
MathLang

Fairouz Kamareddine
Heriot-Watt University, Edinburgh

Thursday 10 January 2013

FOMCAF13

What do we want? Open borders for productive collaboration

or that we each stick to our borders without including and

benefiting from other input?

Do we want war+destruction or solid foundations for wisdom

and prosperity?

• Do we believe in the chosen framework? Should all the world believe in the
same framework? Does one framework fit all? Can such a framework exist?

• Think of Capitalism, Communism, dictatorship, nationalism, etc... Which one
worked in history?

• But then, if we are committed to pluralism, are we in danger of being wiped
out because being inclusive may well lead to contradictions?

• Oscar Wilde: I used to think I was indecisive, but now I’m not sure anymore.

FOMCAF13 1

Things are not as somber: There is no perfect framework,

but some can be invaluable

• De Bruijn used to proudly announce: I did it my way.

• I quote Dirk van Dalen: The Germans have their 3 B’s, but we Dutch too
have our 3 B’s: Beth, Brouwer and de Bruijn.

FOMCAF13 2

There is a fourth B:

FOMCAF13 3

They look good together

FOMCAF13 4

Is our world going through identity crisis?

Logic was dormant until the 17th century when Leibniz wanted to prove things
like the existence of god in a mechanical manner.

But the biggest kick off was in the 19th century, when the need for a more precise
style in mathematics arose, because controversial results had appeared in analysis.

• 1821: Many controversies in analysis were solved by Cauchy. E.g., he gave a
precise definition of convergence in his Cours d’Analyse [Cauchy, 1821].

• 1872: Due to the more exact definition of real numbers given by Dedekind
[Dedekind, 1872], the rules for reasoning with real numbers became even more
precise.

• 1895-1897: Cantor began formalizing set theory [Cantor, 1895, 1897] and
made contributions to number theory.

FOMCAF13 5

Formal systems in the 19th century

symbols (not natural language) define logical concepts

• 1889: Peano formalized arithmetic [Peano, 1889], but did not treat logic or
quantification.

• 1879: Frege was not satisfied with the use of natural language in mathematics:

“. . . I found the inadequacy of language to be an obstacle; no matter how
unwieldy the expressions I was ready to accept, I was less and less able,
as the relations became more and more complex, to attain the precision
that my purpose required.”

(Begriffsschrift, Preface)

Frege therefore presented Begriffsschrift [Frege, 1879], the first formalisation
of logic giving logical concepts via symbols rather than natural language.

FOMCAF13 6

The rest is history

• Paradoxes, type theory, set theory, category theory, formalisation of
mathematics (Principia, Hilbert and Ackermann, etc., etc.).

• Much is written on this subject. For the type theoretical view, see my book
with Laan and Nederpelt.

• The foundational crisis was concurrent with the building of the physical
computer.

• Then, the earlier work of Frege, Russell and Whitehead, Hilbert, etc., on the
formalisaton of mathematics, were now being complemented/replaced in the
1960s by the computerisation of mathematics.

• De Bruijn’s Automath and Trybulec’s Mizar were conceived around 1967.

FOMCAF13 7

And now, more than 100 years since Frege/Principia, and

almost 50 years since the start of Automath

• We learned so much. But neither Principia nor Automath are living systems.
Instead, there are many other systems out there.

• Can we find ways to combine the best of all these systems? Can we find
ways to get more people to be involved in the computerisation/formalisation
of mathematics without feeling discouraged by the complexity of one system?

• If we put all in one framework, this framework becomes exclusive.

• We want an open border framework which allows different beliefs.

• I believe in not believing.

FOMCAF13 8

A Cml-text

From chapter 1, § 2 of E. Landau’s Foundations of Analysis (Landau 1930, 1951).

Theorem 6. [Commutative Law of Addition]

x + y = y + x.

Proof Fix y, and let M be the set of all
x for which the assertion holds.

I) We have

y + 1 = y′,

and furthermore, by the construction in
the proof of Theorem 4,

1 + y = y′,

so that
1 + y = y + 1

and 1 belongs to M.
II) If x belongs to M, then

x + y = y + x,

Therefore

(x + y)′ = (y + x)′ = y + x′.

By the construction in the proof of
Theorem 4, we have

x′ + y = (x + y)′,

hence

x′ + y = y + x′,

so that x′ belongs to M. The assertion

therefore holds for all x. 2

FOMCAF13 9

The problem with formal logic
• No logical language is an alternative to Cml

– A logical language does not have mathematico-linguistic categories, is not
universal to all mathematicians, and is not a good communication medium.

– Logical languages make fixed choices (first versus higher order, predicative
versus impredicative, constructive versus classical, types or sets, etc.). But
different parts of mathematics need different choices and there is no universal
agreement as to which is the best formalism.

– A logician reformulates in logic their formalization of a mathematical-text as
a formal, complete text which is structured considerably unlike the original,
and is of little use to the ordinary mathematician.

– Mathematicians do not want to use formal logic and have for centuries done
mathematics without it.

• So, mathematicians kept to Cml.

• But Cml is difficult to computerise and formalise (either in a logical framework
or computer system).

FOMCAF13 10

What are the options for computerization?

Computers can handle mathematical text at various levels:

• Images of pages may be stored. While useful, this is not a good representation
of language or knowledge.

• Typesetting systems like LaTeX, TeXmacs, can be used.

• Document representations like OpenMath, OMDoc, MathML, can be used.

• Formal logics used by theorem provers (Coq, Isabelle, HOL, Mizar, Isar, etc.)
can be used.

We are gradually developing a system named Mathlang which we hope will
eventually allow building a bridge between the latter 3 levels.

This talk aims at discussing the motivations rather than the details.

FOMCAF13 11

Full formalization difficulties: choices

A Cml-text is structured differently from a fully formalized text proving the same
facts. Making the latter involves extensive knowledge and many choices:

• The choice of the underlying logical system.

• The choice of how concepts are implemented (equational reasoning,
equivalences and classes, partial functions, induction, etc.).

• The choice of the formal foundation: a type theory (dependent?), a set theory
(ZF? FM?), a category theory? etc.

• The choice of the proof checker: Automath, Isabelle, Coq, PVS, Mizar, HOL,
...

An issue is that one must in general commit to one set of choices.

FOMCAF13 12

Full formalization difficulties: informality

Any informal reasoning in a Cml-text will cause various problems when fully
formalizing it:

• A single (big) step may need to expand into a (series of) syntactic proof
expressions. Very long expressions can replace a clear Cml-text.

• The entire Cml-text may need reformulation in a fully complete syntactic
formalism where every detail is spelled out. New details may need to be woven
throughout the entire text. The text may need to be turned inside out.

• Reasoning may be obscured by proof tactics, whose meaning is often ad hoc
and implementation-dependent.

Regardless, ordinary mathematicians do not find the new text useful.

FOMCAF13 13

Coq example

draft documents ✗

public documents ✗

computations and proofs ✓

From Module Arith.Plus of Coq standard library (http://coq.inria.fr/).

Lemma plus sym: (n,m:nat)(n+m)=(m+n).

Proof.

Intros n m ; Elim n ; Simpl rew ; Auto with arith.

Intros y H ; Elim (plus n -Sm m y) ; Simpl rew ; Auto with arith.

Qed.

FOMCAF13 14

Mathlang’s Goal: Open borders between mathematics, logic

and computation

• Ordinary mathematicians avoid formal mathematical logic.

• Ordinary mathematicians avoid proof checking (via a computer).

• Ordinary mathematicians may use a computer for computation: there are over
1 million people who use Mathematica (including linguists, engineers, etc.).

• Mathematicians may also use other computer forms like Maple, LaTeX, etc.

• But we are not interested in only libraries or computation or text editing.

• We want freedeom of movement between mathematics, logic and computation.

• At every stage, we must have the choice of the level of formalilty and the
depth of computation.

FOMCAF13 15

Aim for Mathlang? (Kamareddine and Wells 2001, 2002)

Can we formalise a mathematical text, avoiding as much as possible the
ambiguities of natural language, while still guaranteeing the following four goals?

1. The formalised text looks very much like the original mathematical text (and
hence the content of the original mathematical text is respected).

2. The formalised text can be fully manipulated and searched in ways that respect
its mathematical structure and meaning.

3. Steps can be made to do computation (via computer algebra systems) and
proof checking (via proof checkers) on the formalised text.

4. This formalisation of text is not much harder for the ordinary mathematician
than LATEX. Full formalization down to a foundation of mathematics is not
required, although allowing and supporting this is one goal.

(No theorem prover’s language satisfies these goals.)

FOMCAF13 16

Mathlang

draft documents ✓

public documents ✓

computations and proofs ✓
• A Mathlang text captures different aspects (grammatical, textual, reasoning,

etc., allowing degrees of computer manipulation).

• A weak type system checks Mathlang documents at a grammatical level.

• A a rewrite system allows the textual manipulation of documents.

• The Mathlang document can be checked for structural reasoning (no loops in
reasoning, etc.) before the inclusion of any logic.

• The MathLang document can be completed to a fully formalised text in a
choice of provers (so far: Coq, Mizar and Isabelle) using semi-automated tools.

• As far as possible, the Mathlang text remains close to its Cml original, allowing
confidence that the Cml has been captured correctly.

• The formal structure should be suitable for various automated uses.

FOMCAF13 17

FOMCAF13 18

What is CGa? (Maarek’s PhD thesis)

• CGa is a formal language derived from MV (N.G. de Bruijn 1987) and WTT
(Kamareddine and Nederpelt 2004) which aims at expliciting the grammatical
role played by the elements of a CML text.

• The structures and common concepts used in CML are captured by CGa with a
finite set of grammatical/linguistic/syntactic categories: Term “

√
2”, set “Q”,

noun “number”, adjective “even”, statement “a = b”, declaration “Let a be
a number”, definition “An even number is..”, step “a is odd, hence a 6= 0”,
context “Assume a is even”.

term set noun adjective statement declaration definition

step context .

• Generally, each syntactic category has a corresponding weak type.

FOMCAF13 19

• CGa’s type system derives typing judgments to check whether the reasoning
parts of a document are coherently built.

• There is an element 0 in R such that a + 0 = a.

<><∃ >There is <><0>an element 0 in <R>R such that <=><+><a>a + <0>0 = <a>a

∃(0 : R, = (+ (a, 0), a))

Figure 1: Example of CGa encoding of CML text

FOMCAF13 20

Weak Type Theory

In Weak Type Theory (or Wtt) we have the following linguistic categories:

• On the atomic level: variables, constants and binders,

• On the phrase level: terms T , sets S, nouns N and adjectives A,

• On the sentence level: statements P and definitions D,

• On the discourse level: contexts ΓI , lines l and books B.

FOMCAF13 21

Categories of syntax of WTT

Other category abstract syntax symbol
expressions E = T |S|N |P E

parameters P = T |S|P (note:
→

P is a list of Ps) P
typings T = S : SET |S : STAT |T : S|T : N|T : A T
declarations Z = VS : SET |VP : STAT |VT : S|VT : N Z

FOMCAF13 22

level category abstract syntax symbol
atomic variables V = VT |VS|VP x

constants C = CT |CS|CN |CA|CP c
binders B = BT |BS|BN |BA|BP b

phrase terms T = CT (
→

P)|BT
Z(E)|VT t

sets S = CS(
→

P)|BS
Z(E)|VS s

nouns N = CN(
→

P)|BN
Z (E)|AN n

adjectives A = CA(
→

P)|BA
Z(E) a

sentence statements P = CP (
→

P)|BP
Z(E)|VP S

definitions D = Dϕ|DP D

Dϕ = CT (
→

V) := T |CS(
→

V) := S|
CN(

→

V) := N|CA(
→

V) := A
DP = CP (

→

V) := P
discourse contexts ΓI = ∅ | ΓI,Z | ΓI, P Γ

lines l = ΓI ⊲ P | ΓI ⊲ D l
books B = ∅ | B ◦ l B

FOMCAF13 23

Derivation rules

(1) B is a weakly well-typed book: ⊢ B :: book.

(2) Γ is a weakly well-typed context relative to book B: B ⊢ Γ :: cont.

(3) t is a weakly well-typed term, etc., relative to book B and context Γ:

B; Γ ⊢ t :: T, B; Γ ⊢ s :: S, B; Γ ⊢ n :: N,
B; Γ ⊢ a :: A, B; Γ ⊢ p :: P, B; Γ ⊢ d :: D

OK(B; Γ). stands for: ⊢ B :: book, and B ⊢ Γ :: cont

FOMCAF13 24

Examples of derivation rules

• dvar(∅) = ∅ dvar(Γ′, x : W) = dvar(Γ′), x dvar(Γ′, P) = dvar(Γ′)

OK(B; Γ), x ∈ VT/S/P, x ∈ dvar(Γ)
B; Γ ⊢ x :: T/S/P

(var)

B; Γ ⊢ n :: N , B; Γ ⊢ a :: A
B; Γ ⊢ an :: N

(adj−noun)

⊢ ∅ :: book
(emp−book)

B; Γ ⊢ p :: P
⊢ B ◦ Γ ⊲ p :: book

B; Γ ⊢ d :: D
⊢ B ◦ Γ ⊲ d :: book

(book−ext)

FOMCAF13 25

Properties of WTT

• Every variable is declared If B; Γ ⊢ Φ :: W then FV (Φ) ⊆ dvar(Γ).

• Correct subcontexts If B ⊢ Γ :: cont and Γ′ ⊆ Γ then B ⊢ Γ′ :: cont.

• Correct subbooks If ⊢ B :: book and B′ ⊆ B then ⊢ B′ :: book.

• Free constants are either declared in book or in contexts If B; Γ ⊢ Φ :: W,
then FC(Φ) ⊆ prefcons(B) ∪ defcons(B).

• Types are unique If B; Γ ⊢ A :: W1 and B; Γ ⊢ A :: W2, then W1 ≡ W2.

• Weak type checking is decidable there is a decision procedure for the question
B; Γ ⊢ Φ :: W ?.

• Weak typability is computable there is a procedure deciding whether an answer
exists for B; Γ ⊢ Φ :: ? and if so, delivering the answer.

FOMCAF13 26

Definition unfolding

• Let ⊢ B :: book and Γ ⊲ c(x1, . . . , xn) := Φ a line in B.

• We write B ⊢ c(P1, . . . , Pn)
δ→ Φ[xi := Pi].

• Church-Rosser If B ⊢ Φ
δ→→ Φ1 and B ⊢ Φ

δ→→ Φ2 then there exists Φ3

such that B ⊢ Φ1
δ→→ Φ3 andf B ⊢ Φ2

δ→→ Φ3.

• Strong Normalisation Let ⊢ B :: book. For all subformulas Ψ occurring

in B, relation
δ→ is strongly normalizing (i.e., definition unfolding inside a

well-typed book is a well-founded procedure).

FOMCAF13 27

CGa Weak Type Checking

Let M be a set ,

y and x are natural numbers ,

if x belongs to M

then x + y = y + x

FOMCAF13 28

CGa Weak Type checking detects grammatical errors

Let M be a set ,

y and x are natural numbers ,

if x belongs to M

then x + y ⇐ error

FOMCAF13 29

How complete is the CGa?

• CGa is quite advanced but remains under development according to new
translations of mathematical texts. Are the current CGa categories sufficient?

• The metatheory of WTT has been established in (Kamareddine and Nederepelt
2004). That of CGa remains to be established. However, since CGa is quite
similar to WTT, its metatheory might be similar to that of WTT.

• The type checker for CGa works well and gives some useful error messages.
Error messages should be improved.

FOMCAF13 30

FOMCAF13 31

What is TSa? Lamar’s PhD thesis

• TSa builds the bridge between a CML text and its grammatical interpretation
and adjoins to each CGa expression a string of words and/or symbols which
aims to act as its CML representation.

• TSa plays the role of a user interface

• TSa can flexibly represent natural language mathematics.

• The author wraps the natural language text with boxes representing the
grammatical categories (as we saw before).

• The author can also give interpretations to the parts of the text.

FOMCAF13 32

Interpretations

FOMCAF13 33

Rewrite rules enable natural language representation

Take the example 0 + a0 = a0 = a(0 + 0) = a0 + a0

FOMCAF13 34

St e p

St a t e m e n t St a t e m e n tSo u r i n g
T e r mT e r m T e r m

St e p

St a t e m e n t St a t e m e n t

T e r mT e r m T e r mT e r m

Figure 2: Example for a simple shared souring
FOMCAF13 35

reordering/position Souring

<in> <n>n ∈ <N>N

ann = <in> <2> <N>N contains <1> <n>n

FOMCAF13 36

St a t e m e n t
So u r i n gSo u r i n g

S e t T e r m

St a t e m e n t
S e tT e r m

p o s it i o n 1
p o s it i o n 2

Figure 3: Example for a position souring

FOMCAF13 37

map souring

ann = <map> <>Let <list> <a>a and b be in <R>R

This is expanded to

T (ann) = <> <a> <R> <> <R>

FOMCAF13 38

So u r in g
De c la ra t io n

So u r in g
Te r mTe r m

Se t
S te p

De c la ra t io n De c la ra t io n

Te r m Te r m Se tSe tFOMCAF13 39

How complete is TSa?

• TSa provides useful interface facilities but it is still under development.

• So far, only simple rewrite (souring) rules are used and they are not

comprehensive. E.g., unable to cope with things like
n times

︷ ︸︸ ︷
x = . . . = x.

• The TSa theory and metatheory need development.

FOMCAF13 40

FOMCAF13 41

What is DRa? Retel’s PhD thesis

• DRa Document Rhetorical structure aspect.

• Structural components of a document like chapter, section, subsection,
etc.

• Mathematical components of a document like theorem, corollary, definition,
proof, etc.

• Relations between above components.

• These enhance readability, and ease the navigation of a document.

• Also, these help to go into more formal versions of the document.

FOMCAF13 42

Relations

Description
Instances of the StructuralRhetoricalRole class:
preamble, part, chapter, section, paragraph, etc.
Instances of the MathematicalRhetoricalRole class:
lemma, corollary, theorem, conjecture, definition, axiom, claim,
proposition, assertion, proof, exercise, example, problem, solution, etc.

Relation
Types of relations:
relatesTo, uses, justifies, subpartOf, inconsistentWith, exemplifies

FOMCAF13 43

What does the mathematician do?

• The mathematician wraps into boxes and uniquely names chunks of text

• The mathematician assigns to each box the structural and/or mathematical
rhetorical roles

• The mathematician indicates the relations between wrapped chunks of texts

FOMCAF13 44

Lemma 1. For m,n ∈ N one has: m2 = 2n2 =⇒ m = n = 0.
Define on N the predicate:

P (m) ⇐⇒ ∃n.m2 = 2n2 & m > 0.

Claim. P (m) =⇒ ∃m′ < m.P (m′). Indeed suppose m2 = 2n2 and m > 0. It
follows that m2 is even, but then m must be even, as odds square to odds. So
m = 2k and we have

2n2 = m2 = 4k2 =⇒ n2 = 2k2

Since m > 0, if follows that m2 > 0, n2 > 0 and n > 0. Therefore P (n).
Moreover, m2 = n2 + n2 > n2, so m2 > n2 and hence m > n. So we can take
m′ = n.

By the claim ∀m ∈ N.¬P (m), since there are no infinite descending
sequences of natural numbers.

Now suppose m2 = 2n2 with m 6= 0. Then m > 0 and hence P (m).
Contradiction. Therefore m = 0. But then also n = 0.
Corollary 1.

√
2 /∈ Q.

Suppose
√

2 ∈ Q, i.e.
√

2 = p/q with p ∈ Z, q ∈ Z − {0}. Then
√

2 = m/n with
m = |p|, n = |q| 6= 0. It follows that m2 = 2n2. But then n = 0 by the lemma.
Contradiction shows that

√
2 /∈ Q.

Barendregt
FOMCAF13 45

FOMCAF13 46

(A, hasMathematicalRhetoricalRole, lemma)
(E, hasMathematicalRhetoricalRole, definition)
(F, hasMathematicalRhetoricalRole, claim)
(G, hasMathematicalRhetoricalRole, proof)
(B, hasMathematicalRhetoricalRole, proof)
(H, hasOtherMathematicalRhetoricalRole, case)
(I, hasOtherMathematicalRhetoricalRole, case)
(C, hasMathematicalRhetoricalRole, corollary)
(D, hasMathematicalRhetoricalRole, proof)

(B, justifies, A)
(D, justifies, C)
(D, uses, A)
(G, uses, E)
(F, uses, E)
(H, uses, E)
(H, subpartOf, B)
(H, subpartOf, I)

FOMCAF13 47

FOMCAF13 48

The automatically generated dependency Graph

FOMCAF13 49

An alternative view of the DRa (Zengler’s thesis)

FOMCAF13 50

The Graph of Textual Order: GoTO

Zengler’s thesis

• To be able to examine the proper structure of a DRa tree we introduce the
concept of textual order between two nodes in the tree.

• Using textual orders, we can transform the dependency graph into a GoTO by
transforming each edge of the DG.

• So far there are two reasons why the GoTO is produced:

1. Automatic Checking of the GoTO can reveal errors in the document (e.g.
loops in the structure of the document).

2. The GoTO is used to automatically produce a proof skeleton for a prover
(we use a variety: Isabelle, Mizar, Coq).

• We automatically transform a DG into GoTO and automatically check the
GoTO for errors in the document:

FOMCAF13 51

1. Loops in the GoTO (error)
2. Proof of an unproved node (error)
3. More than one proof for a proved node (warning)
4. Missing proof for a proved node (warning)

FOMCAF13 52

Graph of Textual Order for the DRa tree example

FOMCAF13 53

How complete is DRa?

• The dependency graph can be used to check whether the logical reasoning of
the text is coherent and consistent (e.g., no loops in the reasoning).

• However, both the DRa language and its implementation need more experience
driven tests on natural language texts.

• Also, the DRa aspect still needs a number of implementation improvements
(the automation of the analysis of the text based on its DRa features).

• Extend TSa to also cover DRa (in addition to CGa).

• Extend DRa depending on further experience driven translations.

• Establish the soundness and completeness of DRa for mathematical texts.

FOMCAF13 54

FOMCAF13 55

Different provers have

• different syntax

• different requirements to the structure
of the text
e.g.

– no nested theorems/lemmas
– only backward references
– ...

• Aim: Skeleton should be as close
as possible to the mathematician’s
text but with re-arrangements when
necessary

Example of nested theorems/lemmas (Moller, 03, Chapter III,2)

The automatic generation of a proof skeleton

FOMCAF13 56

The DG for the example

FOMCAF13 57

Straight-forward translation of the first part

FOMCAF13 58

Solution: Re-ordering

FOMCAF13 59

Finishing the skeleton

FOMCAF13 60

Skeleton for Mizar

FOMCAF13 61

FOMCAF13 62

DRa annotation into Mizar skeleton for Barendregt’s

example (Retel’s PhD thesis)

FOMCAF13 63

The generic algorithm for generating the proof skeleton

(SGa, Zengler’s thesis)

A vertex is ready to be processed iff:

• it has no incoming ≺ edges (in the GoTO) of unprocessed (white) vertices

• all its children are ready to be processed

• if the vertex is a proved vertex: its proof is ready to be processed

Consider the DG and GoTO of a (typical and not well structured) mathematical
text:

FOMCAF13 64

Do c u m e n t

Le m m a 1 Le m m a 2Pr o o f 1 Pr o o f 2

C l a i m 1D e fin i t i on 1 Pr o o f C 1 C l a i m 2 D e fin i t i on 2Pr o o f 2u s e s
u s e s u s e s

j u s t i fi e s j u s t i fi e s

j u s j u s
Do c u m e n t

Le m m a 1 Le m m a 2Pr o o f 1 Pr o o f 2

C l a i m 1D e fin i t i on 1 Pr o o f C 1 C l a i m 2 D e fin i t i on 2Pr o o f 2u s e s
u s e s u s e s

j u s t i fi e s j u s t i fi e s

j u s j u s

FOMCAF13 65

The final order of the vertices is:

Lemma 2

Proof 2

Definition 2

Claim 2

Proof C2

Lemma 1

Proof 1

Definition 1

Claim 1

Proof C1

FOMCAF13 66

Do c u m e n t

Le m m a 1 Le m m a 2Pr o o f 1 Pr o o f 2

C l a i m 1

D e fin i t i on 1

Pr o o f C 1 C l a i m 2

D e fin i t i on 2

P r o o f 2

Figure 6: A flattened graph of the GoTO of figure 5 without nested definitions

FOMCAF13 67

Do c u m e n t

Le m m a 1 Le m m a 2Pr o o f 1 Pr o o f 2C l a i m 1

D e fin i t i on 1

Pr o o f C 1 C l a i m 2 De fi n i t i on 2Pr o o f 2
Figure 7: A flattened graph of the GoTO of figure 5 without nested claims

FOMCAF13 68

The Mizar and Coq rules for the dictionary

Role Mizar rule Coq rule

axiom %name : %body ; Axiom %name : %body .

definition definition %name : %nl %body %nl end; Definition : %body .

theorem theorem %name: %nl %body Theorem %name %body .

proof proof %nl %body %nl end; Proof %name : %body .

cases per cases; %nl %body

case suppose %nl %body %nl end; %body

existencePart existence %nl %body %body

uniquenessPart uniqueness %nl %body %body

FOMCAF13 69

Rich skeletons for Coq

Rule No Annotation ann Coq translation SCoq (ann)

coq1) <#> Set

coq2) <#> Prop

coq3) <id> <N> id : N

coq4) <id> <S> id : S

coq5) <id> id

coq6) <id> p1 ... pn
<N> id : SCoq

p1

!

-> ... -> SCoq

pn

!

-> N

coq7) <id> p1 ... pn
<S> id : SCoq

p1

!

-> ... -> SCoq

pn

!

-> S

FOMCAF13 70

coq8) <id> p1 ... pn id : SCoq

p1

!

-> ... -> SCoq

pn

!

-> Prop

coq9) <id> p1 ... pn id : SCoq

p1

!

-> ... -> SCoq

pn

!

-> Set

coq10) <id> p1 ... pn (id SCoq

p1

!

... SCoq

pn

!

)

coq11) <id> p1 ... pn (id SCoq

p1

!

... SCoq

pn

!

)

coq12) <id> p1 ... pn (id SCoq

p1

!

... SCoq

pn

!

)

coq13) <id> id

coq14) <id> <id1> ... <idn> e id id_1 ... id_n := SCoq

„

e

«

FOMCAF13 71

coq15) <d1> ... <dn> S1 ... Sn S′
1 ... S′

1 forall SCoq

0

@

<d1>

1

A ... SCoq

0

@

<d

for a surrounding unproved DRa annotation ... /\ SCoq

Sn

!

-> SCoq

S′
1

!

coq16) <d1> ... <dn> S1 ... Sn S′
1 ... S′

1 SCoq

0

@

<d1>

1

A ... SCoq

0

@

<dn>

1

A

for a surrounding proved DRa annotation /\ SCoq

Sn

!

-> SCoq

S′
1

!

/\

With these rules almost every axiom, definition and theorem can be translated in
a way that it is immediately usable in Coq.

FOMCAF13 72

the left hand side of the definition is translated according to rule (coq14)) with
subset A B.

The right hand side is translated with the rules coq5), coq10), coq11) and coq12)
and the result is

forall x (impl (in x A) (in x B))

Putting left hand and right hand side together and taking the outer DRa
annotation we get the translation

Definition subset A B := forall x (impl (in x A) (in x B))

FOMCAF13 73

Figure 8: Theorem 17 of Landau’s “Grundlagen der Analysis”

The automatic translation is:

Theorem th117 x y z : (leq x y /\ leq y z) -> leq x z .

FOMCAF13 74

Rich skeletons for Isabelle

<carriernonempty> <not> <set-equal> <R>a non <emptyset>empty set

The corresponding translation into Isabelle is:

assumes carriernonempty: "not (set-equal R emptyset)"

FOMCAF13 75

An example of a full formalisation in Coq via MathLang

Figure 9: The path for processing the Landau chapter

FOMCAF13 76

Figure 10: Simple theorem of the second section of Landau’s first chapter

FOMCAF13 77

Figure 11: The annotated theorem 16 of the Landau’s first chapter

FOMCAF13 78

Chapter 1

Natural Numbers

<><forall>∀<#><#>
.
<#> <><exists>∃<#><#>.<#> <><exists_one>∃!<#><#> .<#> <><isa><#> <#> <><1> <><and><#>∧ <#>

<><or><#> ∨ <#> <><impl><#> <#> <><succ><#> <><in><#> ∈ <#> <><subset><#> ⊂ <#> <><Set>{<#><#> |<#> }

<><seteq><#><#> <><setneq><#><#> <><index><#><#> <><xor><#>⊕ <#> <><emptyset>
∅

1.1 Axioms

We assume the following to be given:

<><N>A set (i.e. totality) of objects called <><natural_numbers>natural numbers, possessing the prop-
erties - called axioms- to be listed below.

Before formulating the axioms we make some remarks about the symbols = and = which be
used.

Unless otherwise specified, small italic letters will stand for natural numbers throughout this
book.

<>

<>If <><x>
x is given and <><y>

y is given, then either<><eq> <#>
x and <#>

y are the same number; this

may be written

x= y

(= to be read “equals"); or <><neq><#>
x and <#>

y are not the same number; this may be
written

1x=y

(= to be read “is not equal to").

Accordingly, the following are true on purely logical grounds:

<><forall><2><eq><x>
x = <x>

x for every <1><><x>
x

<><>if <><x> <><y> <eq><x>
x =

<y>
y then <eq><y>

y =
<x>

x

<><>If <><x> <><y> <><z> <eq><x>
x =

<y>
y, <eq><y>

y =
<z>

z then <eq><x>
x =

<z>
z

1

FOMCAF13 79

Chapter 1 of Landau:

• 5 axioms which we annotate with the mathematical role “axiom”, and give
them the names“ax11” - “ax15”.

• 6 definitions which we annotate with the mathematical role “definition”, and
give them names “def11” - “def16”.

• 36 nodes with the mathematical role “theorem”, named “th11” - “th136” and
with proofs “pr11” - “pr136”.

• Some proofs are partitioned into an existential part and a uniqueness part.

• Other proofs consist of different cases which we annotate as unproved nodes
with the mathematical role “case”.

Figure 12: The DRa tree of sections 1 and 2 of chapter 1 of Landau’s book

FOMCAF13 80

• The relations are annotated in a straightforward manner.

• Each proof justifies its corresponding theorem.

• Axiom 5 (“ax15”) is the axiom of induction. So every proof which uses
induction, uses also this axiom.

• Definition 1 (“def11”) is the definition of addition. Hence every node which
uses addition also uses this definition.

• Some theorems use other theorems via texts like: “By Theorem ...”.

• In total we have 36 justifies relations, 154 uses relations, 6 caseOf, 3
existencePartOf and 3 uniquenessPartOf relations.

• The DG and GoTO are automatically generated.

• The GoTO is automatically checked and no errors result. So, we proceed to
the next stage: automatically generating the SGa.

FOMCAF13 81

Figure 13: The DG of sections 1 and 2 of chapter 1 of Landau’s book

FOMCAF13 82

FOMCAF13 83

FOMCAF13 84

The GoTO of section 1 - 4

FOMCAF13 85

FOMCAF13 86

An extract of the automatically generated rich skeleton

Definition geq x y := (or (gt x y) (eq x y)).

Definition leq x y := (or (lt x y) (eq x y)).

Theorem th113 x y : (impl (geq x y) (leq y x)).

Proof.

...

Qed.

Theorem th114 x y : (impl (leq x y) (geq y x)).

Proof.

...

Qed.

Theorem th115 x y z : (impl (impl (lt x y) (lt y z)) (lt x z)).

Proof.

...

Qed.

FOMCAF13 87

Completing the proofs in Coq

• We defined the natural numbers as an inductive set - just as Landau does in
his book.

Inductive nats : Set :=

| I : nats

| succ : nats -> nats

• The encoding of theorem 2 of the first chapter in Coq is

theorem th12 x : neq (succ x) x .

• Landau proves this theorem with induction. He first shows, that 1′ 6= 1 and
then that with the assumption of x′ 6= x it also holds that (x′)′ 6= x′.

• We do our proof in the Landau style. We introduce the variable x and eliminate
it, which yields two subgoals that we need to prove. These subgoals are exactly
the induction basis and the induction step.

FOMCAF13 88

Proof.

intro x. elim x.

2 subgoals

x : nats

______________________________________(1/2)

neq (succ I) I}

___(2/

forall n : nats, neq (succ n) n -> neq (succ (succ n)) (succ n)

Landau proved the first case with the help of Axiom 3 (for all x, x′ 6= 1).

apply ax13.

1 subgoal

x : nats

___(1/

forall n : nats, neq (succ n) n -> neq (succ (succ n)) (succ n)

FOMCAF13 89

The next step is to introduce n as natural number and to introduce the
induction hypothesis:

intros n H.

1 subgoal

x : nats

n : nats

H : neq (succ n) n

______________________________________(1/1)

neq (succ (succ n)) (succ n)

We see that this is exactly the second case of Landau’s proof. He proved this
case with Theorem 1 - we do the same:

apply th11.

1 subgoal

x : nats

n : nats

FOMCAF13 90

H : neq (succ n) n

______________________________________(1/1)

neq (succ n) n

And of course this is exactly the induction hypotheses which we already have
as an assumption and we can finish the proof:

assumption.

Proof completed.

The complete theorem and its proof in Coq finally look like this:

Theorem th12 (x:nats) : neq (succ x) x .

Proof.

intro x. elim x.

apply ax13.

intros n H.

apply th11.

assumption.

Qed.

FOMCAF13 91

With the help of the CGa annotations and the automatically generated rich
proof skeleton, Zengler (who was not familiar with Coq) completed the Coq

proofs of the whole of chapter one in a couple of hours.

FOMCAF13 92

Some points to consider

• We do not at all assume/prefer one type/logical theory instead of another.

• The formalisation of a language of mathematics should separate the questions:

– which type/logical theory is necessary for which part of mathematics
– which language should mathematics be written in.

• MathLang is independent of any foundation of mathematics.

• Instead of English, one can use Arabic, French, German, etc.

• MathLang aims to support non-fully-formalized mathematics practiced by the
ordinary mathematician as well as work toward full formalization.

• MathLang aims to handle mathematics as expressed in natural language as
well as symbolic formulas.

• MathLang allows anyone to be involved, whether a mathematician, a computer
engineer, a computer scientist, a linguist, a logician, etc.

FOMCAF13 93

Bibliography

G. Cantor. Beiträge zur Begründung der transfiniten Mengenlehre (Erster Artikel). Mathematische Annalen, 46:

481–512, 1895.

G. Cantor. Beiträge zur Begründung der transfiniten Mengenlehre (Zweiter Artikel). Mathematische Annalen, 49:
207–246, 1897.

A.-L. Cauchy. Cours d’Analyse de l’Ecole Royale Polytechnique. Debure, Paris, 1821. Also as Œuvres Complètes

(2), volume III, Gauthier-Villars, Paris, 1897.

A. Church. A formulation of the simple theory of types. The Journal of Symbolic Logic, 5:56–68, 1940.

R. Dedekind. Stetigkeit und irrationale Zahlen. Vieweg & Sohn, Braunschweig, 1872.

G. Frege. Grundgesetze der Arithmetik, begriffschriftlich abgeleitet, volume II. Pohle, Jena, 1903. Reprinted 1962
(Olms, Hildesheim).

G. Frege. Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. Nebert, Halle,

1879. Also in [?], pages 1–82.

FOMCAF13 94

G. Frege. Grundgesetze der Arithmetik, begriffschriftlich abgeleitet, volume I. Pohle, Jena, 1892. Reprinted 1962
(Olms, Hildesheim).

J.-Y. Girard. Interprétation fonctionelle et élimination des coupures dans l’arithmétique d’ordre supérieur. PhD
thesis, Université Paris VII, 1972.

D. Hilbert and W. Ackermann. Grundzüge der Theoretischen Logik. Die Grundlehren der Mathematischen

Wissenschaften in Einzeldarstellungen, Band XXVII. Springer Verlag, Berlin, first edition, 1928.

G. Peano. Arithmetices principia, nova methodo exposita. Bocca, Turin, 1889. English translation in [?], pages

83–97.

F.P. Ramsey. The foundations of mathematics. Proceedings of the London Mathematical Society, 2nd series, 25:
338–384, 1926.

J.C. Reynolds. Towards a theory of type structure, volume 19 of Lecture Notes in Computer Science, pages 408–425.
Springer, 1974.

B. Russell. Letter to Frege. English translation in [?], pages 124–125, 1902.

B. Russell. The Principles of Mathematics. Allen & Unwin, London, 1903.

FOMCAF13 95

A.N. Whitehead and B. Russell. Principia Mathematica, volume I, II, III. Cambridge University Press, 19101,
19272. All references are to the first volume, unless otherwise stated.

FOMCAF13 96

