
From the Foundation of Mathematics to the

Generalisation of Functions and the Birth of Types

and Computation

A Talk dedicated to Professor Tetsuo Ida

Fairouz Kamareddine
Heriot-Watt University, Edinburgh, Scotland

June 2012

Tetsuo Ida Symposium

Prof Ida will always be at the top of the tree supporting and influencing us

Tetsuo Ida Symposium 1

Summary

• General definition of function 1879 [Frege, 1879] is key to Frege’s formalisation
of logic.

• Self-application of functions is the heart of Russell’s paradox [Russell, 1902].

• To avoid paradox Russell controled function application via type theory.

• Church’s λ→ [Church, 1940] is a simply typed calculus of functions.

• The hierarchy of types in λ→ is unsatisfactory.

• The notion of function adopted in the λ-calculus is unsatisfactory (cf.
[Kamareddine et al., 2003a]).

• Hence, birth of different systems of functions and types, each with different
functional power.

Tetsuo Ida Symposium 2

• We discuss the evolution of functions and types and their use in logic and
computation.

• Frege’s functions 6= Principia’s functions 6= λ-calculus functions (1932).

• Not all functions need to be fully abstracted as in the λ-calculus. For some
functions, their values are enough.

• Non-first-class functions allow us to stay at a lower order (keeping decidability,
typability, etc.) without losing the flexibility of the higher-order aspects.

• Furthermore, non-first-class functions allow placing the type systems of modern
theorem provers/programming languages like ML, LF and Automath more
accurately in the modern formal hierarchy of types.

• We discuss the lessons learned from formalising mathematics in logic (à la
Principia) and in proof checkers (à la Automath, or any modern proof checker).

• We also discuss functions and types à la de Bruijn.

Tetsuo Ida Symposium 3

The development of new research ideas have always been possible by the
encouragement, teaching and co-operation of Prof. Ida

Tetsuo Ida Symposium 4

His supportive ear and kind personality are invaluable

Tetsuo Ida Symposium 5

Here he is again giving all the encouragement possible

Tetsuo Ida Symposium 6

Prehistory of Types (Euclid)

• Euclid’s Elements (circa 325 B.C.) begins with:

1. A point is that which has no part;
2. A line is breadthless length.

...
15. A circle is a plane figure contained by one line such that all the straight

lines falling upon it from one point among those lying within the figure are
equal to one another.

• 1..15 define points, lines, and circles which Euclid distinguished between.

• Euclid always mentioned to which class (points, lines, etc.) an object belonged.

Tetsuo Ida Symposium 7

Prehistory of Types (Euclid)

• By distinguishing classes of objects, Euclid prevented undesired/impossible
situations. E.g., whether two points (instead of two lines) are parallel.

• Intuition implicitly forced Euclid to think about the type of the objects.

• As intuition does not support the notion of parallel points, he did not even try
to undertake such a construction.

• In this manner, types have always been present in mathematics, although they
were not noticed explicitly until the late 1800s.

• If you studied geometry, then you have an (implicit) understanding of types.

Tetsuo Ida Symposium 8

Prehistory of Types (Paradox Threats)

• From 1800, mathematical systems became less intuitive, for several reasons:

– Very complex or abstract systems.
– Formal systems.
– Something with less intuition than a human using the systems:

a computer or an algorithm.

• These situations are paradox threats. An example is Frege’s Naive Set Theory.

• Not enough intuition to activate the (implicit) type theory to warn against an
impossible situation.

Tetsuo Ida Symposium 9

Prehistory of Types (formal systems in 19th century)

In the 19th century, the need for a more precise style in mathematics arose,
because controversial results had appeared in analysis.

• 1879: Frege was not satisfied with the use of natural language in mathematics:

“. . . I found the inadequacy of language to be an obstacle; no matter how
unwieldy the expressions I was ready to accept, I was less and less able,
as the relations became more and more complex, to attain the precision
that my purpose required.”

(Begriffsschrift, Preface)

Frege therefore presented Begriffsschrift [Frege, 1879], the first formalisation
of logic giving logical concepts via symbols rather than natural language.

• 1892-1903 Frege’s Grundgesetze der Arithmetik [Frege, 1892, 1903], could
handle elementary arithmetic, set theory, logic, and quantification.

Tetsuo Ida Symposium 10

Prehistory of Types (Begriffsschrift’s functions)

The introduction of a very general definition of function was the key to the
formalisation of logic. Frege defined what we will call the Abstraction Principle.

Abstraction Principle 1.

“If in an expression, [. . .] a simple or a compound sign has one or more
occurrences and if we regard that sign as replaceable in all or some of these
occurrences by something else (but everywhere by the same thing), then we
call the part that remains invariant in the expression a function, and the
replaceable part the argument of the function.”

(Begriffsschrift, Section 9)

Tetsuo Ida Symposium 11

Prehistory of Types (Begriffsschrift’s functions)

• Frege put no restrictions on what could play the role of an argument.

• An argument could be a number, a proposition, or a function.

• The result of applying a function to an argument need not be a number.

In Function and Concept he was aware of the fact that making a difference
between first-level and second-level objects is essential to prevent paradoxes:

“The ontological proof of God’s existence suffers from the fallacy of treating
existence as a first-level concept.”

(Function and Concept, p. 27, footnote)

Frege did indeed avoid the paradox in his Begriffsschrift.

Tetsuo Ida Symposium 12

Prehistory of Types (Grundgesetze’s functions)

The Begriffsschrift, however, was only a prelude to Frege’s writings.
• In Grundlagen der Arithmetik [Frege, 1884] he argued that mathematics can

be seen as a branch of logic.

• In Grundgesetze der Arithmetik [Frege, 1892, 1903] he described the
elementary parts of arithmetics within an extension of the logical framework of
Begriffsschrift.

• Frege approached the paradox threats for a second time at the end of Section
2 of his Grundgesetze.

• He did not apply a function to itself, but to its course-of-values (graph).

• Frege denoted the course-of-values of a function Φ(x) by ὲΦ(ε). The definition
of equal courses-of-values could therefore be expressed as

ὲf(ε) = ὲg(ε)←→ ∀a[f(a) = g(a)]. (1)

Tetsuo Ida Symposium 13

Prehistory of Types (Grundgesetze’s functions)

• Frege treated courses-of-values as ordinary objects.

• As a consequence, a function that takes objects as arguments could have its
own course-of-values as an argument.

• All essential information of a function is contained in its graph.

• So intuitively, a system in which a function can be applied to its own graph
should have similar possibilities as a system in which a function can be applied
to itself.

• Frege excluded the paradox threats from his system by forbidding self-
application,

• but due to his treatment of courses-of-values these threats were able to enter
his system through a back door.

Tetsuo Ida Symposium 14

Prehistory of Types (Russell’s paradox in Grundgesetze)

• In 1902, Russell wrote a letter to Frege [Russell, 1902], informing him that he
had discovered a paradox in his Begriffsschrift (Begriffsschrift does not suffer
from a paradox).

• Russell gave his well-known argument, defining the propositional function f(x)
by ¬x(x) (in Russell’s words: “to be a predicate that cannot be predicated of
itself”).

• Russell assumed f(f). Then by definition of f , ¬f(f), a contradiction.
Therefore: ¬f(f) holds. But then (again by definition of f), f(f) holds.
Russell concluded that both f(f) and ¬f(f) hold, a contradiction.

• Only six days later, Frege answered Russell that Russell’s derivation of the
paradox was incorrect [Frege, 1902] but explained that Russell’s argument
could be amended to a paradox in the system of his Grundgesetze, using the
course-of-values of functions.

Tetsuo Ida Symposium 15

When tradition fails, one needs to take a deep breath and reflect deeply

Tetsuo Ida Symposium 16

We know we are on the right path when we are in harmony with nature

Tetsuo Ida Symposium 17

The birth of type theory
• To avoid paradox Russell controled function application via type theory.

• [Russell, 1903] gives the first type theory: the Ramified Type Theory (rtt).

• rtt is used in Principia Mathematica [Whitehead and Russell, 19101, 19272].

• Simple theory of types (stt): [Ramsey, 1926], [Hilbert and Ackermann, 1928].

• Church’s simply typed λ-calculus λ→ [Church, 1940] = λ-calculus + stt.

• The hierarchies of types (and orders) in rtt and stt are unsatisfactory.

• Numbers, booleans, the identity function have to be defined at every level.

• We can represent (and type) terms like λx : o.x and λx : ι.x but not λx : α.x,
where α can be instantiated to any type.

• This led to new (modern) type theories that allow more general notions of
functions (e.g, polymorphic).

Tetsuo Ida Symposium 18

The evolution of functions with Frege, Russell and Church

• Historically, functions have long been treated as a kind of meta-objects.

• Function values were the important part, not abstract functions.

• In the low level/operational approach there are only function values.

• The sine-function, is always expressed with a value: sin(π), sin(x) and
properties like: sin(2x) = 2 sin(x) cos(x).

• In many mathematics courses, one calls f(x)—and not f—the function.

• Frege, Russell and Church wrote x 7→ x+3 resp. as x+3, x̂+3 and λx.x+3.

• Principia’s functions are based on Frege’s Abstraction Principles but can be
first-class citizens. Frege used courses-of-values to speak about functions.

• Church made every function a first-class citizen. This is rigid and does not
represent the development of logic in 20th century.

Tetsuo Ida Symposium 19

Functionalisation and Instantiation

[Kamareddine et al., 2003b] assessed evolution of the function concept from two
points of vue:

• Functionalisation: the construction of a function out of an expression,
as in constructing the function λx.x× 3 + x from the expression 2× 3 + 2.

• Functionalisation is

– Abstraction from a subexpression e.g., moving from 2× 3 + 2 to x× 3 + x
– Function construction e.g., turning x× 3 + x into λx.x× 3 + x.

• Instantiation: the calculation of a function value when a suitable argument is
assigned to the function,
as in the construction of 2× 3+2 by applying the function λx.x× 3+x to 2.

• Instantiation is:
– Application construction e.g., (λx.x×3+x)2 the application of λx.x×3+x

to 2
– Concretisation to a subexpression e.g., calculating (λx.x×3+x)2 to 2×3+2.

Tetsuo Ida Symposium 20

Functionalisation and Instantiation for Frege, Russell and

Church

• Frege [Frege, 1879] focuses on abstraction from a subexpression and does not
employ function construction. He does not distinguish the function x× 3 + x
from the expression x× 3 + x and uses the notation x̀(x× 3 + x) for what he
calls the course-of-value of the function.

• Principia allows both parts of functionalisation and writes x̂ × 3 + x̂ for the
function (see ∗9·14 and ∗9·15 of [Whitehead and Russell, 19101, 19272]).

• The λ-calculus focuses on function construction and does not employ
abstraction from a subexpression. The abstraction from 2× 3 + 2 to x× 3 + x
is not included in the syntax.

Tetsuo Ida Symposium 21

λ-calculus does not fully represent functionalisation
1. Abstraction from a subexpression 2 + 3 7→ x + 3

2. Function construction x + 3 7→ λx.x + 3

3. Application construction (λx.x + 3)2

4. Concretisation to a subexpression (λx.(x + 3))2→ 2 + 3

• cannot abstract only half way: x + 3 is not a function, λx.x + 3 is.

• This is why notions like parameterised functions (functions with parameters)
have been introduced. To allow x + 3 to be a function in the lambda calculus.

• cannot instantiate x + 3 with argument: (x + 3) cannot be instantiated to
2+3.

• This is why notions like explicit substitutions have been introduced. To make
things like (x + 3)[x := 2] explicit.

Tetsuo Ida Symposium 22

During our academic life, it is not the obstacles that define us

Tetsuo Ida Symposium 23

Rather, it is our long-term perserverance and how we overcome these obstacles.

Tetsuo Ida Symposium 24

De Bruijn Indices [de Bruijn, 1972]

• Classical λ-calculus: A ::= x | (λx.B) | (BC)
(λx.A)B →β A[x := B]

• (λx.λy.xy)y →β (λy.xy)[x := y] 6= λy.yy

• (λx.λy.xy)y →β (λy.xy)[x := y] =α (λz.xz)[x := y] = λz.yz

• λx.x and λy.y are the same function. Write this function as λ1.

• Assume a free variable list (say x, y, z, . . .).

• (λλ2 1)2→β (λ2 1)[1 := 2] = λ(2[2 := 3])(1[2 := 3]) = λ3 1

Tetsuo Ida Symposium 25

Classical λ-calculus with de Bruijn indices

• Let i, n ≥ 1 and k ≥ 0

• A ::= n | (λB) | (BC)
(λA)B →β A{{1← B}}

•
U i

k(AB) = U i
k(A) U i

k(B)

U i
k(λA) = λ(U i

k+1(A))
U i

k(n) =

{
n + i− 1 if n > k
n if n ≤ k .

• (A1A2){{i← B}} = (A1{{i← B}}) (A2{{i← B}})
(λA){{i← B}} = λ(A{{i + 1← B}})

n{{i← B}} =







n− 1 if n > i
U i

0(B) if n = i
n if n < i .

• Numerous implementations of proof checkers and programming languages have
been based on de Bruijn indices.

Tetsuo Ida Symposium 26

From classical λ-calculus with de Bruijn indices to

substitution calculus λs [Kamareddine and Ŕıos, 1995]

• Write A{{n← B}} as Aσn B and U i
k(A) as ϕi

kA.

• A ::= n | (λB) | (BC) | (AσiB) | (ϕi
kB) where i, n ≥ 1 , k ≥ 0 .

σ-generation (λA) B −→ A σ1 B

σ-λ-transition (λA) σiB −→ λ(A σi+1 B)

σ-app-transition (A1 A2) σiB −→ (A1 σiB) (A2 σiB)

σ-destruction nσiB −→







n− 1 if n > i
ϕi

0 B if n = i
n if n < i

ϕ-λ-transition ϕi
k(λA) −→ λ(ϕi

k+1 A)

ϕ-app-transition ϕi
k(A1 A2) −→ (ϕi

k A1) (ϕi
k A2)

ϕ-destruction ϕi
k n −→

{
n + i− 1 if n > k
n if n ≤ k

Tetsuo Ida Symposium 27

1. The s-calculus (i.e., λs minus σ-generation) is strongly normalising,

2. The λs-calculus is confluent and simulates (in small steps) β-reduction

3. The λs-calculus preserves strong normalisation PSN.

4. The λs-calculus has a confluent extension with open terms λse.

• The λs-calculus is the only calculus of substitutions which satisfies all the
above properties 1., 2., 3. and 4.

Tetsuo Ida Symposium 28

λυ [Benaissa et al., 1996]

Terms: Λυt ::= IN | ΛυtΛυt | λΛυt | Λυt[Λυs]
Substitutions: Λυs ::=↑ | ⇑ (Λυs) | Λυt.

(Beta) (λa) b −→ a [b/]

(App) (a b)[s] −→ (a [s]) (b [s])

(Abs) (λa)[s] −→ λ(a [⇑(s)])

(FVar) 1 [a/] −→ a

(RVar) n + 1 [a/] −→ n

(FVarLift) 1 [⇑(s)] −→ 1

(RVarLift) n + 1 [⇑(s)] −→ n [s] [↑]
(VarShift) n [↑] −→ n + 1

λυ satisfies 1., 2., and 3., but does not have a confluent extension on open
terms.

Tetsuo Ida Symposium 29

λσ⇑

Terms: Λσt
⇑ ::= IN | Λσt

⇑Λσt
⇑ | λΛσt

⇑ | Λσt
⇑[Λσs

⇑]
Substitutions: Λσs

⇑ ::= id | ↑ | ⇑ (Λσs
⇑) | Λσt

⇑ · Λσs
⇑ | Λσs

⇑ ◦ Λσs
⇑.

(Beta) (λa) b −→ a [b · id]

(App) (a b)[s] −→ (a [s]) (b [s])

(Abs) (λa)[s] −→ λ(a [⇑(s)])

(Clos) (a [s])[t] −→ a [s ◦ t]

(Varshift1) n [↑] −→ n + 1

(Varshift2) n [↑ ◦ s] −→ n + 1 [s]

(FVarCons) 1 [a · s] −→ a

(RVarCons) n + 1 [a · s] −→ n [s]

(FVarLift1) 1 [⇑(s)] −→ 1

(FVarLift2) 1 [⇑(s) ◦ t] −→ 1 [t]

(RVarLift1) n + 1 [⇑(s)] −→ n[s ◦ ↑]
(RVarLift2) n + 1 [⇑(s) ◦ t] −→ n[s ◦ (↑ ◦ t)]

Tetsuo Ida Symposium 30

λσ⇑ rules continued

(Map) (a · s) ◦ t −→ a [t] · (s ◦ t)

(Ass) (s ◦ t) ◦ u −→ s ◦ (t ◦ u)

(ShiftCons) ↑ ◦ (a · s) −→ s

(ShiftLift1) ↑ ◦ ⇑(s) −→ s ◦ ↑
(ShiftLift2) ↑ ◦ (⇑(s) ◦ t) −→ s ◦ (↑ ◦ t)

(Lift1) ⇑(s)◦ ⇑(t) −→ ⇑(s ◦ t)

(Lift2) ⇑(s) ◦ (⇑(t) ◦ u) −→ ⇑(s ◦ t) ◦ u

(LiftEnv) ⇑(s) ◦ (a · t) −→ a · (s ◦ t)

(IdL) id ◦ s −→ s

(IdR) s ◦ id −→ s

(LiftId) ⇑(id) −→ id

(Id) a [id] −→ a

λσ⇑ satisfies 1., 2., and 4., but does not have PSN.

Tetsuo Ida Symposium 31

How is λse obtained from λs?

• A ::= X | n | (λB) | (BC) | (AσiB) | (ϕi
kB) where i, n ≥ 1 , k ≥ 0 .

• Extending the syntax with open terms without extending then rules loses the
confluence (even local confluence):
((λX)Y)σ11→ (Xσ1Y)σ11 ((λX)Y)σ11→ ((λX)σ11)(Y σ11)

• (Xσ1Y)σ11 and ((λX)σ11)(Y σ11) have no common reduct.

• But, ((λX)σ11)(Y σ11)→→ (Xσ21)σ1(Y σ11)

• Simple: add de Bruijn’s metasubstitution and distribution lemmas to the rules
of λs:

Tetsuo Ida Symposium 32

σ-σ (AσiB) σj C −→ (A σj+1 C) σi (B σj−i+1 C) if i ≤ j

σ-ϕ 1 (ϕi
k A) σj B −→ ϕi−1

k A if k < j < k + i

σ-ϕ 2 (ϕi
k A) σj B −→ ϕi

k(A σj−i+1 B) if k + i ≤ j

ϕ-σ ϕi
k(A σj B) −→ (ϕi

k+1 A) σj (ϕi
k+1−j B) if j ≤ k + 1

ϕ-ϕ 1 ϕi
k (ϕj

l A) −→ ϕj
l (ϕi

k+1−j A) if l + j ≤ k

ϕ-ϕ 2 ϕi
k (ϕj

l A) −→ ϕj+i−1
l A if l ≤ k < l + j

• These extra rules are the rewriting of the well-known meta-substitution (σ−σ)
and distribution (ϕ − σ) lemmas (and the 4 extra lemmas needed to prove
them).

Tetsuo Ida Symposium 33

Where did the extra rules come from?

In de Bruijn’s classical λ-calculus we have the lemmas:

(σ − ϕ 1) For k < j < k + i we have: U i−1
k (A) = U i

k(A){{j←B}} .

(ϕ− ϕ 2) For l ≤ k < l + j we have: U i
k(U

j
l (A)) = U j+i−1

l (A) .

(σ − ϕ 2) For k + i ≤ j we have: U i
k(A){{j←B}} = U i

k(A{{j− i + 1←B}}) .

(σ − σ) [Meta-substitution lemma] For i ≤ j we have:
A{{i←B}}{{j←C}} = A{{j + 1←C}}{{i←B{{j− i + 1←C}}}}.

(ϕ− ϕ 1) For j ≤ k + 1 we have: U i
k+p(U

j
p(A)) = U j

p(U i
k+p+1−j(A)) .

(ϕ− σ) [Distribution lemma]
For j ≤ k + 1 we have: U i

k(A{{j←B}}) = U i
k+1(A){{j←U i

k+1−j(B)}} .
The proof of (σ − σ) uses (σ − ϕ 1) and (σ − ϕ 2) both with k = 0.
The proof of (σ − ϕ 2) requires (ϕ− ϕ 2) with l = 0.
Finally, (ϕ− ϕ 1) with p = 0 is needed to prove (ϕ− σ)).

Tetsuo Ida Symposium 34

We know we are on the right path when we are in harmony with nature

Tetsuo Ida Symposium 35

In harmony with nature even in rainy and grey Scotland

Tetsuo Ida Symposium 36

Polymorphism: the typed λ-calculus after Church

• Instead of repeating the work, we take: α : ∗ (α is an arbitrary type) and we
define a polymorphic function F as follows:

λα:∗.λf :α→α.λx:α.f(f(x))

We give F the type:
Πα:∗.(α→ α)→ (α→ α)

• This way, F (α) = λf :α→α.λx:α.f(f(x)) : (α→ α)→ (α→ α)

• We can instantiate α according to our need:

– F (N) = λf :N→N.λx:N.f(f(x)) : (N→ N)→ (N→ N)
– F (B) = λf :B→B.λx:B.f(f(x)) : (B → B)→ (B → B)
– F (B → B) = λf :(B→B)→(B→B).λx:(B→B).f(f(x)) :

((B → B)→ (B → B))→ ((B → B)→ (B → B))

Tetsuo Ida Symposium 37

• This way, types are like functions:

– We can form them by abstraction
– We can instantiate them

• But in the passage from simple to polymorphic types, we have forgotten to
adapt the rule:

(β) (λx:A.b)C → b[x := C]

to a rule which resembles Π:

(Π) (Πx:A.B)C → B[x := C]

• Usually, if b : B, we take (λx:A.b)C : B[x := C] instead of (λx:A.b)C :
(Πx:A.B)C

• De Bruijn’s Automath shows that the rule Π is useful.

Tetsuo Ida Symposium 38

• It seems that the development of type theory is taking us more and more
towards adopting a similar role for the binders λ et Π.

• Did we really need to separate λ et Π?

• I believe that the separation is artificial and that de Bruijn’s intuition is again
a winner.

• What are the properties of type theories with a single binder which represents
both λ et Π?

•

Tetsuo Ida Symposium 39

Common features of modern types and functions

• We can construct a type by abstraction. (Write A : ∗ for A is a type)

– λy:A.y, the identity over A has type A→ A
– λA:∗.λy:A.y, the polymorphic identity has type ΠA:∗.A→ A

• We can instantiate types. E.g., if A = N, then the identity over N

– (λy:A.y)[A := N] has type (A→ A)[A := N] or N→ N.
– (λA:∗.λy:A.y)N has type (ΠA:∗.A→ A)N = (A→ A)[A := N] or N→ N.

• (λx:α.A)B →β A[x := B] (Πx:α.A)B →Π A[x := B]

• Write A→ A as Πy:A.A when y not free in A.

Tetsuo Ida Symposium 40

The Barendregt Cube

• Syntax: A ::= x | ∗ |2 |AB | λx:A.B |Πx:A.B

• Formation rule:
Γ ⊢ A : s1 Γ, x:A ⊢ B : s2

Γ ⊢ Πx:A.B : s2
if (s1, s2) ∈ R

Simple Poly-
morphic

Depend-
ent

Constr-
uctors

Related
system

Refs.

λ→ (∗, ∗) λτ [Church, 1940; Ba
λ2 (∗, ∗) (2, ∗) F [Girard, 1972; Reynolds,
λP (∗, ∗) (∗,2) aut-QE, LF [Bruijn, 1968; Harp
λω (∗, ∗) (2,2) POLYREC [Renardel de Lavalette,
λP2 (∗, ∗) (2, ∗) (∗,2) [Longo and Moggi,
λω (∗, ∗) (2, ∗) (2,2) Fω [Girard, 1972]
λPω (∗, ∗) (∗,2) (2,2)
λC (∗, ∗) (2, ∗) (∗,2) (2,2) CC [Coquand and Huet,

Tetsuo Ida Symposium 41

The Barendregt Cube

λ→ λP

λ2 λP2

λω λPω

λCλω

-

6

1

(∗, 2) ∈ R

(2,2) ∈ R

(2, ∗) ∈ R

Tetsuo Ida Symposium 42

Typing Polymorphic identity needs (2, ∗)

• y : ∗ ⊢ y : ∗ y : ∗, x:y ⊢ y : ∗
y : ∗ ⊢ Πx:y.y : ∗ by (Π) (∗, ∗)

• y : ∗, x : y ⊢ x : y y : ∗ ⊢ Πx:y.y : ∗
y : ∗ ⊢ λx : y.x : Πx:y.y

by (λ)

• ⊢ ∗ : 2 y : ∗ ⊢ Πx:y.y : ∗
⊢ Πy : ∗.Πx:y.y : ∗ by (Π) (2, ∗)

• y : ∗ ⊢ λx : y.x : Πx:y.y ⊢ Πy : ∗.Πx:y.y : ∗
⊢ λy : ∗.λx : y.x : Πy : ∗.Πx:y.y

by (λ)

Tetsuo Ida Symposium 43

The story so far of the evolution of functions and types

• Functions have gone through a long process of evolution involving various
degrees of abstraction/construction/instantiation/concretisation/evaluation.

• Types too have gone through a long process of evolution involving various
degrees of abstraction/construction/instantiation/concretisation/evaluation.

• During their progress, some aspects have been added or removed.

• In this talk we argue that their progresses have been interlinked and that their
abstraction/construction/instantiation/concretisation/evaluation have much in
common.

• We also argue that some of the aspects that have been dismissed during their
evolution need to be re-incorporated.

Tetsuo Ida Symposium 44

From the point of vue of ML
• When Robin Milner designed the language ML, he wanted to to use all of

system F (the second order polymorphic λ-calculus).

• He could not do so because it was not known then whether type checking and
type finding are decidable.

• So, Milner used a fragment of system F for which it was known that type
checking and type finding are decidable.

• Just as well since 23 years later Wells showed that type checking and type
finding in system F are undecidable.

• This meant that ML has polymorphism but not all the polymorphic power of
system F.

• The question is, what system of functions an types does ML use?

• A clean answer can be given when we re-incorporate the low-level function
notion used by Frege and Russell and dismissed by Church.

Tetsuo Ida Symposium 45

• ML treats let val id = (fn x⇒ x) in (id id) end as this Cube term
(λid:(Πα:∗. α→ α). id(β → β)(id β))(λα:∗. λx:α. x)

• To type this in the Cube, the (2, ∗) rule is needed (i.e., λ2).

• ML’s typing rules forbid this expression:
let val id = (fn x⇒ x) in (fn y ⇒ y y)(id id) end
Its equivalent Cube term is this well-formed typable term of λ2:
(λid : (Πα:∗. α→ α).

(λy:(Πα:∗. α→ α). y(β → β)(y β))
(λα:∗. id(α→ α)(idα)))

(λα:∗. λx:α. x)

• Therefore, ML should not have the full Π-formation rule (2, ∗).
ML has limited access to the rule (2, ∗).

• ML’s type system is none of those of the eight systems of the Cube.
[Kamareddine et al., 2001] places the type system of ML on our refined Cube
(between λ2 and λω).

Tetsuo Ida Symposium 46

LF
• LF [Harper et al., 1987] is often described as λP of the Barendregt Cube.

However, Use of Π-formation rule (∗, 2) is restricted in LF [Geuvers, 1993].

• We only need a type Πx:A.B : 2 when pat is applied during construction of
the type Πα:prop.∗ of the operator Prf where for a proposition Σ, Prf(Σ) is
the type of proofs of Σ.

prop:∗ ⊢ prop: ∗ prop:∗, α:prop ⊢ ∗:2
prop:∗ ⊢ Πα:prop.∗ : 2

.

• In LF, this is the only point where the Π-formation rule (∗, 2) is used.
But, Prf is only used when applied to Σ:prop. We never use Prf on its own.

• This use is in fact based on a parametric constant rather than on Π-formation.

• Hence, the practical use of LF would not be restricted if we present Prf in a
parametric form, and use (∗,2) as a parameter instead of a Π-formation rule.

• [Kamareddine et al., 2001] precisely locate LF (between λ→ and λP).

Tetsuo Ida Symposium 47

Parameters: What and Why

• We speak about functions with parameters when referring to functions with
variable values in the low-level approach. The x in f(x) is a parameter.

• Parameters enable the same expressive power as the high-level case, while
allowing us to stay at a lower order. E.g. first-order with parameters versus
second-order without [Laan and Franssen, 2001].

• Desirable properties of the lower order theory (decidability, easiness of
calculations, typability) can be maintained, without losing the flexibility of
the higher-order aspects.

• This low-level approach is still worthwhile for many exact disciplines. In fact,
both in logic and in computer science it has certainly not been wiped out, and
for good reasons.

Tetsuo Ida Symposium 48

Automath

• The first tool for mechanical representation and verification of mathematical
proofs, Automath, has a parameter mechanism.

• Mathematical text in Automath written as a finite list of lines of the form:

x1 : A1, . . . , xn : An ⊢ g(x1, . . . , xn) = t : T.

Here g is a new name, an abbreviation for the expression t of type T and
x1, . . . , xn are the parameters of g, with respective types A1, . . . , An.

• Each line introduces a new definition which is inherently parametrised by the
variables occurring in the context needed for it.

• Developments of ordinary mathematical theory in Automath [Benthem Jutting,
1977] revealed that this combined definition and parameter mechanism is vital
for keeping proofs manageable and sufficiently readable for humans.

Tetsuo Ida Symposium 49

Extending the Cube with parametric constants, see

[Kamareddine et al., 2001]

• We add parametric constants of the form c(b1, . . . , bn) with b1, . . . , bn terms
of certain types and c ∈ C.

• b1, . . . , bn are called the parameters of c(b1, . . . , bn).

• R allows several kinds of Π-constructs. We also use a set P of (s1, s2) where
s1, s2 ∈ {∗, 2} to allow several kinds of parametric constants.

• (s1, s2) ∈ P means that we allow parametric constants c(b1, . . . , bn) : A where
b1, . . . , bn have types B1, . . . , Bn of sort s1, and A is of type s2.

• If both (∗, s2) ∈ P and (2, s2) ∈ P then combinations of parameters allowed.
For example, it is allowed that B1 has type ∗, whilst B2 has type 2.

Tetsuo Ida Symposium 50

The Cube with parametric constants

• Let (∗, ∗) ⊆ R,P ⊆ {(∗, ∗), (∗, 2), (2, ∗), (2,2)}.

• λRP = λR and the two rules (
→

C-weak) and (
→

C-app):

Γ ⊢ b : B Γ,∆i ⊢ Bi : si Γ,∆ ⊢ A : s
Γ, c(∆) : A ⊢ b : B

(si, s) ∈ P , c is Γ-fresh

Γ1, c(∆):A,Γ2 ⊢ bi:Bi[xj:=bj]
i−1
j=1 (i = 1, . . . , n)

Γ1, c(∆):A,Γ2 ⊢ A : s (if n = 0)
Γ1, c(∆):A, Γ2 ⊢ c(b1, . . . , bn) : A[xj:=bj]

n
j=1

∆ ≡ x1:B1, . . . , xn:Bn.
∆i ≡ x1:B1, . . . , xi−1:Bi−1

Tetsuo Ida Symposium 51

Properties of the Refined Cube

• (Correctness of types) If Γ ⊢ A : B then (B ≡ 2 or Γ ⊢ B :
S for some sort S).

• (Subject Reduction SR) If Γ ⊢ A : B and A→→β A′ then Γ ⊢ A′ : B

• (Strong Normalisation) For all ⊢-legal terms M , we have SN→→β
(M).

• Other properties such as Uniqueness of types and typability of subterms hold.

• λRP is the system which has Π-formation rules R and parameter rules P .

• Let λRP parametrically conservative (i.e., (s1, s2) ∈ P implies (s1, s2) ∈ R).

– The parameter-free system λR is at least as powerful as λRP .
– If Γ ⊢

RP a : A then {Γ} ⊢R {a} : {A} .

Tetsuo Ida Symposium 52

Example

• R = {(∗, ∗), (∗, 2)}
P 1 = ∅ P 2 = {(∗, ∗)} P 3 = {(∗, 2)} P 4 = {(∗, ∗), (∗, 2)}
All λRP i for 1 ≤ i ≤ 4 with the above specifications are all equal in power.

• R5 = {(∗, ∗)} P 5 = {(∗, ∗), (∗, 2)}.
λ→ < λR5P 5 < λP: we can to talk about predicates:

α : ∗,
eq(x:α, y:α) : ∗,
refl(x:α) : eq(x, x),

symm(x:α, y:α, p:eq(x, y)) : eq(y, x),
trans(x:α, y:α, z:α, p:eq(x, y), q:eq(y, z)) : eq(x, z)

.

eq not possible in λ→.

Tetsuo Ida Symposium 53

The refined Barendregt Cube

λ→ λP

λ2 λP2

λω λPω

λCλω

-

6

1

-

6

1

(∗,
2
) ∈

R

(2, ∗) ∈ R

(2, ∗) ∈ P

(∗,
2
) ∈

P

(2,2) ∈ P

(2,2) ∈ R

Tetsuo Ida Symposium 54

LF, ML, Aut-68, and Aut-QE in the refined Cube

λ→ λP

λ2 λP2

λω λPω

λCλω

Aut-68 Aut-QEML

LF

Tetsuo Ida Symposium 55

Logicians versus mathematicians and induction over numbers

• Logician uses ind: Ind as proof term for an application of the induction axiom.
The type Ind can only be described in λR where R = {(∗, ∗), (∗,2), (2, ∗)}:

Ind = Πp:(N→∗).p0→(Πn:N.Πm:N.pn→Snm→pm)→Πn:N.pn (2)

• Mathematician uses ind only with P : N→∗, Q : P0 and R :
(Πn:N.Πm:N.Pn→Snm→Pm) to form a term (indPQR):(Πn:N.Pn).

• The use of the induction axiom by the mathematician is better described by
the parametric scheme (p, q and r are the parameters of the scheme):

ind(p:N→∗, q:p0, r:(Πn:N.Πm:N.pn→Snm→pm)) : Πn:N.pn (3)

• The logician’s type Ind is not needed by the mathematician and the types
that occur in 3 can all be constructed in λR with R = {(∗, ∗)(∗,2)}.

Tetsuo Ida Symposium 56

Logicians versus mathematicians and induction over numbers

• Mathematician: only applies the induction axiom and doesn’t need to know
the proof-theoretical backgrounds.

• A logician develops the induction axiom (or studies its properties).

• (2, ∗) is not needed by the mathematician. It is needed in logician’s approach
in order to form the Π-abstraction Πp:(N→ ∗). · · ·).

• Consequently, the type system that is used to describe the mathematician’s
use of the induction axiom can be weaker than the one for the logician.

• Nevertheless, the parameter mechanism gives the mathematician limited (but
for his purposes sufficient) access to the induction scheme.

Tetsuo Ida Symposium 57

Who is the logician? who is the mathematician? Who is the computer scientist?

Tetsuo Ida Symposium 58

• Parameters enable the same expressive power as the high-level case, while
allowing us to stay at a lower order. E.g. first-order with parameters versus
second-order without [Laan and Franssen, 2001].

• Desirable properties of the lower order theory (decidability, easiness of
calculations, typability) can be maintained, without losing the flexibility of
the higher-order aspects.

• Parameters enable us to find an exact position of type systems in the generalised
framework of type systems.

• Parameters describe the difference between developers and users of systems.

Tetsuo Ida Symposium 59

This is harder. Who is the logician? who is the mathematician? Who is the
developer? Who is the user?

Tetsuo Ida Symposium 60

Identifying λ and Π (see [Kamareddine, 2005])

• In the cube of the generalised framework of type systems, we saw that the
syntax for terms (functions) and types was intermixed with the only distinction
being λ- versus Π-abstraction.

• We unify the two abstractions into one.
T♭ ::= V | S | T♭T♭ | ♭V :T♭.T♭

• V is a set of variables and S = {∗, 2}.

• The β-reduction rule becomes (♭) (♭x:A.B)C →♭ B[x := C].

• Now we also have the old Π-reduction (Πx:A.B)C →Π B[x := C] which treats
type instantiation like function instantiation.

• The type formation rule becomes

(♭1)
Γ ⊢ A : s1 Γ, x:A ⊢ B : s2

Γ ⊢ (♭x:A.B) : s2
(s1, s2) ∈ R

Tetsuo Ida Symposium 61

(axiom) 〈〉 ⊢ ∗ : 2

(start)
Γ ⊢ A : s

Γ, x:A ⊢ x : A
x 6∈ dom (Γ)

(weak)
Γ ⊢ A : B Γ ⊢ C : s

Γ, x:C ⊢ A : B
x 6∈ dom (Γ)

(♭2)
Γ, x:A ⊢ b : B Γ ⊢ (♭x:A.B) : s

Γ ⊢ (♭x:A.b) : (♭x:A.B)

(app♭)
Γ ⊢ F : (♭x:A.B) Γ ⊢ a : A

Γ ⊢ Fa : B[x:=a]

(conv)
Γ ⊢ A : B Γ ⊢ B′ : s B =β B′

Γ ⊢ A : B′

Tetsuo Ida Symposium 62

Translations between the systems with 2 binders and those

with one binder

• For A ∈ T , we define A ∈ T♭ as follows:

– s ≡ s x ≡ x AB ≡ A B
– λx:A.B ≡ Πx:A.B ≡ ♭x:A.B.

• For contexts we define: 〈〉 ≡ 〈〉 Γ, x : A ≡ Γ, x : A.

• For A ∈ T♭, we define [A] to be {A′ ∈ T such that A′ ≡ A}.

• For context, obviously: [Γ] ≡ {Γ′ such that Γ′ ≡ Γ}.

Tetsuo Ida Symposium 63

Isomorphism of the cube and the ♭-cube

• If Γ ⊢ A : B then Γ ⊢♭ A : B.

• If Γ ⊢♭ A : B then there are unique Γ′ ∈ [Γ], A′ ∈ [A] and B′ ∈ [B] such that
Γ′ ⊢π A′ : B′.

• The ♭-cube enjoys all the properties of the cube except the unicity of types.

Tetsuo Ida Symposium 64

Organised multiplicity of Types for ⊢♭ and →♭ [Kamareddine,

2005]

For many type systems, unicity of types is not necessary (e.g. Nuprl).

We have however an organised multiplicity of types.

1. If Γ ⊢♭ A : B1 and Γ ⊢♭ A : B2, then B1
⋄
=♭ B2.

2. If Γ ⊢♭ A1 : B1 and Γ ⊢♭ A2 : B2 and A1 =♭ A2, then B1
⋄
=♭ B2.

3. If Γ ⊢♭ B1 : s1, B1 =♭ B2 and Γ ⊢♭ A : B2 then Γ ⊢♭ B2 : s1.

4. Assume Γ ⊢♭ A : B1 and (Γ ⊢♭ A : B1)
−1 = (Γ′, A′, B′

1). Then B1 =♭ B2 if:

(a) either Γ ⊢♭ A : B2, (Γ ⊢♭ A : B2)
−1 = (Γ′, A′′, B′

2) and B′
1 =β B′

2,
(b) or Γ ⊢♭ C : B2, (Γ ⊢♭ C : B2)

−1 = (Γ′, C′, B′
2) and A′ =β C ′.

Tetsuo Ida Symposium 65

Extending the cube with Π-reduction loses subject reduction

[Kamareddine et al., 1999]

If we change (appl) by (new appl) in the cube we lose subject reduction.

(appl)
Γ ⊢ F : (Πx:A.B) Γ ⊢ a : A

Γ ⊢ Fa : B[x := a]

(new appl)
Γ ⊢ F : (Πx:A.B) Γ ⊢ a : A

Γ ⊢ Fa : (Πx:A.B)a

[Kamareddine et al., 1999] solved the problem by re-incorporating Frege and
Russell’s notions of low level functions (which was lost in Church’s notion of
function).

The same problem and solution can be repeated in our ♭-cube.

Tetsuo Ida Symposium 66

Adding type instantiation to the typing rules of the ♭-cube

If we change (app♭) by (new app♭) in the ♭-cube we lose subject reduction.

(app♭)
Γ ⊢♭ F : (Πx:A.B) Γ ⊢♭ a : A

Γ ⊢♭ Fa : B[x := a]

(app♭♭)
Γ ⊢♭ F : (♭x:A.B) Γ ⊢♭ a : A

Γ ⊢♭ Fa : (♭x:A.B)a

Tetsuo Ida Symposium 67

Failure of correctness of types and subject reduction

• Correctness of types no longer holds. With (appl♭♭) one can have Γ ⊢ A : B
without B ≡ 2 or ∃S . Γ ⊢ B : S.

• For example, z : ∗, x : z ⊢ (♭y:z.y)x : (♭y:z.z)x yet (♭y:z.z)x 6≡ 2 and
∀s . z : ∗, x : z 6⊢ (♭y:z.z)x : s.

• Subject Reduction no longer holds. That is, with (appl♭): Γ ⊢ A : B and
A→→ A′ may not imply Γ ⊢ A′ : B.

• For example, z : ∗, x : z ⊢ (♭y:z.y)x : (♭y:z.z)x and (♭y:z.y)x →♭ x, but one
can’t show z : ∗, x : z ⊢ x : (♭y:z.z)x.

Tetsuo Ida Symposium 68

Solving the problem

Keep all the typing rules of the ♭-cube the same except: replace (conv) by
(new-conv), (appl♭) by (appl♭♭) and add three new rules as follows:

(start-def)
Γ ⊢ A : s Γ ⊢ B : A

Γ, x = B:A ⊢ x : A
x 6∈ dom (Γ)

(weak-def)
Γ ⊢ A : B Γ ⊢ C : s Γ ⊢ D : C

Γ, x = D:C ⊢ A : B
x 6∈ dom (Γ)

(def)
Γ, x = B:A ⊢ C : D

Γ ⊢ (♭x:A.C)B : D[x := B]

(new-conv)
Γ ⊢ A : B Γ ⊢ B′ : s Γ ⊢ B =def B′

Γ ⊢ A : B′

(appl♭♭)
Γ ⊢ F : ♭x:A.B Γ ⊢ a : A

Γ ⊢ Fa : (♭x:A.B)a

Tetsuo Ida Symposium 69

In the conversion rule, Γ ⊢ B =def B′ is defined as:

• If B =♭ B′ then Γ ⊢ B =def B′

• If x = D : C ∈ Γ and B′ arises from B by substituting one particular free
occurrence of x in B by D then Γ ⊢ B =def B′.

• Our 3 new rules and the definition of Γ ⊢ B =def B′ are trying to re-incorporate
low-level aspects of functions that are not present in Church’s λ-calculus.

• In fact, our new framework is closer to Frege’s abstraction principle and the
principles ∗9·14 and ∗9·15 of [Whitehead and Russell, 19101, 19272].

Tetsuo Ida Symposium 70

Correctness of types holds.

• We demonstrate this with the earlier example.

• Recall that we have z : ∗, x : z ⊢ (♭y:z.y)x : (♭y:z.z)x and want that for some
s, z : ∗, x : z ⊢ (♭y:z.z)x : s.

• Here is how the latter formula now holds:

z : ∗, x : z ⊢ z : ∗ (start and weakening)
z : ∗, x : z.y : z〉x ⊢ z : ∗ (weakening)
z : ∗, x : z ⊢ (♭y:z.z)x : ∗[y := x] ≡ ∗ (def rule)

Tetsuo Ida Symposium 71

Subject Reduction holds.

• We demonstrate this with the earlier example.

• Recall that we have z : ∗, x : z ⊢ (♭y:z.y)x : (♭y:z.z)x and (λy:z.y)x→β x and
we need to show that z : ∗, x : z ⊢ x : (♭y:z.z)x.

• Here is how the latter formula now holds:

a. z : ∗, x : z ⊢ x : z (start and weakening)
b. z : ∗, x : z ⊢ (♭y:z.z)x : ∗ (from 1 above)

z : ∗, x : z ⊢ x : (♭y:z.z)x (conversion, a, b, and z =β (♭y:z.z)x)

Tetsuo Ida Symposium 72

Lesson: it is important to respect history

Tetsuo Ida Symposium 73

Common Mathematical Language of mathematicians: Cml

+ Cml is expressive: it has linguistic categories like proofs and theorems.

+ Cml has been refined by intensive use and is rooted in long traditions.

+ Cml is approved by most mathematicians as a communication medium.

+ Cml accommodates many branches of mathematics, and is adaptable to new
ones.

– Since Cml is based on natural language, it is informal and ambiguous.

– Cml is incomplete: Much is left implicit, appealing to the reader’s intuition.

– Cml is poorly organised: In a Cml text, many structural aspects are omitted.

– Cml is automation-unfriendly: A Cml text is a plain text and cannot be easily
automated.

Tetsuo Ida Symposium 74

A Cml-text

From chapter 1, § 2 of E. Landau’s Foundations of Analysis (Landau 1930, 1951).

Theorem 6. [Commutative Law of Addition]

x + y = y + x.

Proof Fix y, and let M be the set of all
x for which the assertion holds.

I) We have

y + 1 = y′,

and furthermore, by the construction in
the proof of Theorem 4,

1 + y = y′,

so that
1 + y = y + 1

and 1 belongs to M.
II) If x belongs to M, then

x + y = y + x,

Therefore

(x + y)′ = (y + x)′ = y + x′.

By the construction in the proof of
Theorem 4, we have

x′ + y = (x + y)′,

hence

x′ + y = y + x′,

so that x′ belongs to M. The assertion

therefore holds for all x. 2

Tetsuo Ida Symposium 75

The problem with formal logic
• No logical language is an alternative to Cml

– A logical language does not have mathematico-linguistic categories, is not
universal to all mathematicians, and is not a good communication medium.

– Logical languages make fixed choices (first versus higher order, predicative
versus impredicative, constructive versus classical, types or sets, etc.). But
different parts of mathematics need different choices and there is no universal
agreement as to which is the best formalism.

– A logician reformulates in logic their formalization of a mathematical-text as
a formal, complete text which is structured considerably unlike the original,
and is of little use to the ordinary mathematician.

– Mathematicians do not want to use formal logic and have for centuries done
mathematics without it.

• So, mathematicians kept to Cml.

• We would like to find an alternative to Cml which avoids some of the features
of the logical languages which made them unattractive to mathematicians.

Tetsuo Ida Symposium 76

What are the options for computerization?

Computers can handle mathematical text at various levels:

• Images of pages may be stored. While useful, this is not a good representation
of language or knowledge.

• Typesetting systems like LaTeX, TeXmacs, can be used.

• Document representations like OpenMath, OMDoc, MathML, can be used.

• Formal logics used by theorem provers (Coq, Isabelle, HOL, Mizar, Isar, etc.)
can be used.

We are gradually developing a system named Mathlang which we hope will
eventually allow building a bridge between the latter 3 levels.

This talk aims at discussing the motivations rather than the details.

Tetsuo Ida Symposium 77

The issues with typesetting systems

+ A system like LaTeX, TeXmacs, provides good defaults for visual appearance,
while allowing fine control when needed.

+ LaTeX and TeXmacs support commonly needed document structures, while
allowing custom structures to be created.

– Unless the mathematician is amazingly disciplined, the logical structure of
symbolic formulas is not represented at all.

– The logical structure of mathematics as embedded in natural language text is
not represented. Automated discovery of the semantics of natural language
text is still too primitive and requires human oversight.

Tetsuo Ida Symposium 78

LATEX example
draft documents ✓

public documents ✓

computations and proofs ✗

\begin{theorem}[Commutative Law of Addition]\label{theorem:6}

$$x+y=y+x.$$

\end {theorem}

\begin{proof}

Fix y, and \mathfrak{M} be the set of all x for which

the assertion holds.

\begin{enumerate}

\item We have $$y+1=y’,$$

and furthermore, by the construction in

the proof of Theorem~\ref{theorem:4}, $$1+y=y’,$$

so that $$1+y=y+1$$

and 1 belongs to \mathfrak{M}.

Tetsuo Ida Symposium 79

\item If x belongs to \mathfrak{M}, then $$x+y=y+x,$$

Therefore

$$(x+y)’=(y+x)’=y+x’.$$

By the construction in the proof of

Theorem~\ref{theorem:4}, we have $$x’+y=(x+y)’,$$

hence

$$x’+y=y+x’,$$

so that $x’$ belongs to \mathfrak{M}.

\end{enumerate}

The assertion therefore holds for all x.

\end{proof}

Tetsuo Ida Symposium 80

Full formalization difficulties: choices

A Cml-text is structured differently from a fully formalized text proving the same
facts. Making the latter involves extensive knowledge and many choices:

• The choice of the underlying logical system.

• The choice of how concepts are implemented (equational reasoning,
equivalences and classes, partial functions, induction, etc.).

• The choice of the formal foundation: a type theory (dependent?), a set theory
(ZF? FM?), a category theory? etc.

• The choice of the proof checker: Automath, Isabelle, Coq, PVS, Mizar, HOL,
...

An issue is that one must in general commit to one set of choices.

Tetsuo Ida Symposium 81

Full formalization difficulties: informality

Any informal reasoning in a Cml-text will cause various problems when fully
formalizing it:

• A single (big) step may need to expand into a (series of) syntactic proof
expressions. Very long expressions can replace a clear Cml-text.

• The entire Cml-text may need reformulation in a fully complete syntactic
formalism where every detail is spelled out. New details may need to be woven
throughout the entire text. The text may need to be turned inside out.

• Reasoning may be obscured by proof tactics, whose meaning is often ad hoc
and implementation-dependent.

Regardless, ordinary mathematicians do not find the new text useful.

Tetsuo Ida Symposium 82

Coq example

draft documents ✗

public documents ✗

computations and proofs ✓

From Module Arith.Plus of Coq standard library (http://coq.inria.fr/).

Lemma plus sym: (n,m:nat)(n+m)=(m+n).

Proof.

Intros n m ; Elim n ; Simpl rew ; Auto with arith.

Intros y H ; Elim (plus n -Sm m y) ; Simpl rew ; Auto with arith.

Qed.

Tetsuo Ida Symposium 83

Mathlang’s Goal: Open borders between mathematics, logic

and computation

• Ordinary mathematicians avoid formal mathematical logic.

• Ordinary mathematicians avoid proof checking (via a computer).

• Ordinary mathematicians may use a computer for computation: there are over
1 million people who use Mathematica (including linguists, engineers, etc.).

• Mathematicians may also use other computer forms like Maple, LaTeX, etc.

• But we are not interested in only libraries or computation or text editing.

• We want freedeom of movement between mathematics, logic and computation.

• At every stage, we must have the choice of the level of formalilty and the
depth of computation.

Tetsuo Ida Symposium 84

Aim for Mathlang? (Kamareddine and Wells 2001, 2002)

Can we formalise a mathematical text, avoiding as much as possible the
ambiguities of natural language, while still guaranteeing the following four goals?

1. The formalised text looks very much like the original mathematical text (and
hence the content of the original mathematical text is respected).

2. The formalised text can be fully manipulated and searched in ways that respect
its mathematical structure and meaning.

3. Steps can be made to do computation (via computer algebra systems) and
proof checking (via proof checkers) on the formalised text.

4. This formalisation of text is not much harder for the ordinary mathematician
than LATEX. Full formalization down to a foundation of mathematics is not
required, although allowing and supporting this is one goal.

(No theorem prover’s language satisfies these goals.)

Tetsuo Ida Symposium 85

Mathlang

draft documents ✓

public documents ✓

computations and proofs ✓
• A Mathlang text captures the grammatical and reasoning aspects of

mathematical structure for further computer manipulation.

• A weak type system checks Mathlang documents at a grammatical level.

• A Mathlang text remains close to its Cml original, allowing confidence that
the Cml has been captured correctly.

• We have been developing ways to weave natural language text into Mathlang.

• Mathlang aims to eventually support all encoding uses.

• The Cml view of a Mathlang text should match the mathematician’s
intentions.

• The formal structure should be suitable for various automated uses.

Tetsuo Ida Symposium 86

Tetsuo Ida Symposium 87

What is CGa? (Maarek’s PhD thesis)

• CGa is a formal language derived from MV (N.G. de Bruijn 1987) and WTT
(Kamareddine and Nederpelt 2004) which aims at expliciting the grammatical
role played by the elements of a CML text.

• The structures and common concepts used in CML are captured by CGa with a
finite set of grammatical/linguistic/syntactic categories: Term “

√
2”, set “Q”,

noun “number”, adjective “even”, statement “a = b”, declaration “Let a be
a number”, definition “An even number is..”, step “a is odd, hence a 6= 0”,
context “Assume a is even”.

term set noun adjective statement declaration definition

step context .

• Generally, each syntactic category has a corresponding weak type.

Tetsuo Ida Symposium 88

• CGa’s type system derives typing judgments to check whether the reasoning
parts of a document are coherently built.

<><∃ >There is <><0>an element 0 in <R>R such that <=><+><a>a + <0>0 = <a>a

∃(0 : R, = (+ (a, 0), a))

Figure 1: Example of CGa encoding of CML text

Tetsuo Ida Symposium 89

Weak Type Theory

In Weak Type Theory (or Wtt) we have the following linguistic categories:

• On the atomic level: variables, constants and binders,

• On the phrase level: terms T , sets S, nouns N and adjectives A,

• On the sentence level: statements P and definitions D,

• On the discourse level: contexts ΓI , lines l and books B.

Tetsuo Ida Symposium 90

Categories of syntax of WTT

Other category abstract syntax symbol
expressions E = T |S|N |P E

parameters P = T |S|P (note:
→

P is a list of Ps) P
typings T = S : SET |S : STAT |T : S|T : N|T : A T
declarations Z = VS : SET |VP : STAT |VT : S|VT : N Z

Tetsuo Ida Symposium 91

level category abstract syntax symbol
atomic variables V = VT |VS|VP x

constants C = CT |CS|CN |CA|CP c
binders B = BT |BS|BN |BA|BP b

phrase terms T = CT (
→

P)|BT
Z(E)|VT t

sets S = CS(
→

P)|BS
Z(E)|VS s

nouns N = CN(
→

P)|BN
Z (E)|AN n

adjectives A = CA(
→

P)|BA
Z(E) a

sentence statements P = CP (
→

P)|BP
Z(E)|VP S

definitions D = Dϕ|DP D

Dϕ = CT (
→

V) := T |CS(
→

V) := S|
CN(

→

V) := N|CA(
→

V) := A
DP = CP (

→

V) := P
discourse contexts ΓI = ∅ | ΓI,Z | ΓI, P Γ

lines l = ΓI ⊲ P | ΓI ⊲D l
books B = ∅ | B ◦ l B

Tetsuo Ida Symposium 92

Derivation rules

(1) B is a weakly well-typed book: ⊢ B :: book.

(2) Γ is a weakly well-typed context relative to book B: B ⊢ Γ :: cont.

(3) t is a weakly well-typed term, etc., relative to book B and context Γ:

B; Γ ⊢ t :: T, B; Γ ⊢ s :: S, B; Γ ⊢ n :: N,
B; Γ ⊢ a :: A, B; Γ ⊢ p :: P, B; Γ ⊢ d :: D

OK(B; Γ). stands for: ⊢ B :: book, and B ⊢ Γ :: cont

Tetsuo Ida Symposium 93

Examples of derivation rules

• dvar(∅) = ∅ dvar(Γ′, x : W) = dvar(Γ′), x dvar(Γ′, P) = dvar(Γ′)

OK(B; Γ), x ∈ VT/S/P, x ∈ dvar(Γ)
B; Γ ⊢ x :: T/S/P

(var)

B; Γ ⊢ n :: N , B; Γ ⊢ a :: A
B; Γ ⊢ an :: N

(adj−noun)

⊢ ∅ :: book
(emp−book)

B; Γ ⊢ p :: P
⊢ B ◦ Γ ⊲ p :: book

B; Γ ⊢ d :: D
⊢ B ◦ Γ ⊲ d :: book

(book−ext)

Tetsuo Ida Symposium 94

Properties of WTT

• Every variable is declared If B; Γ ⊢ Φ :: W then FV (Φ) ⊆ dvar(Γ).

• Correct subcontexts If B ⊢ Γ :: cont and Γ′ ⊆ Γ then B ⊢ Γ′ :: cont.

• Correct subbooks If ⊢ B :: book and B′ ⊆ B then ⊢ B′ :: book.

• Free constants are either declared in book or in contexts If B; Γ ⊢ Φ :: W,
then FC(Φ) ⊆ prefcons(B) ∪ defcons(B).

• Types are unique If B; Γ ⊢ A :: W1 and B; Γ ⊢ A :: W2, then W1 ≡W2.

• Weak type checking is decidable there is a decision procedure for the question
B; Γ ⊢ Φ :: W ?.

• Weak typability is computable there is a procedure deciding whether an answer
exists for B; Γ ⊢ Φ :: ? and if so, delivering the answer.

Tetsuo Ida Symposium 95

Definition unfolding

• Let ⊢ B :: book and Γ ⊲ c(x1, . . . , xn) := Φ a line in B.

• We write B ⊢ c(P1, . . . , Pn)
δ→ Φ[xi := Pi].

• Church-Rosser If B ⊢ Φ
δ→→ Φ1 and B ⊢ Φ

δ→→ Φ2 then there exists Φ3

such that B ⊢ Φ1
δ→→ Φ3 andf B ⊢ Φ2

δ→→ Φ3.

• Strong Normalisation Let ⊢ B :: book. For all subformulas Ψ occurring

in B, relation
δ→ is strongly normalizing (i.e., definition unfolding inside a

well-typed book is a well-founded procedure).

Tetsuo Ida Symposium 96

CGa Weak Type Checking

Let M be a set ,

y and x are natural numbers ,

if x belongs to M

then x + y = y + x

Tetsuo Ida Symposium 97

CGa Weak Type checking detects grammatical errors

Let M be a set ,

y and x are natural numbers ,

if x belongs to M

then x + y ⇐ error

Tetsuo Ida Symposium 98

How complete is the CGa?

• CGa is quite advanced but remains under development according to new
translations of mathematical texts. Are the current CGa categories sufficient?

• The metatheory of WTT has been established in (Kamareddine and Nederepelt
2004). That of CGa remains to be established. However, since CGa is quite
similar to WTT, its metatheory might be similar to that of WTT.

• The type checker for CGa works well and gives some useful error messages.
Error messages should be improved.

Tetsuo Ida Symposium 99

Tetsuo Ida Symposium 100

What is TSa? Lamar’s PhD thesis

• TSa builds the bridge between a CML text and its grammatical interpretation
and adjoins to each CGa expression a string of words and/or symbols which
aims to act as its CML representation.

• TSa plays the role of a user interface

• TSa can flexibly represent natural language mathematics.

• The author wraps the natural language text with boxes representing the
grammatical categories (as we saw before).

• The author can also give interpretations to the parts of the text.

Tetsuo Ida Symposium 101

Interpretations

Tetsuo Ida Symposium 102

Rewrite rules enable natural language representation

Take the example 0 + a0 = a0 = a(0 + 0) = a0 + a0

Tetsuo Ida Symposium 103

St e p

St a t e m e n t St a t e m e n tSo u r i n g
T e r mT e r m T e r m

St e p

St a t e m e n t St a t e m e n t

T e r mT e r m T e r mT e r m

Figure 2: Example for a simple shared souring
Tetsuo Ida Symposium 104

reordering/position Souring

<in> <n>n ∈ <N>N

ann = <in> <2> <N>N contains <1> <n>n

Tetsuo Ida Symposium 105

Sta te me n t
So u r i n gSo u r i n g

Se t Te r m

Sta te me n t
Se tTe r m

p o s it i o n 1
p o s it i o n 2

Figure 3: Example for a position souring

Tetsuo Ida Symposium 106

map souring

ann = <map> <>Let <list> <a>a and b be in <R>R

This is expanded to

T (ann) = <> <a> <R> <> <R>

Tetsuo Ida Symposium 107

So u r in g
De c la ra t io n

So u r in g
Te r mTe r m

Se t
S te p

De c la ra t io n De c la ra t io n

Te r m Te r m Se tSe tTetsuo Ida Symposium 108

How complete is TSa?

• TSa provides useful interface facilities but it is still under development.

• So far, only simple rewrite (souring) rules are used and they are not

comprehensive. E.g., unable to cope with things like
n times

︷ ︸︸ ︷
x = . . . = x.

• The TSa theory and metatheory need development.

Tetsuo Ida Symposium 109

Tetsuo Ida Symposium 110

What is DRa? Retel’s PhD thesis

• DRa Document Rhetorical structure aspect.

• Structural components of a document like chapter, section, subsection,
etc.

• Mathematical components of a document like theorem, corollary, definition,
proof, etc.

• Relations between above components.

• These enhance readability, and ease the navigation of a document.

• Also, these help to go into more formal versions of the document.

Tetsuo Ida Symposium 111

Relations

Description
Instances of the StructuralRhetoricalRole class:
preamble, part, chapter, section, paragraph, etc.
Instances of the MathematicalRhetoricalRole class:
lemma, corollary, theorem, conjecture, definition, axiom, claim,
proposition, assertion, proof, exercise, example, problem, solution, etc.

Relation
Types of relations:
relatesTo, uses, justifies, subpartOf, inconsistentWith, exemplifies

Tetsuo Ida Symposium 112

What does the mathematician do?

• The mathematician wraps into boxes and uniquely names chunks of text

• The mathematician assigns to each box the structural and/or mathematical
rhetorical roles

• The mathematician indicates the relations between wrapped chunks of texts

Tetsuo Ida Symposium 113

Lemma 1. For m,n ∈ N one has: m2 = 2n2 =⇒ m = n = 0.
Define on N the predicate:

P (m) ⇐⇒ ∃n.m2 = 2n2 & m > 0.

Claim. P (m) =⇒ ∃m′ < m.P (m′). Indeed suppose m2 = 2n2 and m > 0. It
follows that m2 is even, but then m must be even, as odds square to odds. So
m = 2k and we have

2n2 = m2 = 4k2 =⇒ n2 = 2k2

Since m > 0, if follows that m2 > 0, n2 > 0 and n > 0. Therefore P (n).
Moreover, m2 = n2 + n2 > n2, so m2 > n2 and hence m > n. So we can take
m′ = n.

By the claim ∀m ∈ N.¬P (m), since there are no infinite descending
sequences of natural numbers.

Now suppose m2 = 2n2 with m 6= 0. Then m > 0 and hence P (m).
Contradiction. Therefore m = 0. But then also n = 0.
Corollary 1.

√
2 /∈ Q.

Suppose
√

2 ∈ Q, i.e.
√

2 = p/q with p ∈ Z, q ∈ Z− {0}. Then
√

2 = m/n with
m = |p|, n = |q| 6= 0. It follows that m2 = 2n2. But then n = 0 by the lemma.
Contradiction shows that

√
2 /∈ Q.

Barendregt
Tetsuo Ida Symposium 114

Tetsuo Ida Symposium 115

(A, hasMathematicalRhetoricalRole, lemma)
(E, hasMathematicalRhetoricalRole, definition)
(F, hasMathematicalRhetoricalRole, claim)
(G, hasMathematicalRhetoricalRole, proof)
(B, hasMathematicalRhetoricalRole, proof)
(H, hasOtherMathematicalRhetoricalRole, case)
(I, hasOtherMathematicalRhetoricalRole, case)
(C, hasMathematicalRhetoricalRole, corollary)
(D, hasMathematicalRhetoricalRole, proof)

(B, justifies, A)
(D, justifies, C)
(D, uses, A)
(G, uses, E)
(F, uses, E)
(H, uses, E)
(H, subpartOf, B)
(H, subpartOf, I)

Tetsuo Ida Symposium 116

Tetsuo Ida Symposium 117

The automatically generated dependency Graph

Tetsuo Ida Symposium 118

An alternative view of the DRa (Zengler’s thesis)

Tetsuo Ida Symposium 119

The Graph of Textual Order: GoTO

Zengler’s thesis

• To be able to examine the proper structure of a DRa tree we introduce the
concept of textual order between two nodes in the tree.

• Using textual orders, we can transform the dependency graph into a GoTO by
transforming each edge of the DG.

• So far there are two reasons why the GoTO is produced:

1. Automatic Checking of the GoTO can reveal errors in the document (e.g.
loops in the structure of the document).

2. The GoTO is used to automatically produce a proof skeleton for a prover
(we use a variety: Isabelle, Mizar, Coq).

• We automatically transform a DG into GoTO and automatically check the
GoTO for errors in the document:

Tetsuo Ida Symposium 120

1. Loops in the GoTO (error)
2. Proof of an unproved node (error)
3. More than one proof for a proved node (warning)
4. Missing proof for a proved node (warning)

• To achieve this we define for each vertex v of the tree:

– ENVv is the environment of all mathematical statements that occur before
the statements of v (from the root vertex).

– Introduced symbols’:
INv := DFv ∪ DCv ∪ {s|s ∈ ST v ∧ s 6∈ ENVv} ∪⋃

c childOf v IN c
– Used symbol: USEv := T v ∪ Sv ∪Nv ∪ Av ∪ ST v ∪⋃

c childOf v USEc

• Strong textual order ≺: B ≺ A := ∃x(x ∈ INB ∧ x ∈ USEA)

• Weak textual order �: A � B := INA ⊆ INB ∧ USEA ⊆ USEB

• Common textual order ↔: A↔ B := ∃x(x ∈ USEA ∧ x ∈ USEB)

Tetsuo Ida Symposium 121

Graph of Textual Order

(A, uses, B) A ≻ B

(A, caseOf, B) A � B

(A, justifies, B) A ↔ B

Table 1: Graphical representation of edges in the GoTO

The GoTO can be generated automatically from the DG and therefore (since the
DG can be produced automatically from an annotated document) automatically
from an annotated document.

Tetsuo Ida Symposium 122

Graph of Textual Order for the DRa tree example

Tetsuo Ida Symposium 123

How complete is DRa?

• The dependency graph can be used to check whether the logical reasoning of
the text is coherent and consistent (e.g., no loops in the reasoning).

• However, both the DRa language and its implementation need more experience
driven tests on natural language texts.

• Also, the DRa aspect still needs a number of implementation improvements
(the automation of the analysis of the text based on its DRa features).

• Extend TSa to also cover DRa (in addition to CGa).

• Extend DRa depending on further experience driven translations.

• Establish the soundness and completeness of DRa for mathematical texts.

Tetsuo Ida Symposium 124

Tetsuo Ida Symposium 125

Different provers have

• different syntax

• different requirements to the structure
of the text
e.g.

– no nested theorems/lemmas
– only backward references
– ...

• Aim: Skeleton should be as close
as possible to the mathematician’s
text but with re-arrangements when
necessary

Example of nested theorems/lemmas (Moller, 03, Chapter III,2)

The automatic generation of a proof skeleton

Tetsuo Ida Symposium 126

The DG for the example

Tetsuo Ida Symposium 127

Straight-forward translation of the first part

Tetsuo Ida Symposium 128

Problem: nested theorems

Tetsuo Ida Symposium 129

Solution: Re-ordering

Tetsuo Ida Symposium 130

Finishing the skeleton

Tetsuo Ida Symposium 131

Skeleton for Mizar

Tetsuo Ida Symposium 132

Tetsuo Ida Symposium 133

DRa annotation into Mizar skeleton for Barendregt’s

example (Retel’s PhD thesis)

Tetsuo Ida Symposium 134

The generic algorithm for generating the proof skeleton

(SGa, Zengler’s thesis)

A vertex is ready to be processed iff:

• it has no incoming ≺ edges (in the GoTO) of unprocessed (white) vertices

• all its children are ready to be processed

• if the vertex is a proved vertex: its proof is ready to be processed

Consider the DG and GoTO of a (typical and not well structured) mathematical
text:

Tetsuo Ida Symposium 135

Do c u m e n t

Le m m a 1 Le m m a 2Pr o o f 1 Pr o o f 2

C l a i m 1D e fin i t i on 1 Pr o o f C 1 C l a i m 2 D e fin i t i on 2Pr o o f 2u s e s
u s e s u s e s

j u s t i fi e s j u s t i fi e s

j u s j u s
Do c u m e n t

Le m m a 1 Le m m a 2Pr o o f 1 Pr o o f 2

C l a i m 1D e fin i t i on 1 Pr o o f C 1 C l a i m 2 D e fin i t i on 2Pr o o f 2u s e s
u s e s u s e s

j u s t i fi e s j u s t i fi e s

j u s j u s

Tetsuo Ida Symposium 136

The final order of the vertices is:

Lemma 2

Proof 2

Definition 2

Claim 2

Proof C2

Lemma 1

Proof 1

Definition 1

Claim 1

Proof C1

Tetsuo Ida Symposium 137

Do c u m e n t

Le m m a 1 Le m m a 2Pr o o f 1 Pr o o f 2

C l a i m 1

D e fin i t i on 1

Pr o o f C 1 C l a i m 2

D e fin i t i on 2

P r o o f 2

Figure 6: A flattened graph of the GoTO of figure 5 without nested definitions

Tetsuo Ida Symposium 138

Do c u m e n t

Le m m a 1 Le m m a 2Pr o o f 1 Pr o o f 2C l a i m 1

D e fin i t i on 1

Pr o o f C 1 C l a i m 2 De fi n i t i on 2Pr o o f 2
Figure 7: A flattened graph of the GoTO of figure 5 without nested claims

Tetsuo Ida Symposium 139

The Mizar and Coq rules for the dictionary

Role Mizar rule Coq rule

axiom %name : %body ; Axiom %name : %body .

definition definition %name : %nl %body %nl end; Definition : %body .

theorem theorem %name: %nl %body Theorem %name %body .

proof proof %nl %body %nl end; Proof %name : %body .

cases per cases; %nl %body

case suppose %nl %body %nl end; %body

existencePart existence %nl %body %body

uniquenessPart uniqueness %nl %body %body

Tetsuo Ida Symposium 140

Rich skeletons for Coq

Rule No Annotation ann Coq translation SCoq (ann)

coq1) <#> Set

coq2) <#> Prop

coq3) <id> <N> id : N

coq4) <id> <S> id : S

coq5) <id> id

coq6) <id> p1 ... pn
<N> id : SCoq

p1

!

-> ... -> SCoq

pn

!

-> N

coq7) <id> p1 ... pn
<S> id : SCoq

p1

!

-> ... -> SCoq

pn

!

-> S

Tetsuo Ida Symposium 141

coq8) <id> p1 ... pn id : SCoq

p1

!

-> ... -> SCoq

pn

!

-> Prop

coq9) <id> p1 ... pn id : SCoq

p1

!

-> ... -> SCoq

pn

!

-> Set

coq10) <id> p1 ... pn (id SCoq

p1

!

... SCoq

pn

!

)

coq11) <id> p1 ... pn (id SCoq

p1

!

... SCoq

pn

!

)

coq12) <id> p1 ... pn (id SCoq

p1

!

... SCoq

pn

!

)

coq13) <id> id

coq14) <id> <id1> ... <idn> e id id_1 ... id_n := SCoq

„

e

«

Tetsuo Ida Symposium 142

coq15) <d1> ... <dn> S1 ... Sn S′
1 ... S′

1 forall SCoq

0

@

<d1>

1

A ... SCoq

0

@

<d

for a surrounding unproved DRa annotation ... /\ SCoq

Sn

!

-> SCoq

S′
1

!

coq16) <d1> ... <dn> S1 ... Sn S′
1 ... S′

1 SCoq

0

@

<d1>

1

A ... SCoq

0

@

<dn>

1

A

for a surrounding proved DRa annotation /\ SCoq

Sn

!

-> SCoq

S′
1

!

/\

With these rules almost every axiom, definition and theorem can be translated in
a way that it is immediately usable in Coq.

Tetsuo Ida Symposium 143

the left hand side of the definition is translated according to rule (coq14)) with
subset A B.

The right hand side is translated with the rules coq5), coq10), coq11) and coq12)
and the result is

forall x (impl (in x A) (in x B))

Putting left hand and right hand side together and taking the outer DRa
annotation we get the translation

Definition subset A B := forall x (impl (in x A) (in x B))

Tetsuo Ida Symposium 144

Figure 8: Theorem 17 of Landau’s “Grundlagen der Analysis”

The automatic translation is:

Theorem th117 x y z : (leq x y /\ leq y z) -> leq x z .

Tetsuo Ida Symposium 145

Rich skeletons for Isabelle

<carriernonempty> <not> <set-equal> <R>a non <emptyset>empty set

The corresponding translation into Isabelle is:

assumes carriernonempty: "not (set-equal R emptyset)"

Tetsuo Ida Symposium 146

An example of a full formalisation in Coq via MathLang

Figure 9: The path for processing the Landau chapter

Tetsuo Ida Symposium 147

Figure 10: Simple theorem of the second section of Landau’s first chapter

Tetsuo Ida Symposium 148

Figure 11: The annotated theorem 16 of the Landau’s first chapter

Tetsuo Ida Symposium 149

Chapter 1

Natural Numbers

<><forall>∀<#><#>
.
<#> <><exists>∃<#><#>.<#> <><exists_one>∃!<#><#> .<#> <><isa><#> <#> <><1> <><and><#>∧ <#>

<><or><#> ∨ <#> <><impl><#> <#> <><succ><#> <><in><#> ∈ <#> <><subset><#> ⊂ <#> <><Set>{<#><#> |<#> }

<><seteq><#><#> <><setneq><#><#> <><index><#><#> <><xor><#>⊕ <#> <><emptyset>
∅

1.1 Axioms

We assume the following to be given:

<><N>A set (i.e. totality) of objects called <><natural_numbers>natural numbers, possessing the prop-
erties - called axioms- to be listed below.

Before formulating the axioms we make some remarks about the symbols = and = which be
used.

Unless otherwise specified, small italic letters will stand for natural numbers throughout this
book.

<>

<>If <><x>
x is given and <><y>

y is given, then either<><eq> <#>
x and <#>

y are the same number; this

may be written

x= y

(= to be read “equals"); or <><neq><#>
x and <#>

y are not the same number; this may be
written

1x=y

(= to be read “is not equal to").

Accordingly, the following are true on purely logical grounds:

<><forall><2><eq><x>
x = <x>

x for every <1><><x>
x

<><>if <><x> <><y> <eq><x>
x =

<y>
y then <eq><y>

y =
<x>

x

<><>If <><x> <><y> <><z> <eq><x>
x =

<y>
y, <eq><y>

y =
<z>

z then <eq><x>
x =

<z>
z

1

Tetsuo Ida Symposium 150

Chapter 1 of Landau:

• 5 axioms which we annotate with the mathematical role “axiom”, and give
them the names“ax11” - “ax15”.

• 6 definitions which we annotate with the mathematical role “definition”, and
give them names “def11” - “def16”.

• 36 nodes with the mathematical role “theorem”, named “th11” - “th136” and
with proofs “pr11” - “pr136”.

• Some proofs are partitioned into an existential part and a uniqueness part.

• Other proofs consist of different cases which we annotate as unproved nodes
with the mathematical role “case”.

Figure 12: The DRa tree of sections 1 and 2 of chapter 1 of Landau’s book

Tetsuo Ida Symposium 151

• The relations are annotated in a straightforward manner.

• Each proof justifies its corresponding theorem.

• Axiom 5 (“ax15”) is the axiom of induction. So every proof which uses
induction, uses also this axiom.

• Definition 1 (“def11”) is the definition of addition. Hence every node which
uses addition also uses this definition.

• Some theorems use other theorems via texts like: “By Theorem ...”.

• In total we have 36 justifies relations, 154 uses relations, 6 caseOf, 3
existencePartOf and 3 uniquenessPartOf relations.

• The DG and GoTO are automatically generated.

• The GoTO is automatically checked and no errors result. So, we proceed to
the next stage: automatically generating the SGa.

Tetsuo Ida Symposium 152

Figure 13: The DG of sections 1 and 2 of chapter 1 of Landau’s book

Tetsuo Ida Symposium 153

Tetsuo Ida Symposium 154

Tetsuo Ida Symposium 155

The GoTO of section 1 - 4

Tetsuo Ida Symposium 156

Tetsuo Ida Symposium 157

An extract of the automatically generated rich skeleton

Definition geq x y := (or (gt x y) (eq x y)).

Definition leq x y := (or (lt x y) (eq x y)).

Theorem th113 x y : (impl (geq x y) (leq y x)).

Proof.

...

Qed.

Theorem th114 x y : (impl (leq x y) (geq y x)).

Proof.

...

Qed.

Theorem th115 x y z : (impl (impl (lt x y) (lt y z)) (lt x z)).

Proof.

...

Qed.

Tetsuo Ida Symposium 158

Completing the proofs in Coq

• We defined the natural numbers as an inductive set - just as Landau does in
his book.

Inductive nats : Set :=

| I : nats

| succ : nats -> nats

• The encoding of theorem 2 of the first chapter in Coq is

theorem th12 x : neq (succ x) x .

• Landau proves this theorem with induction. He first shows, that 1′ 6= 1 and
then that with the assumption of x′ 6= x it also holds that (x′)′ 6= x′.

• We do our proof in the Landau style. We introduce the variable x and eliminate
it, which yields two subgoals that we need to prove. These subgoals are exactly
the induction basis and the induction step.

Tetsuo Ida Symposium 159

Proof.

intro x. elim x.

2 subgoals

x : nats

______________________________________(1/2)

neq (succ I) I

___(2/

forall n : nats, neq (succ n) n -> neq (succ (succ n)) (succ n)

Landau proved the first case with the help of Axiom 3 (for all x, x′ 6= 1).

apply ax13.

1 subgoal

x : nats

___(1/

forall n : nats, neq (succ n) n -> neq (succ (succ n)) (succ n)

Tetsuo Ida Symposium 160

The next step is to introduce n as natural number and to introduce the
induction hypothesis:

intros n H.

1 subgoal

x : nats

n : nats

H : neq (succ n) n

______________________________________(1/1)

neq (succ (succ n)) (succ n)

We see that this is exactly the second case of Landau’s proof. He proved this
case with Theorem 1 - we do the same:

apply th11.

1 subgoal

x : nats

n : nats

Tetsuo Ida Symposium 161

H : neq (succ n) n

______________________________________(1/1)

neq (succ n) n

And of course this is exactly the induction hypotheses which we already have
as an assumption and we can finish the proof:

assumption.

Proof completed.

The complete theorem and its proof in Coq finally look like this:

Theorem th12 (x:nats) : neq (succ x) x .

Proof.

intro x. elim x.

apply ax13.

intros n H.

apply th11.

assumption.

Qed.

Tetsuo Ida Symposium 162

With the help of the CGa annotations and the automatically generated rich
proof skeleton, Zengler (who was not familiar with Coq) completed the Coq

proofs of the whole of chapter one in a couple of hours.

Tetsuo Ida Symposium 163

Some points to consider

• We do not at all assume/prefer one type/logical theory instead of another.

• The formalisation of a language of mathematics should separate the questions:

– which type/logical theory is necessary for which part of mathematics
– which language should mathematics be written in.

• Mathematicians don’t usually know or work with type/logical theories.

• Mathematicians usually do mathematics (manipulations, calculations, etc), but
are not interested in general in reasoning about mathematics.

• The steps used for computerising books of mathematics written in English,
as we are doing, can also be followed for books written in Arabic, French,
German, or any other natural language.

Tetsuo Ida Symposium 164

• MathLang aims to support non-fully-formalized mathematics practiced by the
ordinary mathematician as well as work toward full formalization.

• MathLang aims to handle mathematics as expressed in natural language as
well as symbolic formulas.

• MathLang aims to do some amount of type checking even for non-fully-
formalized mathematics. This corresponds roughly to grammatical conditions.

• MathLang aims for a formal representation of Cml texts that closely
corresponds to the Cml conceived by the ordinary mathematician.

• MathLang aims to support automated processing of mathematical knowledge.

• MathLang aims to be independent of any foundation of mathematics.

• MathLang allows anyone to be involved, whether a mathematician, a computer
engineer, a computer scientist, a linguist, a logician, etc.

Tetsuo Ida Symposium 165

What is important in all this are the good teachers, the good motivators and the
makers of the next generation

Tetsuo Ida Symposium 166

Prof Ida has influenced generations of researchers and academics in Tunisia,
Austria, Romania, Japan, etc.

Tetsuo Ida Symposium 167

He will always be on top of the education ladder protecting and leading the rest

Tetsuo Ida Symposium 168

And what a pleasure it is to know Prof. Ida and to work with him.

Tetsuo Ida Symposium 169

References

H.P. Barendregt. The Lambda Calculus: its Syntax and Semantics. Studies in
Logic and the Foundations of Mathematics 103. North-Holland, Amsterdam,
revised edition, 1984.

Z.E.A. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. λυ, a calculus
of explicit substitutions which preserves strong normalisation. Journal of
Functional Programming, 6(5):699–722, 1996.

L.S. van Benthem Jutting. Checking Landau’s “Grundlagen” in the Automath
system. PhD thesis, Eindhoven University of Technology, 1977. Published
as Mathematical Centre Tracts nr. 83 (Amsterdam, Mathematisch Centrum,
1979).

N.G. de Bruijn. The mathematical language AUTOMATH, its usage and some
of its extensions. In M. Laudet, D. Lacombe, and M. Schuetzenberger, editors,
Symposium on Automatic Demonstration, pages 29–61, IRIA, Versailles, 1968.

Tetsuo Ida Symposium 170

Springer Verlag, Berlin, 1970. Lecture Notes in Mathematics 125; also in
[Nederpelt et al., 1994], pages 73–100.

A. Church. A formulation of the simple theory of types. The Journal of Symbolic
Logic, 5:56–68, 1940.

T. Coquand and G. Huet. The calculus of constructions. Information and
Computation, 76:95–120, 1988.

N.G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the chuirch rosser theorem.
In Indagationes Math, pages 381–392. 1972. Also in [Nederpelt et al., 1994].

G. Frege. Letter to Russell. English translation in [Heijenoort, 1967], pages
127–128, 1902.

G. Frege. Grundgesetze der Arithmetik, begriffschriftlich abgeleitet, volume II.
Pohle, Jena, 1903. Reprinted 1962 (Olms, Hildesheim).

Tetsuo Ida Symposium 171

G. Frege. Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des
reinen Denkens. Nebert, Halle, 1879. Also in [Heijenoort, 1967], pages 1–82.

G. Frege. Grundlagen der Arithmetik, eine logisch-mathematische Untersuchung
über den Begriff der Zahl. , Breslau, 1884.

G. Frege. Grundgesetze der Arithmetik, begriffschriftlich abgeleitet, volume I.
Pohle, Jena, 1892. Reprinted 1962 (Olms, Hildesheim).

J.H. Geuvers. Logics and Type Systems. PhD thesis, Catholic University of
Nijmegen, 1993.

J.-Y. Girard. Interprétation fonctionelle et élimination des coupures dans
l’arithmétique d’ordre supérieur. PhD thesis, Université Paris VII, 1972.

R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. In
Proceedings Second Symposium on Logic in Computer Science, pages 194–
204, Washington D.C., 1987. IEEE.

Tetsuo Ida Symposium 172

J. van Heijenoort, editor. From Frege to Gödel: A Source Book in Mathematical
Logic, 1879–1931. Harvard University Press, Cambridge, Massachusetts, 1967.

D. Hilbert and W. Ackermann. Grundzüge der Theoretischen Logik. Die
Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen, Band
XXVII. Springer Verlag, Berlin, first edition, 1928.

J.R. Hindley and J.P. Seldin. Introduction to Combinators and λ-calculus,
volume 1 of London Mathematical Society Student Texts. Cambridge University
Press, 1986.

F. Kamareddine and A. Ŕıos. A λ-calculus à la de bruijn with explicit substitutions.
Proceedings of Programming Languages Implementation and the Logic of
Programs PLILP’95, Lecture Notes in Computer Science, 982:45–62, 1995.

F. Kamareddine, L. Laan, and R.P. Nederpelt. Refining the Barendregt cube using
parameters. In Proceedings of the Fifth International Symposium on Functional
and Logic Programming, FLOPS 2001, pages 375–389, 2001.

Tetsuo Ida Symposium 173

F. Kamareddine, T. Laan, and R. Nederpelt. Revisiting the notion of function.
Logic and Algebraic programming, 54:65–107, 2003a.

Fairouz Kamareddine. Typed lambda-calculi with one binder. J. Funct. Program.,
15(5):771–796, 2005.

Fairouz Kamareddine, Roel Bloo, and Rob Nederpelt. On pi-conversion in the
lambda-cube and the combination with abbreviations. Ann. Pure Appl. Logic,
97(1-3):27–45, 1999.

Fairouz Kamareddine, Twan Laan, and Rob Nederpelt. Revisiting the notion of
function. J. Log. Algebr. Program., 54(1-2):65–107, 2003b.

Twan Laan and Michael Franssen. Parameters for first order logic. Logic and
Computation, 2001.

G. Longo and E. Moggi. Constructive natural deduction and its modest
interpretation. Technical Report CMU-CS-88-131, Carnegie Mellono University,
Pittsburgh, USA, 1988.

Tetsuo Ida Symposium 174

R.P. Nederpelt, J.H. Geuvers, and R.C. de Vrijer, editors. Selected Papers
on Automath. Studies in Logic and the Foundations of Mathematics 133.
North-Holland, Amsterdam, 1994.

F.P. Ramsey. The foundations of mathematics. Proceedings of the London
Mathematical Society, 2nd series, 25:338–384, 1926.

G.R. Renardel de Lavalette. Strictness analysis via abstract interpretation for
recursively defined types. Information and Computation, 99:154–177, 1991.

J.C. Reynolds. Towards a theory of type structure, volume 19 of Lecture Notes
in Computer Science, pages 408–425. Springer, 1974.

B. Russell. Letter to Frege. English translation in [Heijenoort, 1967], pages
124–125, 1902.

B. Russell. The Principles of Mathematics. Allen & Unwin, London, 1903.

Tetsuo Ida Symposium 175

A.N. Whitehead and B. Russell. Principia Mathematica, volume I, II, III.
Cambridge University Press, 19101, 19272. All references are to the first
volume, unless otherwise stated.

Tetsuo Ida Symposium 176

