function Φ(x) has the same course-of-values as the function Ψ(x)” if:

“the functions Φ(x) and Ψ(x) always have the same value for the same
argument.”

(Grundgesetze, p. 7)

• Note that functions Φ(x) and Ψ(x) may have equal courses-of-values even if
they have different definitions. E.g., x ∧ ¬x, and x↔ ¬x.

• Frege denoted the course-of-values of a function Φ(x) by ὲΦ(ε). The definition
of equal courses-of-values could therefore be expressed as

ὲf(ε) = ὲg(ε)←→ ∀a[f(a) = g(a)]. (1)

In modern terminology, we could say that the functions Φ(x) and Ψ(x) have
the same course-of-values if they have the same graph.
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Prehistory of Types (Grundgesetze’s functions)

• The notation ὲΦ(ε) may be the origin of Russell’s notation x̂Φ(x) for the class
of objects that have the property Φ.

• According to a paper by Rosser [29], the notation x̂Φ(x) has been at the basis
of the current notation λx.Φ(x).

• Church is supposed to have written ∧xΦ(x) for the function x 7→ Φ(x):
the hat ∧ in front of the x distinguishes this function from the class x̂Φ(x).
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Prehistory of Types (Grundgesetze’s functions)
• Frege treated courses-of-values as ordinary objects.

• As a consequence, a function that takes objects as arguments could have its
own course-of-values as an argument.

• In modern terminology: a function that takes objects as arguments can have
its own graph as an argument.

• BUT, all essential information of a function is contained in its graph.

• A system in which a function can be applied to its own graph should have
similar possibilities as a system in which a function can be applied to itself.

• Frege excluded the paradox threats by forbidding self-application

• but due to his treatment of courses-of-values these threats were able to enter
his system through a back door.
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Prehistory of Types (Russell’s paradox in Grundgesetze)

• In 1902, Russell wrote a letter to Frege [30], informing him that he had
discovered a paradox in his Begriffsschrift.

• WRONG: Begriffsschrift does not suffer from a paradox.

• Russell gave his well-known argument, defining the propositional function

f(x) by ¬x(x).

In Russell’s words: “to be a predicate that cannot be predicated of itself.”

• Russell assumed f(f). Then by definition of f , ¬f(f), a contradiction.
Therefore: ¬f(f) holds. But then (again by definition of f), f(f) holds.
Russell concluded that both f(f) and ¬f(f) hold, a contradiction.
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Prehistory of Types (Russell’s paradox in Grundgesetze)

• 6 days later, Frege wrote [16] that Russell’s derivation of paradox is incorrect.

• Ferge explained that self-application f(f) is not possible in Begriffsschrift.

• f(x) is a function, which requires an object as an argument.
A function cannot be an object in the Begriffsschrift.

• Frege explained that Russell’s argument could be amended to a paradox in
Grundgesetze, using the course-of-values of functions:

Let f(x) = ¬∀ϕ[(ὰϕ(α) = x) −→ ϕ(x)]
I.e. f(x) = ∃ϕ[(ὰϕ(α) = x) ∧ ¬ϕ(x)] hence ¬ϕ(ὰϕ(α))

• Both f(ὲf(ε)) and ¬f(ὲf(ε)) hold.

• Frege added an appendix of 11 pages to the 2nd volume of Grundgesetze in
which he gave a very detailed description of the paradox.
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Prehistory of Types (How wrong was Frege?)
• Due to Russell’s Paradox, Frege is often depicted as the pitiful person whose

system was inconsistent.

• This suggests that Frege’s system was the only one that was inconsistent, and
that Frege was very inaccurate in his writings.

• On these points, history does Frege an injustice.

• Frege’s system was much more accurate than other systems of those days.

• Peano’s work, for instance, was less precise on several points:

• Peano hardly paid attention to logic especially quantification theory;

• Peano did not make a strict distinction between his symbolism and the objects
underlying this symbolism. Frege was much more accurate on this point (see
Frege’s paper Über Sinn und Bedeutung [14]);
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Prehistory of Types (How wrong was Frege?)

• Frege made a strict distinction between a proposition (as an object) and the
assertion of a proposition. Frege denoted a proposition, by −A, and its
assertion by ⊢ A. Peano did not make this distinction and simply wrote A.

Nevertheless, Peano’s work was very popular, for several reasons:

• Peano had able collaborators, and a better eye for presentation and publicity.

• Peano bought his own press to supervise the printing of his own journals Rivista
di Matematica and Formulaire [27]
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Prehistory of Types (How wrong was Frege?)

• Peano used a familiar symbolism to the notations used in those days.

• Many of Peano’s notations, like ∈ for “is an element of”, and ⊃ for logical
implication, are used in Principia Mathematica, and are actually still in use.

• Frege’s work did not have these advantages and was hardly read before 1902

• When Peano published his formalisation of mathematics in 1889 [26] he clearly
did not know Frege’s Begriffsschrift as he did not mention the work, and was
not aware of Frege’s formalisation of quantification theory.
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Prehistory of Types (How wrong was Frege?)

• Peano considered quantification theory to be “abstruse” in [27]:

“In this respect my [Frege] conceptual notion of 1879 is superior to the
Peano one. Already, at that time, I specified all the laws necessary for
my designation of generality, so that nothing fundamental remains to be
examined. These laws are few in number, and I do not know why they
should be said to be abstruse. If it is otherwise with the Peano conceptual
notation, then this is due to the unsuitable notation.”

([15], p. 376)
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Prehistory of Types (How wrong was Frege?)

• In the last paragraph of [15], Frege concluded:

“. . . I observe merely that the Peano notation is unquestionably more
convenient for the typesetter, and in many cases takes up less room
than mine, but that these advantages seem to me, due to the inferior
perspicuity and logical defectiveness, to have been paid for too dearly —
at any rate for the purposes I want to pursue.”

(Ueber die Begriffschrift des Herrn Peano und meine eigene, p. 378)
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Prehistory of Types (paradox in Peano and Cantor’s systems)

• Frege’s system was not the only paradoxical one.

• The Russell Paradox can be derived in Peano’s system as well, by defining the

class K
def
= {x | x 6∈ x} and deriving K ∈ K ←→ K 6∈ K.

• In Cantor’s Set Theory one can derive the paradox via the same class (or set,
in Cantor’s terminology).
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Prehistory of Types (paradoxes)

• Paradoxes were already widely known in antiquity.

• The oldest logical paradox: the Liar’s Paradox “This sentence is not true”,
also known as the Paradox of Epimenides. It is referred to in the Bible (Titus
1:12) and is based on the confusion between language and meta-language.

• The Burali-Forti paradox ([1], 1897) is the first of the modern paradoxes. It is
a paradox within Cantor’s theory on ordinal numbers.

• Cantor was aware of the Burali-Forti paradox but did not think it would render
his system incoherent.

• Cantor’s paradox on the largest cardinal number occurs in the same field. It
was discovered by Cantor around 1895, but was not published before 1932.
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Prehistory of Types (paradoxes)

• Logicians considered these paradoxes to be out of the scope of logic:

– The Liar’s Paradox can be regarded as a problem of linguistics.
– The paradoxes of Cantor and Burali-Forti occurred in what was considered in

those days a highly questionable part of mathematics: Cantor’s Set Theory.

• The Russell Paradox, however, was a paradox that could be formulated in all
the systems of the end of the 19th century (except for Frege’s Begriffsschrift).

• Russell’s Paradox was at the very basics of logic.

• It could not be disregarded, and a solution to it had to be found.

• In 1903-1908, Russell suggested the use of types to solve the problem [32].
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Prehistory of Types (vicious circle principle)

When Russell proved Frege’s Grundgesetze to be inconsistent, Frege was not the
only person in trouble. In Russell’s letter to Frege (1902), we read:

“I am on the point of finishing a book on the principles of mathematics”

(Letter to Frege, [30])

Russell had to find a solution to the paradoxes, before finishing his book.

His paper Mathematical logic as based on the theory of types [32] (1908), in
which a first step is made towards the Ramified Theory of Types, started with a
description of the most important contradictions that were known up till then,
including Russell’s own paradox. He then concluded:
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Prehistory of Types (vicious circle principle)

“In all the above contradictions there is a common characteristic, which we
may describe as self-reference or reflexiveness. [. . . ] In each contradiction
something is said about all cases of some kind, and from what is said a new
case seems to be generated, which both is and is not of the same kind as
the cases of which all were concerned in what was said.”

(Ibid.)

Russell’s plan was, to avoid the paradoxes by avoiding all possible self-references.
He postulated the “vicious circle principle”:
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Ramified Type Theory

“Whatever involves all of a collection must not be one of the collection.”

(Mathematical logic as based on the theory of types)

• Russell applies this principle very strictly.

• He implemented it using types, in particular the so-called ramified types.

• The type theory of 1908 was elaborated in Chapter II of the Introduction to
the famous Principia Mathematica [34] (1910-1912).
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Ramified Type Theory and Principia

• In the Principia, mathematics was founded on logic, as far as possible.

• The logical part of Principia was based on the works of Frege (acknowledged
by Whitehead and Russell in the preface, and can be seen throughout the
description of Type Theory).

• The notion of function is based on Frege’s Abstraction Principles.

• The Principia notation x̂f(x) for a class looks very similar to Frege’s ὲf(ε) for
course-of-values.
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The Simple Theory of Types

• Ramsey [28], and Hilbert and Ackermann [19], simplified the Ramified Theory
of Types rtt by removing the orders. The result is known as the Simple
Theory of Types (stt).

• In 1932 and 1933, Church presented his (untyped) λ-calculus [5, 6]. In 1940
he combined this theory with stt giving us the simply typed λ-calculus λ→.

• λ→ is very restrictive.

• Numbers, booleans, the identity function have to be defined at every level.

• We can represent (and type) terms like λx : o.x and λx : ι.x.

• We cannot type λx : α.x, where α can be instantiated to any type.

• This led to new (modern) type theories that allow more general notions of
functions (e.g, polymorphic).
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And so, the birth of computation machines, and limits of

computability

• The first half of the 20th century saw a surge of different formalisms and saw
the birth of computers (Turing machines, Von Neumann’s machine, etc).

• E.g., the discovery of Russell’s paradox was the reason for the invention of the
first type theory.

• There was a competition between set/type/category theory as a better
foundation for mathematics.

• The second half of the 20th century would see a surge of programming
languages and softwares for mathematics.
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And so!! different theories, different formalisms

• Translations of Mathematics into logic (Hilbert, Ackermann, Weyl, Russell,
Whitehead, Frege, etc.) showed that no logic is fully satisfactory.

• First order logics? Higher order logics? Predicative logics/ impredicative ones?

• There are different set theories: well-founded, non well-founded, with/without
foundation axiom/axiom of choice, etc.

• There are different type theories: simple, polymorphic, dependent,etc.

• There are arguments that category theory can serve parts of mathematics
better than type theory or set theory.

• And new logics, set/type/category theories are regularly being developed.

• Worst, the ordinary mathematician is not interested in any of this progress.
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How can Computerisation help mathematics?

• Nowadays, computerization is an essential feature of any field.

• What is the influence of computerization on the study of language.

• Which language? Portuguese, Spanish, English, French, German, ...

• Euclid’s book on geometry was written in Greek in Alexandria and translated
into many languages.

• The impressive library of Alexandria at that time was destroyed later.

• Attempts at recreating this library electronically are being made.

• We need the computerization of a huge number of texts and books.

• Why computerize books? How do we computerize books? What problems do
we encounter?
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The Goal: Open borders between mathematics, logic and

computation

• Ordinary mathematicians avoid formal mathematical logic.

• Ordinary mathematicians avoid proof checking (via a computer).

• Ordinary mathematicians may use a computer for computation: there are over
1 million people who use Mathematica (including linguists, engineers, etc.).

• Mathematicians may also use other computer forms like Maple, LaTeX, etc.

• But we are not interested in only libraries or computation or text editing.

• We want freedeom of movement between mathematics, logic and computation.

• At every stage, we must have the choice of the level of formalilty and the
depth of computation.
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Common Mathematical Language of mathematicians: Cml

+ Cml is expressive: it has linguistic categories like proofs and theorems.

+ Cml has been refined by intensive use and is rooted in long traditions.

+ Cml is approved by most mathematicians as a communication medium.

+ Cml accommodates many branches of mathematics, and is adaptable to new
ones.

– Since Cml is based on natural language, it is informal and ambiguous.

– Cml is incomplete: Much is left implicit, appealing to the reader’s intuition.

– Cml is poorly organised: In a Cml text, many structural aspects are omitted.

– Cml is automation-unfriendly: A Cml text is a plain text and cannot be easily
automated.
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A Cml-text

From chapter 1, § 2 of E. Landau’s Foundations of Analysis [Lan51].

Theorem 6. [Commutative Law of Addition]

x + y = y + x.

Proof Fix y, and let M be the set of all
x for which the assertion holds.

I) We have

y + 1 = y′,

and furthermore, by the construction in
the proof of Theorem 4,

1 + y = y′,

so that
1 + y = y + 1

and 1 belongs to M.
II) If x belongs to M, then

x + y = y + x,

Therefore

(x + y)′ = (y + x)′ = y + x′.

By the construction in the proof of
Theorem 4, we have

x′ + y = (x + y)′,

hence

x′ + y = y + x′,
so that x′ belongs to M. The assertion

therefore holds for all x. 2
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What are the options for computerization?

Computers can handle mathematical text at various levels:

• Images of pages may be stored. While useful, this is not a good representation
of language or knowledge.

• Typesetting systems like LATEX can be used.

• Document representations like OMDoc can be used.

• Formal logics used by theorem provers can be used.

We are gradually developing a system named MathLang which we hope will
eventually allow building a bridge between the latter 3 levels.

This talk aims at discussing the motivations rather than the details.
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The issues with typesetting systems

+ A system like LATEX provides good defaults for visual appearance, while allowing
fine control when needed.

+ LATEX supports commonly needed document structures, while allowing custom
structures to be created.

– Unless the mathematician is amazingly disciplined, the logical structure of
symbolic formulas is not represented at all.

– The logical structure of mathematics as embedded in natural language text is
not represented. Automated discovery of the semantics of natural language
text is still too primitive and requires human oversight.
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LATEX example
draft documents ✓

public documents ✓

computations and proofs ✗\begin{theorem}[Commutative Law of Addition]\label{theorem:6}
$$x+y=y+x.$$

\end{theorem}
\begin{proof}

Fix $y$, and $\mathfrak{M}$ be the set of all $x$ for which the

assertion holds.

\begin{enumerate}
\item We have $$y+1=y’,$$

and furthermore, by the construction in

the proof of Theorem~\ref{theorem:4}, $$1+y=y’,$$

so that $$1+y=y+1$$

and $1$ belongs to $\mathfrak{M}$.
\item If $x$ belongs to $\mathfrak{M}$, then $$x+y=y+x,$$

Therefore

$$(x+y)’=(y+x)’=y+x’.$$

By the construction in the proof of

Theorem~\ref{theorem:4}, we have $$x’+y=(x+y)’,$$

hence

$$x’+y=y+x’,$$

so that $x’$ belongs to $\mathfrak{M}$.
\end{enumerate}
The assertion therefore holds for all $x$.

\end{proof}
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The differences of OMDoc

OMDoc attempts to solve some of the difficulties of typesetting systems.

+ Translation to LATEX (still needed) or MathML can handle visual appearance.

– Precise appearance control must work through a translation (difficult!).

+ OMDoc supports commonly needed document structures.

+ The tree structure of symbolic formulas is represented.

– The semantics of symbolic formulas is not represented.

– Type checking symbolic formulas (beyond arity) must be outside OMDoc.

– The logical structure of mathematics as embedded in natural language text
is still not represented. There are ways to associate symbolic formulas with
natural language text, but no way to check their consistency.
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The beginnings of computerized formalization

• In 1967 the famous mathematician de Bruijn began work on logical languages
for complete books of mathematics that can be fully checked by machine.

• People are prone to error, so if a machine can do proof checking, we expect
fewer errors.

• Most mathematicians doubted de Bruijn could achieve success, and computer
scientists had no interest at all.

• However, he persevered and built Automath (AUTOmated MATHematics).

• Today, there is much interest in many approaches to proof checking for
verification of computer hardware and software.

• Many theorem provers have been built to mechanically check mathematics and
computer science reasoning (e.g. Isabelle, HOL, Coq, etc.).
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The problem with formal logic
• No logical language has the criteria expected of a language of mathematics.

– A logical language does not have mathematico-linguistic categories, is not
universal to all mathematicians, and is not a good communication medium.

– Logical languages make fixed choices (first versus higher order, predicative
versus impredicative, constructive versus classical, types or sets, etc.). But
different parts of mathematics need different choices and there is no universal
agreement as to which is the best formalism.

– A logician reformulates in logic their formalization of a mathematical-text as
a formal, complete text which is structured considerably unlike the original,
and is of little use to the ordinary mathematician.

– Mathematicians do not want to use formal logic and have for centuries done
mathematics without it.

• So, mathematicians kept to Cml.

• We would like to find an alternative to Cml which avoids some of the features
of the logical languages which made them unattractive to mathematicians.
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Full formalization difficulties: choices

A Cml-text is structured differently from a fully formalized text proving the same
facts. Making the latter involves extensive knowledge and many choices:

• The choice of the underlying logical system.

• The choice of how concepts are implemented (equational reasoning,
equivalences and classes, partial functions, induction, etc.).

• The choice of the formal foundation: a type theory (dependent?), a set theory
(ZF? FM?), a category theory? etc.

• The choice of the proof checker: Automath, Isabelle, Coq, PVS, Mizar, ...

An issue is that one must in general commit to one set of choices.
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Full formalization difficulties: informality

Any informal reasoning in a Cml-text will cause various problems when fully
formalizing it:

• A single (big) step may need to expand into a (series of) syntactic proof
expressions. Very long expressions can replace a clear Cml-text.

• The entire Cml-text may need reformulation in a fully complete syntactic
formalism where every detail is spelled out. New details may need to be woven
throughout the entire text. The text may need to be “turned inside out”.

• Reasoning may be obscured by proof tactics, whose meaning is often ad hoc
and implementation-dependent.

Regardless, ordinary mathematicians do not find the new text useful.
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Coq example

draft documents ✗
public documents ✗

computations and proofs ✓

From Module Arith.Plus of Coq standard library (http://coq.inria.fr/).

Lemma plus_sym : (n,m:nat)(n+m)=(m+n).

Proof.

Intros n m ; Elim n ; Simpl_rew ; Auto with arith.

Intros y H ; Elim (plus_n_Sm m y) ; Simpl_rew ; Auto with arith.

Qed.
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Where do we start? de Bruijn’s Mathematical Vernacular MV

• De Bruijn’s Automath not just [...] as a technical system for verification
of mathematical texts, it was rather a life style with its attitudes towards
understanding, developing and teaching mathematics....The way mathematical
material is to be presented to the system should correspond to the usual way
we write mathematics. The only things to be added should be details that are
usually omitted in standard mathematics.

• MV is faithful to Cml yet is formal and avoids ambiguities.

• MV is close to the usual way in which mathematicians write.

• MV has a syntax based on linguistic categories not on set/type theory.

• MV is weak as regards correctness: the rules of MV mostly concern linguistic
correctness, its types are mostly linguistic so that the formal translation into
MV is satisfactory as a readable, well-organized text.
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Problems with MV

• MV makes many logical and mathematical choices which are best postponed.

• MV incorporates certain correctness requirements, there is for example a
hierarchy of types corresponding with sets and subsets.

• MV is already on its way to a full formalization, while we want the option of
remaining closer to a given informal mathematical content.

• We want a formal language MathLang which •has the advantages of Cml

but not its disadvantages and •respects Cml content.

• MV does not respect Cml content.
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What is the aim for MathLang?

Can we formalise a Cml text, avoiding as much as possible the ambiguities of
natural language, while still guaranteeing the following four goals?

1. The formalised text looks very much like the original Cml text (and hence the
content of the original Cml text is respected).

2. The formalised text can be fully manipulated and searched in ways that respect
its mathematical structure and meaning.

3. Steps can be made to do computation (via computer algebra systems) and
proof checking (via proof checkers) on the formalised text.

4. This formalisation of text is not much harder for the ordinary mathematician
than LATEX. Full formalization down to a foundation of mathematics is not
required, although allowing and supporting this is one goal.

(No theorem prover’s language satisfies these goals.)
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Starting point for MathLang: MV and WTT

• MV was an initial inspiration for MathLang. But MV fails on goal 1.

• Weak Type Theory, WTT [21], is MV minus the added logic.

• Although in many ways WTT succeeds and improves on MV, it still fails on
goal 1. A WTT text is not close to its Cml original.

• With MathLang, we start from WTT, add some features, and investigate how
to integrate it with natural language text.

• Our ongoing development of MathLang is driven by testing it in translating
a set of sample texts chosen to cover a large portion of Cml usages, both
current and historical.
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MathLang

draft documents ✓
public documents ✓

computations and proofs ✓

• A MathLang text captures the grammatical and reasoning aspects of
mathematical structure for further computer manipulation.

• A weak type system checks MathLang documents at a grammatical level.

• A MathLang text remains close to its Cml original, allowing confidence that
the Cml has been captured correctly.

• We have been developing ways to weave natural language text into MathLang.

• MathLang aims to eventually support all encoding uses.
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• The Cml view of a MathLang text should match the mathematician’s
intentions.

• The formal structure should be suitable for various automated uses.
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Example of a MathLang Path

Kamareddine, Maarek, Retel and Wells 2007a

Kamareddine, Wells and Zengler 2008
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What is CGa? (Kamareddine, Maarek and Wells 2005)

• CGa is a formal language derived from MV (N.G. de Bruijn 1987) and WTT
(Kamareddine and Nederpelt 2004) which aims at expliciting the grammatical
role played by the elements of a CML text.

• The structures and common concepts used in CML are captured by CGa with a
finite set of grammatical/linguistic/syntactic categories: Term “

√
2”, set “Q”,

noun “number”, adjective “even”, statement “a = b”, declaration “Let a be
a number”, definition “An even number is..”, step “a is odd, hence a 6= 0”,
context “Assume a is even”.

• Generally, each syntactic category has a corresponding weak type.

• CGa’s type system Kamareddine, Maarek and Wells 2005 derives typing
judgments to check whether the reasoning parts of a document are coherently
built.
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Examples of linguistic categories

• Terms: the triangle ABC; the center of ABC ; d(x, y ).

• Nouns: a triangle; an edge of ABC; a group.

• Adjectives: equilateral triangle ; prime number ; Abelian group.

• Statements: P lies between Q and R ; 5 ≥ 3 ; AB is an edge of ABC.

• Definition: a number p is prime whenever · · · .
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CGa’s Commonality with MV

• MV is somewhat faithful to Cml yet is formal and avoids ambiguities.

• MV is close to the usual way in which mathematicians write.

• MV has a syntax based on linguistic categories not on set/type theory.

• MV is weak as regards correctness: the rules of MV mostly concern linguistic
correctness, its types are mostly linguistic so that the formal translation into
MV is satisfactory as a readable, well-organized text.
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Problems with MV

• MV makes many logical and mathematical choices which are best postponed.

• MV incorporates certain correctness requirements, there is for example a
hierarchy of types corresponding with sets and subsets.

• MV is already on its way to a full formalization, while we want the option of
remaining closer to a given informal mathematical content.

• A Cml text tagged into MathLang

– has the advantages of the original Cml text but not its disadvantages and
– respects the original Cml content.

• MV does not respect Cml content.
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CGa’s relation to WTT

• An MV text is not close to its Cml original.

• Weak Type Theory, WTT (Kamareddine adn Nederpelt 2004), is MV minus
the added logic.

• Although in many ways WTT succeeds and improves on MV, it still fails on
respecting the original text. A WTT text is not close to its Cml original.

• With CGa, we start from WTT, add some features, and investigate how to
integrate it with natural language text.

• Our ongoing development of MathLang is driven by testing it in translating
a set of sample texts chosen to cover a large portion of Cml usages, both
current and historical.
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• At the conception of MathLang (Kamareddine and Wells 2001 and 2002) we
proposed Euclid’s geometry (Heath 1956), Landau’s analysis (Landau 1930,
1951), and the Compendium of lattices (Gierz etal 1980) as a start.
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Weak Type Theory

In Weak Type Theory (or Wtt) we have the following linguistic categories:

• On the atomic level: variables, constants and binders,

• On the phrase level: terms T , sets S, nouns N and adjectives A,

• On the sentence level: statements P and definitions D,

• On the discourse level: contexts ΓI , lines l and books B.
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Main categories of syntax of WTT

level category abstract syntax symbol

atomic variables V = VT |VS|VP x

constants C = CT |CS|CN |CA|CP c

binders B = BT |BS|BN |BA|BP b

phrase terms T = CT (
→
P)|BT

Z(E)|VT t

sets S = CS(
→
P)|BS

Z(E)|VS s

nouns N = CN(
→
P)|BN

Z (E)|AN n

adjectives A = CA(
→
P)|BA

Z(E) a

sentence statements P = CP (
→
P)|BP

Z(E)|VP S

definitions D = Dϕ|DP D

Dϕ = CT (
→
V ) := T |CS(

→
V ) := S|

CN(
→
V ) := N|CA(

→
V ) := A

DP = CP (
→
V ) := P

discourse contexts ΓI = ∅ | ΓI,Z | ΓI, P Γ
lines l = ΓI ⊲ P | ΓI ⊲ D l
books B = ∅ | B ◦ l B
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Categories of syntax of WTT

Other category abstract syntax symbol

expressions E = T |S|N |P E

parameters P = T |S|P (note:
→
P is a list of Ps) P

typings T = S : SET |S : STAT |T : S|T : N|T : A T

declarations Z = VS : SET |VP : STAT |VT : S|VT : N Z
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Derivation rules

(1) B is a weakly well-typed book: ⊢ B :: B.

(2) Γ is a weakly well-typed context relative to book B: B ⊢ Γ :: ΓI.

(3) t is a weakly well-typed term, etc., relative to book B and context Γ:

B; Γ ⊢ t :: T, B; Γ ⊢ s :: S, B; Γ ⊢ n :: N,
B; Γ ⊢ a :: A, B; Γ ⊢ p :: P, B; Γ ⊢ d :: D

OK(B; Γ). stands for: ⊢ B :: B, and B ⊢ Γ :: ΓI
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Examples of derivation rules

• dvar(∅) = ∅ dvar(Γ′, x : W ) = dvar(Γ′), x dvar(Γ′, P ) = dvar(Γ′)

OK(B; Γ), x ∈ VT/S/P, x ∈ dvar(Γ)

B; Γ ⊢ x :: T/S/P
(var)

B; Γ ⊢ n :: N , B; Γ ⊢ a :: A

B; Γ ⊢ an :: N
(adj−noun)

⊢ ∅ :: B
(emp−book)

B; Γ ⊢ p :: P

⊢ B ◦ Γ ⊲ p :: B

B; Γ ⊢ d :: D

⊢ B ◦ Γ ⊲ d :: B
(book−ext)
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Properties of MathLang

• Every variable is declared If B; Γ ⊢ Φ :: W then FV (Φ) ⊆ dvar(Γ).

• Correct subcontexts If B ⊢ Γ :: ΓI and Γ′ ⊆ Γ then B ⊢ Γ′ :: ΓI.

• Correct subbooks If ⊢ B :: B and B′ ⊆ B then ⊢ B′ :: B.

• Free constants are either declared in book or in contexts If B; Γ ⊢ Φ :: W, then FC(Φ) ⊆ prefcons(B)∪
defcons(B).

• Types are unique If B; Γ ⊢ A :: W1 and B; Γ ⊢ A :: W2, then W1 ≡ W2.

• Weak type checking is decidable there is a decision procedure for the question B; Γ ⊢ Φ :: W ?.

• Weak typability is computable there is a procedure deciding whether an answer exists for B; Γ ⊢ Φ :: ? and if

so, delivering the answer.
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Definition unfolding

• Let ⊢ B :: B and Γ ⊲ c(x1, . . . , xn) := Φ a line in B.

• We write B ⊢ c(P1, . . . , Pn)
δ→ Φ[xi := Pi].

• Church-Rosser If B ⊢ Φ
δ→→ Φ1 and B ⊢ Φ

δ→→ Φ2 then there exists Φ3 such that B ⊢ Φ1
δ→→ Φ3

andf B ⊢ Φ2
δ→→ Φ3.

• Strong Normalisation Let ⊢ B :: B. For all subformulas Ψ occurring in B, relation
δ→ is strongly normalizing

(i.e., definition unfolding inside a well-typed book is a well-founded procedure).
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CGa’s grammatical categories (taken from MV/WTT)

term “a + b”

set “N”

noun “ring”

adjective “Abelian”

statement “a + 0 = a”

declaration “Let a be . . . ”

definition “A ring is . . . ”

step “. . . , therefore . . . ”

context “Assume . . . ”
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Box annotations (categories are CGa, interface is TSa)

There is an element 0 in R such that a + 0 = a

ISR 2009, Brasiliá, Brasil 76



Box annotations (categories are CGa, interface is TSa)

There is an element 0 in R such that a + 0 = a

• 0 is being declared,
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Box annotations (categories are CGa, interface is TSa)

There is an element 0 in R such that a + 0 = a

• 0 is being declared,

• . . . and is an element of the set R,

ISR 2009, Brasiliá, Brasil 78



Box annotations (categories are CGa, interface is TSa)

There is an element 0 in R such that a + 0 = a

• 0 is being declared,

• . . . and is an element of the set R,

• a and 0 are terms,
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Box annotations (categories are CGa, interface is TSa)

There is an element 0 in R such that a + 0 = a

• 0 is being declared,

• . . . and is an element of the set R,

• a and 0 are terms,

• Their sum is also a term,
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Box annotations (categories are CGa, interface is TSa)

There is an element 0 in R such that a + 0 = a

• 0 is being declared,

• . . . and is an element of the set R,

• a and 0 are terms,

• Their sum is also a term,

• The equality between a + 0 and a is a statement,
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Box annotations (categories are CGa, interface is TSa)

There is an element 0 in R such that a + 0 = a

• 0 is being declared,

• . . . and is an element of the set R,

• a and 0 are terms,

• Their sum is also a term,

• The equality between a + 0 and a is a statement,

• Finally, the overall sentence is a step.
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Another example

There is an element −a in R such that a + −(a) = 0 for all a in R
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Another example

There is an element −a in R such that a + -( a ) = 0 for all a in R
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Another example

There is an element −a in R such that a + -( a ) = 0 for all a in R
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Another example

There is an element −a in R such that a + -( a ) = 0 for all a in R
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Another example

There is an element −a in R such that a + -( a ) = 0 for all a in R
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Another example

There is an element −a in R such that a + -( a ) = 0 for all a in R
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Another example

There is an element −a in R such that a + -( a ) = 0 for all a in R
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Another example

There is an element −a in R such that a + -( a ) = 0 for all a in R
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Another example

There is an element −a in R such that a + -( a ) = 0 for all a in R
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Another example

There is an element −a in R such that a + -( a ) = 0 for all a in R
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Another example

There is an element −a in R such that a + -( a ) = 0 for all a in R

ISR 2009, Brasiliá, Brasil 93



CGa typing rules

• The CGa syntax is an adaptation of that of WTT and has almost the same categories to both MV and WTT.

• A CGa text can be type checked using CGa type rules which are again an adaptation of those of WTT.

• The automatic type checker type checks a CGa annotated text and if it succeeds, the text is said to be

syntactically correct, else a type error message is printed.
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CGa Weak Type Checking

T Terms S Sets N Nouns P Statements Z DeclarationsΓ Context

Let M be a set,
y and x are natural numbers ,

if x belongs to M

then x + y=y + x
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CGa Weak Type checking detects grammatical errors

T Terms S Sets N Nouns P Statements Z DeclarationsΓ Context

Let M be a set,
y and x are natural numbers ,

if x belongs to M

then x + y ⇐ error
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How complete is the CGa?

• CGa is quite advanced but remains under development according to new translations of mathematical texts. Are
the current CGa categories sufficient?

• The metatheory of WTT has been established in (Kamareddine and Nederepelt 2004). That of CGa remains to
be established. However, since CGa is quite similar to WTT, its metatheory might be similar to that of WTT.

• The type checker for CGa works well and gives some useful error messages. Error messages should be improved.
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Example of a MathLang Path

Kamareddine, Maarek, Retel and Wells 2007a

Kamareddine, Wells and Zengler 2008
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What is TSa? (Kamareddine, Lamar, Maarek and Wells

2007)

• TSa (Kamareddine, Lamar, Maarek and Wells) builds the bridge between a CML text and its grammatical
interpretation and adjoins to each CGa expression a string of words and/or symbols which aims to act as its

CML representation.

• TSa plays the role of a user interface

• TSa can flexibly represent natural language mathematics.

• The author wraps the natural language text with boxes representing the grammatical categories (as we saw
before).

• The author can also give interpretations to the parts of the text.
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Interpretations

There is 0an element 0 in RR such that eq plus aa + 00 = aa

{ 0 : R; eq ( plus ( a, 0 ), a ); };

At the lower CGa level, these interpretations are helpful for example for dealing with the natural language aspect.
At the higher aspects (e.g., filling incomplete proofs), these interpretations could enable assiging intended logical

meanings to parts of the text.
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Interpretations
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Rewrite rules enable natural language representation

0 + a0 = a0 = a(0 + 0) = a0 + a0

eq 0 + a0= shared a0 eq= shared a(0 + 0) eq=a0 + a0
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How do you do this?

0 + a0 = a0 = a(0 + 0) = a0 + a0
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How do you do this?

0 + a0 = a0 = a(0 + 0) = a0 + a0
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How do you do this?

0 + a0 = a0 = a(0 + 0) = a0 + a0
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How do you do this?

0 + a0 = <share> a0 = <share> a(0 + 0) =a0 + a0
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How do you do this?

0 + a0 = <share> a0 = <share> a(0 + 0) =a0 + a0

0 + a0 = a0 a0 = a(0 + 0) a(0 + 0) = a0 + a0
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How complete is TSa?

• TSa provides useful interface facilities but it is still under development.

• So far, only simple rewrite (souring) rules are used and they are not comprehensive. E.g., unable to cope with

things like
n times

z }| {
x = . . . = x.

• The TSa theory and metatheory need development.
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Example of a MathLang Path

Kamareddine, Maarek, Retel and Wells 2007a

Kamareddine, Wells and Zengler 2008
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What is DRa? (Kamareddine, Maarek, Retel and Wells

2007b)

• DRa (Kamareddine, Maarek, Retel and Wells 2007b): Document Rhetorical structure aspect.

• Structural components of a document like chapter, section, subsection, etc.

• Mathematical components of a document like theorem, corollary, definition, proof, etc.

• Relations between above components.

• These enhance readability, and ease the navigation of a document.

• Also, these help to go into more formal versions of the document.
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Relations

Description

Instances of the StructuralRhetoricalRole class:
preamble, part, chapter, section, paragraph, etc.

Instances of the MathematicalRhetoricalRole class:
lemma, corollary, theorem, conjecture, definition, axiom, claim,

proposition, assertion, proof, exercise, example, problem, solution, etc.

Relation

Types of relations:

relatesTo, uses, justifies, subpartOf, inconsistentWith, exemplifies
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What does the mathematician do?

• The mathematician wraps into boxes and uniquely names chunks of text

• The mathematician assigns to each box the structural and/or mathematical rhetorical roles

• The mathematician indicates the relations between wrapped chunks of texts
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Lemma 1. For m, n ∈ N one has: m2 = 2n2 =⇒ m = n = 0.
Proof Define on N the predicate:

P (m) ⇐⇒ ∃n.m2 = 2n2 & m > 0.

Claim. P (m) =⇒ ∃m′ < m.P (m′). Indeed suppose m2 = 2n2 and m > 0. It follows that m2 is even, but then m
must be even, as odds square to odds. So m = 2k and we have

2n2 = m2 = 4k2 =⇒ n2 = 2k2

Since m > 0, if follows that m2 > 0, n2 > 0 and n > 0. Therefore P (n). Moreover, m2 = n2 + n2 > n2, so

m2 > n2 and hence m > n. So we can take m′ = n.
By the claim ∀m ∈ N.¬P (m), since there are no infinite descending sequences of natural numbers.

Now suppose m2 = 2n2 with m 6= 0. Then m > 0 and hence P (m). Contradiction. Therefore m = 0. But then
also n = 0. Corollary 1.

√
2 /∈ Q.

Proof Suppose
√

2 ∈ Q, i.e.
√

2 = p/q with p ∈ Z, q ∈ Z − {0}. Then
√

2 = m/n with m = |p|, n = |q| 6= 0. It

follows that m2 = 2n2. But then n = 0 by the lemma. Contradiction shows that
√

2 /∈ Q.

Barendregt
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(A, hasMathematicalRhetoricalRole, lemma)
(E, hasMathematicalRhetoricalRole, definition)
(F, hasMathematicalRhetoricalRole, claim)
(G, hasMathematicalRhetoricalRole, proof)
(B, hasMathematicalRhetoricalRole, proof)
(H, hasOtherMathematicalRhetoricalRole, case)
(I, hasOtherMathematicalRhetoricalRole, case)
(C, hasMathematicalRhetoricalRole, corollary)
(D, hasMathematicalRhetoricalRole, proof)

(B, justifies, A)
(D, justifies, C)
(D, uses, A)
(G, uses, E)
(F, uses, E)
(H, uses, E)
(H, subpartOf, B)
(H, subpartOf, I)
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The automatically generated dependency Graph
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An alternative view of the DRa
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The Graph of Textual Order: GoTO

Kamareddine, Wells and Zengler 2008

• To be able to examine the proper structure of a DRa tree we introduce the concept of textual order between
two nodes in the tree.

• Using textual orders, we can transform the dependency graph into a GoTO by transforming each edge of the DG.

• So far there are two reasons why the GoTO is produced:

1. Automatic Checking of the GoTO can reveal errors in the document (e.g. loops in the structure of the

document).
2. The GoTO is used to automatically produce a proof skeleton for a certain prover.

• We automatically transform a DG into GoTO and automatically check the GoTO for errors in the document:

1. Loops in the GoTO (error)
2. Proof of an unproved node (error)

3. More than one proof for a proved node (warning)
4. Missing proof for a proved node (warning)
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Graph of Textual Order for the DRa tree example
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How complete is DRa?

• The dependency graph can be used to check whether the logical reasoning of the text is coherent and consistent
(e.g., no loops in the reasoning).

• However, both the DRa language and its implementation need more experience driven tests on natural language
texts.

• Also, the DRa aspect still needs a number of implementation improvements (the automation of the analysis of
the text based on its DRa features).

• Extend TSa to also cover DRa (in addition to CGa).

• Extend DRa depending on further experience driven translations.

• Establish the soundness and completeness of DRa for mathematical texts.
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Example of a MathLang Path

Kamareddine, Maarek, Retel and Wells 2007a

Kamareddine, Wells and Zengler 2008
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The automatic generation of a proof skeleton

Kamareddine, Wells and Zengler 2008
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Different provers have

• different syntax

• different requirements to the structure of the text

e.g.

– no nested theorems/lemmas
– only backward references
– ...

• Aim: Skeleton should be as close as possible to the

mathematician’s text but with re-arrangements when
necessary

Example of nested theorems/lemmas (Moller, 03, Chapter III,2)

ISR 2009, Brasiliá, Brasil 130



The DG for the example
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Straight-forward translation of the first part
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Problem: nested theorems
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Solution: Re-ordering
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Finishing the skeleton
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Skeleton for Mizar
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DRa annotation into Mizar skeleton for Barendregt’s

example (Kamareddine, Maarek, Retel and Wells 2007a)
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The remaining very rough path into Mizar

Kamareddine, Maarek, Retel, Wells 2007a

Kamareddine, Wells, Zengler 2008

• We have not built the remaining aspects all the way into Mizar, but we have a rough path.

• Recall that GoTO gives a Mizar skeleton of the text.

• Next, the CGa encoding of the text is used to build relevant parts of the Mizar FPS (Wiedijk 2003) of the

text (e.g., the CGa preamble could be used to find counterparts in Mizar MML and to build parts of the
Environment in Mizar).

• At this stage, a Mizar expert would be able to complete the Mizar FPS version of the text.

• Now, the Mizar experts can complete the formalisation by filling all the gaps in the reasoning (i.e., filling the
holes in sentences labelled with the error *4 by the Mizar system.)
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The Mizar FPS version of Barendregt’s example
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A full formalisation in Coq via MathLang: chapter 1 of

Landau’s “Grundlagen der Analysis”
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Chapter 1

Natural Numbers

<><forall>∀<#><#>
.
<#> <><exists>∃<#><#>.<#> <><exists_one>∃!<#><#> .<#> <><isa><#> <#> <><1> <><and><#>∧ <#>

<><or><#> ∨ <#> <><impl><#> <#> <><succ><#> <><in><#> ∈ <#> <><subset><#> ⊂ <#> <><Set>{<#><#> |<#> }

<><seteq><#><#> <><setneq><#><#> <><index><#><#> <><xor><#>⊕ <#> <><emptyset>
∅

1.1 Axioms

We assume the following to be given:

<><N>A set (i.e. totality) of objects called <><natural_numbers>natural numbers, possessing the prop-
erties - called axioms- to be listed below.

Before formulating the axioms we make some remarks about the symbols = and = which be
used.

Unless otherwise specified, small italic letters will stand for natural numbers throughout this
book.

<>
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The DRa tree and the DG of sections 1 and 2 of chapter 1 of

Landau’s book
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The GoTO of sections 1 and 2 of chapter 1 of Landau’s book
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Extending proof skeletons with CGa hints

• Translations into Coq for large parts of the chapter can be automated. E.g., the annotation of Axiom 3 (“ax13”)
is:

forallWe always have x neq succ xx ′ 6= 11

By just viewing the interpretations of the annotations we get:

forall x (neq (succ(x), 1)) (a)

The automatically generated Coq proof skeleton for this axiom is:

Axiom ax13 : <ax13> . (b)

Now, we simply replace the <ax13> placeholder of (b) with the literal translation of the interpretations in (a)
to get the valid Coq axiom:

Axiom ax13 : forall x:nats, neq (succ x) I .
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Similarly for the theorems of chapter 1 of Landau’s book, the work needed to get the full formalisation is
straightforward: E.g. Theorem 1 is written by Landau as:

If x 6= y then x
′ 6= y

′

Its annotation in MathLang CGa is:

xx yy If neq xx 6= yy then neq succ xx ′ 6= succ yy ′

The CGa annotation of the context can also be seen as the premise of an implication. So the upper statement can
be translated to:

decl(x), decl(y) : neq x y → neq (succ x) (succ y)

And when we compare this line with its Coq translation we see again, it is just a literal transcription of the
interpretation parts of CGa and therefore could be easily performed by an algorithm.

Theorem th11 (x y:nats) : neq x y → neq (succ x) (succ y) .

From the 36 theorems of the chapter 28 could be translated literally into their corresponding Coq theorems.
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Some points to consider

• We do not at all assume/prefer one type/logical theory instead of another.

• The formalisation of a language of mathematics should separate the questions:

– which type/logical theory is necessary for which part of mathematics
– which language should mathematics be written in.

• Mathematicians don’t usually know or work with type/logical theories.

• Mathematicians usually do mathematics (manipulations, calculations, etc), but are not interested in general in

reasoning about mathematics.

• The steps used for computerising books of mathematics written in English, as we are doing, can also be followed

for books written in Arabic, French, German, or any other natural language.
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Some points to consider, continued

• MathLang aims to support non-fully-formalized mathematics practiced by the ordinary mathematician as well as
work toward full formalization.

• MathLang aims to handle mathematics as expressed in natural language as well as symbolic formulas.

• MathLang aims to do some amount of type checking even for non-fully-formalized mathematics. This corresponds
roughly to grammatical conditions.

• MathLang aims for a formal representation of Cml texts that closely corresponds to the Cml conceived by the
ordinary mathematician.

• MathLang aims to support automated processing of mathematical knowledge.
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Some points to consider, continued

• MathLang aims to be independent of any foundation of mathematics.

• MathLang allows anyone to be involved, whether a mathematician, a computer engineer, a computer scientist, a

linguist, a logician, etc.

• MathLang allows more accurate translation between different languages whithin the mathematical dictionary.
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[2] G. Cantor. Beiträge zur Begründung der transfiniten Mengenlehre (Erster Artikel). Mathematische Annalen,

46:481–512, 1895.
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[23] F. Kamaredine, M Maarek, and J.B. Wells. Flexible encoding of mathematics on the computer. 2004.

[24] F. Kamareddine, T. Laan, and R. Nederpelt. Revisiting the notion of function. Logic and Algebraic

programming, 54:65–107, 2003.

[Lan30] Edmund Landau. Grundlagen der Analysis. Chelsea, 1930.

[Lan51] Edmund Landau. Foundations of Analysis. Chelsea, 1951. Translation of [Lan30] by F. Steinhardt.

[25] MacLane, S.: 1972, Categories for the Working Mathematician. Springer.

[26] G. Peano. Arithmetices principia, nova methodo exposita. Bocca, Turin, 1889. English translation in [18],
pages 83–97.
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