Explicit Extensions in (Typed) λ -calculi

Fairouz Kamareddine

June 2009

ISR 2009, Brasiliá

• $\mathcal{I}(\lambda x.B) = [x]\mathcal{I}(B)$ and $\mathcal{I}(AB) = (\mathcal{I}(B))\mathcal{I}(A)$

- $\mathcal{I}((\lambda x.(\lambda y.xy))z) \equiv (z)[x]yx$. The items are (z), [x], [y] and (y).
- applicator wagon (z) and abstractor wagon [x] occur NEXT to each other.
- A term is a wagon followed by a term.
- (β) $(\lambda x.A)B \rightarrow_{\beta} A[x := B]$ becomes
- (β) $(B)[x]A \rightarrow_{\beta} A[x := B] \text{ or } (B)[x]A \rightarrow_{\beta} [x := B]A$
- Sometimes, de Bruijn wrote: (β) $(B)[x]A \rightarrow_{\beta} (B)[x][x := B]A$

Redexes in Item Notation

 $Classical \ Notation$

 $Item \ Notation$

$$\begin{array}{ll} \underbrace{((\lambda_x.(\lambda_y.\lambda_z.zd)c)b)a}_{(\underline{\lambda_x.\lambda_z.zd})c)a} \to_{\beta} & (a)\underline{(b)[x](c)[y][z](d)z} \to_{\beta} \\ \underbrace{(\lambda_x.\lambda_z.zd)c}_{(\underline{\lambda_x.zd})a} \to_{\beta} ad & \underline{(a)\underline{(c)[y]}[z](d)z} \to_{\beta} \\ \underline{(\lambda_z.zd)a} & \to_{\beta} ad & \underline{(a)[z](d)z} \to_{\beta} (d)a \end{array}$$

$$\begin{vmatrix} & & & \\ (a) (b) [x] (c) [y] [z] (d) z \end{vmatrix}$$

Figure 1: Redexes in item notation

Well-balanced segments

- The "bracketing structure" of $t = ((\lambda_x . (\lambda_y . \lambda_z .)c)b)a)$, is compatible with $\{1 \ \{2 \ \{3 \ \}_2 \ \}_1 \ \}_3$, where $\{i' \text{ and } i\}_i$ match.
- (a)(b)[x](c)[y][z](d) has the bracketing structure $\{\{\}\}\}$.
- Define a well-balanced segment \overline{s} to be a segment of partnered () and [] pairs that match like '{' and '}'.
- Let $\overline{s} \equiv (a)(b)[x](c)[y][z](d)$. Then: (a), (b), [x], (c), [y], and [z], are the *partnered* main items of \overline{s} . (d) is a *bachelor* item. (a)(b)[x](c)[y][z] is *well-balanced*.

Generalised reduction

- (general β) (b) $\overline{s}[v]a \rightsquigarrow_{\beta} \overline{s}\{a[v:=b]\}$ if \overline{s} is well-balanced
- Many step general β -reduction \rightsquigarrow_{β} is the reflexive transitive closure of \rightsquigarrow_{β} .

•
$$\begin{array}{l} t \equiv (a)(b)[x](c)[y][z](d)z & \leadsto_{\beta} \\ \bullet & (b)[x](c)[y]\{((d)z)[z:=a]\} & \equiv \\ & (b)[x](c)[y](d)a \end{array} \end{array}$$

Lemma 1. If $a \rightarrow_{\beta} b$ then $a \rightsquigarrow_{\beta} b$. And, If $a \rightsquigarrow_{\beta} b$ then $a =_{\beta} b$.

Corollary 1. If $a \rightsquigarrow_{\beta} b$ then $a =_{\beta} b$.

Theorem 1. The general β -reduction is Church-Rosser. I.e. If $a \rightsquigarrow_{\beta} b$ and $a \rightsquigarrow_{\beta} c$, then there exists d such that $b \rightsquigarrow_{\beta} d$ and $c \rightsquigarrow_{\beta} d$.

- (a)(b)[x](c)[y][z](d)z can be easily rewritten as (b)[x](c)[y](a)[z](d)z by moving the item (a) to the right.
- I.e., we can keep the old β -axiom and we can contract redexes in any order.
- difficult to describe how $((\lambda_x.(\lambda_y.\lambda_z.zd)c)b)a$, is rewritten as $(\lambda_x.(\lambda_y.(\lambda_z.zd)a)c)b$.

Figure 2: Term reshuffling in item notation

Uses of Generalised reduction and term reshuffling?

- Regnier's *premier redex* in [Reg 92] is a *generalised redex*. [Reg 94] shows that the perpetual reduction strategy finds the longest reduction path when the term is SN. Vidal in [Vid 89] and Sabry in [SF 92] used extended redexes.
- [KTU 94] uses some generalised reduction to show that typability in ML is equivalent to acyclic semi-unification.
- [Nederpelt 73] and [dG 93] and [KW 95a] use generalised reduction and/or term reshuffling to reduce strong normalisation for β -reduction to weak normalisation for related reductions.
- [KW 94] uses amongst other things, generalised reduction and term reshuffling to reduce typability in the rank-2 restriction of system F to the problem of acyclic semi-unification.
- [AFM 95] uses a form of term-reshuffling (which they call "let-C") as a part

of an analysis of how to implement sharing in a real language interpreter in a way that directly corresponds to a formal calculus.

- The above description can be found in [KN 95]. Also, [KN 95] showed that generalised reduction makes more redexes visible and hence allows for more flexibility in reducing a term.
- [BKN 96] showed that with generalised reduction one may indeed avoid size explosion without the cost of a longer reduction path and that λ -calculus can be elegantly extended with definitions which result in shorter type derivation.
- [Kam 00] shows that generalised reduction is the first relation for which both conservation and postponement of *k*-redexes hold. [Kam 00] shows that generalised reduction has PSN.

"partnered" and "bachelors" items help categorize the main items of a term:

Lemma 2. Let \overline{s} be the body of a term a. Then the following holds:

- 1. Each bachelor main abstraction item in \overline{s} precedes each bachelor main application item in \overline{s} .
- 2. \overline{s} minus all bachelor main items equals a well-balanced segment.
- 3. The removal from \overline{s} of all main reducible couples, leaves behind $[v_1] \dots [v_n](a_1) \dots (a_m)$, the segment consisting of all bachelor main abstraction and application items.
- 4. If $\overline{s} \equiv \overline{s_1}(b)\overline{s_2}[v]\overline{s_3}$ where [v] and (b) match, then $\overline{s_2}$ is well-balanced.

Corollary 2. For each non-empty segment \overline{s} , there is a unique partitioning in segments $\overline{s_0}, \overline{s_1}, \dots, \overline{s_n}$, such that $\overline{s} \equiv \overline{s_0} \overline{s_1} \cdots \overline{s_n}$ and:

June 2009

- 1. $\forall 0 \leq i \leq n$, $\overline{s_i}$ is well-balanced in \overline{s} for even i and $\overline{s_i}$ is bachelor in \overline{s} for odd i.
- 2. If $\overline{s_i}$ and $\overline{s_j}$ for $0 \le i, j \le n$ are bachelor abstraction resp. application segments, then $\overline{s_i}$ precedes $\overline{s_j}$ in \overline{s} .
- *3.* If $i \ge 1$ then $\overline{s_{2i}} \neq \emptyset$.

This is actually a very nice corollary. It tells us a lot about the structure of our terms.

Example

 $\overline{s} \equiv [x][y](a)[z][x'](b)(c)(d)[y'][z'](e)$, has the following partitioning:

- well-balanced segment $\overline{s_0} \equiv \emptyset$
- bachelor segment $\overline{s_1} \equiv [x][y]$,
- well-balanced segment $\overline{s_2} \equiv (a)[z]$,
- bachelor segment $\overline{s_3} \equiv [x'](b)$,
- well-balanced segment $\overline{s_4} \equiv (c)(d)[y'][z']$,
- bachelor segment $\overline{s_5} \equiv (e)$.

Using () everywhere

- We will replace (a) by $(a\delta)$.
- We will replace [x] by (λ_x) or $(\varepsilon\lambda_x)$; and [x:A] by $(A\lambda_x)$.
- New items: substitution items $(A\sigma_x)$ and typing items $(\Gamma\tau)$.
- For example:

 $(\beta) \qquad (B\delta)(\lambda_x)A \to_{\beta} (B\delta)(\lambda_x)(B\sigma_x)A$

Type Theory in Item Notation

• $\mathcal{T} = * | \Box | V | \mathcal{TT} | \pi_{V:\mathcal{T}}.\mathcal{T}$

•
$$(\beta)$$
 $(\lambda_{x:B}.A)C \to_{\beta} A[x:=C]$

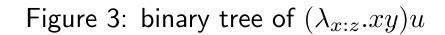
• \mathcal{I} which translates terms from classical notation to item notation such that:

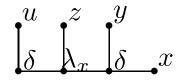
$$\begin{aligned} \mathcal{I}(A) &= A & \text{if } A \in \{*, \Box\} \cup V \\ \mathcal{I}(\pi_{x:A}.B) &= (\mathcal{I}(A)\pi_x)\mathcal{I}(B) \\ \mathcal{I}(AB) &= (\mathcal{I}(B)\delta)\mathcal{I}(A) \end{aligned}$$

•
$$(\beta)$$
 $(\lambda_{x:B}.A)C \to_{\beta} A[x:=C]$

•
$$(\beta)$$
 $(C\delta)(B\lambda_x)A \to_{\beta} (C\sigma_x)A$

Trees





 δ

z

 Λr

y

 δ

x

Figure 4: layered tree of $(\lambda_{x:z}.xy)u$

 $\mathcal{I}((\lambda_{x:z}.xy)u) \equiv (u\delta)(z\lambda_x)(y\delta)x$

Compatibility

• In Classical notation:

$$- \qquad \qquad \frac{A_1 \rightarrow A_2}{A_1 B \rightarrow A_2 B} \qquad \frac{B_1 \rightarrow B_2}{A B_1 \rightarrow A B_2} \\ - \qquad \qquad \qquad \frac{A_1 \rightarrow A_2}{\pi_{x:A_1} \cdot B \rightarrow \pi_{x:A_2} \cdot B} \qquad \frac{B_1 \rightarrow B_2}{\pi_{x:A} \cdot B_1 \rightarrow \pi_{x:A} \cdot B_2}$$

• In Item notation:

$$- \frac{A_1 \rightarrow A_2}{(A_1 \omega) B \rightarrow (A_2 \omega) B} \frac{B_1 \rightarrow B_2}{(A \omega) B_1 \rightarrow (A \omega) B_2}$$

Restrictions of terms

The restriction $t \upharpoonright x^{\circ}$ of a term t to a variable occurrence x° in t is a term consisting of precisely those "parts" of t that may be relevant for this x° , especially as regards binding, typing and substitution.

- the type of x° in t is the type of x° in $t \upharpoonright x^{\circ}$,
- the λ 's relevant to x° in t appear also in $t \upharpoonright x^\circ$ and have the same binding relation to x° ,
- If in t, any substitution for x° is possible, then it is also possible in $t \upharpoonright x^{\circ}$.

- $t \equiv (*\lambda_x)(x\lambda_v)(x\delta)(*\lambda_y)((x\lambda_z)y^{\circ}\delta)(y\lambda_u)u.$
- Only $(*\lambda_x)$, $(x\lambda_v)$, $(x\delta)$, $(*\lambda_y)$ and $(x\lambda_z)$ are of importance for y° .
 - y° is in the scope of $(*\lambda_x), (x\lambda_v), (*\lambda_y)$ and $(x\lambda_z)$.
 - The x is a candidate for substitution for y° , due to the presence of the $\delta\lambda$ segment $(x\delta)(*\lambda_y)$ meaning that the x will substitute y in $((x\lambda_z)y^{\circ}\delta)(y\lambda_u)u$.
 - Nothing else in t is relevant to $y^{\circ}.$
- $t \upharpoonright y^{\circ}$ is $(*\lambda_x)(x\lambda_v)(x\delta)(*\lambda_y)(x\lambda_z)$. Remove everything to the right of y° : $(*\lambda_x)(x\lambda_v)(x\delta)(*\lambda_y)((x\lambda_z))$. Remove all extra parentheses.
- If t is written $\lambda_{x:*} \cdot \lambda_{v:x} \cdot (\lambda_{y:*} \cdot (\lambda_{u:y} \cdot u) \lambda_{z:x} \cdot y^{\circ}) x$ then $t \upharpoonright y^{\circ}$ is less obvious.

June 2009

restriction trees

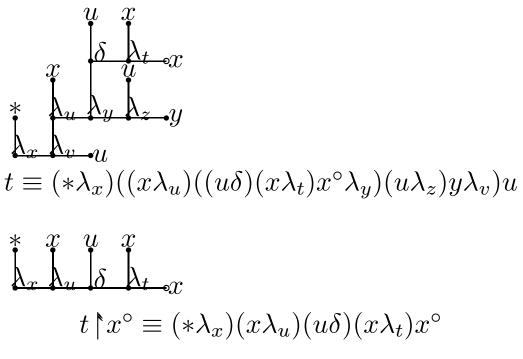


Figure 5: A term and its restriction to a variable

Definition of term restriction

Definition 1. $x^{\circ} \upharpoonright x^{\circ} \equiv x$ and $(t_1 \omega) t_2 \upharpoonright x^{\circ} \equiv \begin{cases} t_1 \upharpoonright x^{\circ} & \text{if } x^{\circ} \text{ occurs in } t_1 \\ (t_1 \omega)(t_2 \upharpoonright x^{\circ}) & \text{if } x^{\circ} \text{ occurs in } t_2 \end{cases}$

Let t be $(*\lambda_x)((x\lambda_u)((u\delta)(x\lambda_t)x^{\circ}\lambda_y)(u\lambda_z)y\lambda_v)u$.

Then
$$t \upharpoonright x^{\circ} \equiv ((*\lambda_x)((x\lambda_u)((u\delta)(x\lambda_t)x^{\circ}\lambda_y)(u\lambda_z)y\lambda_v)u) \upharpoonright x^{\circ}$$

 $\equiv (*\lambda_x)(((x\lambda_u)((u\delta)(x\lambda_t)x^{\circ}\lambda_y)(u\lambda_z)y\lambda_v)u \upharpoonright x^{\circ})$
 $\equiv (*\lambda_x)((x\lambda_u)((u\delta)(x\lambda_t)x^{\circ}\lambda_y)(u\lambda_z)y \upharpoonright x^{\circ})$
 $\equiv (*\lambda_x)(x\lambda_u)((u\delta)(x\lambda_t)x^{\circ} \upharpoonright x^{\circ})$
 $\equiv (*\lambda_x)(x\lambda_u)(u\delta)((x\lambda_t)x^{\circ} \upharpoonright x^{\circ})$
 $\equiv (*\lambda_x)(x\lambda_u)(u\delta)((x\lambda_t)x^{\circ} \upharpoonright x^{\circ})$
 $\equiv (*\lambda_x)(x\lambda_u)(u\delta)(x\lambda_t)(x^{\circ} \upharpoonright x^{\circ})$
 $\equiv (*\lambda_x)(x\lambda_u)(u\delta)(x\lambda_t)x$

Describing normal forms in a substitution calculus

[KR 95] provided λs , a calculus of substitution à la de Bruijn, which remains as close as possible to the classical λ -calculus. The set of terms, noted Λs , of the λs -calculus is given as follows:

 $\Lambda s ::= \mathsf{IN} \mid \Lambda s \Lambda s \mid \lambda \Lambda s \mid \Lambda s \, \sigma^i \Lambda s \mid \varphi_k^i \Lambda s \quad where \quad i \ge 1 \,, \ k \ge 0 \,.$

The set of open terms, noted Λs_{op} is given as follows:

 $\Lambda s_{op} ::= \mathbf{V} \,|\, \mathbf{I} \mathbf{N} \,|\, \Lambda s_{op} \Lambda s_{op} \,|\, \lambda \Lambda s_{op} \,|\, \Lambda s_{op} \sigma \Lambda s_{op} \,|\, \varphi_k^i \Lambda s_{op} \qquad where \quad i \geq 1 \,, \ k \geq 0$

The λs -calculus

We use λs to denote this set of rules.

The λs_e -calculus

The λs_e -calculus is obtained by adding the following rules to those of the λs -calculus.

 $\begin{array}{llll} \sigma \text{-}\sigma \text{-transition} & (a\sigma b) \, \sigma^j \, c & \longrightarrow & (a \, \sigma^{j+1} \, c) \, \sigma \, (b \, \sigma^{j-i+1} \, c) & if & i \leq j \\ \sigma \text{-}\varphi \text{-transition 1} & (\varphi_k^i \, a) \, \sigma^j \, b & \longrightarrow & \varphi_k^{i-1} \, a & if & k < j < k+i \\ \sigma \text{-}\varphi \text{-transition 2} & (\varphi_k^i \, a) \, \sigma^j \, b & \longrightarrow & \varphi_k^i (a \, \sigma^{j-i+1} \, b) & if & k+i \leq j \\ \varphi \text{-}\sigma \text{-transition} & \varphi_k^i (a \, \sigma^j \, b) & \longrightarrow & (\varphi_{k+1}^i \, a) \, \sigma^j \, (\varphi_{k+1-j}^i \, b) & if & j \leq k+1 \\ \varphi \text{-}\varphi \text{-transition 1} & \varphi_k^i \, (\varphi_l^j \, a) & \longrightarrow & \varphi_l^j \, (\varphi_{k+1-j}^i \, a) & if & l+j \leq k \\ \varphi \text{-}\varphi \text{-transition 2} & \varphi_k^i \, (\varphi_l^j \, a) & \longrightarrow & \varphi_l^{j+i-1} \, a & if & l \leq k < l+j \end{array}$

We use λs_e to denote this set of rules.

s_e -normal forms in classical notation

It is cumbersome to describe s_e -normal forms of open terms. But this description is needed to show the weak normalisation of the s_e -calculus. In classical notation, an open term is an s_e -normal form iff one of the following holds:

- $a \in \mathbf{V} \cup \mathsf{IN}$, i.e. a is a variable or a de Bruijn number.
- a = b c, where b and c are s_e -normal forms.
- $a = \lambda b$, where b is an s_e -normal form.
- $a = b \sigma^j c$, where c is an s_e -nf and b is an s_e -nf of the form X, or $d \sigma^i e$ with j < i, or $\varphi_k^i d$ with $j \le k$.
- $a = \varphi_k^i b$, where b is an s_e -nf of the form X, or $c \sigma^j d$ with j > k + 1, or $\varphi_l^j c$ with k < l.

The s_e -nf's can be described in item notation by the following syntax:

$$NF ::= \mathbf{V} \mid \mathsf{IN} \mid (NF \,\delta) NF \mid (\lambda) NF \mid \overline{s} \, \mathbf{V}$$

where \overline{s} is a normal $\sigma \varphi$ -segment whose bodies belong to NF. $a \sigma^i b = (b \sigma^i) a$ and $\varphi_k^i a = (\varphi_k^i) a$. $(b \sigma^i)$ and (φ_k^i) are called σ - and φ -items respectively. b and a are the *bodies* of these respective items.

A normal $\sigma\varphi$ -segment \overline{s} is a sequence of σ - and φ -items such that every pair of adjacent items in \overline{s} are of the form:

$(arphi_k^i)(arphi_l^j)$ and $k < l$	$(arphi_k^i)(b\sigma^j)$ and $k < j-1$
$(b\sigma^i)(c\sigma^j)$ and $i < j$	$(b\sigma^j)(arphi^i_k)$ and $j\leq k.$

- At the end of the nineteenth century, types did not play a role in mathematics or logic, unless at the meta-level, in order to distinguish between different 'classes' of objects.
- Frege's formalization of logical reasoning, as explained in the *Begriffsschrift* ([Frege 1879]), was untyped.
- Only after the discovery of Russell's paradox, undermining Frege's work, one may observe various formulations of typed theories.
- The first theory which aimed at avoiding the paradoxes using types was that of Russell and Whitehead, as exposed in their famous *Principia Mathematica* ([Whitehead and Russell 1910]).

June 2009

- Church developed a theory of functionals which is nowadays called λ -calculus ([Church 1932]).
- This calculus was used for defining a notion of computability that turned out to be of the same power as Turing-computability or general recursiveness.
- However, the original, untyped version did not work as a foundation for mathematics.
- In order to come round the inconsistencies in his proposal for logic, Church developed the 'simple theory of types' λ_{\rightarrow} ([Church 1940]).
- From then till the present day, research on the area has grown and one can find various reformulations of type theories.
- A taxonomy of type systems has been given by Barendregt ([Bar 92]).
- Church's λ_{\rightarrow} is the lowest system on the Cube.

June 2009

- λ_{\rightarrow} has, apart from *type variables*, so-called *arrow-types* of the form $A \rightarrow B$.
- In higher type theories, arrow-types are replaced by dependent products $\Pi_{x:A}.B$, where B may contain x as a free variable, and thus may depend on x. Example: $\Pi_{A:*}.\lambda_{x:A}.x$
- This means that abstraction can be over types, similarly to the abstraction over terms: $\lambda_{x:A}.b$.

Barendregt Cube

(axiom)	$<>dash_{eta}*:\Box$
(start rule)	$\frac{\Gamma \vdash_{\beta} A : S}{\Gamma . \lambda_{x:A} \vdash_{\beta} x : A} x \not\in \Gamma$
(weakening rule)	$\frac{\Gamma \vdash_{\beta} A : S \qquad \Gamma \vdash_{\beta} D : E}{\Gamma . \lambda_{x:A} \vdash_{\beta} D : E} x \not\in \Gamma$
(application rule)	$\frac{\Gamma \vdash_{\beta} F: \Pi_{x:A}.B \Gamma \vdash_{\beta} a:A}{\Gamma \vdash_{\beta} Fa: B[x:=a]}$
(abstraction rule)	$\frac{\Gamma.\lambda_{x:A}\vdash_{\beta}b:B}{\Gamma\vdash_{\beta}\lambda_{x:A}.b:\Pi_{x:A}.B:S}$
(conversion rule)	$\frac{\Gamma \vdash_{\beta} A : B \qquad \Gamma \vdash_{\beta} B' : S \qquad B =_{\beta} B'}{\Gamma \vdash_{\beta} A : B'}$
(formation rule)	$\frac{\Gamma \vdash_{\beta} A: S_1 \Gamma.\lambda_{x:A} \vdash_{\beta} B: S_2}{\Gamma \vdash_{\beta} \Pi_{x:A}.B: S_2} \text{ if } (S_1, S_2) \text{ is a rule}$

System	A	llowed (2	$S_1,S_2)$ rı	ıles
$\lambda_{ ightarrow}$	(*,*)			
$\lambda 2$	(*,*)	$(\Box,*)$		
λP	(*,*)		$(*,\Box)$	
$\lambda P2$	(*,*)	$(\Box, *)$	$(*,\Box)$	
$\lambda \underline{\omega}$	(*,*)			(\Box,\Box)
$\lambda \omega$	(*,*)	$(\Box,*)$		(\Box,\Box)
$\lambda P \underline{\omega}$	(*,*)		$(*,\Box)$	(\Box,\Box)
$\lambda P\omega = \lambda C$	(*,*)	$(\Box, *)$	$(*,\Box)$	(\Box,\Box)

June 2009

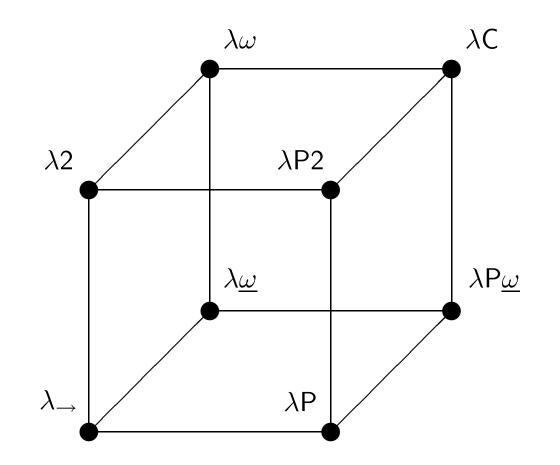


Figure 6: The Cube

Example derivation

Take $\Gamma \equiv \lambda_{\beta:*} \cdot \lambda_{y:\beta}$. In λ_2 , using the rules (*,*) and $(\Box,*)$ we have:

$$\begin{array}{ll} \Gamma \vdash_{\lambda 2} y : \beta : * : \Box \\ \Gamma . \lambda_{\alpha:*} \vdash_{\lambda 2} \alpha : * \\ \Gamma . \lambda_{\alpha:*} \cdot \lambda_{x:\alpha} \vdash_{\lambda 2} x : \alpha : * \\ \Gamma . \lambda_{\alpha:*} \cdot \lambda_{2} \prod_{x:\alpha.\alpha} \alpha : * \\ \Gamma . \lambda_{\alpha:*} \vdash_{\lambda 2} \prod_{x:\alpha.\alpha} \alpha : * \\ \Gamma . \lambda_{\alpha:*} \vdash_{\lambda 2} \lambda_{x:\alpha.\alpha} x : \prod_{x:\alpha.\alpha} \alpha \\ \Gamma \vdash_{\lambda 2} \prod_{\alpha:*} . \prod_{x:\alpha.\alpha} \alpha : * \\ \Gamma \vdash_{\lambda 2} \lambda_{\alpha:*} . \lambda_{x:\alpha} . x : \prod_{\alpha:*} \prod_{x:\alpha.\alpha} \alpha \\ \Gamma \vdash_{\lambda 2} (\lambda_{\alpha:*} . \lambda_{x:\alpha}) \beta : \prod_{x:\beta.\beta} \beta \\ \Gamma \vdash_{\lambda 2} (\lambda_{\alpha:*} . \lambda_{x:\alpha}) \beta y : \beta \end{array}$$
(start)
(st

It is not possible to derive this judgement in λ_{\rightarrow} as $(\Box, *)$ is needed.

The system λ_{\rightarrow}

(axiom)	$<>\vdash_{\beta}*:\square$
(start rule)	$\frac{\Gamma \vdash_{\beta} A : S}{\Gamma . \lambda_{x:A} \vdash_{\beta} x : A} x \not\in \Gamma$
(weakening rule)	$\frac{\Gamma \vdash_{\beta} A: S \qquad \Gamma \vdash_{\beta} D: E}{\Gamma . \lambda_{x:A} \vdash_{\beta} D: E} x \not\in \Gamma$
(application rule)	$\frac{\Gamma \vdash_{\beta} F : A \to B \Gamma \vdash_{\beta} a : A}{\Gamma \vdash_{\beta} Fa : B}$
(abstraction rule)	$\frac{\Gamma.\lambda_{x:A} \vdash_{\beta} b: B \qquad \Gamma \vdash_{\beta} A \to B: S}{\Gamma \vdash_{\beta} \lambda_{x:A}.b: A \to B}$
(conversion rule)	$\frac{\Gamma \vdash_{\beta} A : B}{\Gamma \vdash_{\beta} A : B'} \qquad \begin{array}{c} \Gamma \vdash_{\beta} B' : S \\ F \vdash_{\beta} A : B' \end{array} \qquad B =_{\beta} B'$
(formation rule)	$\frac{\Gamma \vdash_{\beta} A : \ast \Gamma.\lambda_{x:A} \vdash_{\beta} B : \ast}{\Gamma \vdash_{\beta} \Pi_{x:A}.B : \ast}$

The system λ_{\rightarrow} revised

$$\begin{array}{ll} \text{(start rule)} & \frac{\Gamma \vdash_{\beta} A : S}{\Gamma . \lambda_{x:A} \vdash_{\beta} x : A} x \not\in \Gamma \\\\ \text{(weakening rule)} & \frac{\Gamma \vdash_{\beta} A : S \quad \Gamma \vdash_{\beta} D : E}{\Gamma . \lambda_{x:A} \vdash_{\beta} D : E} x \not\in \Gamma \\\\ \text{(application rule)} & \frac{\Gamma \vdash_{\beta} F : A \to B \quad \Gamma \vdash_{\beta} a : A}{\Gamma \vdash_{\beta} F a : B} \\\\ \text{(abstraction rule)} & \frac{\Gamma . \lambda_{x:A} \vdash_{\beta} b : B}{\Gamma \vdash_{\beta} \lambda_{x:A} . b : A \to B} \end{array}$$

Desirable Properties: See [Bar 92]

If $\Gamma \vdash A : B$ then A and B are legal expressions and Γ is a legal context.

Theorem 2. (The Church Rosser Theorem CR, for $\rightarrow \beta$) If $A \rightarrow \beta B$ and $A \rightarrow \beta C$ then there exists D such that $B \rightarrow \beta D$ and $C \rightarrow \beta D$

Lemma 3. Correctness of types for \vdash_{β}) If $\Gamma \vdash_{\beta} A : B$ then $(B \equiv \Box \text{ or } \Gamma \vdash_{\beta} B : S \text{ for some sort } S)$.

Theorem 3. (Subject Reduction SR, for \vdash_{β} and \longrightarrow_{β}) If $\Gamma \vdash_{\beta} A : B$ and $A \longrightarrow_{\beta} A'$ then $\Gamma \vdash_{\beta} A' : B$

Theorem 4. (Strong Normalisation with respect to \vdash_{β} and \rightarrow_{β}) For all \vdash_{β} -legal terms M, we have $SN_{\rightarrow_{\beta}}(M)$. I.e. M is strongly normalising with respect to \rightarrow_{β} .

Π -reduction: See [KN 96a]

- Once we allow abstraction over types, it would be nice to discuss the reduction rules which govern these types.
- We want: $(\lambda_{x:A}.b)C \rightarrow_{\beta} b[x:=C]$, as well as $(\prod_{x:A}.B)C \rightarrow_{\beta} B[x:=C]$.
- This strategy of permitting Π -application $(\Pi_{x:A}.B)C$ in term construction is not commonly used, yet is desirable for the following reasons:
- (2) below is more elegant and uniform than (1).
 If f: Π_{x:A}.B and a: A, then fa: B[x := a]
 If f: Π_{x:A}.B and a: A, then fa: (Π_{x:A}.B)a.
- With Π-reduction, one introduces a *compatibility property* for the typing of applications:

$$M: N \Rightarrow MP: NP.$$

This is in line with the compatibility property for the typing of abstractions, which *does* hold in general:

$$M: N \Rightarrow \lambda_{y:P}M: \Pi_{y:P}N.$$

- The ability to divide two important questions of typing. $\Gamma \vdash A : B$ becomes:
 - 1. Is A typable in Γ ? $\Gamma \vdash A$.
 - 2. Is B the type of A in Γ ? How does $\tau(\Gamma, A)$ and B compare.
- In a compiler, Π-reduction allows to separate the type finder from the evaluator since ⊢ no longer mentions substitution. One first extracts the type and only then evaluates it.

• This is related to some work of Peyton-Jones in his language Henk.

Extending the Cube with Π -reduction: See [KN 96a]

 $\beta\Pi$ -reduction $\rightarrow_{\beta\Pi}$, is the least compatible relation generated out of the following axiom:

$$(\beta\Pi) \qquad (\pi_{x:B}.A)C \to_{\beta\Pi} A[x:=C]$$

 $\rightarrow_{\beta\Pi}$ is the reflexive transitive closure of $\rightarrow_{\beta\Pi}$. $=_{\beta\Pi}$ is the least equivalence relation generated by $\rightarrow_{\beta\Pi}$.

(new application rule)
$$\frac{\Gamma \vdash_{\beta\Pi} F : \Pi_{x:A}.B \qquad \Gamma \vdash_{\beta\Pi} a : A}{\Gamma \vdash_{\beta\Pi} Fa : (\Pi_{x:A}.B)a}$$
(new conversion rule)
$$\frac{\Gamma \vdash_{\beta\Pi} A : B \qquad \Gamma \vdash_{\beta\Pi} B' : S \qquad B =_{\beta\Pi} B'}{\Gamma \vdash_{\beta\Pi} A : B'}$$

Barendregt Cube with $\Pi\text{-reduction}$

$$\begin{array}{ll} (\text{axiom}) & <> \vdash_{\beta\Pi} A : \Box \\ (\text{start rule}) & \frac{\Gamma \vdash_{\beta\Pi} A : S}{\Gamma . \lambda_{x:A} \vdash_{\beta\Pi} x : A} x \not\in \Gamma \\ (\text{weakening rule}) & \frac{\Gamma \vdash_{\beta\Pi} A : S}{\Gamma . \lambda_{x:A} \vdash_{\beta\Pi} D : E} x \not\in \Gamma \\ (\text{new application rule}) & \frac{\Gamma \vdash_{\beta\Pi} F : \Pi_{x:A} . B}{\Gamma \vdash_{\beta\Pi} F a : (\Pi_{x:A} . B) a} \\ (\text{abstraction rule}) & \frac{\Gamma . \lambda_{x:A} \vdash_{\beta\Pi} b : B}{\Gamma \vdash_{\beta\Pi} \lambda_{x:A} . b : \Pi_{x:A} . B} \\ (\text{new conversion rule}) & \frac{\Gamma \vdash_{\beta\Pi} A : B}{\Gamma \vdash_{\beta\Pi} A : B} \frac{\Gamma \vdash_{\beta\Pi} B' : S}{\Gamma \vdash_{\beta\Pi} A : B'} \\ (\text{formation rule}) & \frac{\Gamma \vdash_{\beta\Pi} A : S_1}{\Gamma \vdash_{\beta\Pi} \Pi_{x:A} . B : S_2} \text{ if } (S_1, S_2) \text{ is a rule} \end{array}$$

Lemma 4. (Generation Lemma for \vdash_{β})

- If $\Gamma \vdash_{\beta} \Pi_{x:A}.B : C$ then $\Gamma \vdash_{\beta} A : S_1$ and $\Gamma.\lambda_{x:A} \vdash_{\beta} B : S_2$ and (S_1, S_2) is a rule, $C =_{\beta} S_2$ and.....
- If $\Gamma \vdash_{\beta} Fa : C$ then $\Gamma \vdash_{\beta} F : \prod_{x:A} B$ and $\Gamma \vdash_{\beta} a : A$ and $C =_{\beta} B[x := a]$ and

•

In Generation lemma for $\vdash_{\beta\Pi}$ for application case, we replace B[x := a] by $(\prod_{x:A} B)a$ and change β to to $\beta\Pi$ everywhere.

Lemma 5. For any A, B, C, S we have $\Gamma \not\vdash_{\beta \Pi} (\Pi_{x:A}.B)C : S$.

Proof: If $\Gamma \vdash_{\beta\Pi} (\Pi_{x:A}.B)C : S$ then by generation, $\Gamma \vdash_{\beta\Pi} \Pi_{x:A}.B : \Pi_{x:A'}.B'$ and again by generation, $\Gamma.\lambda_{x:A} \vdash_{\beta\Pi} B : S' \land S' =_{\beta\Pi} \Pi_{x:A'}.B'$. Absurd. \Box

The new legal terms of the form $(\prod_{x:B} C)A$ imply the failure of Correctness of types Lemma 3 for $\vdash_{\beta\Pi}$ even in λ_{\rightarrow} .

- $\Gamma \vdash_{\beta \Pi} A : B \text{ may not imply } B \equiv \Box \text{ or } \Gamma \vdash_{\beta \Pi} B : S \text{ for some sort } S.$
- E.g., if $\Gamma \equiv \lambda_{z:*} \cdot \lambda_{x:z}$ then $\Gamma \vdash_{\beta\Pi} (\lambda_{y:z} \cdot y)x : (\Pi_{y:z} \cdot z)x$, but $\Gamma \not\vdash_{\beta\Pi} (\Pi_{y:z} \cdot z)x : S$ from Lemma 5.

We have a weak correctness of types:

Lemma 6. If $\Gamma \vdash_{\beta\Pi} A : B$ and B is not a Π -redex then $(B \equiv \Box \text{ or } \Gamma \vdash_{\beta\Pi} B : S \text{ for some sort } S).$

Proof: By a trivial induction on the derivation of $\Gamma \vdash_{\beta\Pi} A : B$ noting that the application rule does not apply as $(\Pi_{x:A}.B)a$ is not a Π -redex. \Box

Failure of correctness of types implies failure of Subject Reduction even in λ_{\rightarrow} :

- In λ_{\rightarrow} , we have: $\lambda_{z:*} \cdot \lambda_{x:z} \not\vdash_{\beta \Pi} x : (\Pi_{y:z} \cdot z)x$.
- Otherwise, by generation: $\lambda_{z:*} \cdot \lambda_{x:z} \vdash_{\beta\Pi} (\Pi_{y:z} \cdot z)x : S$, which is absurd by Lemma 5.
- Yet in λ_{\rightarrow} , we have: $\lambda_{z:*} \cdot \lambda_{x:z} \vdash_{\beta \Pi} (\lambda_{y:z} \cdot y)x : (\Pi_{y:z} \cdot z)x$.

Relating $\vdash_{\beta\Pi}$ and \vdash_{β} and Weak **SR**

For $A \vdash_{\beta \Pi}$ -legal, let \hat{A} be C[x := D] if $A \equiv (\prod_{x:B} C)D$ and A otherwise. Lemma 7.

- 1. If $\Gamma \vdash_{\beta \Pi} A : B$ then $\Gamma \vdash_{\beta} A : \hat{B}$.
- 2. If $\Gamma \vdash_{\beta} A : B$ then $\Gamma \vdash_{\beta\Pi} A : B$.

Lemma 8. (Weak Subject Reduction for $\vdash_{\beta\Pi}$ and $\rightarrow_{\beta\Pi}$)

- 1. If $\Gamma \vdash_{\beta\Pi} A : B$ and $A \longrightarrow_{\beta\Pi} A'$ then $\Gamma \vdash_{\beta\Pi} A' : \hat{B}$
- 2. If $\Gamma \vdash_{\beta\Pi} A : B$ and $A \longrightarrow_{\beta\Pi} A'$ and B is \vdash_{β} -legal then $\Gamma \vdash_{\beta\Pi} A' : B$

Canonical typing

There are reasons why separating the questions "what is the type of a term" (via τ) and "is the term typable" (via \vdash), is advantageous. Here are some:

- The canonical type of A is easy to calculate.
- $\tau(A)$ plays the role of a preference type for A. The preference type of $A \equiv \lambda_{x:*}.(\lambda_{y:*}.y)x$ is $\tau(<>, A) \equiv \Pi_{x:*}.(\Pi_{y:*}.*)x$ which $\longrightarrow_{\beta\Pi}$ to $\Pi_{y:*}.*$, the type traditionally given to A.
- The conversion rule is no longer needed as a separate rule in the definition of
 ⊢. It is accommodated in our application rule:

$$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash AB} \text{ if } \tau(\Gamma, A) =_{\beta \Pi} \Pi_{x:C}.D \text{ and } \tau(\Gamma, B) =_{\beta \Pi} C$$

It will be the case that $\tau(\Gamma, AB) \equiv \tau(\Gamma, A)B =_{\beta\Pi} (\Pi_{x:C}.D)B \rightarrow_{\beta\Pi} D[x := B]$ and so indeed $\tau(\Gamma, AB) =_{\beta\Pi} D[x := C]$.

Higher degrees: If we use λ¹ for Π and λ² for λ then we can aim for a possible generalization. In fact, we can extend our system by incorporating more different λ's. For example, with an infinity of λ's, viz. λ⁰, λ¹, λ², λ³..., we replace τ(Γ, λ_{x:A}.B) ≡ Π_{x:A}.τ(Γ.λ_{x:A}, B) and τ(Γ, Π_{x:A}.B) ≡ τ(Γ.λ_{x:A}, B) by the following:

$$\tau(\Gamma, \lambda_{x:A}^{i+1}.B) \equiv \lambda_{x:A}^{i}.\tau(\Gamma.\lambda_{x:A}, B), \text{ for } i = 0, 1, 2, \dots \text{ where } \lambda_{x:A}^{0}.B \equiv B$$

There may be circumstances in which one desires to have more "layers" of λ 's. As an example we refer to [de Bruijn 74].

• This notion enables one to separate the judgement $\Gamma \vdash A : B$ in two: $\Gamma \vdash A$ and $\tau(\Gamma, A) = B$.

June 2009

$$\begin{aligned} \tau(\Gamma, *) &\equiv & \Box \\ \tau(\Gamma, x) &\equiv & A \text{ if } (A\lambda_x) \in \Gamma \\ \tau(\Gamma, (a\delta)F) &\equiv & (a\delta)\tau(\Gamma, F) \\ \tau(\Gamma, (A\lambda_x)B) &\equiv & (A\Pi_x)\tau(\Gamma(A\lambda_x), B) & \text{ if } x \notin dom(\Gamma) \\ \tau(\Gamma, (A\Pi_x)B) &\equiv & \tau(\Gamma(A\lambda_x), B) & \text{ if } x \notin dom(\Gamma) \end{aligned}$$

- In usual type theory:
 - the type of $(*\lambda_x)(x\lambda_y)y$ is $(*\Pi_x)(x\Pi_y)x$ and
 - the type of $(*\Pi_x)(x\Pi_y)x$ is *.
- With our τ , we get the same result:

$$-\tau(<>,(*\lambda_x)(x\lambda_y)y) \equiv (*\Pi_x)\tau((*\lambda_x),(x\lambda_y)y) \equiv (*\Pi_x)(x\Pi_y)\tau((*\lambda_x)(x\lambda_y),y)$$
$$(*\Pi_x)(x\Pi_y)x \text{ and}$$
$$-\tau(<>,(*\Pi_x)(x\Pi_y)x) \equiv \tau((*\lambda_x),(x\Pi_y)x) \equiv \tau((*\lambda_x)(x\lambda_y),x) \equiv *$$

Let $\Gamma_0 \equiv <>$, $\Gamma_1 \equiv (*\lambda_z)$, $\Gamma_2 \equiv (*\lambda_z)(*\lambda_y)$, $\Gamma_3 \equiv \Gamma_2(*\lambda_x)$. We want to find the

canonical type of $(*\Pi_z)(B\delta)(*\lambda_y)(y\delta)(*\lambda_x)x$ in Γ_0 .

 $(\Gamma_0 au)$ $(*\Pi_z)$ $(B\delta)$ $(*\lambda_y)$ $(y\delta)$ $(*\lambda_x)$ $(*\lambda_x)$ $(\Gamma_1 au)$ $(B\delta)$ $(*\lambda_y)$ $(y\delta)$ $(B\delta)$ $(\Gamma_1 \tau) \quad (*\lambda_y)$ $(y\delta)$ $(*\lambda_x)$ $(B\delta)$ $(*\Pi_y)$ $(\Gamma_2 au)$ $(y\delta)$ $(*\lambda_x)$ $(*\Pi_y)$ $(y\delta)$ $(\Gamma_2 au)$ $(*\lambda_x)$ $(B\delta)$ $(y\delta)$ $(*\Pi_x)$ $(\Gamma_3 au)$ $(B\delta)$ $(*\Pi_y)$ $(y\delta)$ $(B\delta)$ $(*\Pi_y)$ $(*\Pi_x)$

New Typability

$$\begin{array}{ll} (\vdash -\operatorname{axiom}) & <> \vdash * \\ (\vdash \operatorname{-start} \operatorname{rule}) & \frac{\Gamma \vdash A}{\Gamma(A\lambda_x) \vdash x} \text{ if vc} \\ (\vdash \operatorname{-weakening} \operatorname{rule}) & \frac{\Gamma \vdash A}{\Gamma(A\lambda_x) \vdash D} \text{ if vc} \\ (\vdash \operatorname{-application} \operatorname{rule}) & \frac{\Gamma \vdash F}{\Gamma \vdash (a\delta)F} \text{ if ap} \end{array}$$

$$\begin{array}{l} (\vdash \operatorname{-abstraction} \operatorname{rule}) & \frac{\Gamma(A\lambda_x) \vdash b}{\Gamma \vdash (A\lambda_x)b} \text{ if ap} \\ \Gamma \vdash (A\lambda_x)b \end{array} \text{ if ab} \end{array}$$

• vc (variable condition): $x \notin \Gamma$ and $\tau(\Gamma, A) \longrightarrow_{\beta \Pi} S$ for some S

- ap (application condition): $\tau(\Gamma, F) =_{\beta\Pi} (A\Pi_x)B$ and $\tau(\Gamma, a) =_{\beta\Pi} A$ for some A, B.
- ab (abstraction condition): $\tau(\Gamma(A\lambda_x), b) =_{\beta\Pi} B$ and $\tau(\Gamma, (A\Pi_x)B) \longrightarrow_{\beta\Pi} S$ for some S.
- fc (formation condition): $\tau(\Gamma, A) \longrightarrow_{\beta \Pi} S_1$ and $\tau(\Gamma(A\lambda_x), B) \longrightarrow_{\beta \Pi} S_2$ for some rule (S_1, S_2) .

Properties of ⊢

Define \overline{A} to be the $\beta \Pi$ -normal form of A.

Lemma 9. If $\Gamma \vdash A$ then $\downarrow \overline{\tau(\Gamma, A)}$ and $\Gamma \vdash_{\beta} A : \overline{\tau(\Gamma, A)}$

Lemma 10. (Subject Reduction for \vdash and τ) $\Gamma \vdash A \land A \longrightarrow_{\beta \Pi} A' \Rightarrow [\Gamma \vdash A' \land \tau(\Gamma, A) =_{\beta \Pi} \tau(\Gamma, A')]$

Theorem 5. (Strong Normalisation for \vdash) If A is Γ^{\vdash} -legal, then $SN_{\rightarrow}(A)$.

Lemma 11. $\Gamma \vdash_{\beta} A : B \iff \Gamma \vdash A \text{ and } \tau(\Gamma, A) =_{\beta\Pi} B \text{ and } B \text{ is } \vdash_{\beta}\text{-legal type.}$

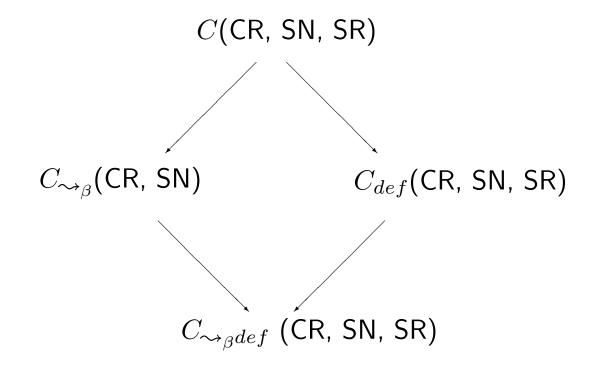


Figure 7: Properties of the Cube with generalised reduction

[AFM 95] Ariola, Z.M. Felleisen, M. Maraist, J. Odersky, M. and Wadler, P., A call by need lambda calculus, *Conf. Rec. 22nd Ann. ACM Symp. Princ. Program. Lang. ACM*, 1995.

- [Bar 84] Barendregt, H., *Lambda Calculus: its Syntax and Semantics*, North-Holland, 1984.
- [Bar 92] Barendregt, H., Lambda calculi with types, Handbook of Logic in Computer Science, volume II, ed. Abramsky S., Gabbay D.M., Maibaum T.S.E., Oxford University Press, 1992.
- [de Bruijn 74] Bruijn, N.G. de, Some extensions of AUTOMATH: the AUT-4 family, Dept. of Mathematics, Eindhoven University of Technology, 1974.

F. D. Kamareddine

June 2009

- [BKN 96] Bloo, R., Kamareddine, F., Nederpelt, R. The Barendregt Cube with Definitions and Generalised Reduction. *Information and Computation* 126(2), 123-143, 1996.
- [dG 93] de Groote, P., The conservation theorem revisited, *Int'l Conf. Typed Lambda Calculi and Applications*, vol. 664 of LNCS, 163-178, Springer-Verlag, 1993.
- [KN 95] Kamareddine, F., and Nederpelt, R.P., Generalising reduction in the λ -calculus, *Journal of Functional Programming 5 (4)*, 637-651, 1995.
- [KN 96a] F. Kamareddine and R. Nederpelt, Canonical Typing and π -conversion in the Barendregt Cube, *Functional Programming* 6, 1996.
- [Church 1932] Church, A., A set of postulates for the foundation of logic, *Annals of Math.* 33 (1932), 346–366 and 34 (1933), 839–864.
- [Church 1940] Church, A., A formulation of the simple theory of types, *Journal* of Symbolic Logic 5 (1940), 56–68.

- [Frege 1879] Frege, G., Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens (Halle, Verlag von Louis Nebert, 1879). Reprint 1964 (Hildesheim, Georg Olms Verlagsbuchhaltung).
- [KN 96b] Kamareddine, F., and Nederpelt, R.P., A useful λ -notation, *Theoretical Computer Science 155*, 1996.
- [KR 95] Kamareddine, F., and Rios, A., λ -calculus à la de Bruijn & explicit substitution, *Lecture Notes in Computer Science 982*, 7th international symposium on Programming Languages: Implementations, Logics and Programs, PLILP '95, 45-62, Springer-Verlag, 1995.
- [KR 96] Kamareddine, F., and Rios, A., Generalised β_e -reduction and explicit substitution, Computing Science Research Report, University of Glasgow, 1996.
- [Kam 00] Kamareddine, F., A reduction relation for which postponement of Kcontractions, Conservation and Preservation of Strong Normalisation hold, *Journal of Logic and Computation*, volume 10, number 5, 2000.

June 2009

[KTU 94] Kfoury, A.J., Tiuryn, J. and Urzyczyn, P., An analysis of ML typability, J. ACM 41(2), 368-398, 1994.

- [KW 94] Kfoury, A.J. and Wells, J.B., A direct algorithm for type inference in the rank-2 fragment of the second order λ -calculus, *Proc. 1994 ACM Conf. LISP Funct. Program.*, 1994.
- [KW 95a] Kfoury, A.J. and Wells, J.B., New notions of reductions and nonsemantic proofs of β -strong normalisation in typed λ -calculi, *LICS*, 1995.
- [KW 95b] Kfoury, A.J. and Wells, J.B., Addendum to new notions of reduction and non-semantic proofs of β -strong normalisation in typed λ -calculi, Boston University.
- [BLR 95] Benaissa, Briaud, Lescanne, Rouyer-Degli, λv , a calculus of explicit substitutions which preserves strong normalisation, personel communication, 1995.

[MN 95] Muñoz C., Confluence and preservation of strong normalisation in an explicit substitution calculus, Rapport de Recherche No 2762, INRIA.

[Nederpelt 73] Nederpelt, R.P., Strong normalisation in a typed lambda calculus with lambda structured types, Ph.D. thesis, Eindhoven University of Technology, Department of Mathematics and Computer Science, 1973. Also appears in [NGV 94].

- [NGV 94] Nederpelt, R.P., Geuvers, J.H. and de Vrijer, R.C., eds., *Selected Papers on Automath*, North Holland, 1994.
- [Reg 92] Regnier, L., Lambda calcul et réseaux, Thèse de doctorat de l'université Paris 7, 1992.
- [Reg 94] Regnier, L., Une équivalence sur les lambda termes, *Theoretical Computer Science 126*, 281-292, 1994.
- [SF 92] Sabry, A., and Felleisen, M., Reasoning about programs in continuationpassing style, *Proc. 1992 ACM Conf. LISP Funct. Program.*, 288-298, 1992.

June 2009

[Vid 89] Vidal, D., *Nouvelles notions de réduction en lambda calcul*, Thèse de doctorat, Université de Nancy 1, 1989.

[Whitehead and Russell 1910] Whitehead, A.N. and Russell, B., *Principia Mathematica* (Cambridge, Cambridge University Press, 1910/1913). Reprint 1960, same editor.