
MathLang

Fairouz Kamareddine
Heriot-Watt University, Edinburgh

March 2011

Workshop in Logic and Computer Science, Vienna 2011

Common Mathematical Language of mathematicians: Cml

+ Cml is expressive: it has linguistic categories like proofs and theorems.

+ Cml has been refined by intensive use and is rooted in long traditions.

+ Cml is approved by most mathematicians as a communication medium.

+ Cml accommodates many branches of mathematics, and is adaptable to new
ones.

– Since Cml is based on natural language, it is informal and ambiguous.

– Cml is incomplete: Much is left implicit, appealing to the reader’s intuition.

– Cml is poorly organised: In a Cml text, many structural aspects are omitted.

– Cml is automation-unfriendly: A Cml text is a plain text and cannot be easily
automated.

Workshop in Logic and Computer Science, Vienna 2011 1

A Cml-text

From chapter 1, § 2 of E. Landau’s Foundations of Analysis (Landau 1930, 1951).

Theorem 6. [Commutative Law of Addition]

x + y = y + x.

Proof Fix y, and let M be the set of all
x for which the assertion holds.

I) We have

y + 1 = y′,

and furthermore, by the construction in
the proof of Theorem 4,

1 + y = y′,

so that
1 + y = y + 1

and 1 belongs to M.
II) If x belongs to M, then

x + y = y + x,

Therefore

(x + y)′ = (y + x)′ = y + x′.

By the construction in the proof of
Theorem 4, we have

x′ + y = (x + y)′,

hence

x′ + y = y + x′,

so that x′ belongs to M. The assertion

therefore holds for all x. 2

Workshop in Logic and Computer Science, Vienna 2011 2

The problem with formal logic
• No logical language is an alternative to Cml

– A logical language does not have mathematico-linguistic categories, is not
universal to all mathematicians, and is not a good communication medium.

– Logical languages make fixed choices (first versus higher order, predicative
versus impredicative, constructive versus classical, types or sets, etc.). But
different parts of mathematics need different choices and there is no universal
agreement as to which is the best formalism.

– A logician reformulates in logic their formalization of a mathematical-text as
a formal, complete text which is structured considerably unlike the original,
and is of little use to the ordinary mathematician.

– Mathematicians do not want to use formal logic and have for centuries done
mathematics without it.

• So, mathematicians kept to Cml.

• We would like to find an alternative to Cml which avoids some of the features
of the logical languages which made them unattractive to mathematicians.

Workshop in Logic and Computer Science, Vienna 2011 3

What are the options for computerization?

Computers can handle mathematical text at various levels:

• Images of pages may be stored. While useful, this is not a good representation
of language or knowledge.

• Typesetting systems like LaTeX, TeXmacs, can be used.

• Document representations like OpenMath, OMDoc, MathML, can be used.

• Formal logics used by theorem provers (Coq, Isabelle, HOL, Mizar, Isar, etc.)
can be used.

We are gradually developing a system named Mathlang which we hope will
eventually allow building a bridge between the latter 3 levels.

This talk aims at discussing the motivations rather than the details.

Workshop in Logic and Computer Science, Vienna 2011 4

The issues with typesetting systems

+ A system like LaTeX, TeXmacs, provides good defaults for visual appearance,
while allowing fine control when needed.

+ LaTeX and TeXmacs support commonly needed document structures, while
allowing custom structures to be created.

– Unless the mathematician is amazingly disciplined, the logical structure of
symbolic formulas is not represented at all.

– The logical structure of mathematics as embedded in natural language text is
not represented. Automated discovery of the semantics of natural language
text is still too primitive and requires human oversight.

Workshop in Logic and Computer Science, Vienna 2011 5

LATEX example
draft documents ✓

public documents ✓

computations and proofs ✗

\begin{theorem}[Commutative Law of Addition]\label{theorem:6}

$$x+y=y+x.$$

\end {theorem}

\begin{proof}

Fix y, and \mathfrak{M} be the set of all x for which

the assertion holds.

\begin{enumerate}

\item We have $$y+1=y’,$$

and furthermore, by the construction in

the proof of Theorem~\ref{theorem:4}, $$1+y=y’,$$

so that $$1+y=y+1$$

and 1 belongs to \mathfrak{M}.

Workshop in Logic and Computer Science, Vienna 2011 6

\item If x belongs to \mathfrak{M}, then $$x+y=y+x,$$

Therefore

$$(x+y)’=(y+x)’=y+x’.$$

By the construction in the proof of

Theorem~\ref{theorem:4}, we have $$x’+y=(x+y)’,$$

hence

$$x’+y=y+x’,$$

so that $x’$ belongs to \mathfrak{M}.

\end{enumerate}

The assertion therefore holds for all x.

\end{proof}

Workshop in Logic and Computer Science, Vienna 2011 7

Full formalization difficulties: choices

A Cml-text is structured differently from a fully formalized text proving the same
facts. Making the latter involves extensive knowledge and many choices:

• The choice of the underlying logical system.

• The choice of how concepts are implemented (equational reasoning,
equivalences and classes, partial functions, induction, etc.).

• The choice of the formal foundation: a type theory (dependent?), a set theory
(ZF? FM?), a category theory? etc.

• The choice of the proof checker: Automath, Isabelle, Coq, PVS, Mizar, HOL,
...

An issue is that one must in general commit to one set of choices.

Workshop in Logic and Computer Science, Vienna 2011 8

Full formalization difficulties: informality

Any informal reasoning in a Cml-text will cause various problems when fully
formalizing it:

• A single (big) step may need to expand into a (series of) syntactic proof
expressions. Very long expressions can replace a clear Cml-text.

• The entire Cml-text may need reformulation in a fully complete syntactic
formalism where every detail is spelled out. New details may need to be woven
throughout the entire text. The text may need to be turned inside out.

• Reasoning may be obscured by proof tactics, whose meaning is often ad hoc
and implementation-dependent.

Regardless, ordinary mathematicians do not find the new text useful.

Workshop in Logic and Computer Science, Vienna 2011 9

Coq example

draft documents ✗

public documents ✗

computations and proofs ✓

From Module Arith.Plus of Coq standard library (http://coq.inria.fr/).

Lemma plus sym: (n,m:nat)(n+m)=(m+n).

Proof.

Intros n m ; Elim n ; Simpl rew ; Auto with arith.

Intros y H ; Elim (plus n -Sm m y) ; Simpl rew ; Auto with arith.

Qed.

Workshop in Logic and Computer Science, Vienna 2011 10

Mathlang’s Goal: Open borders between mathematics, logic

and computation

• Ordinary mathematicians avoid formal mathematical logic.

• Ordinary mathematicians avoid proof checking (via a computer).

• Ordinary mathematicians may use a computer for computation: there are over
1 million people who use Mathematica (including linguists, engineers, etc.).

• Mathematicians may also use other computer forms like Maple, LaTeX, etc.

• But we are not interested in only libraries or computation or text editing.

• We want freedeom of movement between mathematics, logic and computation.

• At every stage, we must have the choice of the level of formalilty and the
depth of computation.

Workshop in Logic and Computer Science, Vienna 2011 11

Aim for Mathlang? (Kamareddine and Wells 2001, 2002)

Can we formalise a mathematical text, avoiding as much as possible the
ambiguities of natural language, while still guaranteeing the following four goals?

1. The formalised text looks very much like the original mathematical text (and
hence the content of the original mathematical text is respected).

2. The formalised text can be fully manipulated and searched in ways that respect
its mathematical structure and meaning.

3. Steps can be made to do computation (via computer algebra systems) and
proof checking (via proof checkers) on the formalised text.

4. This formalisation of text is not much harder for the ordinary mathematician
than LATEX. Full formalization down to a foundation of mathematics is not
required, although allowing and supporting this is one goal.

(No theorem prover’s language satisfies these goals.)

Workshop in Logic and Computer Science, Vienna 2011 12

Mathlang

draft documents ✓

public documents ✓

computations and proofs ✓
• A Mathlang text captures the grammatical and reasoning aspects of

mathematical structure for further computer manipulation.

• A weak type system checks Mathlang documents at a grammatical level.

• A Mathlang text remains close to its Cml original, allowing confidence that
the Cml has been captured correctly.

• We have been developing ways to weave natural language text into Mathlang.

• Mathlang aims to eventually support all encoding uses.

• The Cml view of a Mathlang text should match the mathematician’s
intentions.

• The formal structure should be suitable for various automated uses.

Workshop in Logic and Computer Science, Vienna 2011 13

Workshop in Logic and Computer Science, Vienna 2011 14

What is CGa? (Maarek’s PhD thesis)

• CGa is a formal language derived from MV (N.G. de Bruijn 1987) and WTT
(Kamareddine and Nederpelt 2004) which aims at expliciting the grammatical
role played by the elements of a CML text.

• The structures and common concepts used in CML are captured by CGa with a
finite set of grammatical/linguistic/syntactic categories: Term “

√
2”, set “Q”,

noun “number”, adjective “even”, statement “a = b”, declaration “Let a be
a number”, definition “An even number is..”, step “a is odd, hence a 6= 0”,
context “Assume a is even”.

term set noun adjective statement declaration definition

step context .

• Generally, each syntactic category has a corresponding weak type.

Workshop in Logic and Computer Science, Vienna 2011 15

• CGa’s type system derives typing judgments to check whether the reasoning
parts of a document are coherently built.

<><∃ >There is <><0>an element 0 in <R>R such that <=><+><a>a + <0>0 = <a>a

∃(0 : R, = (+ (a, 0), a))

Figure 1: Example of CGa encoding of CML text

Workshop in Logic and Computer Science, Vienna 2011 16

Weak Type Theory

In Weak Type Theory (or Wtt) we have the following linguistic categories:

• On the atomic level: variables, constants and binders,

• On the phrase level: terms T , sets S, nouns N and adjectives A,

• On the sentence level: statements P and definitions D,

• On the discourse level: contexts ΓI , lines l and books B.

Workshop in Logic and Computer Science, Vienna 2011 17

Categories of syntax of WTT

Other category abstract syntax symbol
expressions E = T |S|N |P E

parameters P = T |S|P (note:
→

P is a list of Ps) P
typings T = S : SET |S : STAT |T : S|T : N|T : A T
declarations Z = VS : SET |VP : STAT |VT : S|VT : N Z

Workshop in Logic and Computer Science, Vienna 2011 18

level category abstract syntax symbol
atomic variables V = VT |VS|VP x

constants C = CT |CS|CN |CA|CP c
binders B = BT |BS|BN |BA|BP b

phrase terms T = CT (
→

P)|BT
Z(E)|VT t

sets S = CS(
→

P)|BS
Z(E)|VS s

nouns N = CN(
→

P)|BN
Z (E)|AN n

adjectives A = CA(
→

P)|BA
Z(E) a

sentence statements P = CP (
→

P)|BP
Z(E)|VP S

definitions D = Dϕ|DP D

Dϕ = CT (
→

V) := T |CS(
→

V) := S|
CN(

→

V) := N|CA(
→

V) := A
DP = CP (

→

V) := P
discourse contexts ΓI = ∅ | ΓI,Z | ΓI, P Γ

lines l = ΓI ⊲ P | ΓI ⊲ D l
books B = ∅ | B ◦ l B

Workshop in Logic and Computer Science, Vienna 2011 19

Derivation rules

(1) B is a weakly well-typed book: ⊢ B :: book.

(2) Γ is a weakly well-typed context relative to book B: B ⊢ Γ :: cont.

(3) t is a weakly well-typed term, etc., relative to book B and context Γ:

B; Γ ⊢ t :: T, B; Γ ⊢ s :: S, B; Γ ⊢ n :: N,
B; Γ ⊢ a :: A, B; Γ ⊢ p :: P, B; Γ ⊢ d :: D

OK(B; Γ). stands for: ⊢ B :: book, and B ⊢ Γ :: cont

Workshop in Logic and Computer Science, Vienna 2011 20

Examples of derivation rules

• dvar(∅) = ∅ dvar(Γ′, x : W) = dvar(Γ′), x dvar(Γ′, P) = dvar(Γ′)

OK(B; Γ), x ∈ VT/S/P, x ∈ dvar(Γ)
B; Γ ⊢ x :: T/S/P

(var)

B; Γ ⊢ n :: N , B; Γ ⊢ a :: A
B; Γ ⊢ an :: N

(adj−noun)

⊢ ∅ :: book
(emp−book)

B; Γ ⊢ p :: P
⊢ B ◦ Γ ⊲ p :: book

B; Γ ⊢ d :: D
⊢ B ◦ Γ ⊲ d :: book

(book−ext)

Workshop in Logic and Computer Science, Vienna 2011 21

Properties of WTT

• Every variable is declared If B; Γ ⊢ Φ :: W then FV (Φ) ⊆ dvar(Γ).

• Correct subcontexts If B ⊢ Γ :: cont and Γ′ ⊆ Γ then B ⊢ Γ′ :: cont.

• Correct subbooks If ⊢ B :: book and B′ ⊆ B then ⊢ B′ :: book.

• Free constants are either declared in book or in contexts If B; Γ ⊢ Φ :: W,
then FC(Φ) ⊆ prefcons(B) ∪ defcons(B).

• Types are unique If B; Γ ⊢ A :: W1 and B; Γ ⊢ A :: W2, then W1 ≡ W2.

• Weak type checking is decidable there is a decision procedure for the question
B; Γ ⊢ Φ :: W ?.

• Weak typability is computable there is a procedure deciding whether an answer
exists for B; Γ ⊢ Φ :: ? and if so, delivering the answer.

Workshop in Logic and Computer Science, Vienna 2011 22

Definition unfolding

• Let ⊢ B :: book and Γ ⊲ c(x1, . . . , xn) := Φ a line in B.

• We write B ⊢ c(P1, . . . , Pn)
δ→ Φ[xi := Pi].

• Church-Rosser If B ⊢ Φ
δ→→ Φ1 and B ⊢ Φ

δ→→ Φ2 then there exists Φ3

such that B ⊢ Φ1
δ→→ Φ3 andf B ⊢ Φ2

δ→→ Φ3.

• Strong Normalisation Let ⊢ B :: book. For all subformulas Ψ occurring

in B, relation
δ→ is strongly normalizing (i.e., definition unfolding inside a

well-typed book is a well-founded procedure).

Workshop in Logic and Computer Science, Vienna 2011 23

CGa Weak Type Checking

Let M be a set ,

y and x are natural numbers ,

if x belongs to M

then x + y = y + x

Workshop in Logic and Computer Science, Vienna 2011 24

CGa Weak Type checking detects grammatical errors

Let M be a set ,

y and x are natural numbers ,

if x belongs to M

then x + y ⇐ error

Workshop in Logic and Computer Science, Vienna 2011 25

How complete is the CGa?

• CGa is quite advanced but remains under development according to new
translations of mathematical texts. Are the current CGa categories sufficient?

• The metatheory of WTT has been established in (Kamareddine and Nederepelt
2004). That of CGa remains to be established. However, since CGa is quite
similar to WTT, its metatheory might be similar to that of WTT.

• The type checker for CGa works well and gives some useful error messages.
Error messages should be improved.

Workshop in Logic and Computer Science, Vienna 2011 26

Workshop in Logic and Computer Science, Vienna 2011 27

What is TSa? Lamar’s PhD thesis

• TSa builds the bridge between a CML text and its grammatical interpretation
and adjoins to each CGa expression a string of words and/or symbols which
aims to act as its CML representation.

• TSa plays the role of a user interface

• TSa can flexibly represent natural language mathematics.

• The author wraps the natural language text with boxes representing the
grammatical categories (as we saw before).

• The author can also give interpretations to the parts of the text.

Workshop in Logic and Computer Science, Vienna 2011 28

Interpretations

Workshop in Logic and Computer Science, Vienna 2011 29

Rewrite rules enable natural language representation

Take the example 0 + a0 = a0 = a(0 + 0) = a0 + a0

Workshop in Logic and Computer Science, Vienna 2011 30

St e p

St a t e m e n t St a t e m e n tSo u r i n g
T e r mT e r m T e r m

St e p

St a t e m e n t St a t e m e n t

T e r mT e r m T e r mT e r m

Figure 2: Example for a simple shared souring
Workshop in Logic and Computer Science, Vienna 2011 31

reordering/position Souring

<in> <n>n ∈ <N>N

ann = <in> <2> <N>N contains <1> <n>n

Workshop in Logic and Computer Science, Vienna 2011 32

Sta te me n t
So u r i n gSo u r i n g

Se t Te r m

Sta te me n t
Se tTe r m

p o s it i o n 1
p o s it i o n 2

Figure 3: Example for a position souring

Workshop in Logic and Computer Science, Vienna 2011 33

map souring

ann = <map> <>Let <list> <a>a and b be in <R>R

This is expanded to

T (ann) = <> <a> <R> <> <R>

Workshop in Logic and Computer Science, Vienna 2011 34

So u r in g
De c la ra t io n

So u r in g
Te r mTe r m

Se t
S te p

De c la ra t io n De c la ra t io n

Te r m Te r m Se tSe tWorkshop in Logic and Computer Science, Vienna 2011 35

How complete is TSa?

• TSa provides useful interface facilities but it is still under development.

• So far, only simple rewrite (souring) rules are used and they are not

comprehensive. E.g., unable to cope with things like
n times

︷ ︸︸ ︷
x = . . . = x.

• The TSa theory and metatheory need development.

Workshop in Logic and Computer Science, Vienna 2011 36

Workshop in Logic and Computer Science, Vienna 2011 37

What is DRa? Retel’s PhD thesis

• DRa Document Rhetorical structure aspect.

• Structural components of a document like chapter, section, subsection,
etc.

• Mathematical components of a document like theorem, corollary, definition,
proof, etc.

• Relations between above components.

• These enhance readability, and ease the navigation of a document.

• Also, these help to go into more formal versions of the document.

Workshop in Logic and Computer Science, Vienna 2011 38

Relations

Description
Instances of the StructuralRhetoricalRole class:
preamble, part, chapter, section, paragraph, etc.
Instances of the MathematicalRhetoricalRole class:
lemma, corollary, theorem, conjecture, definition, axiom, claim,
proposition, assertion, proof, exercise, example, problem, solution, etc.

Relation
Types of relations:
relatesTo, uses, justifies, subpartOf, inconsistentWith, exemplifies

Workshop in Logic and Computer Science, Vienna 2011 39

What does the mathematician do?

• The mathematician wraps into boxes and uniquely names chunks of text

• The mathematician assigns to each box the structural and/or mathematical
rhetorical roles

• The mathematician indicates the relations between wrapped chunks of texts

Workshop in Logic and Computer Science, Vienna 2011 40

Lemma 1. For m,n ∈ N one has: m2 = 2n2 =⇒ m = n = 0.
Define on N the predicate:

P (m) ⇐⇒ ∃n.m2 = 2n2 & m > 0.

Claim. P (m) =⇒ ∃m′ < m.P (m′). Indeed suppose m2 = 2n2 and m > 0. It
follows that m2 is even, but then m must be even, as odds square to odds. So
m = 2k and we have

2n2 = m2 = 4k2 =⇒ n2 = 2k2

Since m > 0, if follows that m2 > 0, n2 > 0 and n > 0. Therefore P (n).
Moreover, m2 = n2 + n2 > n2, so m2 > n2 and hence m > n. So we can take
m′ = n.

By the claim ∀m ∈ N.¬P (m), since there are no infinite descending
sequences of natural numbers.

Now suppose m2 = 2n2 with m 6= 0. Then m > 0 and hence P (m).
Contradiction. Therefore m = 0. But then also n = 0.
Corollary 1.

√
2 /∈ Q.

Suppose
√

2 ∈ Q, i.e.
√

2 = p/q with p ∈ Z, q ∈ Z − {0}. Then
√

2 = m/n with
m = |p|, n = |q| 6= 0. It follows that m2 = 2n2. But then n = 0 by the lemma.
Contradiction shows that

√
2 /∈ Q.

Barendregt
Workshop in Logic and Computer Science, Vienna 2011 41

Workshop in Logic and Computer Science, Vienna 2011 42

(A, hasMathematicalRhetoricalRole, lemma)
(E, hasMathematicalRhetoricalRole, definition)
(F, hasMathematicalRhetoricalRole, claim)
(G, hasMathematicalRhetoricalRole, proof)
(B, hasMathematicalRhetoricalRole, proof)
(H, hasOtherMathematicalRhetoricalRole, case)
(I, hasOtherMathematicalRhetoricalRole, case)
(C, hasMathematicalRhetoricalRole, corollary)
(D, hasMathematicalRhetoricalRole, proof)

(B, justifies, A)
(D, justifies, C)
(D, uses, A)
(G, uses, E)
(F, uses, E)
(H, uses, E)
(H, subpartOf, B)
(H, subpartOf, I)

Workshop in Logic and Computer Science, Vienna 2011 43

Workshop in Logic and Computer Science, Vienna 2011 44

The automatically generated dependency Graph

Workshop in Logic and Computer Science, Vienna 2011 45

An alternative view of the DRa (Zengler’s thesis)

Workshop in Logic and Computer Science, Vienna 2011 46

The Graph of Textual Order: GoTO

Zengler’s thesis

• To be able to examine the proper structure of a DRa tree we introduce the
concept of textual order between two nodes in the tree.

• Using textual orders, we can transform the dependency graph into a GoTO by
transforming each edge of the DG.

• So far there are two reasons why the GoTO is produced:

1. Automatic Checking of the GoTO can reveal errors in the document (e.g.
loops in the structure of the document).

2. The GoTO is used to automatically produce a proof skeleton for a prover
(we use a variety: Isabelle, Mizar, Coq).

• We automatically transform a DG into GoTO and automatically check the
GoTO for errors in the document:

Workshop in Logic and Computer Science, Vienna 2011 47

1. Loops in the GoTO (error)
2. Proof of an unproved node (error)
3. More than one proof for a proved node (warning)
4. Missing proof for a proved node (warning)

• To achieve this we define for each vertex v of the tree:

– ENVv is the environment of all mathematical statements that occur before
the statements of v (from the root vertex).

– Introduced symbols’:
INv := DFv ∪ DCv ∪ {s|s ∈ ST v ∧ s 6∈ ENVv} ∪ ⋃

c childOf v IN c
– Used symbol: USEv := T v ∪ Sv ∪Nv ∪ Av ∪ ST v ∪ ⋃

c childOf v USEc

• Strong textual order ≺: B ≺ A := ∃x(x ∈ INB ∧ x ∈ USEA)

• Weak textual order �: A � B := INA ⊆ INB ∧ USEA ⊆ USEB

• Common textual order ↔: A ↔ B := ∃x(x ∈ USEA ∧ x ∈ USEB)

Workshop in Logic and Computer Science, Vienna 2011 48

Graph of Textual Order

(A, uses, B) A ≻ B

(A, caseOf, B) A � B

(A, justifies, B) A ↔ B

Table 1: Graphical representation of edges in the GoTO

The GoTO can be generated automatically from the DG and therefore (since the
DG can be produced automatically from an annotated document) automatically
from an annotated document.

Workshop in Logic and Computer Science, Vienna 2011 49

Graph of Textual Order for the DRa tree example

Workshop in Logic and Computer Science, Vienna 2011 50

How complete is DRa?

• The dependency graph can be used to check whether the logical reasoning of
the text is coherent and consistent (e.g., no loops in the reasoning).

• However, both the DRa language and its implementation need more experience
driven tests on natural language texts.

• Also, the DRa aspect still needs a number of implementation improvements
(the automation of the analysis of the text based on its DRa features).

• Extend TSa to also cover DRa (in addition to CGa).

• Extend DRa depending on further experience driven translations.

• Establish the soundness and completeness of DRa for mathematical texts.

Workshop in Logic and Computer Science, Vienna 2011 51

Workshop in Logic and Computer Science, Vienna 2011 52

Different provers have

• different syntax

• different requirements to the structure
of the text
e.g.

– no nested theorems/lemmas
– only backward references
– ...

• Aim: Skeleton should be as close
as possible to the mathematician’s
text but with re-arrangements when
necessary

Example of nested theorems/lemmas (Moller, 03, Chapter III,2)

The automatic generation of a proof skeleton

Workshop in Logic and Computer Science, Vienna 2011 53

The DG for the example

Workshop in Logic and Computer Science, Vienna 2011 54

Straight-forward translation of the first part

Workshop in Logic and Computer Science, Vienna 2011 55

Problem: nested theorems

Workshop in Logic and Computer Science, Vienna 2011 56

Solution: Re-ordering

Workshop in Logic and Computer Science, Vienna 2011 57

Finishing the skeleton

Workshop in Logic and Computer Science, Vienna 2011 58

Skeleton for Mizar

Workshop in Logic and Computer Science, Vienna 2011 59

Workshop in Logic and Computer Science, Vienna 2011 60

DRa annotation into Mizar skeleton for Barendregt’s

example (Retel’s PhD thesis)

Workshop in Logic and Computer Science, Vienna 2011 61

The generic algorithm for generating the proof skeleton

(SGa, Zengler’s thesis)

A vertex is ready to be processed iff:

• it has no incoming ≺ edges (in the GoTO) of unprocessed (white) vertices

• all its children are ready to be processed

• if the vertex is a proved vertex: its proof is ready to be processed

Consider the DG and GoTO of a (typical and not well structured) mathematical
text:

Workshop in Logic and Computer Science, Vienna 2011 62

Do c u m e n t

Le m m a 1 Le m m a 2Pr o o f 1 Pr o o f 2

C l a i m 1D e fin i t i on 1 Pr o o f C 1 C l a i m 2 D e fin i t i on 2Pr o o f 2u s e s
u s e s u s e s

j u s t i fi e s j u s t i fi e s

j u s j u s
Do c u m e n t

Le m m a 1 Le m m a 2Pr o o f 1 Pr o o f 2

C l a i m 1D e fin i t i on 1 Pr o o f C 1 C l a i m 2 D e fin i t i on 2Pr o o f 2u s e s
u s e s u s e s

j u s t i fi e s j u s t i fi e s

j u s j u s

Workshop in Logic and Computer Science, Vienna 2011 63

The final order of the vertices is:

Lemma 2

Proof 2

Definition 2

Claim 2

Proof C2

Lemma 1

Proof 1

Definition 1

Claim 1

Proof C1

Workshop in Logic and Computer Science, Vienna 2011 64

Do c u m e n t

Le m m a 1 Le m m a 2Pr o o f 1 Pr o o f 2

C l a i m 1

D e fin i t i on 1

Pr o o f C 1 C l a i m 2

D e fin i t i on 2

P r o o f 2

Figure 6: A flattened graph of the GoTO of figure 5 without nested definitions

Workshop in Logic and Computer Science, Vienna 2011 65

Do c u m e n t

Le m m a 1 Le m m a 2Pr o o f 1 Pr o o f 2C l a i m 1

D e fin i t i on 1

Pr o o f C 1 C l a i m 2 De fi n i t i on 2Pr o o f 2
Figure 7: A flattened graph of the GoTO of figure 5 without nested claims

Workshop in Logic and Computer Science, Vienna 2011 66

The Mizar and Coq rules for the dictionary

Role Mizar rule Coq rule

axiom %name : %body ; Axiom %name : %body .

definition definition %name : %nl %body %nl end; Definition : %body .

theorem theorem %name: %nl %body Theorem %name %body .

proof proof %nl %body %nl end; Proof %name : %body .

cases per cases; %nl %body

case suppose %nl %body %nl end; %body

existencePart existence %nl %body %body

uniquenessPart uniqueness %nl %body %body

Workshop in Logic and Computer Science, Vienna 2011 67

Rich skeletons for Coq

Rule No Annotation ann Coq translation SCoq (ann)

coq1) <#> Set

coq2) <#> Prop

coq3) <id> <N> id : N

coq4) <id> <S> id : S

coq5) <id> id

coq6) <id> p1 ... pn
<N> id : SCoq

p1

!

-> ... -> SCoq

pn

!

-> N

coq7) <id> p1 ... pn
<S> id : SCoq

p1

!

-> ... -> SCoq

pn

!

-> S

Workshop in Logic and Computer Science, Vienna 2011 68

coq8) <id> p1 ... pn id : SCoq

p1

!

-> ... -> SCoq

pn

!

-> Prop

coq9) <id> p1 ... pn id : SCoq

p1

!

-> ... -> SCoq

pn

!

-> Set

coq10) <id> p1 ... pn (id SCoq

p1

!

... SCoq

pn

!

)

coq11) <id> p1 ... pn (id SCoq

p1

!

... SCoq

pn

!

)

coq12) <id> p1 ... pn (id SCoq

p1

!

... SCoq

pn

!

)

coq13) <id> id

coq14) <id> <id1> ... <idn> e id id_1 ... id_n := SCoq

„

e

«

Workshop in Logic and Computer Science, Vienna 2011 69

coq15) <d1> ... <dn> S1 ... Sn S′
1 ... S′

1 forall SCoq

0

@

<d1>

1

A ... SCoq

0

@

<d

for a surrounding unproved DRa annotation ... /\ SCoq

Sn

!

-> SCoq

S′
1

!

coq16) <d1> ... <dn> S1 ... Sn S′
1 ... S′

1 SCoq

0

@

<d1>

1

A ... SCoq

0

@

<dn>

1

A

for a surrounding proved DRa annotation /\ SCoq

Sn

!

-> SCoq

S′
1

!

/\

With these rules almost every axiom, definition and theorem can be translated in
a way that it is immediately usable in Coq.

Workshop in Logic and Computer Science, Vienna 2011 70

the left hand side of the definition is translated according to rule (coq14)) with
subset A B.

The right hand side is translated with the rules coq5), coq10), coq11) and coq12)
and the result is

forall x (impl (in x A) (in x B))

Putting left hand and right hand side together and taking the outer DRa
annotation we get the translation

Definition subset A B := forall x (impl (in x A) (in x B))

Workshop in Logic and Computer Science, Vienna 2011 71

Figure 8: Theorem 17 of Landau’s “Grundlagen der Analysis”

The automatic translation is:

Theorem th117 x y z : (leq x y /\ leq y z) -> leq x z .

Workshop in Logic and Computer Science, Vienna 2011 72

Rich skeletons for Isabelle

<carriernonempty> <not> <set-equal> <R>a non <emptyset>empty set

The corresponding translation into Isabelle is:

assumes carriernonempty: "not (set-equal R emptyset)"

Workshop in Logic and Computer Science, Vienna 2011 73

An example of a full formalisation in Coq via MathLang

Figure 9: The path for processing the Landau chapter

Workshop in Logic and Computer Science, Vienna 2011 74

Figure 10: Simple theorem of the second section of Landau’s first chapter

Workshop in Logic and Computer Science, Vienna 2011 75

Figure 11: The annotated theorem 16 of the Landau’s first chapter

Workshop in Logic and Computer Science, Vienna 2011 76

Chapter 1

Natural Numbers

<><forall>∀<#><#>
.
<#> <><exists>∃<#><#>.<#> <><exists_one>∃!<#><#> .<#> <><isa><#> <#> <><1> <><and><#>∧ <#>

<><or><#> ∨ <#> <><impl><#> <#> <><succ><#> <><in><#> ∈ <#> <><subset><#> ⊂ <#> <><Set>{<#><#> |<#> }

<><seteq><#><#> <><setneq><#><#> <><index><#><#> <><xor><#>⊕ <#> <><emptyset>
∅

1.1 Axioms

We assume the following to be given:

<><N>A set (i.e. totality) of objects called <><natural_numbers>natural numbers, possessing the prop-
erties - called axioms- to be listed below.

Before formulating the axioms we make some remarks about the symbols = and = which be
used.

Unless otherwise specified, small italic letters will stand for natural numbers throughout this
book.

<>

<>If <><x>
x is given and <><y>

y is given, then either<><eq> <#>
x and <#>

y are the same number; this

may be written

x= y

(= to be read “equals"); or <><neq><#>
x and <#>

y are not the same number; this may be
written

1x=y

(= to be read “is not equal to").

Accordingly, the following are true on purely logical grounds:

<><forall><2><eq><x>
x = <x>

x for every <1><><x>
x

<><>if <><x> <><y> <eq><x>
x =

<y>
y then <eq><y>

y =
<x>

x

<><>If <><x> <><y> <><z> <eq><x>
x =

<y>
y, <eq><y>

y =
<z>

z then <eq><x>
x =

<z>
z

1

Workshop in Logic and Computer Science, Vienna 2011 77

Chapter 1 of Landau:

• 5 axioms which we annotate with the mathematical role “axiom”, and give
them the names“ax11” - “ax15”.

• 6 definitions which we annotate with the mathematical role “definition”, and
give them names “def11” - “def16”.

• 36 nodes with the mathematical role “theorem”, named “th11” - “th136” and
with proofs “pr11” - “pr136”.

• Some proofs are partitioned into an existential part and a uniqueness part.

• Other proofs consist of different cases which we annotate as unproved nodes
with the mathematical role “case”.

Figure 12: The DRa tree of sections 1 and 2 of chapter 1 of Landau’s book

Workshop in Logic and Computer Science, Vienna 2011 78

• The relations are annotated in a straightforward manner.

• Each proof justifies its corresponding theorem.

• Axiom 5 (“ax15”) is the axiom of induction. So every proof which uses
induction, uses also this axiom.

• Definition 1 (“def11”) is the definition of addition. Hence every node which
uses addition also uses this definition.

• Some theorems use other theorems via texts like: “By Theorem ...”.

• In total we have 36 justifies relations, 154 uses relations, 6 caseOf, 3
existencePartOf and 3 uniquenessPartOf relations.

• The DG and GoTO are automatically generated.

• The GoTO is automatically checked and no errors result. So, we proceed to
the next stage: automatically generating the SGa.

Workshop in Logic and Computer Science, Vienna 2011 79

Figure 13: The DG of sections 1 and 2 of chapter 1 of Landau’s book

Workshop in Logic and Computer Science, Vienna 2011 80

Workshop in Logic and Computer Science, Vienna 2011 81

Workshop in Logic and Computer Science, Vienna 2011 82

The GoTO of section 1 - 4

Workshop in Logic and Computer Science, Vienna 2011 83

Workshop in Logic and Computer Science, Vienna 2011 84

An extract of the automatically generated rich skeleton

Definition geq x y := (or (gt x y) (eq x y)).

Definition leq x y := (or (lt x y) (eq x y)).

Theorem th113 x y : (impl (geq x y) (leq y x)).

Proof.

...

Qed.

Theorem th114 x y : (impl (leq x y) (geq y x)).

Proof.

...

Qed.

Theorem th115 x y z : (impl (impl (lt x y) (lt y z)) (lt x z)).

Proof.

...

Qed.

Workshop in Logic and Computer Science, Vienna 2011 85

Completing the proofs in Coq

• We defined the natural numbers as an inductive set - just as Landau does in
his book.

Inductive nats : Set :=

| I : nats

| succ : nats -> nats

• The encoding of theorem 2 of the first chapter in Coq is

theorem th12 x : neq (succ x) x .

• Landau proves this theorem with induction. He first shows, that 1′ 6= 1 and
then that with the assumption of x′ 6= x it also holds that (x′)′ 6= x′.

• We do our proof in the Landau style. We introduce the variable x and eliminate
it, which yields two subgoals that we need to prove. These subgoals are exactly
the induction basis and the induction step.

Workshop in Logic and Computer Science, Vienna 2011 86

Proof.

intro x. elim x.

2 subgoals

x : nats

______________________________________(1/2)

neq (succ I) I

___(2/

forall n : nats, neq (succ n) n -> neq (succ (succ n)) (succ n)

Landau proved the first case with the help of Axiom 3 (for all x, x′ 6= 1).

apply ax13.

1 subgoal

x : nats

___(1/

forall n : nats, neq (succ n) n -> neq (succ (succ n)) (succ n)

Workshop in Logic and Computer Science, Vienna 2011 87

The next step is to introduce n as natural number and to introduce the
induction hypothesis:

intros n H.

1 subgoal

x : nats

n : nats

H : neq (succ n) n

______________________________________(1/1)

neq (succ (succ n)) (succ n)

We see that this is exactly the second case of Landau’s proof. He proved this
case with Theorem 1 - we do the same:

apply th11.

1 subgoal

x : nats

n : nats

Workshop in Logic and Computer Science, Vienna 2011 88

H : neq (succ n) n

______________________________________(1/1)

neq (succ n) n

And of course this is exactly the induction hypotheses which we already have
as an assumption and we can finish the proof:

assumption.

Proof completed.

The complete theorem and its proof in Coq finally look like this:

Theorem th12 (x:nats) : neq (succ x) x .

Proof.

intro x. elim x.

apply ax13.

intros n H.

apply th11.

assumption.

Qed.

Workshop in Logic and Computer Science, Vienna 2011 89

With the help of the CGa annotations and the automatically generated rich
proof skeleton, Zengler (who was not familiar with Coq) completed the Coq

proofs of the whole of chapter one in a couple of hours.

Workshop in Logic and Computer Science, Vienna 2011 90

Some points to consider

• We do not at all assume/prefer one type/logical theory instead of another.

• The formalisation of a language of mathematics should separate the questions:

– which type/logical theory is necessary for which part of mathematics
– which language should mathematics be written in.

• Mathematicians don’t usually know or work with type/logical theories.

• Mathematicians usually do mathematics (manipulations, calculations, etc), but
are not interested in general in reasoning about mathematics.

• The steps used for computerising books of mathematics written in English,
as we are doing, can also be followed for books written in Arabic, French,
German, or any other natural language.

Workshop in Logic and Computer Science, Vienna 2011 91

• MathLang aims to support non-fully-formalized mathematics practiced by the
ordinary mathematician as well as work toward full formalization.

• MathLang aims to handle mathematics as expressed in natural language as
well as symbolic formulas.

• MathLang aims to do some amount of type checking even for non-fully-
formalized mathematics. This corresponds roughly to grammatical conditions.

• MathLang aims for a formal representation of Cml texts that closely
corresponds to the Cml conceived by the ordinary mathematician.

• MathLang aims to support automated processing of mathematical knowledge.

• MathLang aims to be independent of any foundation of mathematics.

• MathLang allows anyone to be involved, whether a mathematician, a computer
engineer, a computer scientist, a linguist, a logician, etc.

Workshop in Logic and Computer Science, Vienna 2011 92

