
From the Foundation of Mathematics to the Birth

of Computation

Fairouz Kamareddine
Heriot-Watt University, Edinburgh, Scotland

November 2011

HAPOC11: History and Philosophy of Computing

Logic/Mathematics/Computation: A word of warning

• Logic is OLD. Mathematics is OLD. But, SO IS computation.

• Just like in the times of Euclides or of AlHambra/Andalucia or of Frege/Russell,
deduction/Logic was taken as a foundation for Mathematics, computation was
also taken throughout as an essential tool in mathematics.

• Our ancestors used sandy beaches to compute the circomference of a circle,
and to work out approximations/values of numbers like π.

• The word algorithm dates back centuries? Algorithms existed in anciant Egypt
at the time of Hypatia. The word is named after Al-Khawarizmi.

• But even more impressively, the following important 20th century
(un)computability result was known to Aristotle.

• Assume a problem Π,
– If you give me an algorithm to solve Π, I can check whether this algorithm

really solves Π.
– But, if you ask me to find an algorithm to solve Π, I may go on forever

trying but without success.

HAPOC11: History and Philosophy of Computing 1

• But, this result was already known to Aristotle:

• Assume a proposition Φ.
– If you give me a proof of Φ, I can check whether this proof really proves Φ.
– But, if you ask me to find a proof of Φ, I may go on forever trying but

without success.

• In fact, programs are proofs:

– program = algorithm = computable function = λ-term.
– By the PAT principle: Proofs are λ-terms.

• Although computation is old, the science, art and foundation of computation
was developed in the 20th century.

• Just like types are old, but type theories were only developed since 1903.

• Even more, computation comes alive with a general powerful physical body.

• This talk will not address any aspect of the physical computer.

HAPOC11: History and Philosophy of Computing 2

Why did computer science kick off in the 20th century?

Formal systems in the 19th century

After the ancient egyptians, ancient Greeks and the Arab empire, logic was
dormant until the 17th century when Leibniz wanted to prove things like the
existence of god in a mechanical manner.

But the biggest kick off was in the 19th century, when the need for a more precise
style in mathematics arose, because controversial results had appeared in analysis.

• 1821: Many controversies in analysis were solved by Cauchy. E.g., he gave a
precise definition of convergence in his Cours d’Analyse [Cauchy, 1821].

• 1872: Due to the more exact definition of real numbers given by Dedekind
[Dedekind, 1872], the rules for reasoning with real numbers became even more
precise.

• 1895-1897: Cantor began formalizing set theory [Cantor, 1895, 1897] and
made contributions to number theory.

HAPOC11: History and Philosophy of Computing 3

Formal systems in the 19th century

symbols (not natural language) define logical concepts

• 1889: Peano formalized arithmetic [Peano, 1889], but did not treat logic or
quantification.

• 1879: Frege was not satisfied with the use of natural language in mathematics:

“. . . I found the inadequacy of language to be an obstacle; no matter how
unwieldy the expressions I was ready to accept, I was less and less able,
as the relations became more and more complex, to attain the precision
that my purpose required.”

(Begriffsschrift, Preface)

Frege therefore presented Begriffsschrift [Frege, 1879], the first formalisation
of logic giving logical concepts via symbols rather than natural language.

HAPOC11: History and Philosophy of Computing 4

Formal systems in the 19th century

A general definition of functions

“[Begriffsschrift’s] first purpose is to provide us with the most reliable test
of the validity of a chain of inferences and to point out every presupposition
that tries to sneak in unnoticed, so that its origin can be investigated.”

(Begriffsschrift, Preface)

• The introduction of a very general definition of function was the key to the
formalisation of logic. Frege defined the Abstraction Principle.

Abstraction Principle 1.

“If in an expression, [. . .] a simple or a compound sign has one or more
occurrences and if we regard that sign as replaceable in all or some of these
occurrences by something else (but everywhere by the same thing), then we
call the part that remains invariant in the expression a function, and the
replaceable part the argument of the function.”

(Begriffsschrift, Section 9)

HAPOC11: History and Philosophy of Computing 5

Russell’s paradox due to self-application of functions

Hilbert’s program

• 1892-1903 Frege’s Grundgesetze der Arithmetik [Frege, 1892a, 1903], could
handle elementary arithmetic, set theory, logic, and quantification.

• Self-application of functions (not in Begriffsschrift) was at the heart of Russell’s
paradox 1902 [Russell, 1902].

• Also in the early 1900s, Hilbert, a master in posing difficult problems wanted
to believe that any logical statement can either have a proof or be disproved.

• More than 30 years later, Hilbert’s wish was negatively answered by Turing
(Turing machines), Goedel (incompleteness results) and Church (λ-calculus).

HAPOC11: History and Philosophy of Computing 6

Can we solve/compute everything?
• Turing answered the question via a machine for running/computing programs.

a function f is computable iff f can be computed on a Turing machine.

• Church invented the λ-calculus, a language for describing programs.
a function f is computable iff f can be described in the λ-calculus.

• Note that Church’s λ-calculus was initially intended as a language of programs
and logic, but it turned out to be inconsistent (Kleene and Rosser) and Church
restricted the λ-calculus to programs.

• Goedel’s result meant that no absolute guarantee can be given that many
significant branches of mathematics are entirely free of contradictions.

• This means: we can compute a very small (∞ly countable, size of IN) amount
compared to what we will never be able to compute (uncountable, size of IR).

• Hilbert’s dream was shattered. According to the great historian of Mathematics
Ivor Grattan-Guinness, Hilbert behaved coldly towards Goedel.

HAPOC11: History and Philosophy of Computing 7

How did this foundational work influence programming?
• By the 1950s we had the computer, we knew what a computable functon is,

and programming languages started in earnest.

• For example, untyped λ-calculus was adopted by John McCarthy in 1958 in
the language LISP.

• Algol 60 (1958) and Algol 68 (1958) were also developed.

• Also, the earlier work of Frege, Russell and Whitehead, Hilbert, etc., on the
formalisaton of mathematics, were now being complemented/replaced in the
1960s by the computerisation of mathematics.

• De Bruijn’s Automath and Trybulec’s Mizar were conceived around 1967.

• But before we can talk more about programming languages, theorem provers
or the computerisation of mathematics, we need to go back and look at the
Paradoxes and their solution and how this influenced on expressivity.

• I will only discuss the solution to the paradoxes using type theory (I will not
discuss set theory or category theory).

HAPOC11: History and Philosophy of Computing 8

Why Type Theory?

• To avoid paradox Russell controlled function application via type theory.

• Russell [Russell, 1903] 1903 gives the first type theory: the Ramified Type
Theory (rtt). But, types existed since the time of Euclid (325 B.C.). And
Frege did use typing to avoid paradoxes (still the paradoxes sneaked from the
backdoor).

• rtt is used in Russell and Whitehead’s Principia Mathematica [Whitehead
and Russell, 19101, 19272] 1910–1912.

• Simple theory of types (stt): Ramsey [Ramsey, 1926] 1926, Hilbert and
Ackermann [Hilbert and Ackermann, 1928] 1928.

• Church’s simply typed λ-calculus λ→ [Church, 1940] 1940 = λ-calculus +
stt.

HAPOC11: History and Philosophy of Computing 9

• Simply typed λ-calculus was adopted in theorem provers like HOL and was
used to make sense of other programming languages (e.g., pascal).

• Then, simple types were independently extended to polymorphic (logic [Girard,
1972]) and (programming language [Reynolds, 1974]).

• Dependent types (necessary for reasoning about proofs inside the system) were
also introduced in Automath by de Bruijn.

• Polymorphic types are used in programming languages like ML although not
the full 2nd order λ-calculus since type Checking and typability in the 2nd
order λ-calculus is undecidable (this was an open problem for over 25 years
and was shown in 1995 by Joe Wells).

• And the search continues for better and better programming languages.

• Types continue to play an influential role in the design and implementation of
programming languages and theorem provers.

HAPOC11: History and Philosophy of Computing 10

Prehistory of Types (Euclid)

The class to which an object belongs

• Euclid’s Elements (circa 325 B.C.) begins with:

1. A point is that which has no part;
2. A line is breadthless length.

...
15. A circle is a plane figure contained by one line such that all the straight

lines falling upon it from one point among those lying within the figure are
equal to one another.

• 1..15 define points, lines, and circles which Euclid distinguished between.

• Euclid always mentioned to which class (points, lines, etc.) an object belonged.

HAPOC11: History and Philosophy of Computing 11

Prehistory of Types (Euclid)

Intuition forced Euclid to think of the type of objects

• By distinguishing classes of objects, Euclid prevented undesired/impossible
situations. E.g., whether two points (instead of two lines) are parallel.

• Intuition implicitly forced Euclid to think about the type of the objects.

• As intuition does not support the notion of parallel points, he did not even try
to undertake such a construction.

• In this manner, types have always been present in mathematics, although they
were not noticed explicitly until the late 1800s.

• If you studied geometry, then you have an (implicit) understanding of types.

HAPOC11: History and Philosophy of Computing 12

Prehistory of Types (Paradox Threats)

[Kamareddine et al., 2002, 2004]

• From 1800, mathematical systems became less intuitive, for several reasons:

– Very complex or abstract systems.
– Formal systems.
– Something with less intuition than a human using the systems:

a computer or an algorithm.

• These situations are paradox threats. An example is Frege’s Naive Set Theory.

• Not enough intuition to activate the (implicit) type theory to warn against an
impossible situation.

HAPOC11: History and Philosophy of Computing 13

Prehistory of Types (Begriffsschrift’s functions)

Paradox threats

• Frege put no restrictions on what could play the role of an argument.

• An argument could be a number (as was the situation in analysis), but also a
proposition, or a function.

• Similarly, the result of applying a function to an argument did not necessarily
have to be a number.

• Functions of more than one argument were constructed by a method that is
very close to the method presented by Schönfinkel [Schönfinkel, 1924] in 1924.

HAPOC11: History and Philosophy of Computing 14

Prehistory of Types (Begriffsschrift’s functions))

Paradox threats

With this definition of function, two of the three possible paradox threats occurred:

1. The generalisation of the concept of function made the system more abstract
and less intuitive.

2. Frege introduced a formal system instead of the informal systems that were
used up till then.

Type theory, that would be helpful in distinguishing between the different types
of arguments that a function might take, was left informal.

So, Frege had to proceed with caution. And so he did, at this stage.

HAPOC11: History and Philosophy of Computing 15

Prehistory of Types (Begriffsschrift’s functions)

Typing functions

Frege was aware of some typing rule that does not allow to substitute functions
for object variables or objects for function variables:

“if the [. . .] letter [sign] occurs as a function sign, this circumstance
[should] be taken into account.”

(Begriffsschrift, Section 11)

“ Now just as functions are fundamentally different from objects, so also
functions whose arguments are and must be functions are fundamentally
different from functions whose arguments are objects and cannot be anything
else. I call the latter first-level, the former second-level.”

(Function and Concept, pp. 26–27)

HAPOC11: History and Philosophy of Computing 16

Prehistory of Types (Begriffsschrift’s functions)

First level versus second level and avoiding paradox in

Begriffsschrift

In Function and Concept he was aware of the fact that making a difference
between first-level and second-level objects is essential to prevent paradoxes:

“The ontological proof of God’s existence suffers from the fallacy of treating
existence as a first-level concept.”

(Function and Concept, p. 27, footnote)

The above discussion on functions and arguments shows that Frege did indeed
avoid the paradox in his Begriffsschrift.

HAPOC11: History and Philosophy of Computing 17

Prehistory of Types (Grundgesetze’s functions)

Self application

The Begriffsschrift, however, was only a prelude to Frege’s writings.

• In Grundlagen der Arithmetik [Frege, 1884] he argued that mathematics can
be seen as a branch of logic.

• In Grundgesetze der Arithmetik [Frege, 1892a, 1903] he described the
elementary parts of arithmetic within an extension of the logical framework of
Begriffsschrift.

• Frege approached the paradox threats for a second time at the end of Section
2 of his Grundgesetze.

• He did not want to apply a function to itself, but to its course-of-values.

HAPOC11: History and Philosophy of Computing 18

Prehistory of Types (Grundgesetze’s functions)

“the function Φ(x) has the same course-of-values as the function Ψ(x)” if:

“the functions Φ(x) and Ψ(x) always have the same value for the same
argument.”

(Grundgesetze, p. 7)

• Note that functions Φ(x) and Ψ(x) may have equal courses-of-values even if
they have different definitions. E.g., x ∧ ¬x, and x↔ ¬x.

• Frege denoted the course-of-values of a function Φ(x) by ὲΦ(ε). The definition
of equal courses-of-values could therefore be expressed as

ὲf(ε) = ὲg(ε)←→ ∀a[f(a) = g(a)]. (1)

In modern terminology, we could say that the functions Φ(x) and Ψ(x) have
the same course-of-values if they have the same graph.

HAPOC11: History and Philosophy of Computing 19

Prehistory of Types (Grundgesetze’s functions)

• The notation ὲΦ(ε) may be the origin of Russell’s notation x̂Φ(x) for the class
of objects that have the property Φ.

• According to a paper by Rosser [Rosser, 1984], the notation x̂Φ(x) has been
at the basis of the current notation λx.Φ(x).

• Church is supposed to have written ∧xΦ(x) for the function x 7→ Φ(x):
the hat ∧ in front of the x distinguishes this function from the class x̂Φ(x).

HAPOC11: History and Philosophy of Computing 20

Prehistory of Types (Grundgesetze’s functions)

Applying a function to its course-of-values
• Frege treated courses-of-values as ordinary objects.

• As a consequence, a function that takes objects as arguments could have its
own course-of-values as an argument.

• In modern terminology: a function that takes objects as arguments can have
its own graph as an argument.

• BUT, all essential information of a function is contained in its graph.

• A system in which a function can be applied to its own graph should have
similar possibilities as a system in which a function can be applied to itself.

• Frege excluded the paradox threats by forbidding self-application

• but due to his treatment of courses-of-values these threats were able to enter
his system through a back door.

HAPOC11: History and Philosophy of Computing 21

Prehistory of Types (Russell’s paradox in Grundgesetze)

• In 1902, Russell wrote a letter to Frege [Russell, 1902], informing him that he
had discovered a paradox in his Begriffsschrift.

• WRONG: Begriffsschrift does not suffer from a paradox.

• Russell gave his well-known argument, defining the propositional function

f(x) by ¬x(x).
In Russell’s words: “to be a predicate that cannot be predicated of itself.”

• Russell assumed f(f). Then by definition of f , ¬f(f), a contradiction.
Therefore: ¬f(f) holds. But then (again by definition of f), f(f) holds.
Russell concluded that both f(f) and ¬f(f) hold, a contradiction.

HAPOC11: History and Philosophy of Computing 22

Prehistory of Types (Russell’s paradox in Grundgesetze)

• 6 days later, Frege wrote [Frege, 1902] that Russell’s derivation of paradox is
incorrect.

• Ferge explained that self-application f(f) is not possible in Begriffsschrift.

• f(x) is a function, which requires an object as an argument.
A function cannot be an object in the Begriffsschrift.

• Frege explained that Russell’s argument could be amended to a paradox in
Grundgesetze, using the course-of-values of functions:

Let f(x) = ¬∀ϕ[(ὰϕ(α) = x) −→ ϕ(x)]
I.e. f(x) = ∃ϕ[(ὰϕ(α) = x) ∧ ¬ϕ(x)] hence ¬ϕ(ὰϕ(α))

• Both f(ὲf(ε)) and ¬f(ὲf(ε)) hold.

• Frege added an appendix of 11 pages to the 2nd volume of Grundgesetze in
which he gave a very detailed description of the paradox.

HAPOC11: History and Philosophy of Computing 23

Prehistory of Types (How wrong was Frege?)

• Due to Russell’s Paradox, Frege is often depicted as the pitiful person whose
system was inconsistent.

• This suggests that Frege’s system was the only one that was inconsistent, and
that Frege was very inaccurate in his writings.

• On these points, history does Frege an injustice.

• Frege’s system was much more accurate than other systems of those days.

• Peano’s work, for instance, was less precise on several points:

• Peano hardly paid attention to logic especially quantification theory;

• Peano did not make a strict distinction between his symbolism and the objects
underlying this symbolism. Frege was much more accurate on this point (see
Frege’s paper Über Sinn und Bedeutung [Frege, 1892b]);

HAPOC11: History and Philosophy of Computing 24

Prehistory of Types (How wrong was Frege?)

• Frege made a strict distinction between a proposition (as an object) and the
assertion of a proposition. Frege denoted a proposition, by −A, and its
assertion by ⊢ A. Peano did not make this distinction and simply wrote A.

Nevertheless, Peano’s work was very popular, for several reasons:

• Peano had able collaborators, and a better eye for presentation and publicity.

• Peano bought his own press to supervise the printing of his own journals Rivista
di Matematica and Formulaire [Peano, 1894–1908]

HAPOC11: History and Philosophy of Computing 25

Prehistory of Types (How wrong was Frege?)

• Peano used a familiar symbolism to the notations used in those days.

• Many of Peano’s notations, like ∈ for “is an element of”, and ⊃ for logical
implication, are used in Principia Mathematica, and are actually still in use.

• Frege’s work did not have these advantages and was hardly read before 1902

• When Peano published his formalisation of mathematics in 1889 [Peano, 1889]
he clearly did not know Frege’s Begriffsschrift as he did not mention the work,
and was not aware of Frege’s formalisation of quantification theory.

HAPOC11: History and Philosophy of Computing 26

Prehistory of Types (How wrong was Frege?)

• Peano considered quantification theory to be “abstruse” in [Peano, 1894–1908]:

“In this respect my [Frege] conceptual notion of 1879 is superior to the
Peano one. Already, at that time, I specified all the laws necessary for
my designation of generality, so that nothing fundamental remains to be
examined. These laws are few in number, and I do not know why they
should be said to be abstruse. If it is otherwise with the Peano conceptual
notation, then this is due to the unsuitable notation.”

([Frege, 1896], p. 376)

HAPOC11: History and Philosophy of Computing 27

Prehistory of Types (How wrong was Frege?)

• In the last paragraph of [Frege, 1896], Frege concluded:

“. . . I observe merely that the Peano notation is unquestionably more
convenient for the typesetter, and in many cases takes up less room
than mine, but that these advantages seem to me, due to the inferior
perspicuity and logical defectiveness, to have been paid for too dearly —
at any rate for the purposes I want to pursue.”

(Ueber die Begriffschrift des Herrn Peano und meine eigene, p. 378)

HAPOC11: History and Philosophy of Computing 28

Prehistory of Types (paradox in Peano and Cantor’s systems)

• Frege’s system was not the only paradoxical one.

• The Russell Paradox can be derived in Peano’s system as well, by defining the
class K =def {x | x 6∈ x} and deriving K ∈ K ←→ K 6∈ K.

• In Cantor’s Set Theory one can derive the paradox via the same class (or set,
in Cantor’s terminology).

HAPOC11: History and Philosophy of Computing 29

Prehistory of Types (paradoxes)

• Paradoxes were already widely known in antiquity.

• The oldest logical paradox: the Liar’s Paradox “This sentence is not true”,
also known as the Paradox of Epimenides. It is referred to in the Bible (Titus
1:12) and is based on the confusion between language and meta-language.

• The Burali-Forti paradox ([Burali-Forti, 1897], 1897) is a paradox within
Cantor’s theory on ordinal numbers.

• Cantor was aware of the Burali-Forti paradox but did not think it would render
his system incoherent.

• Cantor’s paradox on the largest cardinal number occurs in the same field. It
was discovered by Cantor around 1895, but was not published before 1932.

HAPOC11: History and Philosophy of Computing 30

Prehistory of Types (paradoxes)

• Logicians considered these paradoxes to be out of the scope of logic:

– The Liar’s Paradox can be regarded as a problem of linguistics.
– The paradoxes of Cantor and Burali-Forti occurred in what was considered in

those days a highly questionable part of mathematics: Cantor’s Set Theory.

• The Russell Paradox, however, was a paradox that could be formulated in all
the systems of the end of the 19th century (except for Frege’s Begriffsschrift).

• Russell’s Paradox was at the very basics of logic.

• It could not be disregarded, and a solution to it had to be found.

• In 1903-1908, Russell suggested the use of types to solve the problem [Russell,
1908].

HAPOC11: History and Philosophy of Computing 31

Prehistory of Types (vicious circle principle)

When Russell proved Frege’s Grundgesetze to be inconsistent, Frege was not the
only person in trouble. In Russell’s letter to Frege (1902), we read:

“I am on the point of finishing a book on the principles of mathematics”

(Letter to Frege, [Russell, 1902])

Russell had to find a solution to the paradoxes, before finishing his book.

His paper Mathematical logic as based on the theory of types [Russell, 1908]
(1908), in which a first step is made towards the Ramified Theory of Types,
started with a description of the most important contradictions that were known
up till then, including Russell’s own paradox. He then concluded:

HAPOC11: History and Philosophy of Computing 32

Prehistory of Types (vicious circle principle)

“In all the above contradictions there is a common characteristic, which we
may describe as self-reference or reflexiveness. [. . .] In each contradiction
something is said about all cases of some kind, and from what is said a new
case seems to be generated, which both is and is not of the same kind as
the cases of which all were concerned in what was said.”

(Ibid.)

Russell’s plan was, to avoid the paradoxes by avoiding all possible self-references.
He postulated the “vicious circle principle”:

HAPOC11: History and Philosophy of Computing 33

Ramified Type Theory

“Whatever involves all of a collection must not be one of the collection.”

(Mathematical logic as based on the theory of types)

• Russell applies this principle very strictly.

• He implemented it using types, in particular the so-called ramified types.

• The type theory of 1908 was elaborated in Chapter II of the Introduction
to the famous Principia Mathematica [Whitehead and Russell, 19101, 19272]
(1910-1912).

HAPOC11: History and Philosophy of Computing 34

Ramified Type Theory and Principia

• In the Principia, mathematics was founded on logic, as far as possible.

• A formal and accurate build-up of mathematics, avoiding the logical paradoxes.

• The logical part of Principia was based on the works of Frege (acknowledged
by Whitehead and Russell in the preface, and can be seen throughout the
description of Type Theory).

• The notion of function is based on Frege’s Abstraction Principles.

• The Principia notation x̂f(x) for a class looks very similar to Frege’s ὲf(ε) for
course-of-values.

• An important difference is that Whitehead and Russell treated functions as
first-class citizens. Frege used courses-of-values when speaking about functions.

• In the Principia a direct approach was possible.

HAPOC11: History and Philosophy of Computing 35

Ramified Type Theory and Principia
• Type Theory had not yet become an independent subject. The theory

“only recommended itself to us in the first instance by its ability to solve
certain contradictions. it has also a certain consonance with
common sense which makes it inherently credible”

(Principia Mathematica, p. 37)

• Type Theory was not introduced because it was interesting on its own, but
because it had to serve as a tool for logic and mathematics.

• A formalisation of Type Theory, therefore, was not considered in those days.

• Though the description of the ramified type theory in the Principia was still
informal, it was clearly present throughout the work.

• Types in the Principia have a double hierarchy: (simple) types and orders.

• It was not mentioned very often, but when necessary, Russell made a remark
on the ramified type theory.

HAPOC11: History and Philosophy of Computing 36

Ramified Type Theory and Principia

• There is no definition of “type” in the Principia, only a definition of “being of
the same type”:

“Definition of being of the same type. The following is a step-by-step
definition, the definition for higher types presupposing that for lower
types. We say that u and v are of the same type if

1. both are individuals,
2. both are elementary [propositional] functions (in Principia, they only

take elementary propositions as value) taking arguments of the same
type,

3. u is a pf and v is its negation,
4. u is ϕx̂ ϕx̂ is a pf that has x as a free variable or ψx̂, and v is ϕx̂∨ψx̂,

where ϕx̂ and ψx̂ are elementary pfs,
5. u is (y).ϕ(x̂, y) forall and v is (z).ψ(x̂, z), where ϕ(x̂, ŷ), ψ(x̂, ŷ) are

of the same type,

HAPOC11: History and Philosophy of Computing 37

6. both are elementary propositions,
7. u is a proposition and v is ∼unegation or
8. u is (x).ϕx and v is (y).ψy, where ϕx̂ and ψx̂ are of the same type.”

(Principia Mathematica, ∗9·131, p. 133)

• There are some omissions in Russell and Whitehead’s definition.

HAPOC11: History and Philosophy of Computing 38

Ramsey’s Simple Types

• The ideas behind simple types was already explained by Frege (see earlier
quotes from Function and Concept).

• Ramsey’s Simple types:

1. 0 is a simple type, the type of individuals.
2. If t1, . . . , tn are simple types, then also (t1, . . . , tn) is a simple type.1

n = 0 is allowed: then we obtain the simple type () of propositions.
3. All simple types can be constructed using the rules 1 and 2.

1(t1, . . . , tn) is the type of pfs that should take n arguments, the ith argument having type ti.

HAPOC11: History and Philosophy of Computing 39

Ramsey’s Simple Types

• The propositional function R(x) should have type (0), as it takes one individual
as argument.

• The proposition S(a) has type ().

• We conclude that in z(R(x), S(a)), we must substitute pfs of type ((0), ()) for
z. Therefore, z(R(x), S(a)) has type (((0), ())).

HAPOC11: History and Philosophy of Computing 40

Whitehead and Russell’s Ramified Types

• With simple types, the type of a pf only depends on the types of the arguments
that it can take.

• In the Principia, a second hierarchy is introduced by regarding also the types
of the variables that are bound by a quantifier (see Principia, pp. 51–55).

• Whitehead and Russell consider, for instance, the propositions R(a) and
∀z:()[z() ∨ ¬z()] to be of a different level.

• The first is an atomic proposition, while the latter is based on the pf z()∨¬z().

HAPOC11: History and Philosophy of Computing 41

Whitehead and Russell’s Ramified Types

• The pf z()∨¬z() involves an arbitrary proposition z, therefore ∀z:()[z()∨¬z()]
quantifies over all propositions z.

• According to the vicious circle principle, ∀z:()[z() ∨ ¬z()] cannot belong to
this collection of propositions.

• This problem is solved by dividing types into orders which are natural numbers.

• Basic propositions are of order 0. In ∀z:()[z() ∨ ¬z()] we must mention the
order of the propositions over which is quantified. The pf ∀z:()n

[z() ∨ ¬z()]
quantifies over all propositions of order n, and has order n+ 1.

HAPOC11: History and Philosophy of Computing 42

Whitehead and Russell’s Ramified Types

1. 00 is a ramified type of order 0;

2. If ta1
1 , . . . , t

an
n are ramified types, and a ∈ N, a > max(a1, . . . , an), then

(ta1
1 , . . . , t

an
n)

a
is a ramified type of order a (if n = 0 then take a ≥ 0);

3. All ramified types can be constructed using the rules 1 and 2.

00; (00)
1
;
(

(00)
1
, (00)

4
)5

; and

(

00, ()2,
(

00, (00)
1
)2

)7

are all ramified types.

(

00,
(

00, (00)
2
)2

)7

is not a ramified type.

HAPOC11: History and Philosophy of Computing 43

Predicative Types

• In the type (00)
1
, all orders are “minimal”, i.e., not higher than strictly

necessary. Unlike (00)
2

where orders are not minimal.

• Types in which all orders are minimal are called predicative and play a special
role in the Ramified Theory of Types.

1. 00 is a predicative type;
2. If t1

a1, . . . , tn
an are predicative types, and a = 1 + max(a1, . . . , an) (take

a = 0 if n = 0), then (ta1
1 , . . . , t

an
n)

a
is a predicative type;

3. All predicative types can be constructed using the rules 1 and 2 above.

HAPOC11: History and Philosophy of Computing 44

Problems of Ramified Type Theory

• The main part of the Principia is devoted to the development of logic and
mathematics using the legal pfs of the ramified type theory.

• ramification/division of simple types into orders make rtt not easy to use.

• (Equality) x =L y
def↔ ∀z[z(x)↔ z(y)].

In order to express this general notion in rtt, we have to incorporate all pfs
∀z : (00)

n
[z(x)↔ z(y)] for n > 1, and this cannot be expressed in one pf.

• Not possible to give a constructive proof of the theorem of the least upper
bound within a ramified type theory.

HAPOC11: History and Philosophy of Computing 45

Axiom of Reducibility

• It is not possible in rtt to give a definition of an object that refers to the class
to which this object belongs (because of the Vicious Circle Principle). Such a
definition is called an impredicative definition.

• An object defined by an impredicative definition is of a higher order than the
order of the elements of the class to which this object should belong. This
means that the defined object has an impredicative type.

• But impredicativity is not allowed by the vicious circle principle.

• Russell and Whitehead tried to solve these problems with the so-called axiom
of reducibility.

HAPOC11: History and Philosophy of Computing 46

Axiom of Reducibility

• (Axiom of Reducibility) For each formula f , there is a formula g with a
predicative type such that f and g are (logically) equivalent.

• The validity of the Axiom of Reducibility has been questioned from the moment
it was introduced.

• In the 2nd edition of the Principia, Whitehead and Russell admit:

“This axiom has a purely pragmatic justification: it leads to the desired
results, and to no others. But clearly it is not the sort of axiom with
which we can rest content.”

(Principia Mathematica, p. xiv)

HAPOC11: History and Philosophy of Computing 47

Axiom of Reducibility

• Though Weyl [Weyl, 1918] made an effort to develop analysis within the
Ramified Theory of Types (without the Axiom of Reducibility),

• and various parts of mathematics can be developed within rtt and without
the Axiom,

• the general attitude towards rtt (without the axiom) was that the system was
too restrictive, and that a better solution had to be found.

HAPOC11: History and Philosophy of Computing 48

Deramification

• Ramsey considers it essential to divide the paradoxes into two parts:

• One group of paradoxes is removed

“by pointing out that a propositional function cannot significantly take
itself as argument, and by dividing functions and classes into a hierarchy
of types according to their possible arguments.”

(The Foundations of Mathematics, p. 356)

This means that a class can never be a member of itself. The paradoxes solved
by introducing the hierarchy of types (but not orders), like the Russell paradox,
and the Burali-Forti paradox, are logical or syntactical paradoxes;

HAPOC11: History and Philosophy of Computing 49

Deramification

• The second group of paradoxes is excluded by the hierarchy of orders. These
paradoxes (like the Liar’s paradox, and the Richard Paradox) are based on the
confusion of language and meta-language. These paradoxes are, therefore,
not of a purely mathematical or logical nature. When a proper distinction
between object language and meta-language is made, these so-called semantical
paradoxes disappear immediately.

• Ramsey agrees with the part of the theory that eliminates the syntactic
paradoxes. I.e., rtt without the orders of the types.

• The second part, the hierarchy of orders, does not gain Ramsey’s support.

HAPOC11: History and Philosophy of Computing 50

Deramification

• By accepting the hierarchy in its full extent one either has to accept the Axiom
of Reducibility or reject ordinary real analysis.

• Ramsey is supported in his view by Hilbert and Ackermann [Hilbert and
Ackermann, 1928].

• They all suggest a deramification of the theory, i.e. leaving out the orders of
the types.

• When making a proper distinction between language and meta-language, the
deramification will not lead to a re-introduction of the (semantic) paradoxes.

HAPOC11: History and Philosophy of Computing 51

Deramification
• Deramification and the Axiom of Reducibility are both violations of the Vicious

Circle Principle. Gödel [Gödel, 1944] fills the gap why they can be harmlessly
made

“it seems that the vicious circle principle [. . .] applies only if the entities
involved are constructed by ourselves. In this case there must clearly
exist a definition (namely the description of the construction) which does
not refer to a totality to which the object defined belongs, because the
construction of a thing can certainly not be based on a totality of things
to which the thing to be constructed itself belongs. If, however, it is a
question of objects that exist independently of our constructions, there
is nothing in the least absurd in the existence of totalities containing
members, which can be described only by reference to this totality.”

(Russell’s mathematical logic)

HAPOC11: History and Philosophy of Computing 52

Deramification

• This turns the Vicious Circle Principle into a philosophical principle that will
be easily accepted by intuitionists but that will be rejected, at least in its full
strength, by mathematicians with a more platonic point of view.

• Gödel is supported in his ideas by Quine [Quine, 1963], sections 34 and 35.

• Quine’s criticism on impredicative definitions (for instance, the definition of
the least upper bound of a nonempty subset of the real numbers with an upper
bound) is not on the definition of a special symbol, but rather on the very
assumption of the existence of such an object at all.

HAPOC11: History and Philosophy of Computing 53

Deramification

• Quine states that even for Poincaré, who was an opponent of impredicative
definitions and deramification, one of the doctrines of classes is that they are
there “from the beginning”. So, even for Poincaré there should be no evident
fallacy in impredicative definitions.

• The deramification has played an important role in the development of type
theory. In 1932 and 1933, Church presented his (untyped) λ-calculus [Church,
1932, 1933]. In 1940 he combined this theory with a deramified version of
Russell’s theory of types to the system that is known as the simply typed
λ-calculus

HAPOC11: History and Philosophy of Computing 54

The Simple Theory of Types

• Ramsey [Ramsey, 1926], and Hilbert and Ackermann [Hilbert and Ackermann,
1928], simplified the Ramified Theory of Types rtt by removing the orders.
The result is known as the Simple Theory of Types (stt).

• Nowadays, stt is known via Church’s formalisation in λ-calculus. However,
stt already existed (1926) before λ-calculus did (1932), and is therefore not
inextricably bound up with λ-calculus.

• How to obtain stt from rtt? Just leave out all the orders and the references
to orders (including the notions of predicative and impredicative types).

HAPOC11: History and Philosophy of Computing 55

Church’s Simply Typed λ-calculus λ→

• The types of λ→ are defined as follows:

– ι individuals and o propositions are types;
– If α and β are types, then so is α→ β.

• The terms of λ→ are the following:

– ¬, ∧, ∀α for each type α, and ι

α for each type α, are terms;
– A variable is a term;
– If A,B are terms, then so is AB;
– If A is a term, and x a variable, then λx:α.A is a term.

• (β) (λx:α.A)B →β A[x := B].

HAPOC11: History and Philosophy of Computing 56

Typing rules in Church’s Simply Typed λ-calculus λ→

• Γ ⊢ ¬ : o→ o;

Γ ⊢ ∧ : o→ o→ o;

Γ ⊢ ∀α : (α→ o)→ o;

Γ ⊢ ι

α : (α→ o)→ α;

• Γ ⊢ x : α if x:α ∈ Γ;

• If Γ, x:α ⊢ A : β then Γ ⊢ (λx:α.A) : α→ β;

• If Γ ⊢ A : α→ β and Γ ⊢ B : α then Γ ⊢ (AB) : β.

HAPOC11: History and Philosophy of Computing 57

Comparing λ→ with stt and rtt

• Apart from the orders, rtt is a subsystem of λ→.

• The rules of rtt, and the method of deriving the types of pfs have a bottom-up
character: one can only introduce a variable of a certain type in a context Γ,
if there is a pf that has that type in Γ. In λ→, one can introduce variables of
any type without wondering whether such a type is inhabited or not.

• Church’s λ→ is more general than rtt in the sense that Church does not
only describe (typable) propositional functions. In λ→, also functions of type
τ → ι (where ι is the type of individuals) can be described, and functions that
take such functions as arguments, etc..

HAPOC11: History and Philosophy of Computing 58

Limitation of the simply typed λ-calculus

• λ→ is very restrictive.

• Numbers, booleans, the identity function have to be defined at every level.

• We can represent (and type) terms like λx : o.x and λx : ι.x.

• We cannot type λx : α.x, where α can be instantiated to any type.

• This led to new (modern) type theories that allow more general notions of
functions (e.g, polymorphic).

HAPOC11: History and Philosophy of Computing 59

The evolution of functions with Frege, Russell and Church

• Historically, functions have long been treated as a kind of meta-objects.

• Function values were the important part, not abstract functions.

• In the low level/operational approach there are only function values.

• The sine-function, is always expressed with a value: sin(π), sin(x) and
properties like: sin(2x) = 2 sin(x) cos(x).

• In many mathematics courses, one calls f(x)—and not f—the function.

• Frege, Russell and Church wrote x 7→ x+3 resp. as x+3, x̂+3 and λx.x+3.

• Principia’s functions are based on Frege’s Abstraction Principles but can be
first-class citizens. Frege used courses-of-values to speak about functions.

• Church made every function a first-class citizen. This is rigid and does not
represent the development of logic in 20th century.

• In Principia Mathematica [Whitehead and Russell, 19101, 19272]: If, for some
a, there is a proposition φa, then there is a function φx̂, and vice versa.
• The function φ is not a separate entity but always has an argument.

HAPOC11: History and Philosophy of Computing 60

Functionalisation and Instantiation

[Kamareddine et al., 2003] assessed evolution of the function concept from two
points of vue:

• Functionalisation: the construction of a function out of an expression,
as in constructing the function λx.x× 3 + x from the expression 2× 3 + 2.

• Functionalisation is

– Abstraction from a subexpression e.g., moving from 2× 3 + 2 to x× 3 + x
– Function construction e.g., turning x× 3 + x into λx.x× 3 + x.

• Instantiation: the calculation of a function value when a suitable argument is
assigned to the function,
as in the construction of 2× 3+2 by applying the function λx.x× 3+x to 2.

• Instantiation is:
– Application construction e.g., (λx.x×3+x)2 the application of λx.x×3+x

to 2
– Concretisation to a subexpression e.g., calculating (λx.x×3+x)2 to 2×3+2.

HAPOC11: History and Philosophy of Computing 61

Functionalisation and Instantiation for Frege, Russell and

Church

• Frege [Frege, 1879] focuses on abstraction from a subexpression and does not
employ function construction. He does not distinguish the function x× 3 + x
from the expression x× 3 + x and uses the notation x̀(x× 3 + x) for what he
calls the course-of-value of the function.

• Principia allows both parts of functionalisation and writes x̂ × 3 + x̂ for the
function (see ∗9·14 and ∗9·15 of [Whitehead and Russell, 19101, 19272]).

• The λ-calculus focuses on function construction and does not employ
abstraction from a subexpression. This means that we have to go all the
way to obtain λx.x × 3 + x. The abstraction from 2 × 3 + 2 to x × 3 + x is
not included in the syntax.

HAPOC11: History and Philosophy of Computing 62

λ-calculus does not fully represent functionalisation
1. Abstraction from a subexpression 2 + 3 7→ x+ 3

2. Function construction x+ 3 7→ λx.x+ 3

3. Application construction (λx.x+ 3)2

4. Concretisation to a subexpression (λx.(x+ 3))2→ 2 + 3

• cannot abstract only half way: x+ 3 is not a function, λx.x+ 3 is.

• cannot apply x+ 3 to an argument: (x+ 3)2 does not evaluate to 2+3.

HAPOC11: History and Philosophy of Computing 63

Common features of modern types and functions

• We can construct a type by abstraction. (Write A : ∗ for A is a type)

– λy:A.y, the identity over A has type A→ A
– λA:∗.λy:A.y, the polymorphic identity has type ΠA:∗.A→ A

• We can instantiate types. E.g., if A = N, then the identity over N

– (λy:A.y)[A := N] has type (A→ A)[A := N] or N→ N.
– (λA:∗.λy:A.y)N has type (ΠA:∗.A→ A)N = (A→ A)[A := N] or N→ N.

• (λx:α.A)B →β A[x := B] (Πx:α.A)B →Π A[x := B]

• Write A→ A as Πy:A.A when y not free in A.

HAPOC11: History and Philosophy of Computing 64

The Barendregt Cube

• Syntax: A ::= x | ∗ |2 |AB | λx:A.B |Πx:A.B

• Formation rule:
Γ ⊢ A : s1 Γ, x:A ⊢ B : s2

Γ ⊢ Πx:A.B : s2
if (s1, s2) ∈ R

Simple Poly-
morphic

Depend-
ent

Constr-
uctors

Related
system

Refs.

λ→ (∗, ∗) λτ [Church, 1940; Ba
λ2 (∗, ∗) (2, ∗) F [Girard, 1972; Reynolds,
λP (∗, ∗) (∗,2) aut-QE, LF [Bruijn, 1968; Harp
λω (∗, ∗) (2,2) POLYREC [Renardel de Lavalette,
λP2 (∗, ∗) (2, ∗) (∗,2) [Longo and Moggi,
λω (∗, ∗) (2, ∗) (2,2) Fω [Girard, 1972]
λPω (∗, ∗) (∗,2) (2,2)
λC (∗, ∗) (2, ∗) (∗,2) (2,2) CC [Coquand and Huet,

HAPOC11: History and Philosophy of Computing 65

The Barendregt Cube

λ→ λP

λ2 λP2

λω λPω

λCλω

-

6

1

(∗,2) ∈ R

(2,2) ∈ R

(2, ∗) ∈ R

HAPOC11: History and Philosophy of Computing 66

Typing Polymorphic identity needs (2, ∗)

• y : ∗ ⊢ y : ∗ y : ∗, x:y ⊢ y : ∗
y : ∗ ⊢ Πx:y.y : ∗ by (Π) (∗, ∗)

• y : ∗, x : y ⊢ x : y y : ∗ ⊢ Πx:y.y : ∗
y : ∗ ⊢ λx : y.x : Πx:y.y

by (λ)

• ⊢ ∗ : 2 y : ∗ ⊢ Πx:y.y : ∗
⊢ Πy : ∗.Πx:y.y : ∗ by (Π) (2, ∗)

• y : ∗ ⊢ λx : y.x : Πx:y.y ⊢ Πy : ∗.Πx:y.y : ∗
⊢ λy : ∗.λx : y.x : Πy : ∗.Πx:y.y by (λ)

HAPOC11: History and Philosophy of Computing 67

The story so far of the evolution of functions and types

• Functions have gone through a long process of evolution involving various
degrees of abstraction/construction/instantiation/concretisation/evaluation.

• Types too have gone through a long process of evolution involving various
degrees of abstraction/construction/instantiation/concretisation/evaluation.

• During their progress, some aspects have been added or removed.

• In this talk we argue that their progresses have been interlinked and that their
abstraction/construction/instantiation/concretisation/evaluation have much in
common.

• We also argue that some of the aspects that have been dismissed during their
evolution need to be re-incorporated.

HAPOC11: History and Philosophy of Computing 68

From the point of vue of ML
• When Robin Milner designed the language ML, he wanted to to use all of

system F (the second order polymorphic λ-calculus).

• He could not do so because it was not known then whether type checking and
type finding are decidable.

• So, Milner used a fragment of system F for which it was known that type
checking and type finding are decidable.

• Just as well since 23 years later Wells showed that type checking and type
finding in system F are undecidable.

• This meant that ML has polymorphism but not all the polymorphic power of
system F.

• The question is, what system of functions and types does ML use?

• A clean answer can be given when we re-incorporate the low-level function
notion used by Frege and Russell and dismissed by Church.

HAPOC11: History and Philosophy of Computing 69

• ML treats let val id = (fn x⇒ x) in (id id) end as this Cube term
(λid:(Πα:∗. α→ α). id(β → β)(idβ))(λα:∗. λx:α. x)

• To type this in the Cube, the (2, ∗) rule is needed (i.e., λ2).

• ML’s typing rules forbid this expression:
let val id = (fn x⇒ x) in (fn y ⇒ y y)(id id) end
Its equivalent Cube term is this well-formed typable term of λ2:
(λid : (Πα:∗. α→ α).

(λy:(Πα:∗. α→ α). y(β → β)(y β))
(λα:∗. id(α→ α)(idα)))

(λα:∗. λx:α. x)

• Therefore, ML should not have the full Π-formation rule (2, ∗).

• ML has limited access to the rule (2, ∗).
• ML’s type system is none of those of the eight systems of the Cube.

• [Kamareddine et al., 2001] places the type system of ML on our refined Cube
(between λ2 and λω).

HAPOC11: History and Philosophy of Computing 70

LF
• LF [Harper et al., 1987] is often described as λP of the Barendregt Cube.

• Use of Π-formation rule (∗,2) is very restricted in the practical use of LF
[Geuvers, 1993].

• The only need for a type Πx:A.B : 2 is when the Propositions-As-Types
principle pat is applied during the construction of the type Πα:prop.∗ of the
operator Prf where for a proposition Σ, Prf(Σ) is the type of proofs of Σ.

prop:∗ ⊢ prop: ∗ prop:∗, α:prop ⊢ ∗:2
prop:∗ ⊢ Πα:prop.∗ : 2

.

• In LF, this is the only point where the Π-formation rule (∗,2) is used.

• But, Prf is only used when applied Σ:prop. We never use Prf on its own.

• This use is in fact based on a parametric constant rather than on Π-formation.

• Hence, the practical use of LF would not be restricted if we present Prf in a
parametric form, and use (∗,2) as a parameter instead of a Π-formation rule.

• [Kamareddine et al., 2001] finds a more precise position of LF on the Cube
(between λ→ and λP).

HAPOC11: History and Philosophy of Computing 71

Parameters: What and Why

• We speak about functions with parameters when referring to functions with
variable values in the low-level approach. The x in f(x) is a parameter.

• Parameters enable the same expressive power as the high-level case, while
allowing us to stay at a lower order. E.g. first-order with parameters versus
second-order without [Laan and Franssen, 2001].

• Desirable properties of the lower order theory (decidability, easiness of
calculations, typability) can be maintained, without losing the flexibility of
the higher-order aspects.

• This low-level approach is still worthwhile for many exact disciplines. In fact,
both in logic and in computer science it has certainly not been wiped out, and
for good reasons.

• Parameters describe the difference between developers and users of systems.

HAPOC11: History and Philosophy of Computing 72

Automath

• The first tool for mechanical representation and verification of mathematical
proofs, Automath, has a parameter mechanism.

• Mathematical text in Automath written as a finite list of lines of the form:

x1 : A1, . . . , xn : An ⊢ g(x1, . . . , xn) = t : T.

Here g is a new name, an abbreviation for the expression t of type T and
x1, . . . , xn are the parameters of g, with respective types A1, . . . , An.

• Each line introduces a new definition which is inherently parametrised by the
variables occurring in the context needed for it.

• Developments of ordinary mathematical theory in Automath [Benthem Jutting,
1977] revealed that this combined definition and parameter mechanism is vital
for keeping proofs manageable and sufficiently readable for humans.

HAPOC11: History and Philosophy of Computing 73

Extending the Cube with parametric constants, see

[Kamareddine et al., 2001]

• We add parametric constants of the form c(b1, . . . , bn) with b1, . . . , bn terms
of certain types and c ∈ C.

• b1, . . . , bn are called the parameters of c(b1, . . . , bn).

• R allows several kinds of Π-constructs. We also use a set P of (s1, s2) where
s1, s2 ∈ {∗,2} to allow several kinds of parametric constants.

• (s1, s2) ∈ P means that we allow parametric constants c(b1, . . . , bn) : A where
b1, . . . , bn have types B1, . . . , Bn of sort s1, and A is of type s2.

• If both (∗, s2) ∈ P and (2, s2) ∈ P then combinations of parameters allowed.
For example, it is allowed that B1 has type ∗, whilst B2 has type 2.

HAPOC11: History and Philosophy of Computing 74

The Cube with parametric constants

• Let (∗, ∗) ⊆ R,P ⊆ {(∗, ∗), (∗,2), (2, ∗), (2,2)}.

• λRP = λR and the two rules (
→

C-weak) and (
→

C-app):

Γ ⊢ b : B Γ,∆i ⊢ Bi : si Γ,∆ ⊢ A : s
Γ, c(∆) : A ⊢ b : B

(si, s) ∈ P , c is Γ-fresh

Γ1, c(∆):A,Γ2 ⊢ bi:Bi[xj:=bj]
i−1
j=1 (i = 1, . . . , n)

Γ1, c(∆):A,Γ2 ⊢ A : s (if n = 0)
Γ1, c(∆):A,Γ2 ⊢ c(b1, . . . , bn) : A[xj:=bj]

n
j=1

∆ ≡ x1:B1, . . . , xn:Bn.
∆i ≡ x1:B1, . . . , xi−1:Bi−1

HAPOC11: History and Philosophy of Computing 75

Properties of the Refined Cube

• (Correctness of types) If Γ ⊢ A : B then (B ≡ 2 or Γ ⊢ B :
S for some sort S).

• (Subject Reduction SR) If Γ ⊢ A : B and A→→β A
′ then Γ ⊢ A′ : B

• (Strong Normalisation) For all ⊢-legal terms M , we have SN→→β
(M).

• Other properties such as Uniqueness of types and typability of subterms hold.

• λRP is the system which has Π-formation rules R and parameter rules P .

• Let λRP parametrically conservative (i.e., (s1, s2) ∈ P implies (s1, s2) ∈ R).

– The parameter-free system λR is at least as powerful as λRP .
– If Γ ⊢

RP a : A then {Γ} ⊢R {a} : {A} .

HAPOC11: History and Philosophy of Computing 76

Example

• R = {(∗, ∗), (∗,2)}
P 1 = ∅ P 2 = {(∗, ∗)} P 3 = {(∗,2)} P 4 = {(∗, ∗), (∗,2)}
All λRP i for 1 ≤ i ≤ 4 with the above specifications are all equal in power.

• R5 = {(∗, ∗)} P 5 = {(∗, ∗), (∗,2)}.
λ→ < λR5P 5 < λP: we can to talk about predicates:

α : ∗,
eq(x:α, y:α) : ∗,
refl(x:α) : eq(x, x),

symm(x:α, y:α, p:eq(x, y)) : eq(y, x),
trans(x:α, y:α, z:α, p:eq(x, y), q:eq(y, z)) : eq(x, z).

eq not possible in λ→.

HAPOC11: History and Philosophy of Computing 77

The refined Barendregt Cube

λ→ λP

λ2 λP2

λω λPω

λCλω

-

6

1

-

6

1

(∗,
2
) ∈

R

(2, ∗) ∈ R

(2, ∗) ∈ P

(∗,
2
) ∈

P

(2,2) ∈ P

(2,2) ∈ R

HAPOC11: History and Philosophy of Computing 78

LF, ML, Aut-68, and Aut-QE in the refined Cube

λ→ λP

λ2 λP2

λω λPω

λCλω

Aut-68 Aut-QEML

LF

HAPOC11: History and Philosophy of Computing 79

Logicians versus mathematicians and induction over numbers

• Logician uses ind: Ind as proof term for an application of the induction axiom.
The type Ind can only be described in λR where R = {(∗, ∗), (∗,2), (2, ∗)}:

Ind = Πp:(N→∗).p0→(Πn:N.Πm:N.pn→Snm→pm)→Πn:N.pn (2)
• Mathematician uses ind only with P : N→∗, Q : P0 and R :

(Πn:N.Πm:N.Pn→Snm→Pm) to form a term (indPQR):(Πn:N.Pn).

• The use of the induction axiom by the mathematician is better described by
the parametric scheme (p, q and r are the parameters of the scheme):

ind(p:N→∗, q:p0, r:(Πn:N.Πm:N.pn→Snm→pm)) : Πn:N.pn (3)
• The logician’s type Ind is not needed by the mathematician and the types

that occur in 3 can all be constructed in λR with R = {(∗, ∗)(∗,2)}.

HAPOC11: History and Philosophy of Computing 80

Logicians versus mathematicians and induction over numbers

• Mathematician: only applies the induction axiom and doesn’t need to know
the proof-theoretical backgrounds.

• A logician develops the induction axiom (or studies its properties).

• (2, ∗) is not needed by the mathematician. It is needed in logician’s approach
in order to form the Π-abstraction Πp:(N→ ∗). · · ·).

• Consequently, the type system that is used to describe the mathematician’s
use of the induction axiom can be weaker than the one for the logician.

• Nevertheless, the parameter mechanism gives the mathematician limited (but
for his purposes sufficient) access to the induction scheme.

HAPOC11: History and Philosophy of Computing 81

Identifying λ and Π (see [Kamareddine, 2005])

• In the cube of the generalised framework of type systems, we saw that the
syntax for terms (functions) and types was intermixed with the only distinction
being λ- versus Π-abstraction.

• We unify the two abstractions into one.
T♭ ::= V | S | T♭T♭ | ♭V :T♭.T♭

• V is a set of variables and S = {∗,2}.

• The β-reduction rule becomes (♭) (♭x:A.B)C →♭ B[x := C].

• Now we also have the old Π-reduction (Πx:A.B)C →Π B[x := C] which treats
type instantiation like function instantiation.

• The type formation rule becomes

(♭1)
Γ ⊢ A : s1 Γ, x:A ⊢ B : s2

Γ ⊢ (♭x:A.B) : s2
(s1, s2) ∈ R

HAPOC11: History and Philosophy of Computing 82

(axiom) 〈〉 ⊢ ∗ : 2

(start)
Γ ⊢ A : s

Γ, x:A ⊢ x : A
x 6∈ dom (Γ)

(weak)
Γ ⊢ A : B Γ ⊢ C : s

Γ, x:C ⊢ A : B
x 6∈ dom (Γ)

(♭2)
Γ, x:A ⊢ b : B Γ ⊢ (♭x:A.B) : s

Γ ⊢ (♭x:A.b) : (♭x:A.B)

(app♭)
Γ ⊢ F : (♭x:A.B) Γ ⊢ a : A

Γ ⊢ Fa : B[x:=a]

(conv)
Γ ⊢ A : B Γ ⊢ B′ : s B =β B

′

Γ ⊢ A : B′

HAPOC11: History and Philosophy of Computing 83

Translations between the systems with 2 binders and those

with one binder

• For A ∈ T , we define A ∈ T♭ as follows:

– s ≡ s x ≡ x AB ≡ AB
– λx:A.B ≡ Πx:A.B ≡ ♭x:A.B.

• For contexts we define: 〈〉 ≡ 〈〉 Γ, x : A ≡ Γ, x : A.

• For A ∈ T♭, we define [A] to be {A′ ∈ T such that A′ ≡ A}.

• For context, obviously: [Γ] ≡ {Γ′ such that Γ′ ≡ Γ}.

HAPOC11: History and Philosophy of Computing 84

Isomorphism of the cube and the ♭-cube

• If Γ ⊢ A : B then Γ ⊢♭ A : B.

• If Γ ⊢♭ A : B then there are unique Γ′ ∈ [Γ], A′ ∈ [A] and B′ ∈ [B] such that
Γ′ ⊢π A

′ : B′.

• The ♭-cube enjoys all the properties of the cube except the unicity of types.

HAPOC11: History and Philosophy of Computing 85

Organised multiplicity of Types for ⊢♭ and →♭ [Kamareddine,

2005]

For many type systems, unicity of types is not necessary (e.g. Nuprl).

We have however an organised multiplicity of types.

1. If Γ ⊢♭ A : B1 and Γ ⊢♭ A : B2, then B1
⋄
=♭ B2.

2. If Γ ⊢♭ A1 : B1 and Γ ⊢♭ A2 : B2 and A1 =♭ A2, then B1
⋄
=♭ B2.

3. If Γ ⊢♭ B1 : s1, B1 =♭ B2 and Γ ⊢♭ A : B2 then Γ ⊢♭ B2 : s1.

4. Assume Γ ⊢♭ A : B1 and (Γ ⊢♭ A : B1)
−1 = (Γ′, A′, B′

1). Then B1 =♭ B2 if:

(a) either Γ ⊢♭ A : B2, (Γ ⊢♭ A : B2)
−1 = (Γ′, A′′, B′

2) and B′
1 =β B

′
2,

(b) or Γ ⊢♭ C : B2, (Γ ⊢♭ C : B2)
−1 = (Γ′, C′, B′

2) and A′ =β C
′.

HAPOC11: History and Philosophy of Computing 86

Extending the cube with Π-reduction loses subject reduction

[Kamareddine et al., 1999]

If we change (appl) by (new appl) in the cube we lose subject reduction.

(appl)
Γ ⊢ F : (Πx:A.B) Γ ⊢ a : A

Γ ⊢ Fa : B[x := a]

(new appl)
Γ ⊢ F : (Πx:A.B) Γ ⊢ a : A

Γ ⊢ Fa : (Πx:A.B)a

[Kamareddine et al., 1999] solved the problem by re-incorporating Frege and
Russell’s notions of low level functions (which was lost in Church’s notion of
function).

The same problem and solution can be repeated in our ♭-cube.

HAPOC11: History and Philosophy of Computing 87

Adding type instantiation to the typing rules of the ♭-cube

If we change (app♭) by (new app♭) in the ♭-cube we lose subject reduction.

(app♭)
Γ ⊢♭ F : (Πx:A.B) Γ ⊢♭ a : A

Γ ⊢♭ Fa : B[x := a]

(app♭♭)
Γ ⊢♭ F : (♭x:A.B) Γ ⊢♭ a : A

Γ ⊢♭ Fa : (♭x:A.B)a

HAPOC11: History and Philosophy of Computing 88

Failure of correctness of types and subject reduction

• Correctness of types no longer holds. With (appl♭♭) one can have Γ ⊢ A : B
without B ≡ 2 or ∃S . Γ ⊢ B : S.

• For example, z : ∗, x : z ⊢ (♭y:z.y)x : (♭y:z.z)x yet (♭y:z.z)x 6≡ 2 and
∀s . z : ∗, x : z 6⊢ (♭y:z.z)x : s.

• Subject Reduction no longer holds. That is, with (appl♭): Γ ⊢ A : B and
A→→ A′ may not imply Γ ⊢ A′ : B.

• For example, z : ∗, x : z ⊢ (♭y:z.y)x : (♭y:z.z)x and (♭y:z.y)x →♭ x, but one
can’t show z : ∗, x : z ⊢ x : (♭y:z.z)x.

HAPOC11: History and Philosophy of Computing 89

Solving the problem

Keep all the typing rules of the ♭-cube the same except: replace (conv) by
(new-conv), (appl♭) by (appl♭♭) and add three new rules as follows:

(start-def)
Γ ⊢ A : s Γ ⊢ B : A

Γ, x = B:A ⊢ x : A
x 6∈ dom (Γ)

(weak-def)
Γ ⊢ A : B Γ ⊢ C : s Γ ⊢ D : C

Γ, x = D:C ⊢ A : B
x 6∈ dom (Γ)

(def)
Γ, x = B:A ⊢ C : D

Γ ⊢ (♭x:A.C)B : D[x := B]

(new-conv)
Γ ⊢ A : B Γ ⊢ B′ : s Γ ⊢ B =def B

′

Γ ⊢ A : B′

(appl♭♭)
Γ ⊢ F : ♭x:A.B Γ ⊢ a : A

Γ ⊢ Fa : (♭x:A.B)a

HAPOC11: History and Philosophy of Computing 90

In the conversion rule, Γ ⊢ B =def B
′ is defined as:

• If B =♭ B
′ then Γ ⊢ B =def B

′

• If x = D : C ∈ Γ and B′ arises from B by substituting one particular free
occurrence of x in B by D then Γ ⊢ B =def B

′.

• Our 3 new rules and the definition of Γ ⊢ B =def B
′ are trying to re-incorporate

low-level aspects of functions that are not present in Church’s λ-calculus.

• In fact, our new framework is closer to Frege’s abstraction principle and the
principles ∗9·14 and ∗9·15 of [Whitehead and Russell, 19101, 19272].

HAPOC11: History and Philosophy of Computing 91

Correctness of types holds.

• We demonstrate this with the earlier example.

• Recall that we have z : ∗, x : z ⊢ (♭y:z.y)x : (♭y:z.z)x and want that for some
s, z : ∗, x : z ⊢ (♭y:z.z)x : s.

• Here is how the latter formula now holds:

z : ∗, x : z ⊢ z : ∗ (start and weakening)
z : ∗, x : z.y : z〉x ⊢ z : ∗ (weakening)
z : ∗, x : z ⊢ (♭y:z.z)x : ∗[y := x] ≡ ∗ (def rule)

HAPOC11: History and Philosophy of Computing 92

Subject Reduction holds.

• We demonstrate this with the earlier example.

• Recall that we have z : ∗, x : z ⊢ (♭y:z.y)x : (♭y:z.z)x and (λy:z.y)x→β x and
we need to show that z : ∗, x : z ⊢ x : (♭y:z.z)x.

• Here is how the latter formula now holds:

a. z : ∗, x : z ⊢ x : z (start and weakening)
b. z : ∗, x : z ⊢ (♭y:z.z)x : ∗ (from 1 above)

z : ∗, x : z ⊢ x : (♭y:z.z)x (conversion, a, b, and z =β (♭y:z.z)x)

HAPOC11: History and Philosophy of Computing 93

Common Mathematical Language of mathematicians: Cml

+ Cml is expressive: it has linguistic categories like proofs and theorems.

+ Cml has been refined by intensive use and is rooted in long traditions.

+ Cml is approved by most mathematicians as a communication medium.

+ Cml accommodates many branches of mathematics, and is adaptable to new
ones.

– Since Cml is based on natural language, it is informal and ambiguous.

– Cml is incomplete: Much is left implicit, appealing to the reader’s intuition.

– Cml is poorly organised: In a Cml text, many structural aspects are omitted.

– Cml is automation-unfriendly: A Cml text is a plain text and cannot be easily
automated.

HAPOC11: History and Philosophy of Computing 94

A Cml-text

From chapter 1, § 2 of E. Landau’s Foundations of Analysis (Landau 1930, 1951).

Theorem 6. [Commutative Law of Addition]

x + y = y + x.

Proof Fix y, and let M be the set of all
x for which the assertion holds.

I) We have

y + 1 = y′,

and furthermore, by the construction in
the proof of Theorem 4,

1 + y = y′,

so that
1 + y = y + 1

and 1 belongs to M.
II) If x belongs to M, then

x + y = y + x,

Therefore

(x + y)′ = (y + x)′ = y + x′.

By the construction in the proof of
Theorem 4, we have

x′ + y = (x + y)′,

hence

x′ + y = y + x′,

so that x′ belongs to M. The assertion

therefore holds for all x. 2

HAPOC11: History and Philosophy of Computing 95

The problem with formal logic
• No logical language is an alternative to Cml

– A logical language does not have mathematico-linguistic categories, is not
universal to all mathematicians, and is not a good communication medium.

– Logical languages make fixed choices (first versus higher order, predicative
versus impredicative, constructive versus classical, types or sets, etc.). But
different parts of mathematics need different choices and there is no universal
agreement as to which is the best formalism.

– A logician reformulates in logic their formalization of a mathematical-text as
a formal, complete text which is structured considerably unlike the original,
and is of little use to the ordinary mathematician.

– Mathematicians do not want to use formal logic and have for centuries done
mathematics without it.

• So, mathematicians kept to Cml.

• We would like to find an alternative to Cml which avoids some of the features
of the logical languages which made them unattractive to mathematicians.

HAPOC11: History and Philosophy of Computing 96

What are the options for computerization?

Computers can handle mathematical text at various levels:

• Images of pages may be stored. While useful, this is not a good representation
of language or knowledge.

• Typesetting systems like LaTeX, TeXmacs, can be used.

• Document representations like OpenMath, OMDoc, MathML, can be used.

• Formal logics used by theorem provers (Coq, Isabelle, HOL, Mizar, Isar, etc.)
can be used.

We are gradually developing a system named Mathlang which we hope will
eventually allow building a bridge between the latter 3 levels.

This talk aims at discussing the motivations rather than the details.

HAPOC11: History and Philosophy of Computing 97

The issues with typesetting systems

+ A system like LaTeX, TeXmacs, provides good defaults for visual appearance,
while allowing fine control when needed.

+ LaTeX and TeXmacs support commonly needed document structures, while
allowing custom structures to be created.

– Unless the mathematician is amazingly disciplined, the logical structure of
symbolic formulas is not represented at all.

– The logical structure of mathematics as embedded in natural language text is
not represented. Automated discovery of the semantics of natural language
text is still too primitive and requires human oversight.

HAPOC11: History and Philosophy of Computing 98

LATEX example
draft documents ✓

public documents ✓

computations and proofs ✗

\begin{theorem}[Commutative Law of Addition]\label{theorem:6}

$$x+y=y+x.$$

\end {theorem}

\begin{proof}

Fix y, and \mathfrak{M} be the set of all x for which

the assertion holds.

\begin{enumerate}

\item We have $$y+1=y’,$$

and furthermore, by the construction in

the proof of Theorem~\ref{theorem:4}, $$1+y=y’,$$

so that $$1+y=y+1$$

and 1 belongs to \mathfrak{M}.

HAPOC11: History and Philosophy of Computing 99

\item If x belongs to \mathfrak{M}, then $$x+y=y+x,$$

Therefore

$$(x+y)’=(y+x)’=y+x’.$$

By the construction in the proof of

Theorem~\ref{theorem:4}, we have $$x’+y=(x+y)’,$$

hence

$$x’+y=y+x’,$$

so that $x’$ belongs to \mathfrak{M}.

\end{enumerate}

The assertion therefore holds for all x.

\end{proof}

HAPOC11: History and Philosophy of Computing 100

Full formalization difficulties: choices

A Cml-text is structured differently from a fully formalized text proving the same
facts. Making the latter involves extensive knowledge and many choices:

• The choice of the underlying logical system.

• The choice of how concepts are implemented (equational reasoning,
equivalences and classes, partial functions, induction, etc.).

• The choice of the formal foundation: a type theory (dependent?), a set theory
(ZF? FM?), a category theory? etc.

• The choice of the proof checker: Automath, Isabelle, Coq, PVS, Mizar, HOL,
...

An issue is that one must in general commit to one set of choices.

HAPOC11: History and Philosophy of Computing 101

Full formalization difficulties: informality

Any informal reasoning in a Cml-text will cause various problems when fully
formalizing it:

• A single (big) step may need to expand into a (series of) syntactic proof
expressions. Very long expressions can replace a clear Cml-text.

• The entire Cml-text may need reformulation in a fully complete syntactic
formalism where every detail is spelled out. New details may need to be woven
throughout the entire text. The text may need to be turned inside out.

• Reasoning may be obscured by proof tactics, whose meaning is often ad hoc
and implementation-dependent.

Regardless, ordinary mathematicians do not find the new text useful.

HAPOC11: History and Philosophy of Computing 102

Coq example

draft documents ✗

public documents ✗

computations and proofs ✓

From Module Arith.Plus of Coq standard library (http://coq.inria.fr/).

Lemma plus sym: (n,m:nat)(n+m)=(m+n).

Proof.

Intros n m ; Elim n ; Simpl rew ; Auto with arith.

Intros y H ; Elim (plus n -Sm m y) ; Simpl rew ; Auto with arith.

Qed.

HAPOC11: History and Philosophy of Computing 103

Mathlang’s Goal: Open borders between mathematics, logic

and computation

• Ordinary mathematicians avoid formal mathematical logic.

• Ordinary mathematicians avoid proof checking (via a computer).

• Ordinary mathematicians may use a computer for computation: there are over
1 million people who use Mathematica (including linguists, engineers, etc.).

• Mathematicians may also use other computer forms like Maple, LaTeX, etc.

• But we are not interested in only libraries or computation or text editing.

• We want freedeom of movement between mathematics, logic and computation.

• At every stage, we must have the choice of the level of formalilty and the
depth of computation.

HAPOC11: History and Philosophy of Computing 104

Aim for Mathlang? (Kamareddine and Wells 2001, 2002)

Can we formalise a mathematical text, avoiding as much as possible the
ambiguities of natural language, while still guaranteeing the following four goals?

1. The formalised text looks very much like the original mathematical text (and
hence the content of the original mathematical text is respected).

2. The formalised text can be fully manipulated and searched in ways that respect
its mathematical structure and meaning.

3. Steps can be made to do computation (via computer algebra systems) and
proof checking (via proof checkers) on the formalised text.

4. This formalisation of text is not much harder for the ordinary mathematician
than LATEX. Full formalization down to a foundation of mathematics is not
required, although allowing and supporting this is one goal.

(No theorem prover’s language satisfies these goals.)

HAPOC11: History and Philosophy of Computing 105

Mathlang

draft documents ✓

public documents ✓

computations and proofs ✓
• A Mathlang text captures the grammatical and reasoning aspects of

mathematical structure for further computer manipulation.

• A weak type system checks Mathlang documents at a grammatical level.

• A Mathlang text remains close to its Cml original, allowing confidence that
the Cml has been captured correctly.

• We have been developing ways to weave natural language text into Mathlang.

• Mathlang aims to eventually support all encoding uses.

• The Cml view of a Mathlang text should match the mathematician’s
intentions.

• The formal structure should be suitable for various automated uses.

HAPOC11: History and Philosophy of Computing 106

HAPOC11: History and Philosophy of Computing 107

What is CGa? (Maarek’s PhD thesis)

• CGa is a formal language derived from MV (N.G. de Bruijn 1987) and WTT
(Kamareddine and Nederpelt 2004) which aims at expliciting the grammatical
role played by the elements of a CML text.

• The structures and common concepts used in CML are captured by CGa with a
finite set of grammatical/linguistic/syntactic categories: Term “

√
2”, set “Q”,

noun “number”, adjective “even”, statement “a = b”, declaration “Let a be
a number”, definition “An even number is..”, step “a is odd, hence a 6= 0”,
context “Assume a is even”.

term set noun adjective statement declaration definition

step context .

• Generally, each syntactic category has a corresponding weak type.

HAPOC11: History and Philosophy of Computing 108

• CGa’s type system derives typing judgments to check whether the reasoning
parts of a document are coherently built.

<><∃ >There is <><0>an element 0 in <R>R such that <=><+><a>a + <0>0 = <a>a

∃(0 : R, = (+ (a, 0), a))

Figure 1: Example of CGa encoding of CML text

HAPOC11: History and Philosophy of Computing 109

Weak Type Theory

In Weak Type Theory (or Wtt) we have the following linguistic categories:

• On the atomic level: variables, constants and binders,

• On the phrase level: terms T , sets S, nouns N and adjectives A,

• On the sentence level: statements P and definitions D,

• On the discourse level: contexts ΓI , lines l and books B.

HAPOC11: History and Philosophy of Computing 110

Categories of syntax of WTT

Other category abstract syntax symbol
expressions E = T |S|N |P E

parameters P = T |S|P (note:
→

P is a list of Ps) P
typings T = S : SET |S : STAT |T : S|T : N|T : A T
declarations Z = VS : SET |VP : STAT |VT : S|VT : N Z

HAPOC11: History and Philosophy of Computing 111

level category abstract syntax symbol
atomic variables V = VT |VS|VP x

constants C = CT |CS|CN |CA|CP c
binders B = BT |BS|BN |BA|BP b

phrase terms T = CT (
→

P)|BT
Z(E)|VT t

sets S = CS(
→

P)|BS
Z(E)|VS s

nouns N = CN(
→

P)|BN
Z (E)|AN n

adjectives A = CA(
→

P)|BA
Z(E) a

sentence statements P = CP (
→

P)|BP
Z(E)|VP S

definitions D = Dϕ|DP D

Dϕ = CT (
→

V) := T |CS(
→

V) := S|
CN(

→

V) := N|CA(
→

V) := A
DP = CP (

→

V) := P
discourse contexts ΓI = ∅ | ΓI,Z | ΓI, P Γ

lines l = ΓI ⊲ P | ΓI ⊲D l
books B = ∅ | B ◦ l B

HAPOC11: History and Philosophy of Computing 112

Derivation rules

(1) B is a weakly well-typed book: ⊢ B :: book.

(2) Γ is a weakly well-typed context relative to book B: B ⊢ Γ :: cont.

(3) t is a weakly well-typed term, etc., relative to book B and context Γ:

B; Γ ⊢ t :: T, B; Γ ⊢ s :: S, B; Γ ⊢ n :: N,
B; Γ ⊢ a :: A, B; Γ ⊢ p :: P, B; Γ ⊢ d :: D

OK(B; Γ). stands for: ⊢ B :: book, and B ⊢ Γ :: cont

HAPOC11: History and Philosophy of Computing 113

Examples of derivation rules

• dvar(∅) = ∅ dvar(Γ′, x : W) = dvar(Γ′), x dvar(Γ′, P) = dvar(Γ′)

OK(B; Γ), x ∈ VT/S/P, x ∈ dvar(Γ)
B; Γ ⊢ x :: T/S/P

(var)

B; Γ ⊢ n :: N , B; Γ ⊢ a :: A
B; Γ ⊢ an :: N

(adj−noun)

⊢ ∅ :: book
(emp−book)

B; Γ ⊢ p :: P
⊢ B ◦ Γ ⊲ p :: book

B; Γ ⊢ d :: D
⊢ B ◦ Γ ⊲ d :: book

(book−ext)

HAPOC11: History and Philosophy of Computing 114

Properties of WTT

• Every variable is declared If B; Γ ⊢ Φ :: W then FV (Φ) ⊆ dvar(Γ).

• Correct subcontexts If B ⊢ Γ :: cont and Γ′ ⊆ Γ then B ⊢ Γ′ :: cont.

• Correct subbooks If ⊢ B :: book and B′ ⊆ B then ⊢ B′ :: book.

• Free constants are either declared in book or in contexts If B; Γ ⊢ Φ :: W,
then FC(Φ) ⊆ prefcons(B) ∪ defcons(B).

• Types are unique If B; Γ ⊢ A :: W1 and B; Γ ⊢ A :: W2, then W1 ≡W2.

• Weak type checking is decidable there is a decision procedure for the question
B; Γ ⊢ Φ :: W ?.

• Weak typability is computable there is a procedure deciding whether an answer
exists for B; Γ ⊢ Φ :: ? and if so, delivering the answer.

HAPOC11: History and Philosophy of Computing 115

Definition unfolding

• Let ⊢ B :: book and Γ ⊲ c(x1, . . . , xn) := Φ a line in B.

• We write B ⊢ c(P1, . . . , Pn)
δ→ Φ[xi := Pi].

• Church-Rosser If B ⊢ Φ
δ→→ Φ1 and B ⊢ Φ

δ→→ Φ2 then there exists Φ3

such that B ⊢ Φ1
δ→→ Φ3 andf B ⊢ Φ2

δ→→ Φ3.

• Strong Normalisation Let ⊢ B :: book. For all subformulas Ψ occurring

in B, relation
δ→ is strongly normalizing (i.e., definition unfolding inside a

well-typed book is a well-founded procedure).

HAPOC11: History and Philosophy of Computing 116

CGa Weak Type Checking

Let M be a set ,

y and x are natural numbers ,

if x belongs to M

then x+ y = y + x

HAPOC11: History and Philosophy of Computing 117

CGa Weak Type checking detects grammatical errors

Let M be a set ,

y and x are natural numbers ,

if x belongs to M

then x+ y ⇐ error

HAPOC11: History and Philosophy of Computing 118

How complete is the CGa?

• CGa is quite advanced but remains under development according to new
translations of mathematical texts. Are the current CGa categories sufficient?

• The metatheory of WTT has been established in (Kamareddine and Nederepelt
2004). That of CGa remains to be established. However, since CGa is quite
similar to WTT, its metatheory might be similar to that of WTT.

• The type checker for CGa works well and gives some useful error messages.
Error messages should be improved.

HAPOC11: History and Philosophy of Computing 119

HAPOC11: History and Philosophy of Computing 120

What is TSa? Lamar’s PhD thesis

• TSa builds the bridge between a CML text and its grammatical interpretation
and adjoins to each CGa expression a string of words and/or symbols which
aims to act as its CML representation.

• TSa plays the role of a user interface

• TSa can flexibly represent natural language mathematics.

• The author wraps the natural language text with boxes representing the
grammatical categories (as we saw before).

• The author can also give interpretations to the parts of the text.

HAPOC11: History and Philosophy of Computing 121

Interpretations

HAPOC11: History and Philosophy of Computing 122

Rewrite rules enable natural language representation

Take the example 0 + a0 = a0 = a(0 + 0) = a0 + a0

HAPOC11: History and Philosophy of Computing 123

St e p

St a t e m e n t St a t e m e n tSo u r i n g
T e r mT e r m T e r m

St e p

St a t e m e n t St a t e m e n t

T e r mT e r m T e r mT e r m

Figure 2: Example for a simple shared souring
HAPOC11: History and Philosophy of Computing 124

reordering/position Souring

<in> <n>n ∈ <N>N

ann = <in> <2> <N>N contains <1> <n>n

HAPOC11: History and Philosophy of Computing 125

Sta te me n t
So u r i n gSo u r i n g

Se t Te r m

Sta te me n t
Se tTe r m

p o s it i o n 1
p o s it i o n 2

Figure 3: Example for a position souring

HAPOC11: History and Philosophy of Computing 126

map souring

ann = <map> <>Let <list> <a>a and b be in <R>R

This is expanded to

T (ann) = <> <a> <R> <> <R>

HAPOC11: History and Philosophy of Computing 127

So u r in g
De c la ra t io n

So u r in g
Te r mTe r m

Se t
S te p

De c la ra t io n De c la ra t io n

Te r m Te r m Se tSe tHAPOC11: History and Philosophy of Computing 128

How complete is TSa?

• TSa provides useful interface facilities but it is still under development.

• So far, only simple rewrite (souring) rules are used and they are not

comprehensive. E.g., unable to cope with things like
n times

︷ ︸︸ ︷
x = . . . = x.

• The TSa theory and metatheory need development.

HAPOC11: History and Philosophy of Computing 129

HAPOC11: History and Philosophy of Computing 130

What is DRa? Retel’s PhD thesis

• DRa Document Rhetorical structure aspect.

• Structural components of a document like chapter, section, subsection,
etc.

• Mathematical components of a document like theorem, corollary, definition,
proof, etc.

• Relations between above components.

• These enhance readability, and ease the navigation of a document.

• Also, these help to go into more formal versions of the document.

HAPOC11: History and Philosophy of Computing 131

Relations

Description
Instances of the StructuralRhetoricalRole class:
preamble, part, chapter, section, paragraph, etc.
Instances of the MathematicalRhetoricalRole class:
lemma, corollary, theorem, conjecture, definition, axiom, claim,
proposition, assertion, proof, exercise, example, problem, solution, etc.

Relation
Types of relations:
relatesTo, uses, justifies, subpartOf, inconsistentWith, exemplifies

HAPOC11: History and Philosophy of Computing 132

What does the mathematician do?

• The mathematician wraps into boxes and uniquely names chunks of text

• The mathematician assigns to each box the structural and/or mathematical
rhetorical roles

• The mathematician indicates the relations between wrapped chunks of texts

HAPOC11: History and Philosophy of Computing 133

Lemma 1. For m,n ∈ N one has: m2 = 2n2 =⇒ m = n = 0.
Define on N the predicate:

P (m) ⇐⇒ ∃n.m2 = 2n2 & m > 0.

Claim. P (m) =⇒ ∃m′ < m.P (m′). Indeed suppose m2 = 2n2 and m > 0. It
follows that m2 is even, but then m must be even, as odds square to odds. So
m = 2k and we have

2n2 = m2 = 4k2 =⇒ n2 = 2k2

Since m > 0, if follows that m2 > 0, n2 > 0 and n > 0. Therefore P (n).
Moreover, m2 = n2 + n2 > n2, so m2 > n2 and hence m > n. So we can take
m′ = n.

By the claim ∀m ∈ N.¬P (m), since there are no infinite descending
sequences of natural numbers.

Now suppose m2 = 2n2 with m 6= 0. Then m > 0 and hence P (m).
Contradiction. Therefore m = 0. But then also n = 0.
Corollary 1.

√
2 /∈ Q.

Suppose
√

2 ∈ Q, i.e.
√

2 = p/q with p ∈ Z, q ∈ Z− {0}. Then
√

2 = m/n with
m = |p|, n = |q| 6= 0. It follows that m2 = 2n2. But then n = 0 by the lemma.
Contradiction shows that

√
2 /∈ Q.

Barendregt
HAPOC11: History and Philosophy of Computing 134

HAPOC11: History and Philosophy of Computing 135

(A, hasMathematicalRhetoricalRole, lemma)
(E, hasMathematicalRhetoricalRole, definition)
(F, hasMathematicalRhetoricalRole, claim)
(G, hasMathematicalRhetoricalRole, proof)
(B, hasMathematicalRhetoricalRole, proof)
(H, hasOtherMathematicalRhetoricalRole, case)
(I, hasOtherMathematicalRhetoricalRole, case)
(C, hasMathematicalRhetoricalRole, corollary)
(D, hasMathematicalRhetoricalRole, proof)

(B, justifies, A)
(D, justifies, C)
(D, uses, A)
(G, uses, E)
(F, uses, E)
(H, uses, E)
(H, subpartOf, B)
(H, subpartOf, I)

HAPOC11: History and Philosophy of Computing 136

HAPOC11: History and Philosophy of Computing 137

The automatically generated dependency Graph

HAPOC11: History and Philosophy of Computing 138

An alternative view of the DRa (Zengler’s thesis)

HAPOC11: History and Philosophy of Computing 139

The Graph of Textual Order: GoTO

Zengler’s thesis

• To be able to examine the proper structure of a DRa tree we introduce the
concept of textual order between two nodes in the tree.

• Using textual orders, we can transform the dependency graph into a GoTO by
transforming each edge of the DG.

• So far there are two reasons why the GoTO is produced:

1. Automatic Checking of the GoTO can reveal errors in the document (e.g.
loops in the structure of the document).

2. The GoTO is used to automatically produce a proof skeleton for a prover
(we use a variety: Isabelle, Mizar, Coq).

• We automatically transform a DG into GoTO and automatically check the
GoTO for errors in the document:

HAPOC11: History and Philosophy of Computing 140

1. Loops in the GoTO (error)
2. Proof of an unproved node (error)
3. More than one proof for a proved node (warning)
4. Missing proof for a proved node (warning)

• To achieve this we define for each vertex v of the tree:

– ENVv is the environment of all mathematical statements that occur before
the statements of v (from the root vertex).

– Introduced symbols’:
INv := DFv ∪ DCv ∪ {s|s ∈ ST v ∧ s 6∈ ENVv} ∪⋃

c childOf v IN c
– Used symbol: USEv := T v ∪ Sv ∪Nv ∪ Av ∪ ST v ∪⋃

c childOf v USEc

• Strong textual order ≺: B ≺ A := ∃x(x ∈ INB ∧ x ∈ USEA)

• Weak textual order �: A � B := INA ⊆ INB ∧ USEA ⊆ USEB

• Common textual order ↔: A↔ B := ∃x(x ∈ USEA ∧ x ∈ USEB)

HAPOC11: History and Philosophy of Computing 141

Graph of Textual Order

(A, uses, B) A ≻ B

(A, caseOf, B) A � B

(A, justifies, B) A ↔ B

Table 1: Graphical representation of edges in the GoTO

The GoTO can be generated automatically from the DG and therefore (since the
DG can be produced automatically from an annotated document) automatically
from an annotated document.

HAPOC11: History and Philosophy of Computing 142

Graph of Textual Order for the DRa tree example

HAPOC11: History and Philosophy of Computing 143

How complete is DRa?

• The dependency graph can be used to check whether the logical reasoning of
the text is coherent and consistent (e.g., no loops in the reasoning).

• However, both the DRa language and its implementation need more experience
driven tests on natural language texts.

• Also, the DRa aspect still needs a number of implementation improvements
(the automation of the analysis of the text based on its DRa features).

• Extend TSa to also cover DRa (in addition to CGa).

• Extend DRa depending on further experience driven translations.

• Establish the soundness and completeness of DRa for mathematical texts.

HAPOC11: History and Philosophy of Computing 144

HAPOC11: History and Philosophy of Computing 145

Different provers have

• different syntax

• different requirements to the structure
of the text
e.g.

– no nested theorems/lemmas
– only backward references
– ...

• Aim: Skeleton should be as close
as possible to the mathematician’s
text but with re-arrangements when
necessary

Example of nested theorems/lemmas (Moller, 03, Chapter III,2)

The automatic generation of a proof skeleton

HAPOC11: History and Philosophy of Computing 146

The DG for the example

HAPOC11: History and Philosophy of Computing 147

Straight-forward translation of the first part

HAPOC11: History and Philosophy of Computing 148

Problem: nested theorems

HAPOC11: History and Philosophy of Computing 149

Solution: Re-ordering

HAPOC11: History and Philosophy of Computing 150

Finishing the skeleton

HAPOC11: History and Philosophy of Computing 151

Skeleton for Mizar

HAPOC11: History and Philosophy of Computing 152

HAPOC11: History and Philosophy of Computing 153

DRa annotation into Mizar skeleton for Barendregt’s

example (Retel’s PhD thesis)

HAPOC11: History and Philosophy of Computing 154

The generic algorithm for generating the proof skeleton

(SGa, Zengler’s thesis)

A vertex is ready to be processed iff:

• it has no incoming ≺ edges (in the GoTO) of unprocessed (white) vertices

• all its children are ready to be processed

• if the vertex is a proved vertex: its proof is ready to be processed

Consider the DG and GoTO of a (typical and not well structured) mathematical
text:

HAPOC11: History and Philosophy of Computing 155

Do c u m e n t

Le m m a 1 Le m m a 2Pr o o f 1 Pr o o f 2

C l a i m 1D e fin i t i on 1 Pr o o f C 1 C l a i m 2 D e fin i t i on 2Pr o o f 2u s e s
u s e s u s e s

j u s t i fi e s j u s t i fi e s

j u s j u s
Do c u m e n t

Le m m a 1 Le m m a 2Pr o o f 1 Pr o o f 2

C l a i m 1D e fin i t i on 1 Pr o o f C 1 C l a i m 2 D e fin i t i on 2Pr o o f 2u s e s
u s e s u s e s

j u s t i fi e s j u s t i fi e s

j u s j u s

HAPOC11: History and Philosophy of Computing 156

The final order of the vertices is:

Lemma 2

Proof 2

Definition 2

Claim 2

Proof C2

Lemma 1

Proof 1

Definition 1

Claim 1

Proof C1

HAPOC11: History and Philosophy of Computing 157

Do c u m e n t

Le m m a 1 Le m m a 2Pr o o f 1 Pr o o f 2

C l a i m 1

D e fin i t i on 1

Pr o o f C 1 C l a i m 2

D e fin i t i on 2

P r o o f 2

Figure 6: A flattened graph of the GoTO of figure 5 without nested definitions

HAPOC11: History and Philosophy of Computing 158

Do c u m e n t

Le m m a 1 Le m m a 2Pr o o f 1 Pr o o f 2C l a i m 1

D e fin i t i on 1

Pr o o f C 1 C l a i m 2 De fi n i t i on 2Pr o o f 2
Figure 7: A flattened graph of the GoTO of figure 5 without nested claims

HAPOC11: History and Philosophy of Computing 159

The Mizar and Coq rules for the dictionary

Role Mizar rule Coq rule

axiom %name : %body ; Axiom %name : %body .

definition definition %name : %nl %body %nl end; Definition : %body .

theorem theorem %name: %nl %body Theorem %name %body .

proof proof %nl %body %nl end; Proof %name : %body .

cases per cases; %nl %body

case suppose %nl %body %nl end; %body

existencePart existence %nl %body %body

uniquenessPart uniqueness %nl %body %body

HAPOC11: History and Philosophy of Computing 160

Rich skeletons for Coq

Rule No Annotation ann Coq translation SCoq (ann)

coq1) <#> Set

coq2) <#> Prop

coq3) <id> <N> id : N

coq4) <id> <S> id : S

coq5) <id> id

coq6) <id> p1 ... pn
<N> id : SCoq

p1

!

-> ... -> SCoq

pn

!

-> N

coq7) <id> p1 ... pn
<S> id : SCoq

p1

!

-> ... -> SCoq

pn

!

-> S

HAPOC11: History and Philosophy of Computing 161

coq8) <id> p1 ... pn id : SCoq

p1

!

-> ... -> SCoq

pn

!

-> Prop

coq9) <id> p1 ... pn id : SCoq

p1

!

-> ... -> SCoq

pn

!

-> Set

coq10) <id> p1 ... pn (id SCoq

p1

!

... SCoq

pn

!

)

coq11) <id> p1 ... pn (id SCoq

p1

!

... SCoq

pn

!

)

coq12) <id> p1 ... pn (id SCoq

p1

!

... SCoq

pn

!

)

coq13) <id> id

coq14) <id> <id1> ... <idn> e id id_1 ... id_n := SCoq

„

e

«

HAPOC11: History and Philosophy of Computing 162

coq15) <d1> ... <dn> S1 ... Sn S′
1 ... S′

1 forall SCoq

0

@

<d1>

1

A ... SCoq

0

@

<d

for a surrounding unproved DRa annotation ... /\ SCoq

Sn

!

-> SCoq

S′
1

!

coq16) <d1> ... <dn> S1 ... Sn S′
1 ... S′

1 SCoq

0

@

<d1>

1

A ... SCoq

0

@

<dn>

1

A

for a surrounding proved DRa annotation /\ SCoq

Sn

!

-> SCoq

S′
1

!

/\

With these rules almost every axiom, definition and theorem can be translated in
a way that it is immediately usable in Coq.

HAPOC11: History and Philosophy of Computing 163

the left hand side of the definition is translated according to rule (coq14)) with
subset A B.

The right hand side is translated with the rules coq5), coq10), coq11) and coq12)
and the result is

forall x (impl (in x A) (in x B))

Putting left hand and right hand side together and taking the outer DRa
annotation we get the translation

Definition subset A B := forall x (impl (in x A) (in x B))

HAPOC11: History and Philosophy of Computing 164

Figure 8: Theorem 17 of Landau’s “Grundlagen der Analysis”

The automatic translation is:

Theorem th117 x y z : (leq x y /\ leq y z) -> leq x z .

HAPOC11: History and Philosophy of Computing 165

Rich skeletons for Isabelle

<carriernonempty> <not> <set-equal> <R>a non <emptyset>empty set

The corresponding translation into Isabelle is:

assumes carriernonempty: "not (set-equal R emptyset)"

HAPOC11: History and Philosophy of Computing 166

An example of a full formalisation in Coq via MathLang

Figure 9: The path for processing the Landau chapter

HAPOC11: History and Philosophy of Computing 167

Figure 10: Simple theorem of the second section of Landau’s first chapter

HAPOC11: History and Philosophy of Computing 168

Figure 11: The annotated theorem 16 of the Landau’s first chapter

HAPOC11: History and Philosophy of Computing 169

Chapter 1

Natural Numbers

<><forall>∀<#><#>
.
<#> <><exists>∃<#><#>.<#> <><exists_one>∃!<#><#> .<#> <><isa><#> <#> <><1> <><and><#>∧ <#>

<><or><#> ∨ <#> <><impl><#> <#> <><succ><#> <><in><#> ∈ <#> <><subset><#> ⊂ <#> <><Set>{<#><#> |<#> }

<><seteq><#><#> <><setneq><#><#> <><index><#><#> <><xor><#>⊕ <#> <><emptyset>
∅

1.1 Axioms

We assume the following to be given:

<><N>A set (i.e. totality) of objects called <><natural_numbers>natural numbers, possessing the prop-
erties - called axioms- to be listed below.

Before formulating the axioms we make some remarks about the symbols = and = which be
used.

Unless otherwise specified, small italic letters will stand for natural numbers throughout this
book.

<>

<>If <><x>
x is given and <><y>

y is given, then either<><eq> <#>
x and <#>

y are the same number; this

may be written

x= y

(= to be read “equals"); or <><neq><#>
x and <#>

y are not the same number; this may be
written

1x=y

(= to be read “is not equal to").

Accordingly, the following are true on purely logical grounds:

<><forall><2><eq><x>
x = <x>

x for every <1><><x>
x

<><>if <><x> <><y> <eq><x>
x =

<y>
y then <eq><y>

y =
<x>

x

<><>If <><x> <><y> <><z> <eq><x>
x =

<y>
y, <eq><y>

y =
<z>

z then <eq><x>
x =

<z>
z

1

HAPOC11: History and Philosophy of Computing 170

Chapter 1 of Landau:

• 5 axioms which we annotate with the mathematical role “axiom”, and give
them the names“ax11” - “ax15”.

• 6 definitions which we annotate with the mathematical role “definition”, and
give them names “def11” - “def16”.

• 36 nodes with the mathematical role “theorem”, named “th11” - “th136” and
with proofs “pr11” - “pr136”.

• Some proofs are partitioned into an existential part and a uniqueness part.

• Other proofs consist of different cases which we annotate as unproved nodes
with the mathematical role “case”.

Figure 12: The DRa tree of sections 1 and 2 of chapter 1 of Landau’s book

HAPOC11: History and Philosophy of Computing 171

• The relations are annotated in a straightforward manner.

• Each proof justifies its corresponding theorem.

• Axiom 5 (“ax15”) is the axiom of induction. So every proof which uses
induction, uses also this axiom.

• Definition 1 (“def11”) is the definition of addition. Hence every node which
uses addition also uses this definition.

• Some theorems use other theorems via texts like: “By Theorem ...”.

• In total we have 36 justifies relations, 154 uses relations, 6 caseOf, 3
existencePartOf and 3 uniquenessPartOf relations.

• The DG and GoTO are automatically generated.

• The GoTO is automatically checked and no errors result. So, we proceed to
the next stage: automatically generating the SGa.

HAPOC11: History and Philosophy of Computing 172

Figure 13: The DG of sections 1 and 2 of chapter 1 of Landau’s book

HAPOC11: History and Philosophy of Computing 173

HAPOC11: History and Philosophy of Computing 174

HAPOC11: History and Philosophy of Computing 175

The GoTO of section 1 - 4

HAPOC11: History and Philosophy of Computing 176

HAPOC11: History and Philosophy of Computing 177

An extract of the automatically generated rich skeleton

Definition geq x y := (or (gt x y) (eq x y)).

Definition leq x y := (or (lt x y) (eq x y)).

Theorem th113 x y : (impl (geq x y) (leq y x)).

Proof.

...

Qed.

Theorem th114 x y : (impl (leq x y) (geq y x)).

Proof.

...

Qed.

Theorem th115 x y z : (impl (impl (lt x y) (lt y z)) (lt x z)).

Proof.

...

Qed.

HAPOC11: History and Philosophy of Computing 178

Completing the proofs in Coq

• We defined the natural numbers as an inductive set - just as Landau does in
his book.

Inductive nats : Set :=

| I : nats

| succ : nats -> nats

• The encoding of theorem 2 of the first chapter in Coq is

theorem th12 x : neq (succ x) x .

• Landau proves this theorem with induction. He first shows, that 1′ 6= 1 and
then that with the assumption of x′ 6= x it also holds that (x′)′ 6= x′.

• We do our proof in the Landau style. We introduce the variable x and eliminate
it, which yields two subgoals that we need to prove. These subgoals are exactly
the induction basis and the induction step.

HAPOC11: History and Philosophy of Computing 179

Proof.

intro x. elim x.

2 subgoals

x : nats

______________________________________(1/2)

neq (succ I) I

___(2/

forall n : nats, neq (succ n) n -> neq (succ (succ n)) (succ n)

Landau proved the first case with the help of Axiom 3 (for all x, x′ 6= 1).

apply ax13.

1 subgoal

x : nats

___(1/

forall n : nats, neq (succ n) n -> neq (succ (succ n)) (succ n)

HAPOC11: History and Philosophy of Computing 180

The next step is to introduce n as natural number and to introduce the
induction hypothesis:

intros n H.

1 subgoal

x : nats

n : nats

H : neq (succ n) n

______________________________________(1/1)

neq (succ (succ n)) (succ n)

We see that this is exactly the second case of Landau’s proof. He proved this
case with Theorem 1 - we do the same:

apply th11.

1 subgoal

x : nats

n : nats

HAPOC11: History and Philosophy of Computing 181

H : neq (succ n) n

______________________________________(1/1)

neq (succ n) n

And of course this is exactly the induction hypotheses which we already have
as an assumption and we can finish the proof:

assumption.

Proof completed.

The complete theorem and its proof in Coq finally look like this:

Theorem th12 (x:nats) : neq (succ x) x .

Proof.

intro x. elim x.

apply ax13.

intros n H.

apply th11.

assumption.

Qed.

HAPOC11: History and Philosophy of Computing 182

With the help of the CGa annotations and the automatically generated rich
proof skeleton, Zengler (who was not familiar with Coq) completed the Coq

proofs of the whole of chapter one in a couple of hours.

HAPOC11: History and Philosophy of Computing 183

Some points to consider

• We do not at all assume/prefer one type/logical theory instead of another.

• The formalisation of a language of mathematics should separate the questions:

– which type/logical theory is necessary for which part of mathematics
– which language should mathematics be written in.

• Mathematicians don’t usually know or work with type/logical theories.

• Mathematicians usually do mathematics (manipulations, calculations, etc), but
are not interested in general in reasoning about mathematics.

• The steps used for computerising books of mathematics written in English,
as we are doing, can also be followed for books written in Arabic, French,
German, or any other natural language.

HAPOC11: History and Philosophy of Computing 184

• MathLang aims to support non-fully-formalized mathematics practiced by the
ordinary mathematician as well as work toward full formalization.

• MathLang aims to handle mathematics as expressed in natural language as
well as symbolic formulas.

• MathLang aims to do some amount of type checking even for non-fully-
formalized mathematics. This corresponds roughly to grammatical conditions.

• MathLang aims for a formal representation of Cml texts that closely
corresponds to the Cml conceived by the ordinary mathematician.

• MathLang aims to support automated processing of mathematical knowledge.

• MathLang aims to be independent of any foundation of mathematics.

• MathLang allows anyone to be involved, whether a mathematician, a computer
engineer, a computer scientist, a linguist, a logician, etc.

HAPOC11: History and Philosophy of Computing 185

Bibliography

H.P. Barendregt. The Lambda Calculus: its Syntax and Semantics. Studies in Logic and the Foundations of

Mathematics 103. North-Holland, Amsterdam, revised edition, 1984.

P. Benacerraf and H. Putnam, editors. Philosophy of Mathematics. Cambridge University Press, second edition,
1983.

L.S. van Benthem Jutting. Checking Landau’s “Grundlagen” in the Automath system. PhD thesis, Eindhoven
University of Technology, 1977. Published as Mathematical Centre Tracts nr. 83 (Amsterdam, Mathematisch

Centrum, 1979).

N.G. de Bruijn. The mathematical language AUTOMATH, its usage and some of its extensions. In M. Laudet,
D. Lacombe, and M. Schuetzenberger, editors, Symposium on Automatic Demonstration, pages 29–61, IRIA,

Versailles, 1968. Springer Verlag, Berlin, 1970. Lecture Notes in Mathematics 125; also in [Nederpelt et al.,
1994], pages 73–100.

C. Burali-Forti. Una questione sui numeri transfiniti. Rendiconti del Circolo Matematico di Palermo, 11:154–164,

1897. English translation in [Heijenoort, 1967], pages 104–112.

G. Cantor. Beiträge zur Begründung der transfiniten Mengenlehre (Erster Artikel). Mathematische Annalen, 46:

481–512, 1895.

HAPOC11: History and Philosophy of Computing 186

G. Cantor. Beiträge zur Begründung der transfiniten Mengenlehre (Zweiter Artikel). Mathematische Annalen, 49:
207–246, 1897.

A.-L. Cauchy. Cours d’Analyse de l’Ecole Royale Polytechnique. Debure, Paris, 1821. Also as Œuvres Complètes
(2), volume III, Gauthier-Villars, Paris, 1897.

A. Church. A set of postulates for the foundation of logic (1). Annals of Mathematics, 33:346–366, 1932.

A. Church. A set of postulates for the foundation of logic (2). Annals of Mathematics, 34:839–864, 1933.

A. Church. A formulation of the simple theory of types. The Journal of Symbolic Logic, 5:56–68, 1940.

T. Coquand and G. Huet. The calculus of constructions. Information and Computation, 76:95–120, 1988.

R. Dedekind. Stetigkeit und irrationale Zahlen. Vieweg & Sohn, Braunschweig, 1872.

G. Frege. Letter to Russell. English translation in [Heijenoort, 1967], pages 127–128, 1902.

G. Frege. Grundgesetze der Arithmetik, begriffschriftlich abgeleitet, volume II. Pohle, Jena, 1903. Reprinted 1962

(Olms, Hildesheim).

HAPOC11: History and Philosophy of Computing 187

G. Frege. Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. Nebert, Halle,
1879. Also in [Heijenoort, 1967], pages 1–82.

G. Frege. Grundlagen der Arithmetik, eine logisch-mathematische Untersuchung über den Begriff der Zahl. , Breslau,
1884.

G. Frege. Grundgesetze der Arithmetik, begriffschriftlich abgeleitet, volume I. Pohle, Jena, 1892a. Reprinted 1962

(Olms, Hildesheim).

G. Frege. Über Sinn und Bedeutung. Zeitschrift für Philosophie und philosophische Kritik, new series, 100:25–50,

1892b. English translation in [McGuinness, 1984], pages 157–177.

G. Frege. Ueber die Begriffschrift des Herrn Peano und meine eigene. Berichte über die Verhandlungen der Königlich

Sächsischen Gesellschaft der Wissenschaften zu Leipzig, Mathematisch-physikalische Klasse 48, pages 361–378,
1896. English translation in [McGuinness, 1984], pages 234–248.

J.H. Geuvers. Logics and Type Systems. PhD thesis, Catholic University of Nijmegen, 1993.

J.-Y. Girard. Interprétation fonctionelle et élimination des coupures dans l’arithmétique d’ordre supérieur. PhD

thesis, Université Paris VII, 1972.

K. Gödel. Russell’s mathematical logic. In P.A. Schlipp, editor, The Philosophy of Bertrand Russell. Evanston &

Chicago, Northwestern University, 1944. Also in [Benacerraf and Putnam, 1983], pages 447–469.

HAPOC11: History and Philosophy of Computing 188

R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. In Proceedings Second Symposium on Logic
in Computer Science, pages 194–204, Washington D.C., 1987. IEEE.

J. van Heijenoort, editor. From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931. Harvard

University Press, Cambridge, Massachusetts, 1967.

D. Hilbert and W. Ackermann. Grundzüge der Theoretischen Logik. Die Grundlehren der Mathematischen
Wissenschaften in Einzeldarstellungen, Band XXVII. Springer Verlag, Berlin, first edition, 1928.

J.R. Hindley and J.P. Seldin. Introduction to Combinators and λ-calculus, volume 1 of London Mathematical Society

Student Texts. Cambridge University Press, 1986.

F. Kamareddine, L. Laan, and R.P. Nederpelt. Refining the Barendregt cube using parameters. In Proceedings of
the Fifth International Symposium on Functional and Logic Programming, FLOPS 2001, pages 375–389, 2001.

F. Kamareddine, T. Laan, and R. Nederpelt. Types in logic and mathematics before 1940. Bulletin of Symbolic
Logic, 8(2):185–245, 2002.

F. Kamareddine, T. Laan, and R. Nederpelt. A Modern Perspective on Type Theory. Kluwer Academic Publishers,

2004.

Fairouz Kamareddine. Typed lambda-calculi with one binder. J. Funct. Program., 15(5):771–796, 2005.

HAPOC11: History and Philosophy of Computing 189

Fairouz Kamareddine, Roel Bloo, and Rob Nederpelt. On pi-conversion in the lambda-cube and the combination
with abbreviations. Ann. Pure Appl. Logic, 97(1-3):27–45, 1999.

Fairouz Kamareddine, Twan Laan, and Rob Nederpelt. Revisiting the notion of function. J. Log. Algebr. Program.,

54(1-2):65–107, 2003.

Twan Laan and Michael Franssen. Parameters for first order logic. Logic and Computation, 2001.

G. Longo and E. Moggi. Constructive natural deduction and its modest interpretation. Technical Report
CMU-CS-88-131, Carnegie Mellono University, Pittsburgh, USA, 1988.

B. McGuinness, editor. Gottlob Frege: Collected Papers on Mathematics, Logic, and Philosophy. Basil Blackwell,

Oxford, 1984.

R.P. Nederpelt, J.H. Geuvers, and R.C. de Vrijer, editors. Selected Papers on Automath. Studies in Logic and the

Foundations of Mathematics 133. North-Holland, Amsterdam, 1994.

G. Peano. Arithmetices principia, nova methodo exposita. Bocca, Turin, 1889. English translation in [Heijenoort,
1967], pages 83–97.

G. Peano. Formulaire de Mathématique. Bocca, Turin, 1894–1908. 5 successive versions; the final edition issued as

Formulario Mathematico.

HAPOC11: History and Philosophy of Computing 190

W. Van Orman Quine. Set Theory and its Logic. Harvard University Press, Cambridge, Massachusetts, 1963.

F.P. Ramsey. The foundations of mathematics. Proceedings of the London Mathematical Society, 2nd series, 25:
338–384, 1926.

G.R. Renardel de Lavalette. Strictness analysis via abstract interpretation for recursively defined types. Information
and Computation, 99:154–177, 1991.

J.C. Reynolds. Towards a theory of type structure, volume 19 of Lecture Notes in Computer Science, pages 408–425.
Springer, 1974.

J.B. Rosser. Highlights of the history of the lambda-calculus. Annals of the History of Computing, 6(4):337–349,
1984.

B. Russell. Letter to Frege. English translation in [Heijenoort, 1967], pages 124–125, 1902.

B. Russell. The Principles of Mathematics. Allen & Unwin, London, 1903.

B. Russell. Mathematical logic as based on the theory of types. American Journal of Mathematics, 30:222–262,

1908. Also in [Heijenoort, 1967], pages 150–182.

HAPOC11: History and Philosophy of Computing 191

M. Schönfinkel. Über die Bausteine der mathematischen Logik. Mathematische Annalen, 92:305–316, 1924. Also in

[Heijenoort, 1967], pages 355–366.

H. Weyl. Das Kontinuum. Veit, Leipzig, 1918. German; also in: Das Kontinuum und andere Monographien, Chelsea

Pub.Comp., New York, 1960.

A.N. Whitehead and B. Russell. Principia Mathematica, volume I, II, III. Cambridge University Press, 19101,
19272. All references are to the first volume, unless otherwise stated.

HAPOC11: History and Philosophy of Computing 192

