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The two previous speakers discussing the origin of λ in Church’s writing
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De Bruijn’s typed λ-calculi started with his Automath

• In 1967, an internationally renowned mathematician called N.G. de Bruijn
wanted to do something never done before: use the computer to formally
check the correctness of mathematical books.

• Such a task needs a good formalisation of mathematics, a good competence
in implementation, and extreme attention to all the details so that nothing is
left informal.

• Implementing extensive formal systems on the computer was never done before.

• De Bruijn, an extremely original mathematician, did every step his own way.

• He proudly announced at the ceremony of the publications of the collected
Automath work: I did it my way.

• Dirk van Dalen said at the ceremony: The Germans have their 3 B’s, but we
Dutch too have our 3 B’s: Beth, Brouwer and de Bruijn.
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There is a fourth B:
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Contraversy?

• In 1992, de Bruijn told me that when he announced his new project Automath
at the start of January 1967, there was mixed reactions:

– Amongst mathematicians: Why is de Bruijn defecting?
– Amongst computer scientists: De Bruijn is not a computer scientist so why

is he coming to do a computer scientist’s job?
– Amongst logicians: De Bruijn is not a logician and has he also forgotten

about Goedel’s undecidability results?

• But, de Bruijn was ahead of everyone else.
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• It goes without saying that de Bruijn and his Automath shaped the way.

• De Bruijn’s Automath influenced the Edinburgh Logical Frameworks.

• The Nuprl project has been connected to ideas in de Bruijn’s Automath (e.g.,
telescopes).

• Coquand and Huet’s calculus of constructions and consequently the proof
checker Coq are influenced by de Bruijn’s dependent types, PAT and Automath.

• De Bruijn was the first to put the Propositions As Types (PAT) idea in practice.

• Barendregt’s cube and Pure Type systems are a beautiful example of
generalisations of typing rules influenced by Automath.
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• De Bruijn was the first to express the importance of definitions to the
formalisation and proof checking of mathematics. Definitions (also known as
let expressions) have been adopted in other proof checkers and in programming
languges (e.g. ML).

• De Bruijn’s Automath was the first (and remains the only) proof checker in
which an entire book has been fully proof checked by the computer (Mizar is
the next system in which 60% of a book is proof checked).

• It has been, and will be for many generations to come, a hard but magical
task to fully decode the genious ideas of de Bruijn in his Automath project.

• In this talk, I will review some details of de Bruijn’s λ-calculus.
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They look good together
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Theme 1: De Bruijn Indices and Explicit Substitutions

[de Bruijn, 1972]

• Classical λ-calculus: A ::= x | (λx.B) | (BC)
(λx.A)B →β A[x := B]

• (λx.λy.xy)y →β (λy.xy)[x := y] 6= λy.yy

• (λx.λy.xy)y →β (λy.xy)[x := y] =α (λz.xz)[x := y] = λz.yz

• λx.x and λy.y are the same function. Write this function as λ1.

• Assume a free variable list (say x, y, z, . . . ).

• (λλ2 1)2→β (λ2 1)[1 := 2] = λ(2[2 := 3])(1[2 := 3]) = λ3 1
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Classical λ-calculus with de Bruijn indices

• Let i, n ≥ 1 and k ≥ 0

• A ::= n | (λB) | (BC)
(λA)B →β A{{1← B}}

•
U i

k(AB) = U i
k(A) U i

k(B)

U i
k(λA) = λ(U i

k+1(A))
U i

k(n) =

{

n + i− 1 if n > k
n if n ≤ k .

•
(A1A2){{i← B}} = (A1{{i← B}}) (A2{{i← B}})
(λA){{i← B}} = λ(A{{i + 1← B}})

n{{i← B}} =







n− 1 if n > i
U i

0(B) if n = i
n if n < i .

• Numerous implementations of proof checkers and programming languages have
been based on de Bruijn indices.
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From classical λ-calculus with de Bruijn indices to

substitution calculus λs [Kamareddine and Ŕıos, 1995]

• Write A{{n← B}} as Aσn B and U i
k(A) as ϕi

kA.

• A ::= n | (λB) | (BC) | (AσiB) | (ϕi
kB) where i, n ≥ 1 , k ≥ 0 .

σ-generation (λA) B −→ A σ1 B

σ-λ-transition (λA) σiB −→ λ(A σi+1 B)

σ-app-transition (A1 A2) σiB −→ (A1 σiB) (A2 σiB)

σ-destruction nσiB −→







n− 1 if n > i
ϕi

0 B if n = i
n if n < i

ϕ-λ-transition ϕi
k(λA) −→ λ(ϕi

k+1 A)

ϕ-app-transition ϕi
k(A1 A2) −→ (ϕi

k A1) (ϕi
k A2)

ϕ-destruction ϕi
k n −→

{

n + i− 1 if n > k
n if n ≤ k
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1. The s-calculus (i.e., λs minus σ-generation) is strongly normalising,

2. The λs-calculus is confluent and simulates (in small steps) β-reduction

3. The λs-calculus preserves strong normalisation PSN.

4. The λs-calculus has a confluent extension with open terms λse.

• The λs-calculus was the first calculus of substitutions which satisfies all the
above properties 1., 2., 3. and 4.
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λυ [Benaissa et al., 1996]

Terms: Λυt ::= IN | ΛυtΛυt | λΛυt | Λυt[Λυs]
Substitutions: Λυs ::=↑ | ⇑ (Λυs) | Λυt.

(Beta) (λa) b −→ a [b/]

(App) (a b)[s] −→ (a [s]) (b [s])

(Abs) (λa)[s] −→ λ(a [⇑(s)])

(FVar) 1 [a/] −→ a

(RVar) n + 1 [a/] −→ n

(FVarLift) 1 [⇑(s)] −→ 1

(RVarLift) n + 1 [⇑(s)] −→ n [s] [↑]

(VarShift) n [↑] −→ n + 1

λυ satisfies 1., 2., and 3., but does not have a confluent extension on open
terms.
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λσ⇑

Terms: Λσt
⇑ ::= IN | Λσt

⇑Λσt
⇑ | λΛσt

⇑ | Λσt
⇑[Λσs

⇑]
Substitutions: Λσs

⇑ ::= id | ↑ | ⇑ (Λσs
⇑) | Λσt

⇑ · Λσs
⇑ | Λσs

⇑ ◦ Λσs
⇑.

(Beta) (λa) b −→ a [b · id]

(App) (a b)[s] −→ (a [s]) (b [s])

(Abs) (λa)[s] −→ λ(a [⇑(s)])

(Clos) (a [s])[t] −→ a [s ◦ t]

(Varshift1) n [↑] −→ n + 1

(Varshift2) n [↑ ◦ s] −→ n + 1 [s]

(FVarCons) 1 [a · s] −→ a

(RVarCons) n + 1 [a · s] −→ n [s]

(FVarLift1) 1 [⇑(s)] −→ 1

(FVarLift2) 1 [⇑(s) ◦ t] −→ 1 [t]

(RVarLift1) n + 1 [⇑(s)] −→ n[s ◦ ↑]

(RVarLift2) n + 1 [⇑(s) ◦ t] −→ n[s ◦ (↑ ◦ t)]

Lambda2012 13



λσ⇑ rules continued

(Map) (a · s) ◦ t −→ a [t] · (s ◦ t)

(Ass) (s ◦ t) ◦ u −→ s ◦ (t ◦ u)

(ShiftCons) ↑ ◦ (a · s) −→ s

(ShiftLift1) ↑ ◦ ⇑(s) −→ s ◦ ↑

(ShiftLift2) ↑ ◦ (⇑(s) ◦ t) −→ s ◦ (↑ ◦ t)

(Lift1) ⇑(s)◦ ⇑(t) −→ ⇑(s ◦ t)

(Lift2) ⇑(s) ◦ (⇑(t) ◦ u) −→ ⇑(s ◦ t) ◦ u

(LiftEnv) ⇑(s) ◦ (a · t) −→ a · (s ◦ t)

(IdL) id ◦ s −→ s

(IdR) s ◦ id −→ s

(LiftId) ⇑(id) −→ id

(Id) a [id] −→ a

λσ⇑ satisfies 1., 2., and 4., but does not have PSN.
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A force in explicit substitutions à la λσ
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How is λse obtained from λs?

• They said, we can have open terms (holes in proofs) in λσ, can you do so in
λs?

• A ::= X | n | (λB) | (BC) | (AσiB) | (ϕi
kB) where i, n ≥ 1 , k ≥ 0 .

• Extending the syntax of λs with open terms without extending the λs-rules
loses the confluence (even local confluence):
((λX)Y )σ11→ (Xσ1Y )σ11 ((λX)Y )σ11→ ((λX)σ11)(Y σ11)

• (Xσ1Y )σ11 and ((λX)σ11)(Y σ11) have no common reduct.

• But, ((λX)σ11)(Y σ11)→→ (Xσ21)σ1(Y σ11)

• Simple: add de Bruijn’s metasubstitution and distribution lemmas to the rules
of λs:
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σ-σ (AσiB) σj C −→ (A σj+1 C) σi (B σj−i+1 C) if i ≤ j

σ-ϕ 1 (ϕi
k A) σj B −→ ϕi−1

k A if k < j < k + i

σ-ϕ 2 (ϕi
k A) σj B −→ ϕi

k(A σj−i+1 B) if k + i ≤ j

ϕ-σ ϕi
k(A σj B) −→ (ϕi

k+1 A) σj (ϕi
k+1−j B) if j ≤ k + 1

ϕ-ϕ 1 ϕi
k (ϕj

l A) −→ ϕj
l (ϕi

k+1−j A) if l + j ≤ k

ϕ-ϕ 2 ϕi
k (ϕj

l A) −→ ϕj+i−1
l A if l ≤ k < l + j

• These extra rules are the rewriting of the well-known meta-substitution (σ−σ)
and distribution (ϕ − σ) lemmas (and the 4 extra lemmas needed to prove
them).

• (σ − σ):
A[x := B][y := C] = A[y := C][x := B[y := C]] if x 6= y and x 6∈ FV (C).

• (ϕ− σ):
updatedA[x := B] = updatedA[x := updatedB].
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Where did the extra rules come from?

In de Bruijn’s classical λ-calculus we have the lemmas:

(σ − ϕ 1) For k < j < k + i we have: U i−1
k (A) = U i

k(A){{j←B}} .

(ϕ− ϕ 2) For l ≤ k < l + j we have: U i
k(U

j
l (A)) = U j+i−1

l (A) .

(σ − ϕ 2) For k + i ≤ j we have: U i
k(A){{j←B}} = U i

k(A{{j− i + 1←B}}) .

(σ − σ) [Meta-substitution lemma] For i ≤ j we have:
A{{i←B}}{{j←C}} = A{{j + 1←C}}{{i←B{{j− i + 1←C}}}}.
———————————————————————————————-

• The proof of (σ − σ) uses (σ − ϕ 1) and (σ − ϕ 2) both with k = 0.

• The proof of (σ − ϕ 2) requires (ϕ− ϕ 2) with l = 0.
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Where did the extra rules come from (continued)?

In de Bruijn’s classical λ-calculus we also have the lemmas:

(ϕ− ϕ 1) For j ≤ k + 1 we have: U i
k+p(U

j
p(A)) = U j

p(U i
k+p+1−j(A)) .

(ϕ− σ) [Distribution lemma]
For j ≤ k + 1 we have: U i

k(A{{j←B}}) = U i
k+1(A){{j←U i

k+1−j(B)}} .
———————————————————————————————-

• (ϕ− ϕ 1) with p = 0 is needed to prove (ϕ− σ).
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Everyone is happy. The center person is called “Maximum Happy”
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Theme 2: Lambda Calculus à la de Bruijn

• I(x) = x, I(λx.B) = [x]I(B), I(AB) = 〈I(B)〉I(A)

• (λx.λy.xy)z translates to 〈z〉[x][y]〈y〉x.

• The applicator wagon 〈z〉 and abstractor wagon [x] occur NEXT to each other.

• (λx.A)B →β A[x := B] becomes

〈B〉[x]A→β [x := B]A

• The “bracketing structure” of ((λx.(λy.λz. − −)c)b)a), is ‘[1 [2 [3 ]2 ]1 ]3’,
where ‘[i’ and ‘]i’ match.

• The bracketing structure of 〈a〉〈b〉[x]〈c〉[y][z]〈d〉 is simpler: [[ ][ ]].

• 〈b〉[x] and 〈c〉[y] are AT-pairs whereas 〈a〉[z] is an AT-couple.
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Redexes in de Bruijn’s notation
Classical Notation de Bruijn’s Notation

((λx.(λy.λz.zd)c)b)a 〈a〉〈b〉[x]〈c〉[y][z]〈d〉z

↓β ↓β
((λy.λz.zd)c)a 〈a〉〈c〉[y][z]〈d〉z

↓β ↓β
(λz.zd)a 〈a〉[z]〈d〉z

↓β ↓β
ad 〈d〉a

〈a〉〈b〉 [x] 〈c〉 [y] [z] 〈d〉 z

• This maks it easy to introduce local/global/mini reductions into the λ-calculus
[Bruijn, 1984].

• Further study of de Bruijn’s notation can be found in [Kamareddine and
Nederpelt, 1995, 1996]
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Some notions of reduction studied in the literature

Name In Classical Notation In de Bruijn’s notation
((λx.N)P )Q 〈Q〉〈P 〉[x]N

(θ) ↓ ↓
(λx.NQ)P 〈P 〉[x]〈Q〉N
(λx.λy.N)P 〈P 〉[x][y]N

(γ) ↓ ↓
λy.(λx.N)P [y]〈P 〉[x]N

((λx.λy.N)P )Q 〈Q〉〈P 〉[x][y]N
(γC) ↓ ↓

(λy.(λx.N)P )Q 〈Q〉[y]〈P 〉[x]N
((λx.λy.N)P )Q 〈Q〉〈P 〉[x][y]N

(g) ↓ ↓
(λx.N [y := Q])P 〈P 〉[x][y := Q]N

? 〈Q〉s[y]N
(βe) ↓ ↓

? s[y := Q]N

Lambda2012 23



A Few Uses of these reductions/term reshuffling

• Regnier [1992] uses θ and γ in analyzing perpetual reduction strategies.

• Term reshuffling is used in [Kfoury et al., 1994; Kfoury and Wells, 1994] in
analyzing typability problems.

• [Nederpelt, 1973; de Groote, 1993; Kfoury and Wells, 1995; Kamareddine,
2000] use generalised reduction and/or term reshuffling in relating SN to WN.

• [Ariola et al., 1995] uses a form of term-reshuffling in obtaining a calculus that
corresponds to lazy functional evaluation.

• [Kamareddine and Nederpelt, 1995; Kamareddine et al., 1999a, 1998; Bloo
et al., 1996] shows that they could reduce space/time needs.

• All these works have been heavily influenced by de Bruijn’s Automath whose
λ-notation facilitated the manipulation of redexes.

• All can be represented clearer in de Bruijn’s notation.
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An impressive thinker and entertainer

Lambda2012 25



Claude warn out, glasses empty, eyeglasses somewhere

Lambda2012 26



Even more: de Bruijn’s generalised reduction has better

properties

(β) (λx.M)N →M [x := N ]
(βI) (λx.M)N →M [x := N ] if x ∈ FV (M)
(βK) (λx.M)N →M if x 6∈ FV (M)
(θ) (λx.N)PQ→ (λx.NQ)P
(βe) (M)s[x]N → s{N [x := M ] for s well-balanced.

• [Kamareddine, 2000] shows that βe satisfies PSN, postponment of K-
contraction and conservation (latter 2 properties fail for β-reduction).

• Conservation of βe: If A is βeI-normalisable then A is βe-strongly normalisable.

• Postponment of K-contraction : Hence, discard arguments of K-redexes after
I-reduction. This gives flexibility in implementation: unnecessary work can be
delayed, or even completely avoided.
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• Attempts have been made at establishing some reduction relations for which
postponement of K-contractions and conservation hold.

• The picture is as follows (-N stands for normalising and r ∈ {βI, θK}).

(βK-postponement for r) If M →βK
N →r O then ∃P such that M →→+

βIθK
P →→βK

(Conservation for βI) If M is βI-N then M is βI-SN Barendregt’s book

(Conservation for β + θ) If M is βIθK-N then M is β-SN [de Groote, 1993]

• De Groote does not produce these results for a single reduction relation, but
for β + θ (this is more restrictive than βe).

• βe is the first single relation to satisfy βK-postponement and conservation.

• [Kamareddine, 2000] shows that:

(βeK-postponement for βe) If M →βeK
N →βeI

O then ∃P such that M →βeI
P →→+

βeK

(Conservation for βe) If M is βeI-N then M is βe-SN
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De Bruijn does not tire. Look at Claude:
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Never seen de Bruijn sleep on a train.
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Nor sleep at a lecture
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Compare with de Bruijn at a lecture
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And here is Henk listening to de Bruijn’s talk
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This is de Bruijn at 9:15 am lecture my students at a short notice
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Theme 3: Types and Functions à la de Bruijn

• General definition of function [Frege, 1879] is key to Frege’s formalisation of
logic.

• Self-application of functions was at the heart of Russell’s paradox [Russell,
1902].

• To avoid paradox Russell controled function application via type theory.

• [Russell, 1903] gives the first type theory: the Ramified Type Theory (rtt).

• rtt is used in Principia Mathematica [Whitehead and Russell, 19101, 19272]
1910–1912.

• Simple theory of types (stt): [Ramsey, 1926], [Hilbert and Ackermann, 1928].

• Church’s simply typed λ-calculus λ→ 1940 = λ-calculus + stt.
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• The hierarchies of types/orders of rtt and stt are unsatisfactory.

• The notion of function adopted in the λ-calculus is unsatisfactory (cf.
[Kamareddine et al., 2003]).

• Hence, birth of different systems of functions and types, each with different
functional power.

• Frege’s functions 6= Principia’s functions 6= λ-calculus functions (1932).

• Not all functions need to be fully abstracted as in the λ-calculus. For some
functions, their values are enough.

• Non-first-class functions allow us to stay at a lower order (keeping decidability,
typability, etc.) without losing the flexibility of the higher-order aspects.

• Non-first-class functions allow placing the type systems of modern theorem
provers/programming languages like ML, LF and Automath more accurately
in the modern hierarchy of types.
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The evolution of functions with Frege, Russell and Church

• Historically, functions have long been treated as a kind of meta-objects.

• Function values were the important part, not abstract functions.

• In the low level/operational approach there are only function values.

• The sine-function, is always expressed with a value: sin(π), sin(x) and
properties like: sin(2x) = 2 sin(x) cos(x).

• In many mathematics courses, one calls f(x)—and not f—the function.

• Frege, Russell and Church wrote x 7→ x+3 resp. as x+3, x̂+3 and λx.x+3.

• Principia’s functions are based on Frege’s Abstraction Principles but can be
first-class citizens. Frege used courses-of-values to speak about functions.

• Church made every function a first-class citizen. This is rigid and does not
represent the development of logic in 20th century.
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λ-calculus does not fully represent functionalisation

1. Abstraction from a subexpression 2 + 3 7→ x + 3

2. Function construction x + 3 7→ λx.x + 3

3. Application construction (λx.x + 3)2

4. Concretisation to a subexpression (λx.(x + 3))2→ 2 + 3

• cannot abstract only half way: x + 3 is not a function, λx.x + 3 is.

• cannot apply x + 3 to an argument: (x + 3)2 does not evaluate to 2+3.
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The two previous speakers are suspicious? Are they Curry or Church followers?
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Common features of modern types and functions

• We can construct a type by abstraction. (Write A : ∗ for A is a type)

– λy:A.y, the identity over A has type A→ A
– λA:∗.λy:A.y, the polymorphic identity has type ΠA:∗.A→ A

• We can instantiate types. E.g., if A = N, then the identity over N

– (λy:A.y)[A := N] has type (A→ A)[A := N] or N→ N.
– (λA:∗.λy:A.y)N has type (ΠA:∗.A→ A)N = (A→ A)[A := N] or N→ N.

• (λx:α.A)B →β A[x := B] (Πx:α.A)B →Π A[x := B]

• Write A→ A as Πy:A.A when y not free in A.
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The Barendregt Cube

• Syntax: A ::= x | ∗ |2 |AB | λx:A.B |Πx:A.B

• Formation rule:
Γ ⊢ A : s1 Γ, x:A ⊢ B : s2

Γ ⊢ Πx:A.B : s2
if (s1, s2) ∈ R

Simple Poly-
morphic

Depend-
ent

Constr-
uctors

Related
system

Refs.

λ→ (∗, ∗) λτ [Church, 1940; Ba
λ2 (∗, ∗) (2, ∗) F [Girard, 1972; Reynolds,
λP (∗, ∗) (∗,2) aut-QE, LF [Bruijn, 1968; Harp
λω (∗, ∗) (2,2) POLYREC [Renardel de Lavalette,
λP2 (∗, ∗) (2, ∗) (∗,2) [Longo and Moggi,
λω (∗, ∗) (2, ∗) (2,2) Fω [Girard, 1972]
λPω (∗, ∗) (∗,2) (2,2)
λC (∗, ∗) (2, ∗) (∗,2) (2,2) CC [Coquand and Huet,
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The Barendregt Cube

λ→ λP

λ2 λP2

λω λPω

λCλω

-

6

1

(∗, 2) ∈ R

(2,2) ∈ R

(2, ∗) ∈ R
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Typing Polymorphic identity needs (2, ∗)

•
y : ∗ ⊢ y : ∗ y : ∗, x:y ⊢ y : ∗

y : ∗ ⊢ Πx:y.y : ∗
by (Π) (∗, ∗)

•
y : ∗, x : y ⊢ x : y y : ∗ ⊢ Πx:y.y : ∗

y : ∗ ⊢ λx : y.x : Πx:y.y
by (λ)

•
⊢ ∗ : 2 y : ∗ ⊢ Πx:y.y : ∗

⊢ Πy : ∗.Πx:y.y : ∗
by (Π) (2, ∗)

•
y : ∗ ⊢ λx : y.x : Πx:y.y ⊢ Πy : ∗.Πx:y.y : ∗

⊢ λy : ∗.λx : y.x : Πy : ∗.Πx:y.y
by (λ)
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The story so far of the evolution of functions and types

• Functions have gone through a long process of evolution involving various
degrees of abstraction/construction/instantiation/concretisation/evaluation.

• Types too have gone through a long process of evolution involving various
degrees of abstraction/construction/instantiation/concretisation/evaluation.

• During their progress, some aspects have been added or removed.

• The development of types and functions have been interlinked and their
abstraction/construction/instantiation/concretisation/evaluation have much in
common.

• We also argue that some of the aspects that have been dismissed during their
evolution need to be re-incorporated.

Lambda2012 44



Are you hungry already?
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From the point of vue of ML

• The language ML is not based on all of system F (the second order polymorphic
λ-calculus).

• This was not possible since it was not known then whether type checking and
type finding are decidable.

• ML is based on a fragment of system F for which it was known that type
checking and type finding are decidable.

• 23 years later after the design of ML, Wells showed that type checking and
type finding in system F are undecidable.

• ML has polymorphism but not all the polymorphic power of system F.

• The question is, what system of functions and types does ML use?

• A clean answer can be given when we re-incorporate the low-level function
notion used by Frege and Russell (and de Bruijn) and dismissed by Church.
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• ML treats let val id = (fn x⇒ x) in (id id) end as this Cube term
(λid:(Πα:∗. α→ α). id(β → β)(id β))(λα:∗. λx:α. x)

• To type this in the Cube, the (2, ∗) rule is needed (i.e., λ2).

• ML’s typing rules forbid this expression:
let val id = (fn x⇒ x) in (fn y ⇒ y y)(id id) end
Its equivalent Cube term is this well-formed typable term of λ2:
(λid : (Πα:∗. α→ α).

(λy:(Πα:∗. α→ α). y(β → β)(y β))
(λα:∗. id(α→ α)(id α)))

(λα:∗. λx:α. x)

• Therefore, ML should not have the full Π-formation rule (2, ∗).

• ML has limited access to the rule (2, ∗).

• ML’s type system is none of those of the eight systems of the Cube.

• [Kamareddine et al., 2001] places the type system of ML (between λ2 + λω).
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LF
• LF [Harper et al., 1987] is often described as λP of the Barendregt Cube.

However, Use of Π-formation rule (∗, 2) is restricted in LF [Geuvers, 1993].

• We only need a type Πx:A.B : 2 when pat is applied during construction of
the type Πα:prop.∗ of the operator Prf where for a proposition Σ, Prf(Σ) is
the type of proofs of Σ.

prop:∗ ⊢ prop: ∗ prop:∗, α:prop ⊢ ∗:2

prop:∗ ⊢ Πα:prop.∗ : 2
.

• In LF, this is the only point where the Π-formation rule (∗, 2) is used.
But, Prf is only used when applied to Σ:prop. We never use Prf on its own.

• This use is in fact based on a parametric constant rather than on Π-formation.

• Hence, the practical use of LF would not be restricted if we present Prf in a
parametric form, and use (∗,2) as a parameter instead of a Π-formation rule.

• [Kamareddine et al., 2001] precisely locate LF (between λ→ and λP ).
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Parameters: What and Why

• We speak about functions with parameters when referring to functions with
variable values in the low-level approach. The x in f(x) is a parameter.

• Parameters enable the same expressive power as the high-level case, while
allowing us to stay at a lower order. E.g. first-order with parameters versus
second-order without [Laan and Franssen, 2001].

• Desirable properties of the lower order theory (decidability, easiness of
calculations, typability) can be maintained, without losing the flexibility of
the higher-order aspects.

• This low-level approach is still worthwhile for many exact disciplines. In fact,
both in logic and in computer science it has certainly not been wiped out, and
for good reasons.
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Automath

• The first tool for mechanical representation and verification of mathematical
proofs, Automath, has a parameter mechanism.

• Mathematical text in Automath written as a finite list of lines of the form:

x1 : A1, . . . , xn : An ⊢ g(x1, . . . , xn) = t : T.

Here g is a new name, an abbreviation for the expression t of type T and
x1, . . . , xn are the parameters of g, with respective types A1, . . . , An.

• Each line introduces a new definition which is inherently parametrised by the
variables occurring in the context needed for it.

• Developments of ordinary mathematical theory in Automath [Benthem Jutting,
1977] revealed that this combined definition and parameter mechanism is vital
for keeping proofs manageable and sufficiently readable for humans.
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Extending the Cube with parametric constants, see

[Kamareddine et al., 2001]

• We add parametric constants of the form c(b1, . . . , bn) with b1, . . . , bn terms
of certain types and c ∈ C.

• b1, . . . , bn are called the parameters of c(b1, . . . , bn).

• R allows several kinds of Π-constructs. We also use a set P of (s1, s2) where
s1, s2 ∈ {∗, 2} to allow several kinds of parametric constants.

• (s1, s2) ∈ P means that we allow parametric constants c(b1, . . . , bn) : A where
b1, . . . , bn have types B1, . . . , Bn of sort s1, and A is of type s2.

• If both (∗, s2) ∈ P and (2, s2) ∈ P then combinations of parameters allowed.
For example, it is allowed that B1 has type ∗, whilst B2 has type 2.
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The Cube with parametric constants

• Let (∗, ∗) ⊆ R,P ⊆ {(∗, ∗), (∗, 2), (2, ∗), (2,2)}.

• λRP = λR and the two rules (
→

C-weak) and (
→

C-app):

Γ ⊢ b : B Γ,∆i ⊢ Bi : si Γ,∆ ⊢ A : s
Γ, c(∆) : A ⊢ b : B

(si, s) ∈ P , c is Γ-fresh

Γ1, c(∆):A,Γ2 ⊢ bi:Bi[xj:=bj]
i−1
j=1 (i = 1, . . . , n)

Γ1, c(∆):A,Γ2 ⊢ A : s (if n = 0)
Γ1, c(∆):A, Γ2 ⊢ c(b1, . . . , bn) : A[xj:=bj]

n
j=1

∆ ≡ x1:B1, . . . , xn:Bn.
∆i ≡ x1:B1, . . . , xi−1:Bi−1
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Properties of the Refined Cube

• (Correctness of types) If Γ ⊢ A : B then (B ≡ 2 or Γ ⊢ B :
S for some sort S).

• (Subject Reduction SR) If Γ ⊢ A : B and A→→β A′ then Γ ⊢ A′ : B

• (Strong Normalisation) For all ⊢-legal terms M , we have SN→→β
(M).

• Other properties such as Uniqueness of types and typability of subterms hold.

• λRP is the system which has Π-formation rules R and parameter rules P .

• Let λRP parametrically conservative (i.e., (s1, s2) ∈ P implies (s1, s2) ∈ R).

– The parameter-free system λR is at least as powerful as λRP .
– If Γ ⊢

RP a : A then {Γ} ⊢R {a} : {A} .
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Example

• R = {(∗, ∗), (∗, 2)}

P 1 = ∅ P 2 = {(∗, ∗)} P 3 = {(∗, 2)} P 4 = {(∗, ∗), (∗, 2)}

All λRP i for 1 ≤ i ≤ 4 with the above specifications are all equal in power.

• R5 = {(∗, ∗)} P 5 = {(∗, ∗), (∗, 2)}.

λ→ < λR5P 5 < λP: we can to talk about predicates:

α : ∗,
eq(x:α, y:α) : ∗,
refl(x:α) : eq(x, x),

symm(x:α, y:α, p:eq(x, y)) : eq(y, x),
trans(x:α, y:α, z:α, p:eq(x, y), q:eq(y, z)) : eq(x, z)

.

eq not possible in λ→.
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The refined Barendregt Cube

λ→ λP

λ2 λP2

λω λPω

λCλω

-

6

1

-

6

1

(∗
,2

) ∈
R

(2, ∗) ∈ R

(2, ∗) ∈ P

(∗
,2

) ∈
P

(2,2) ∈ P

(2,2) ∈ R
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LF, ML, Aut-68, and Aut-QE in the refined Cube

λ→ λP

λ2 λP2

λω λPω

λCλω

Aut-68 Aut-QEML

LF
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And he was a great mind for whom even the most complex idea was as simple as
an A
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Theme 4: Identifying λ and Π (see [Kamareddine, 2005])

• In the cube of the generalised framework of type systems, we saw that the
syntax for terms (functions) and types was intermixed with the only distinction
being λ- versus Π-abstraction.

• We unify the two abstractions into one.
T♭ ::= V | S | T♭T♭ | ♭V :T♭.T♭

• V is a set of variables and S = {∗, 2}.

• The β-reduction rule becomes (♭) (♭x:A.B)C →♭ B[x := C].

• Now we also have the old Π-reduction (Πx:A.B)C →Π B[x := C] which treats
type instantiation like function instantiation.

• The type formation rule becomes

(♭1)
Γ ⊢ A : s1 Γ, x:A ⊢ B : s2

Γ ⊢ (♭x:A.B) : s2
(s1, s2) ∈ R

Lambda2012 58



(axiom) 〈〉 ⊢ ∗ : 2

(start)
Γ ⊢ A : s

Γ, x:A ⊢ x : A
x 6∈ dom (Γ)

(weak)
Γ ⊢ A : B Γ ⊢ C : s

Γ, x:C ⊢ A : B
x 6∈ dom (Γ)

(♭2)
Γ, x:A ⊢ b : B Γ ⊢ (♭x:A.B) : s

Γ ⊢ (♭x:A.b) : (♭x:A.B)

(app♭)
Γ ⊢ F : (♭x:A.B) Γ ⊢ a : A

Γ ⊢ Fa : B[x:=a]

(conv)
Γ ⊢ A : B Γ ⊢ B′ : s B =β B′

Γ ⊢ A : B′
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Translations between the systems with 2 binders and those

with one binder

• For A ∈ T , we define A ∈ T♭ as follows:

– s ≡ s x ≡ x AB ≡ A B
– λx:A.B ≡ Πx:A.B ≡ ♭x:A.B.

• For contexts we define: 〈〉 ≡ 〈〉 Γ, x : A ≡ Γ, x : A.

• For A ∈ T♭, we define [A] to be {A′ ∈ T such that A′ ≡ A}.

• For context, obviously: [Γ] ≡ {Γ′ such that Γ′ ≡ Γ}.
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Isomorphism of the cube and the ♭-cube

• If Γ ⊢ A : B then Γ ⊢♭ A : B.

• If Γ ⊢♭ A : B then there are unique Γ′ ∈ [Γ], A′ ∈ [A] and B′ ∈ [B] such that
Γ′ ⊢π A′ : B′.

• The ♭-cube enjoys all the properties of the cube except the unicity of types.
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Organised multiplicity of Types for ⊢♭ and →♭ [Kamareddine,

2005]

For many type systems, unicity of types is not necessary (e.g. Nuprl).

We have however an organised multiplicity of types.

1. If Γ ⊢♭ A : B1 and Γ ⊢♭ A : B2, then B1
⋄
=♭ B2.

2. If Γ ⊢♭ A1 : B1 and Γ ⊢♭ A2 : B2 and A1 =♭ A2, then B1
⋄
=♭ B2.

3. If Γ ⊢♭ B1 : s1, B1 =♭ B2 and Γ ⊢♭ A : B2 then Γ ⊢♭ B2 : s1.

4. Assume Γ ⊢♭ A : B1 and (Γ ⊢♭ A : B1)
−1 = (Γ′, A′, B′

1). Then B1 =♭ B2 if:

(a) either Γ ⊢♭ A : B2, (Γ ⊢♭ A : B2)
−1 = (Γ′, A′′, B′

2) and B′
1 =β B′

2,
(b) or Γ ⊢♭ C : B2, (Γ ⊢♭ C : B2)

−1 = (Γ′, C′, B′
2) and A′ =β C ′.
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Theme 4: Extending the cube with Π-reduction loses subject

reduction [Kamareddine et al., 1999b]

If we change (appl) by (new appl) in the cube we lose subject reduction.

(appl)
Γ ⊢ F : (Πx:A.B) Γ ⊢ a : A

Γ ⊢ Fa : B[x := a]

(new appl)
Γ ⊢ F : (Πx:A.B) Γ ⊢ a : A

Γ ⊢ Fa : (Πx:A.B)a

[Kamareddine et al., 1999b] solved the problem by re-incorporating Frege and
Russell’s notions of low level functions (which was lost in Church’s notion of
function).

The same problem and solution can be repeated in our ♭-cube with type
instantiation (Π-reduction).
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Adding type instantiation to the typing rules of the ♭-cube

If we change (app♭) by (new app♭) in the ♭-cube we lose subject reduction.

(app♭)
Γ ⊢♭ F : (Πx:A.B) Γ ⊢♭ a : A

Γ ⊢♭ Fa : B[x := a]

(app♭♭)
Γ ⊢♭ F : (♭x:A.B) Γ ⊢♭ a : A

Γ ⊢♭ Fa : (♭x:A.B)a
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Failure of correctness of types and subject reduction

• Correctness of types no longer holds. With (appl♭♭) one can have Γ ⊢ A : B
without B ≡ 2 or ∃S . Γ ⊢ B : S.

• For example, z : ∗, x : z ⊢ (♭y:z.y)x : (♭y:z.z)x yet (♭y:z.z)x 6≡ 2 and
∀s . z : ∗, x : z 6⊢ (♭y:z.z)x : s.

• Subject Reduction no longer holds. That is, with (appl♭): Γ ⊢ A : B and
A→→ A′ may not imply Γ ⊢ A′ : B.

• For example, z : ∗, x : z ⊢ (♭y:z.y)x : (♭y:z.z)x and (♭y:z.y)x →♭ x, but one
can’t show z : ∗, x : z ⊢ x : (♭y:z.z)x.
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Solving the problem

Keep all the typing rules of the ♭-cube the same except: replace (conv) by
(new-conv), (appl♭) by (appl♭♭) and add three new rules as follows:

(start-def)
Γ ⊢ A : s Γ ⊢ B : A

Γ, x = B:A ⊢ x : A
x 6∈ dom (Γ)

(weak-def)
Γ ⊢ A : B Γ ⊢ C : s Γ ⊢ D : C

Γ, x = D:C ⊢ A : B
x 6∈ dom (Γ)

(def)
Γ, x = B:A ⊢ C : D

Γ ⊢ (♭x:A.C)B : D[x := B]

(new-conv)
Γ ⊢ A : B Γ ⊢ B′ : s Γ ⊢ B =def B′

Γ ⊢ A : B′

(appl♭♭)
Γ ⊢ F : ♭x:A.B Γ ⊢ a : A

Γ ⊢ Fa : (♭x:A.B)a
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In the conversion rule, Γ ⊢ B =def B′ is defined as:

• If B =♭ B′ then Γ ⊢ B =def B′

• If x = D : C ∈ Γ and B′ arises from B by substituting one particular free
occurrence of x in B by D then Γ ⊢ B =def B′.

• Our 3 new rules and the definition of Γ ⊢ B =def B′ are trying to re-incorporate
low-level aspects of functions that are not present in Church’s λ-calculus.

• In fact, our new framework is closer to Frege’s abstraction principle and the
principles ∗9·14 and ∗9·15 of [Whitehead and Russell, 19101, 19272].

Lambda2012 67



Correctness of types holds.

• We demonstrate this with the earlier example.

• Recall that we have z : ∗, x : z ⊢ (♭y:z.y)x : (♭y:z.z)x and want that for some
s, z : ∗, x : z ⊢ (♭y:z.z)x : s.

• Here is how the latter formula now holds:

z : ∗, x : z ⊢ z : ∗ (start and weakening)
z : ∗, x : z.y = x : z ⊢ z : ∗ (weakening)
z : ∗, x : z ⊢ (♭y:z.z)x : ∗[y := x] ≡ ∗ (def rule)
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Subject Reduction holds.

• We demonstrate this with the earlier example.

• Recall that we have z : ∗, x : z ⊢ (♭y:z.y)x : (♭y:z.z)x and (λy:z.y)x→β x and
we need to show that z : ∗, x : z ⊢ x : (♭y:z.z)x.

• Here is how the latter formula now holds:

a. z : ∗, x : z ⊢ x : z (start and weakening)
b. z : ∗, x : z ⊢ (♭y:z.z)x : ∗ (from 1 above)

z : ∗, x : z ⊢ x : (♭y:z.z)x (conversion, a, b, and z =β (♭y:z.z)x)
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He liked to join in everything
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He was a great listener
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He was an impressive company
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He was a gentleman
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