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Welcome to the fastest developing and most influential

subject: Computer Science
• Computer Science is by nature highly applied and needs much precision,

foundation and theory.

• Computer Science is highly interdisciplinary bringing many subjects together
in ways that were not possible before.

• Many recent scientific results (e.g., in chemistry) would not have been possible
without computers.

• The Kepler Conjecture: no packing of congruent balls in Euclidean space has
density greater than the density of the face-centered cubic packing.

• Sam Ferguson and Tom Hales proved the Kepler Conjecture in 1998, but it
was not published until 2006.

• The Flyspeck project aims to give a formal proof of the Kepler Conjecture.

Brasiliá 2010 1



A Century of Complexity

1900 2000

Main way information
travels in society:

paper electric signals, radio

Number of parts in
complex machine:

10,000 (locomotive) 1,000,000,000 (CPU)

Worst consequences of
single machine failure:

100s die end of all life?

Likelihood a machine
includes a computer:

very low very high

We are playing God and creating new beings (the machines). These must function
well or disasters will happen.
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The Need for Some Kind of Formalism

• Because of the increasing interdependency of systems and the faster and
more automatic travel of information, failures can have a wide impact. So
correctness is important.

• Modern technological systems are just too complicated for humans to reason
about unaided, so automation is needed.

• Systems have so many possible states that testing is often impractical. It
seems that proofs are needed to cover infinitely many situations.

• So some kind of formalism is needed to aid in design and to ensure safety.

Brasiliá 2010 3



What Kind of Formalisms?

A reasoning formalism should at least be:

• Correct: Only correct statements can be “proven”.

• Adequate: Needed properties in the problem domain can be stated and proved.

• Feasible: The resources (money, time) used in stating and proving needed
properties must be within practical limits.
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What Kind of Formalisms?

Assuming a minimally acceptable formalism, we would also like it to be:

• Efficient: Costs of both the reasoning process and the thing being reasoned
about should be minimized.

• Supportive of reuse: Slight specification changes should not force reproving
properties for an entire system. Libraries of pre-proved statements should be
well supported.

• Elegant: The core of the reasoning formalism should be as simple as possible,
to aid in reasoning about the formalism itself.
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Logics, Types, and Rewriting are essential for Automation

Logics, types, and rewriting are

• elegant, as we can formulate and (automate) clear rules of how they work
(e.g., from A and A → B we can deduce B),

• adequate (we can express a lot in these tiny formalisms), and

• able to be shown correct.

Logics, types, and rewriting have existed in various since from the times of the
ancient Babylonians and Greeks (e.g., Euclid, Aristotle, etc.).
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The need for Automation is old but there was no computers

• Logic is OLD. Mathematics is OLD. But, SO IS computer science.

• Assume a problem Π,
– If you give me an algorithm to solve Π, I can check whether this algorithm

really solves Π.
– But, if you ask me to find an algorithm to solve Π, I may go on forever

trying but without success.

• But, this result was already found by Aristotle: Assume a proposition Φ.
– If you give me a proof of Φ, I can check whether this proof really proves Φ.
– But, if you ask me to find a proof of Φ, I may go on forever trying but

without success.

• In fact, programs are proofs and much of computer science in the early part of
the 20th century was created by the need to automate.
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Proofs? Logics? What are they?

• A proof is the guarantee of some statement provided by a rigorous explanation
stated using some logic.

• A logic is a formalism for statements and proofs of statements. A logic usually
has axioms (statements “for free”) and rules for combining already proven
statements to prove more statements.

• Why do we believe the explanation of a proof? Because a proved statement is
derived step by step from explicit assumptions using a trusted logic.

• There has been an explosion of new logics in the 20th century. How do we
know which ones to trust? Fund us and we will tell you . . .
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A Brief History of Logic (Aristotle)

• Aristotle (384–322 B.C.) wanted a set of rules that would be powerful enough
for most intuitively valid proofs.

• Aristotle correctly stated that proof search is harder than proof checking:

Given a proof of a statement, one can check that it is a correct proof.
Given a statement, one may not be able to find the proof.

Aristotle’s intuitions on this have been confirmed by Gödel, Turing, and others.
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A Brief History of Logic (Leibniz)

• Leibniz (1646–1717) conceived of automated deduction, i.e., to find

– a language L in which arbitrary concepts could be formulated, and
– a machine to determine the correctness of statements in L.

• Such a machine can not work for every statement according to Aristotle and
(later results by) Gödel and Turing.
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A Brief History of Logic (Cantor, Peano, Frege)

The late 1800s saw the beginnings of serious formalization:

• Cantor began formalizing set theory [2, 3] and made contributions to number
theory.

• Peano formalized arithmetic [31], but did not treat logic or quantification.

• Frege’s Begriffsschrift [12] (1879) was the first formalisation of logic which
presented logical concepts via symbols rather than natural language. Frege’s
Grundgesetze der Arithmetik [14, 18], called later by others Naive Set
Theory (NST), could handle elementary arithmetic, set theory, logic, and
quantification.
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A Brief History of Logic (Frege’s Set Theory)

• Frege’s NST allowed a precise definition of the vital concept of the function. As
a result, NST could include not only functions that take numbers as arguments
and return numbers as results, but also functions that can take and return
other sorts of arguments, including functions. These powerful functions were
the key to the formalization of logic in NST.

• Frege was cautious: ordinary functions could only take “objects” as arguments,
not other functions. However, to gain important expressive power, he allowed
a way to turn a function into an object representing its graph.

• Unfortunately, this led to a paradox, due to the implicit possibility of self-
application of functions.
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A Brief History of Logic (Russell’s Paradox)

• In 1902, Russell suggested [35] and Frege completed the argument [17] that
a paradox could occur in NST. First, one can define S to be “the set of all
sets which do not contain themselves”. Then, one can prove both of these
statements in NST:

S ∈ S S /∈ S

• In fact, the same paradox could be encoded in the systems of Cantor and
Peano. As a result, all three systems were inconsistent — not only could every
true statement be proved but also every false one! (Three-valued logic can
solve this, but is unsatisfactory for other reasons.) Logic was in a crisis.

• In 1908, Russell suggested the use of types to solve the problem [37].
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A Brief History of Types (Euclid)

• Euclid’s Elements (circa 325 B.C.) begins with:

1. A point is that which has no part;
2. A line is breadthless length.

...
15. A circle is a plane figure contained by one line such that all the straight

lines falling upon it from one point among those lying within the figure are
equal to one another.

• Although the above seems to merely define points, lines, and circles, it shows
more importantly that Euclid distinguished between them. Euclid always
mentioned to which class (points, lines, etc.) an object belonged.
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A Brief History of Types (Euclid)

• By distinguishing classes of objects, Euclid prevented undesired situations, like
considering whether two points (instead of two lines) are parallel.

• Undesired results? Euclid himself would probably have said: impossible results.
When considering whether two objects were parallel, intuition implicitly forced
him to think about the type of the objects. As intuition does not support the
notion of parallel points, he did not even try to undertake such a construction.

• In this manner, types have always been present in mathematics, although they
were not noticed explicitly until the late 1800s. If you have studied geometry,
then you have some (implicit) understanding of types.
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A Brief History of Types (Paradox Threats)

• Starting in the 1800s, mathematical systems became less intuitive, for several
reasons:

– Very complex or abstract systems.
– Formal systems.
– Something with less intuition than a human using the systems: a computer.

• These situations are paradox threats. An example is Frege’s NST. In such
cases, there is not enough intuition to activate the (implicit) type theory to
warn against an impossible situation. Reasoning proceeds within the impossible
situation and then obtains a result that may be wrong or paradoxical.
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Example Failures due to Type Errors

An untyped computer program may receive instructions from a first-year student
to add the number 3 to the word “four” (instead of the number 4). The
computer is unaware that “four” is not a number and the result of 3 + “four”
is unpredictable. The computer may

• give an answer that is clearly wrong (for example, true),

• give no answer at all, or

• give an answer that is not so clearly wrong (for example, 6).

Especially the last situation is highly undesirable.

Brasiliá 2010 17



A Brief History of Types (Russell)

• To avoid the paradoxes of the systems of Cantor, Peano, and Frege, Russell
prescribed avoiding self-reference and self-application in his “vicious circle
principle”:

Whatever involves all of a collection must not be one of the collection.

• Russell implemented this in his Ramified Theory of Types (RTT) [37] which
used types and orders. Self-application was prevented by forcing functions of
order k to be applied only to arguments of order less than k.

• This was carried out further by Russell and Whitehead in the famous Principia
Mathematica [39] (1910-1912), which founded mathematics on logic, as far as
possible, avoiding paradoxes.
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A Brief History of Types (Russell)

• For example, in RTT, one can define a function “+” which is restricted to be
applied only to integers.

• Although RTT was correct, unlike NST, the types of RTT have turned out
instead to be too restrictive for mathematics and computer science where fixed
points (to mention one example) play an important role. RTT also forces
duplication of the definitions of the number system, the boolean algebra, etc.,
at every level.

• The exploration of the middle ground between these two extremes has led
to many systems, most of them in the context of the λ-calculus, the first
higher-order rewriting system.

Brasiliá 2010 19



A Quick Introduction to Rewriting

We all know how to do algebra:

(a + b) − a by rule x + y = y + x
= (b + a) − a by rule x − y = x + (−y)

= (b + a) + (−a) by rule (x + y) + z = x + (y + z)

= b + (a + (−a)) by rule x + (−x) = 0

= b + 0 by rule x + 0 = x
= b

Rewriting is the action of replacing a subexpression which is matched by an
instance of one side of a rule by the corresponding instance of the other side of
the same rule. If you have studied algebra, then you are skilled at rewriting.
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Important Issues in Rewriting

• Orientation: Usually, most rules can only be used from left to right as
in x + 0 → x. Forward use of the oriented rules represents progress in
computation. Unoriented rules usually do trivial work as in x + y = y + x.

• Termination: It is desirable to show that rewriting halts, i.e., to avoid infinite
sequences of the form P → P1 → P2 → · · · .

• Confluence: The result of rewriting is independent of the order in the rules are
used. For example, 1 + 2 + 3 should rewrite to 6, no matter how we evaluate
it.
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A Brief History of Rewriting (Ancients)

• When the Greeks introduced logic they did not have modern-style rewriting.

• The Babylonians on the other hand, developed techniques for symbolic
computations through their work on algebra. This can be viewed as rewriting.

• The Arabs of course first introduced algebra in close to its modern form.
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A Brief History of Rewriting (λ-Calculus)

• In the late 1800s, Frege identified the abstraction principle: Any expression
mentioning some symbol in zero or more places can be turned into a function
by abstracting over that symbol.

• Introduced in the 1930s, Church’s λ-calculus made function abstraction an
operator. For example, (λx. x + 5) represents the (unnamed) mathematical
function which takes as input any number and returns as output the result of
adding 5 to that number.

• The λ-calculus provides higher-order rewriting, allowing equations like:

f((λx. x + (1/x))5) = f(5 + (1/5)) = f(5 + 0.2) = f(5.2)
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A Brief History of Rewriting (λ-Calculus)

• The type-free λ-calculus, which can be seen as a small computer programming
language, is an excellent theory of functions — it can represent all computable
functions.

• Church intended the type-free λ-calculus with logical operators to provide a
foundation for mathematics. Unfortunately, Russell’s paradox could also be
encoded in the type-free λ-calculus, rendering its use for logic incorrect.

• Church introduced the simply typed λ-calculus (STLC) [7] to provide logic
while avoiding Russell’s paradox in a manner similar to RTT. Unfortunately,
like RTT, the STLC is too restrictive. A modern, slightly less restrictive
descendant of this approach is the so-called “higher-order logic” (HOL).
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The Convergence of Logics, Types, and Rewriting

• Heyting [20], Kolmogorov [28], Curry and Feys [8] (improved by Howard [22]),
and de Bruijn [30] all observed the “propositions as types” or “proofs as terms”
(PAT) correspondence.

• In PAT, logical operators are embedded in the types of λ-terms rather than in
the terms and λ-terms are viewed as proofs of the propositions represented by
their types.

• Advantages of PAT include the ability to manipulate proofs, easier support
for independent proof checking, the possibility of the extraction of computer
programs from proofs, and the ability to prove the consistency of the logic via
the termination of the rewriting system.
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An example of a computable function/solvable problem

• E.g., 1.5 chicken lay down 1.5 eggs in 1.5 days.

• How many eggs does 1 chicken lay in 1 day?

• 1.5 chicken lay 1.5 eggs in 1.5 days.

• Hence, 1 chicken lay 1 egg in 1.5 days.

• Hence, 1 chicken lay 2/3 egg in 1 day.
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Unsolvability of the Barber problem

• which man barber in the village shaves all and only those men who do not
shave themselves?

• If John was the barber then

– John shaves Bill ⇐⇒ Bill does not shave Bill

– John shaves x ⇐⇒ x does not shave x

– John shaves John ⇐⇒ John does not shave John

• Contradiction.
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Unsolvability of the Russell set problem

• Another unsolvable problem: Give me the Russell set R = {x | x 6∈ x}.

• If R existed then x ∈ R iff x 6∈ x.

– If R ∈ R then
(x 6∈ x)[x := R] and so R 6∈ R.
Contradiction.

– If R 6∈ R then
(x 6∈ x)[x := R] and so R ∈ R.
Contradiction.

• What about the problem:

• Find an algorithm which takes any program P and input x and tells you
whether P halts or loops with input x.
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• Aristotle already knew that for a proposition Φ.
– If you give me a proof of Φ, I can check whether this proof really proves Φ.
– But, if you ask me to find a proof of Φ, I may go on forever trying but

without success.

• Aristotle used logic to reason about everything (law, farming, medicine,...)

• Euclides set the grounds for a deductive method for reasoning about geometry
(approaching the dream of a machine that can do some part of our work).

• At the glorious times of the palaces in Alhambra and Andalucia, princes used
to study mathematics for pleasure. Their courts had musicians, poets, math
teachers, etc. These teachers already insisted that Maths must be taught and
developed using logic. This is one of the main themes of the research of Frege
and Russell.

• In the 17th century, Leibniz wanted to use logic to prove the existence of God.

Brasiliá 2010 29



Why did computer science kick off in the 20th century?

In the 19th century, the need for a more precise style in mathematics arose,
because controversial results had appeared in analysis.

• 1821: Many of these controversies were solved by the work of Cauchy. E.g.,
he introduced a precise definition of convergence in his Cours d’Analyse [4].

• 1872: Due to the more exact definition of real numbers given by Dedekind
[10], the rules for reasoning with real numbers became even more precise.

• 1895-1897: Cantor began formalizing set theory [2, 3] and made contributions
to number theory.
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Formal systems in the 19th century

• 1889: Peano formalized arithmetic [31], but did not treat logic or quantification.

• 1879: Frege was not satisfied with the use of natural language in mathematics:

“. . . I found the inadequacy of language to be an obstacle; no matter how
unwieldy the expressions I was ready to accept, I was less and less able,
as the relations became more and more complex, to attain the precision
that my purpose required.”

(Begriffsschrift, Preface)

Frege therefore presented Begriffsschrift [12], the first formalisation of logic
giving logical concepts via symbols rather than natural language.
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Formal systems in the 19th century

“[Begriffsschrift’s] first purpose is to provide us with the most reliable test
of the validity of a chain of inferences and to point out every presupposition
that tries to sneak in unnoticed, so that its origin can be investigated.”

(Begriffsschrift, Preface)

• 1892-1903 Frege’s Grundgesetze der Arithmetik [14, 18], could handle
elementary arithmetic, set theory, logic, and quantification.

• Also in 1900, Hilbert, posed a list of problems at a conference in Paris.

• One very important question was: Can any logical statement have a proof or
be disproved.

• More than 30 years later, this question was negatively answered by Turing
(Turing machines), Goedel (incompleteness results) and Church (λ-calculus).
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Can we solve/compute everything?

• Turing answered the question in terms of a computer. Turing’s machines are
so powerful: anything that can ever be computed even on the most powerful
computers, can also be computed on a Turing machine.

• Church invented the λ-calculus, a language for programming. λ-calculus is
so powerful: anything that can ever be computed can be described in the
λ-calculus.

• Goedel’s result meant that no absolute guarantee can be given that many
significant branches of mathematics are entirely free of contradictions.

• This meant that: we can compute a very small (countable) amount compared
to what we will never be able to compute (uncountable).

• Hilbert’s dream was shattered. According to the great historian of Mathematics
Ivor Grattan-Guinness, Hilbert behaved coldly towards Goedel.
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How did Logic and mathematics influence programming

languages?

• Untyped λ-calculus was adopted in LISP.

• Simply typed λ-calculus was adopted in theorem provers like HOL and was
used to make sense of other programming languages (e.g., pascal).

• Then, simple types were extended to polymorphic (and other) types.

• These are used in programming languages like ML.

• And the search continues for better and better programming languages.

• Types continue to play an influential role in the design and implementation of
programming languages.

Brasiliá 2010 34



Above all, Programs (or algorithms) are computable functions

The introduction of a very general definition of function was the key to the
formalisation of logic. Frege defined the Abstraction Principle.

Abstraction Principle 1.

“If in an expression, [. . . ] a simple or a compound sign has one or more
occurrences and if we regard that sign as replaceable in all or some of these
occurrences by something else (but everywhere by the same thing), then we
call the part that remains invariant in the expression a function, and the
replaceable part the argument of the function.”

(Begriffsschrift, Section 9)
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So, computers and programming languages have been

invented, but how/what do we computerise/automate?
• Remember that we can only compute a small infinite number of functions (the

size of the natural numbers). The rest is a huge infinite amount (the size of
the reals) that we cannot compute.

• Even the small number of computable functions is not easy to compute (some
computable functions are very hard and complex to compute that they might
as well be noncomputable).

• But, we don’t give up on the hard computable functions. We keep trying.

• Also, we don’t avoid completely functions that are non computable. We try to
compute useful approximations of the function. We still get a lot out by doing
so.

• Also, we keep improving languages and tools of computation. The languages
of programming still need a lot of improvements.
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Some interesting areas of research at UNB

• Vision, Graphics, image processing: Bruno, camilo, Dibio, Flavio Vidal, Mylene,
Ricardo de Queiroz,

• Parallel and distributed computation, networking: Alba, Aletia, Carla Castanho,
Jacir,

• Bioinformatics: Alba, Maristela, Maria Emilia, Wilson

• Neural networks and mobile computing: Pedro Berger, Pricila,

• Music and computation: Aluizio, Marcio,

• Artificial intelligence and Robotics, Machine learning, air traffic control: Carla
Koike, Flavio Vidal, Germana, Li, Marcelo, Marcus,
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• Information systems and security: Celia, Jan, Jaoa, Jorge, Marcelo, Pedro
Rezende,

• Theory of computation, Logics, types, rewriting and automation: Claudia,
Flavio de Moura, Mauricio, Jose Ralha, Pedro Rezende

• Hardware verification: Ricardo Jacobi,

• Software engineering, web semantics, system architecture: Vander, Fernanda,
Fernando, Genaina,

• Computers and Education: Homero, Marcio, Marco, Fatima,

• Computational linguistic: Jose ralha,
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an example of how difficult computerisation is

• Nowadays, computerization is an essential feature of any field.

• What is the influence of computerization on the study of language.

• Which language? Arabic, English, French, German, Portuguese, ...

• Euclid’s book on geometry was written in Greek in Alexandria and translated
into many languages.

• The impressive library of Alexandria at that time was destroyed later.

• Attempts at recreating this library electronically are under way

• We need the computerization of a huge number of texts and books.

• Why computerize books? How do we computerize books? What problems do
we encounter?
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Common Mathematical Language of mathematicians: Cml

+ Cml is expressive: it has linguistic categories like proofs and theorems.

+ Cml has been refined by intensive use and is rooted in long traditions.

+ Cml is approved by most mathematicians as a communication medium.

+ Cml accommodates many branches of mathematics, and is adaptable to new
ones.

– Since Cml is based on natural language, it is informal and ambiguous.

– Cml is incomplete: Much is left implicit, appealing to the reader’s intuition.

– Cml is poorly organised: In a Cml text, many structural aspects are omitted.

– Cml is automation-unfriendly: A Cml text is a plain text and cannot be easily
automated.
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A Cml-text

From chapter 1, § 2 of E. Landau’s Foundations of Analysis [Lan51].

Theorem 6. [Commutative Law of Addition]

x + y = y + x.

Proof Fix y, and let M be the set of all
x for which the assertion holds.

I) We have

y + 1 = y
′
,

and furthermore, by the construction in
the proof of Theorem 4,

1 + y = y
′
,

so that
1 + y = y + 1

and 1 belongs to M.
II) If x belongs to M, then

x + y = y + x,

Therefore

(x + y)′ = (y + x)′ = y + x
′
.

By the construction in the proof of
Theorem 4, we have

x
′ + y = (x + y)′,

hence

x
′ + y = y + x

′
,

so that x
′ belongs to M. The assertion

therefore holds for all x. 2
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What are the options for computerization?

Computers can handle mathematical text at various levels:

• Images of pages may be stored. While useful, this is not a good representation
of language or knowledge.

• Typesetting systems like LATEX can be used.

• Document representations like OMDoc can be used.

• Formal logics used by theorem provers can be used.

We are gradually developing a system named MathLang which we hope will
eventually allow building a bridge between the latter 3 levels.

This talk aims at discussing the motivations rather than the details.
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The issues with typesetting systems

+ A system like LATEX provides good defaults for visual appearance, while allowing
fine control when needed.

+ LATEX supports commonly needed document structures, while allowing custom
structures to be created.

– Unless the mathematician is amazingly disciplined, the logical structure of
symbolic formulas is not represented at all.

– The logical structure of mathematics as embedded in natural language text is
not represented. Automated discovery of the semantics of natural language
text is still too primitive and requires human oversight.
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LATEX example
draft documents ✓

public documents ✓

computations and proofs ✗
\begin{theorem}[Commutative Law of Addition]\label{theorem:6}

$$x+y=y+x.$$

\end{theorem}
\begin{proof}

Fix $y$, and $\mathfrak{M}$ be the set of all $x$ for which the

assertion holds.

\begin{enumerate}
\item We have $$y+1=y’,$$

and furthermore, by the construction in

the proof of Theorem~\ref{theorem:4}, $$1+y=y’,$$

so that $$1+y=y+1$$

and $1$ belongs to $\mathfrak{M}$.
\item If $x$ belongs to $\mathfrak{M}$, then $$x+y=y+x,$$

Therefore

$$(x+y)’=(y+x)’=y+x’.$$

By the construction in the proof of

Theorem~\ref{theorem:4}, we have $$x’+y=(x+y)’,$$

hence

$$x’+y=y+x’,$$

so that $x’$ belongs to $\mathfrak{M}$.
\end{enumerate}
The assertion therefore holds for all $x$.

\end{proof}
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The beginnings of computerized formalization

• In 1967 the famous mathematician de Bruijn began work on logical languages
for complete books of mathematics that can be fully checked by machine.

• People are prone to error, so if a machine can do proof checking, we expect
fewer errors.

• Most mathematicians doubted de Bruijn could achieve success, and computer
scientists had no interest at all.

• However, he persevered and built Automath (AUTOmated MATHematics).

• Today, there is much interest in many approaches to proof checking for
verification of computer hardware and software.

• Many theorem provers have been built to mechanically check mathematics and
computer science reasoning (e.g. Isabelle, HOL, Coq, etc.).
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The problem with formal logic
• No logical language has the criteria expected of a language of mathematics.

– A logical language does not have mathematico-linguistic categories, is not
universal to all mathematicians, and is not a good communication medium.

– Logical languages make fixed choices (first versus higher order, predicative
versus impredicative, constructive versus classical, types or sets, etc.). But
different parts of mathematics need different choices and there is no universal
agreement as to which is the best formalism.

– A logician reformulates in logic their formalization of a mathematical-text as
a formal, complete text which is structured considerably unlike the original,
and is of little use to the ordinary mathematician.

– Mathematicians do not want to use formal logic and have for centuries done
mathematics without it.

• So, mathematicians kept to Cml.

• We would like to find an alternative to Cml which avoids some of the features
of the logical languages which made them unattractive to mathematicians.
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Full formalization difficulties: choices

A Cml-text is structured differently from a fully formalized text proving the same
facts. Making the latter involves extensive knowledge and many choices:

• The choice of the underlying logical system.

• The choice of how concepts are implemented (equational reasoning,
equivalences and classes, partial functions, induction, etc.).

• The choice of the formal foundation: a type theory (dependent?), a set theory
(ZF? FM?), a category theory? etc.

• The choice of the proof checker: Automath, Isabelle, Coq, PVS, Mizar, ...

An issue is that one must in general commit to one set of choices.

Brasiliá 2010 47



Full formalization difficulties: informality

Any informal reasoning in a Cml-text will cause various problems when fully
formalizing it:

• A single (big) step may need to expand into a (series of) syntactic proof
expressions. Very long expressions can replace a clear Cml-text.

• The entire Cml-text may need reformulation in a fully complete syntactic
formalism where every detail is spelled out. New details may need to be woven
throughout the entire text. The text may need to be “turned inside out”.

• Reasoning may be obscured by proof tactics, whose meaning is often ad hoc
and implementation-dependent.

Regardless, ordinary mathematicians do not find the new text useful.
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Coq example

draft documents ✗
public documents ✗

computations and proofs ✓

From Module Arith.Plus of Coq standard library (http://coq.inria.fr/).

Lemma plus_sym : (n,m:nat)(n+m)=(m+n).

Proof.

Intros n m ; Elim n ; Simpl_rew ; Auto with arith.

Intros y H ; Elim (plus_n_Sm m y) ; Simpl_rew ; Auto with arith.

Qed.
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What is the aim for MathLang?

Can we formalise a Cml text, avoiding as much as possible the ambiguities of
natural language, while still guaranteeing the following four goals?

1. The formalised text looks very much like the original Cml text (and hence the
content of the original Cml text is respected).

2. The formalised text can be fully manipulated and searched in ways that respect
its mathematical structure and meaning.

3. Steps can be made to do computation (via computer algebra systems) and
proof checking (via proof checkers) on the formalised text.

4. This formalisation of text is not much harder for the ordinary mathematician
than LATEX. Full formalization down to a foundation of mathematics is not
required, although allowing and supporting this is one goal.

(No theorem prover’s language satisfies these goals.)
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MathLang example: CML view

Definition 2. [Fermat-sum]

A Fermat-sum is

a natural number which is the sum of two squares of natural numbers . 1

Lemma 3.

The product of a square and a Fermat-sum is a Fermat-sum . 2
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Another MathLang example

T Terms S Sets N Nouns P Statements Z Declarations Γ Context

Let M be a set ,

y and x are natural numbers ,

if x belongs to M

then x + y = y + x
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Another MathLang example: Type checking

T Terms S Sets N Nouns P Statements Z Declarations Γ Context

Let M be a set ,

y and x are natural numbers ,

if x belongs to M

then x + y ⇐ error
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