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Summary

e General definition of function 1879 [17] is key to Frege's formalisation of logic.
e Self-application of functions was at the heart of Russell's paradox 1902 [51].
e To avoid paradox Russell controled function application via type theory.

e Russell [52] 1903 gives the first type theory: the Ramified Type Theory (RTT).
e RTT is used in Russell and Whitehead’s Principia Mathematica [55] 1910-1912.

e Simple theory of types (STT): Ramsey [47] 1926, Hilbert and Ackermann [26]
19286.

e Church's simply typed A\-calculus A— [12] 1940 = A-calculus + STT.
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e The hierarchies of types (and orders) as found in RTT and STT are
unsatisfactory.

e The notion of function adopted in the \-calculus is unsatisfactory (cf. [30]).

e Hence, birth of different systems of functions and types, each with different
functional power.

e \We discuss the evolution of functions and types and their use in logic, language
and computation.

e We then concentrate on these notions in mathematical vernaculars (as in
Automath) and in logic.

e Frege's functions # Principia’s functions # A-calculus functions (1932).

e Not all functions need to be fully abstracted as in the A-calculus. For some
functions, their values are enough.
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e Non-first-class functions allow us to stay at a lower order (keeping decidability,
typability, etc.) without losing the flexibility of the higher-order aspects.

e Furthermore, non-first-class functions allow placing the type systems of modern
theorem provers/programming languages like ML, LF and Automath more
accurately in the modern formal hierarchy of types.

e Another issue that we touch on is the lessons learned from formalising
mathematics in logic (a la Principia) and in proof checkers (a la Automath, or
any modern proof checker).
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Prehistory of Types (formal systems in 19th century)

In the 19th century, the need for a more precise style in mathematics arose,
because controversial results had appeared in analysis.

e 1821: Many of these controversies were solved by the work of Cauchy. E.g.,
he introduced a precise definition of convergence in his Cours d’Analyse [11].

e 1872: Due to the more exact definition of real numbers given by Dedekind
[16], the rules for reasoning with real numbers became even more precise.

e 1895-1897: Cantor began formalizing set theory [9, 10] and made contributions
to number theory.

e 1889: Peano formalized arithmetic [46], but did not treat logic or quantification.
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Prehistory of Types (formal systems in 19th century)

e 1879: Frege was not satisfied with the use of natural language in mathematics:

“. .. | found the inadequacy of language to be an obstacle; no matter how
unwieldy the expressions | was ready to accept, | was less and less able,
as the relations became more and more complex, to attain the precision

that ired.”
at my purpose require (Begriffsschrift, Preface)

Frege therefore presented Begriffsschrift [17], the first formalisation of logic
giving logical concepts via symbols rather than natural language.

“[Begriffsschrift’s| first purpose is to provide us with the most reliable
test of the validity of a chain of inferences and to point out every
presupposition that tries to sneak in unnoticed, so that its origin can be

' tigated.”
Investigate (Begriffsschrift, Preface)
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Prehistory of Types (Begriffsschrift’s functions)

The introduction of a very general definition of function was the key to the
formalisation of logic. Frege defined what we will call the Abstraction Principle.

Abstraction Principle 1.

“If in an expression, [. .. | a simple or a compound sign has one or more
occurrences and if we regard that sign as replaceable in all or some of these
occurrences by something else (but everywhere by the same thing), then we
call the part that remains invariant in the expression a function, and the
replaceable part the argument of the function.”

(Begriffsschrift, Section 9)
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Prehistory of Types (Begriffsschrift’s functions)

e Frege put no restrictions on what could play the role of an argument.

e An argument could be a number (as was the situation in analysis), but also a
proposition, or a function.

e the result of applying a function to an argument did not have to be a number.

e Frege was aware of some typing rule that does not allow to substitute functions
for object variables or objects for function variables:

“ Now just as functions are fundamentally different from objects, so also
functions whose arguments are and must be functions are fundamentally
different from functions whose arguments are objects and cannot be

anything else. | call the latter first—/ev(elé E@%.é%rr;,%, Scegﬁgec’;éevpeé”% 27)
uncti r PP- 207
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Prehistory of Types (Grundgesetze’s functions)

The Begriffsschrift, however, was only a prelude to Frege's writings.

e In Grundlagen der Arithmetik [18] he argued that mathematics can be seen as
a branch of logic.

e In Grundgesetze der Arithmetik [19, 21] he described the elementary parts of
arithmetics within an extension of the logical framework of Begriffsschrift.

e Frege approached the paradox threats for a second time at the end of Section
2 of his Grundgesetze.

e He did not want to apply a function to itself, but to its course-of-values.

e “the function ®(x) has the same course-of-values as the function W(z)" if:

“ ®(x) and ¥(z) always have the same value for th?& me agggpeen‘lg 7)
rundgesetz

e Eg., let ®(x) be x A —x, and ¥(z) be x < —ux, for all propositions .
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Prehistory of Types (Grundgesetze’s functions)

e All essential information of a function is contained in its graph.

e So a system in which a function can be applied to its own graph should have
similar possibilities as a system in which a function can be applied to itself.

o Frege excluded the paradox threats by forbidding self-application, but due to
his treatment of courses-of-values these threats were able to enter his system
through a back door.

e In 1902, Russell wrote to Frege [51] that he had discovered a paradox in his
Begriffsschrift (Begriffsschrift does not suffer from a paradox).

e Only six days later, Frege answered that Russell’s derivation of the paradox was
incorrect [20]. That self-application f(f) is not possible in the Begriffsschrift.
And that Russell’s argument could be amended to a paradox in the system of
his Grundgesetze, using the course-of-values of functions.
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Prehistory of Types (paradox in Peano and Cantor’s systems)

e Frege's system was not the only paradoxical one.

e The Russell Paradox can be derived in Peano’s system as well, as well as on

Cantor's Set Theory by defining the class K & {z | x ¢ x} and deriving

KeK+«— K¢K.
e Paradoxes were already widely known in antiquity.

e The oldest logical paradox: the Liar’'s Paradox “This sentence is not true’,
also known as the Paradox of Epimenides. It is referred to in the Bible (Titus
1:12) and is based on the confusion between language and meta-language.

e The Burali-Forti paradox ([8], 1897) is the first of the modern paradoxes. It is
a paradox within Cantor’s theory on ordinal numbers.

e (antor’s paradox on the largest cardinal number occurs in the same field. It
discovered by Cantor around 1895, but was not published before 1932.
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Prehistory of Types (paradoxes)

e Logicians considered these paradoxes to be out of the scope of logic:
The Liar's Paradox can be regarded as a problem of /inguistics.
The paradoxes of Cantor and Burali-Forti occurred in what was considered in
those days a highly questionable part of mathematics: Cantor’'s Set Theory.

e The Russell Paradox, however, was a paradox that could be formulated in all
the systems that were presented at the end of the 19th century (except for
Frege's Begriffsschrift). It was at the very basics of logic. It could not be
disregarded, and a solution to it had to be found.

e In 1903-1908, Russell suggested the use of types to solve the problem [53].
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Prehistory of Types (vicious circle principle)

“In all the above contradictions there is a common characteristic, which we
may describe as self-reference or reflexiveness. |...| In each contradiction
something is said about all cases of some kind, and from what is said a new
case seems to be generated, which both /s and is not of the same kind as
the cases of which all were concerned in what was said.”

(Mathematical logic as based on the theory of types)

Russell’s plan was, to avoid the paradoxes by avoiding all possible self-references.

He postulated the “vicious circle principle”:

“Whatever involves all of a collection must not be one of the collection.”

(Mathematical logic as based on the theory of types)

Russell implements this principle very strictly using types.

PAS2013
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Problems of Ramified Type Theory

e The main part of the Principia is devoted to the development of logic and
mathematics using the legal pfs of the ramified type theory.

e ramification/division of simple types into orders make RTT not easy to use.

o (Equality) x = y % Vz[z(x) & 2(y)].
In order to express this general notion in RTT, we have to incorporate all pfs
Vz : (0°)"[z(x) «» z(y)] for n > 1, and this cannot be expressed in one pf.

e Not possible to give a constructive proof of the theorem of the least upper
bound within a ramified type theory.

e |t is not possible in RTT to give a definition of an object that refers to the class
to which this object belongs (because of the Vicious Circle Principle). Such a
definition is called an impredicative definition.

PAS2013 13



Axiom of Reducibility

e Russell and Whitehead tried to solve problems with the axiom of reducibility:
For each formula f, there is a formula g with a predicative type such that f
and g are (logically) equivalent.

e The validity of the Axiom of Reducibility has been questioned from the moment
it was introduced.

e Though Weyl [54] made an effort to develop analysis within the Ramified
Theory of Types (without the Axiom of Reducibility),

e and various parts of mathematics can be developed within RTT and without
the Axiom,

e the general attitude towards RTT (without the axiom) was that the system was
too restrictive, and that a better solution had to be found.
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Deramification

e Ramsey considers it essential to divide the paradoxes into two parts:

e logical or syntactical paradoxes (like the Russell paradox, and the Burali-Forti
paradox) are removed

“by pointing out that a propositional function cannot significantly take
itself as argument, and by dividing functions and classes into a hierarchy
of types according to their possible arguments.”

(The Foundations of Mathematics, p. 356)

e Semantical paradoxes are excluded by the hierarchy of orders. These paradoxes
(like the Liar's paradox, and the Richard Paradox) are based on the confusion of
language and meta-language. These paradoxes are, therefore, not of a purely
mathematical or logical nature. When a proper distinction between object
language and meta-language is made, these so-called semantical paradoxes
disappear immediately.
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The Simple Theory of Types

e Ramsey [47], and Hilbert and Ackermann [26], simplified the Ramified Theory
of Types RTT by removing the orders. The result is known as the Simple
Theory of Types (STT).

e Nowadays, STT is known via Church’s formalisation in A-calculus. However,
STT already existed (1926) before \-calculus did (1932), and is therefore not

inextricably bound up with A-calculus.

e How to obtain STT from RTT? Just /eave out all the orders and the references
to orders (including the notions of predicative and impredicative types).
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Limitation of the simply typed \-calculus

e \— is very restrictive.

e Numbers, booleans, the identity function have to be defined at every level.
e \We can represent (and type) terms like Az : 0.x and Az : t.x.

e We cannot type A\x : a.z, where o can be instantiated to any type.

e This led to new (modern) type theories that allow more general notions of
functions (e.g, polymorphic).
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The evolution of functions with Frege, Russell and Church
e Historically, functions have long been treated as a kind of meta-objects.

e Function values were the important part, not abstract functions.

e In the low level/operational approach there are only function values.

e The sine-function, is always expressed with a value: sin(7), sin(x) and
properties like: sin(2x) = 2sin(z) cos(x).

e In many mathematics courses, one calls f(x)—and not f—the function.

e Frege, Russell and Church wrote x — x+ 3 resp. as x + 3, £+ 3 and \x.x + 3.

e Principia’s functions are based on Frege's Abstraction Principles but can be
first-class citizens. Frege used courses-of-values to speak about functions.

e Church made every function a first-class citizen. This is rigid and does not
represent the development of logic in 20th century.
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Functionalisation and Instantiation

[35] assessed evolution of the function concept from two points of vue:

e Functionalisation: the construction of a function out of an expression,
as in constructing the function \,.z X 3 + x from the expression 2 x 3 + 2.

e Functionalisation is

— Abstraction from a subexpression e.g., moving from 2 X 3+2tox X3+
— Function construction e.g., turning x X 3 + x into A\,.x X 3 4+ x.

e Instantiation: the calculation of a function value when a suitable argument is
assigned to the function,
as in the construction of 2 x 3+ 2 by applying the function \,.x X 3+ x to 2.

e Instantiation is:

— Application construction e.g., (A;.x X 3+ x)2 the application of A\,.x x 3+

to 2
— Concretisation to a subexpression e.g., calculating (\,.x x34x)2 to 2x 3+2.
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A-calculus does not fully represent functionalisation

1. Abstraction from a subexpression 24+ 3 +— x + 3
2. Function construction x +3 — Az.x + 3
3. Application construction (Az.x + 3)2

4. Concretisation to a subexpression (Az.(x +3))2 — 2+ 3

e cannot abstract only half way: = + 3 is not a function, Ax.x + 3 is.

e cannot apply x + 3 to an argument: (x + 3)2 does not evaluate to 2+43.

PAS2013
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Common features of modern types and functions

e We can construct a type by abstraction. (Write A : x for A is a type)

— Ay:4.Y, the identity over A has type A — A
— A Ay:a.y, the polymorphic identity has type I14.,.A — A

e We can instantiate types. E.g., if A =N, then the identity over N

— (A\ya.y)[A:=N] has type (A — A)[A:=N] or N — N.
— (Aa-Ay:a.y)N has type (IT14...A — A)N = (A — A)[A:=N]or N — N.

e (\r:a.A)B —43 Alx := B] (Mz:a.A)B —11 Alx := B]

o Write A — A as II,. 4.A when y not free in A.

PAS2013
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e Syntax: A=z |x| 0| AB | x:A.B|1lx:A.B

The Barendregt Cube

I'-A: [I'x:AF B :s
e Formation rule: = ?Hx:A% " 2 if (s, 82) €ER
Simple Poly- Depend- | Constr- | Related Refs.
morphic ent uctors | system

Ao | (k%) N 12, 2, 27]
A2 (%, *) (O, ) F 23, 50]
AP (%, *) (x,0) AUT-QE, LF | [6, 24]
AW (%, *) (0,0) | POLYREC 49
AP2 | (%, %) (O, *) (x,0) 43]
AW (%, *) (O, *) (0,0) | Fw 23]
P | () (+0) | (0,0)
A | (59 | @0 | D) | (@0 | cC 13

PAS2013
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Typing Polymorphic identity needs (O, )

; ; ; Yy
fLITU VT by (1) (+. )
y ok EIxy.y @ o

y:x,x:ykFx:y y:xFEllryy:*

by (A
* Yk Ar iy Hey.y y (M)

b0 yrxbTayy: s by (I1) (00, %)
= Iy : x.Ilx:y.y @

y:xEAriyx leyy Flly: xIlxy.y @«
. by (A)
Ay sk Ay Iy o+ Ilzy.y
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The story so far of the evolution of functions and types

e Functions have gone through a long process of evolution involving various
degrees of abstraction/construction/instantiation/concretisation/evaluation.

e Types too have gone through a long process of evolution involving various
degrees of abstraction/construction/instantiation/concretisation/evaluation.

e During their progress, some aspects have been added or removed.

e The development of types and functions have been interlinked and their
abstraction /construction /instantiation /concretisation /evaluation have much in
common.

e We also argue that some of the aspects that have been dismissed during their
evolution need to be re-incorporated.
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From the point of vue of ML
e The language ML is not based on all of system F (2nd order polymorphic
A-calculus).

e This was not possible since it was not known then whether type checking and
type finding are decidable.

e ML is based on a fragment of system F for which it was known that type
checking and type finding are decidable.

e 23 years later after the design of ML, Wells showed that type checking and
type finding in system F are undecidable.

e ML has polymorphism but not all the polymorphic power of system F.

e The question is, what system of functions and types does ML use?

e A clean answer can be given when we re-incorporate the low-level function
notion used by Frege and Russell (and de Bruijn) and dismissed by Church.

e ML treats let val id = (fn 2 = x) in (id id) end as this Cube term
(Aid:(Tla:*. o« — ). id(8 — B)(id B)) (Aa:x. Az:av. x)
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To type this in the Cube, the (O, %) rule is needed (i.e., \2).

ML's typing rules forbid this expression:
let val id = (fn z = z) in (fn y = yy)(id id) end
Its equivalent Cube term is this well-formed typable term of A\2:
(Aid : (TTazx. a — ).
(Ay:(Iaz. o — ). y(B — B)(y B))
(Aazx. id(a — «a)(ida)))

(Aaczx. Ax:a. x)
Therefore, ML should not have the full II-formation rule (O, ).

ML has limited access to the rule (O, x).

ML's type system is none of those of the eight systems of the Cube.

[29] places the type system of ML (between \2 + A\w).

PAS2013
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LF

e LF [24] is often described as AP of the Barendregt Cube.
However, Use of II-formation rule (x,0) is restricted in LF [22].

e We only need a type IIx:A.B : O when PAT is applied during construction of
the type Ila:prop.x of the operator Prf where for a proposition X, Prf(%) is
the type of proofs of ..

prop:k - prop: *  prop:x,a:prop - x:0

prop:* ~ Ila:prop.* : O
e In LF, this is the only point where the IlI-formation rule (x, 0) is used.
But, Prf is only used when applied to >::prop. We never use Prf on its own.

e This use is in fact based on a parametric constant rather than on II-formation.

e Hence, the practical use of LF would not be restricted if we present Prf in a
parametric form, and use (%, ) as a parameter instead of a II-formation rule.

e [29] precisely locate LF (between A— and AP).
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Parameters: What and Why

e We speak about functions with parameters when referring to functions with
variable values in the low-level approach. The x in f(x) is a parameter.

e Parameters enable the same expressive power as the high-level case, while

allowing us to stay at a lower order. E.g. first-order with parameters versus
second-order without [42].

e Desirable properties of the lower order theory (decidability, easiness of

calculations, typability) can be maintained, without losing the flexibility of
the higher-order aspects.

e This low-level approach is still worthwhile for many exact disciplines. In fact,

both in logic and in computer science it has certainly not been wiped out, and
for good reasons.
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Automath

e The first tool for mechanical representation and verification of mathematical
proofs, AUTOMATH, has a parameter mechanism.

e Mathematical text in AUTOMATH written as a finite list of /ines of the form:
ry Ay, .. xn A g(ay, ..o x,) =t T
Here g is a new name, an abbreviation for the expression ¢t of type 1" and

x1,...,T, are the parameters of g, with respective types Aq,..., A,.

e Each line introduces a new definition which is inherently parametrised by the
variables occurring in the context needed for it.

e Developments of ordinary mathematical theory in AUTOMATH [4] revealed
that this combined definition and parameter mechanism is vital for keeping
proofs manageable and sufficiently readable for humans.
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Extending the Cube with parametric constants, see [29]

e We add parametric constants of the form ¢(by,....b,) with by,...,b, terms
of certain types and c € C.

e by,...,b, are called the parameters of c(by,...,b,).

e S allows several kinds of II-constructs. We also use a set P of (s1,s3) where
s1, 82 € {*,0} to allow several kinds of parametric constants.

e (s1,52) € P means that we allow parametric constants ¢(by,...,b,) : A where
bi,...,b, have types Bq,..., B, of sort s1, and A is of type ss.

e If both (x,s5) € P and (J, s5) € P then combinations of parameters allowed.
For example, it is allowed that B, has type *, whilst 55 has type .
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The Cube with parametric constants

o Let (x,%) C S, P C {(x,x%),(x,0),(0,%),(0,0)}.

e \GP = \G and the two rules (E—weak) and (E—app):

I'-b: B F,AZFBZSZ F,Al‘AS
Ie(A): A-b: B

(si,8) € P,cis I'-fresh

Fl, C(A)IA, FQ - szZ[ZCj:bj];;ll (’L - 1, co ,n)
Fl, C(A)IA, FQ F A:s (If n — O)
Fl, C(A)IA, FQ = C(bl, e o ey bn) . A[lezbj]?zl

A=x1:B1,...,x,:B,,.
A’i = ZEllBl, c. ,ZEZ'_liBZ'_l
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Properties of the Refined Cube

o (Correctness of types) If ' H A : B then (B = Oorl' - B
S for some sort S).

e (Subject Reduction SR) IfI'A: Band A —3 A" then' - A": B

e (Strong Normalisation) For all t--legal terms M, we have SN_,, (M ).

e Other properties such as Uniqueness of types and typability of subterms hold.
e \AGP is the system which has II-formation rules R and parameter rules P.

e Let A\GP parametrically conservative (i.e., (s1,s2) € P implies (s1,s2) € R).

— The parameter-free system AG is at least as powerful as A\GP.
—fI'Fspa:Athen {I'} Fp {a}: {A}.
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Example

D

o R={(xx),(x0);
= () Py = {(*7 *)} Pj3 = {(*7 D)} Py= {(*7 *)7 (*7 D)}

All A\RP; for 1 <1 < 4 with the above specifications are all equal in power.

o R; = {(*7 *)} Ps = {(*7 *)7 (*7 D)}

A— < AR;Ps5 < AP: we can to talk about predicates:

eq(x:, y:av
refl(x:

)

a)

symm(x:, y:, preq(x,y)) 1 eq(y, %),
trans(x:a, y:a, z:a, p: eq(x y),q:eq(y,z)) )

eq not possible in A—.

PAS2013



The refined Barendregt Cube

0.4 € R N2 JF)\P%
B |
(O,%) e P |
(0,0) e R B y’ - APy
/@ﬁ -
A €
< ™
O\Qj <>\Q/
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A2

ML

AP2

\UT-(

APw

LF
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Logicians versus mathematicians and induction over numbers

e Logician uses ind: Ind as proof term for an application of the induction axiom.
The type Ind can only be described in AR where R = {(x, ), (*,0), (O, %) }:

Ind = IIp:(N—x*).p0— ([In:N.IIm:N.pn— Snm—pm)—IIn:N.pn (1)
e Mathematician wuses ind only with P : N—x, ¢ : P0 and R
(ITn:N.ITm:N.Pn— Snm—Pm) to form a term (ind PQR):(IIn:N.Pn).

e The use of the induction axiom by the mathematician is better described by
the parametric scheme (p, ¢ and r are the parameters of the scheme):

ind(p:N—x, ¢:p0, r:(IIn:N.IIm:N.pn—Snm—pm)) : [In:N.pn (2)

e The logician’s type Ind is not needed by the mathematician and the types
that occur in 2 can all be constructed in AR with R = {(x,*)(x, 0)}.
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Logicians versus mathematicians and induction over numbers

e Mathematician: only applies the induction axiom and doesn’t need to know
the proof-theoretical backgrounds.

e A logician develops the induction axiom (or studies its properties).

e (O,x) is not needed by the mathematician. It is needed in logician's approach
in order to form the Il-abstraction IIp:(N — x).---).

e Consequently, the type system that is used to describe the mathematician's
use of the induction axiom can be weaker than the one for the logician.

e Nevertheless, the parameter mechanism gives the mathematician limited (but
for his purposes sufficient) access to the induction scheme.
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e Parameters enable the same expressive power as the high-level case, while
allowing us to stay at a lower order. E.g. first-order with parameters versus
second-order without [42].

e Desirable properties of the lower order theory (decidability, easiness of
calculations, typability) can be maintained, without losing the flexibility of
the higher-order aspects.

e Parameters enable us to find an exact position of type systems in the generalised
framework of type systems.

e Parameters describe the difference between developers and users of systems.
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Identifying \ and II gsee [33])

e In the cube of the generalised framework of type systems, we saw that the
syntax for terms (functions) and types was intermixed with the only distinction
being A\- versus II-abstraction.

e We unify the two abstractions into one.

T, :=V | S| LT, | VT, T,
e Vis a set of variables and S = {x, [}.
e The [-reduction rule becomes (b) (bg:a.B)C —y, Blx := C].

e Now we also have the old Il-reduction (II,.4.B)C —p B|x := C| which treats
type instantiation like function instantiation.

e The type formation rule becomes

(b:) I'FA:sy T,z:AF B: sy
! ' (bx:A.B) : s9

(s1,s2) € R
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(axiom)

(start)

(weak)

O Fx:0

I'-A:s

Ie:AFx: A © & oM (I')

'rA: B T'FC:s

Toor A “#pom)

ye:AFb: B Tk (bx:A.B) : s
[t (bx:Ab) : (bx:A.B)

'+F:(bx:AB) T'kFa:A
I'- Fa : Blx:=al

I''-A:B T'+FB:s B=5B’
'-A:B
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Translations between the systems with 2 binders and those
with one binder

e For A € T, we define A € 7, as follows:

S=s T=x B E_ZE
- )\£U:A°B = Hx:A.B = bx:Z'B'

e For contexts we define: ()

[,z: A

O I'e: A

e For A € T,, we define [A] to be {A’ € T such that A’ = A}.

e For context, obviously: [I'] = {I"” such that IV = I'}.
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Isomorphism of the cube and the b-cube

e If'FA:Bthenl', A: B.

o If ' -, A: B then there are unique IV € [I'], A’ € [A] and B’ € |B] such that
I+, A" : B

e The b-cube enjoys all the properties of the cube except the unicity of types.
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Organised multiplicity of Types for -, and —, [33]

For many type systems, unicity of types is not necessary (e.g. Nuprl).

We have however an organised multiplicity of types.

1. fTH, A: Byand 'y, A : Bo, then By =, Bo.

2. IfT'H, A;: Byand 'k, Ay : By and Ay =, Ao, then By =, Bo.
3. f 'k, By:sy, Bi=, Boand ', A: By then ', By : s1.

4. Assume '+, A: Byand (', A: By)"! = (I", A", B}). Then By =, Bs if:

(a) either Tk, A: By, (T, A: By)~' = (", A”, B}) and B} =3 B,
(b) or ', C: B, (F =, C' BQ)_l = (F/, C/,Bé) and A’ =3 C’.
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Extending the cube with II-reduction loses subject reduction
[34]

If we change (appl) by (new appl) in the cube we lose subject reduction.

I'-F:(Il;4a.B) T'kFa:A
['+ Fa: Blx = a

(app!)

I'-F:(Il;4a.B) ThFa:A
' Fa: (Il;.4.B)a

(new appl)

[34] solved the problem by re-incorporating Frege and Russell's notions of low
level functions (which was lost in Church’s notion of function).

The same problem and solution can be repeated in our b-cube.
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Adding type instantiation to the typing rules of the b-cube

If we change (appb) by (new appb) in the b-cube we lose subject reduction.

FFbF:(Hx:A.B) Fl—ba,:A

(app?) T'F, Fa: Blz = 4]

FI—bF:(bx:A.B) Fl—ba,:A

(appbb) r |_b Fa : (bx;A.B)CL
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Failure of correctness of types and subject reduction

e Correctness of types no longer holds. With (applbb) one can haveI' - A : B
without B=0Oor d5.I'F B : S.

o For example, z : ¥,z : z F (by,.y)zr : (by.2)z yet (by...2)r # O and
Vs.z:x,x: 2 I/ (by..2)x 5.

e Subject Reduction no longer holds. That is, with (applb): ' A : B and
A— A" may notimply ' - A" : B.

o For example, z : x, 2z : 2 F (by,.y)x : (by.z.2)x and (b,.,.y)x —, x, but one
can't show z : %,z : 2z Fx : (by.,.2).
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Solving the problem

Keep all the typing rules of the b-cube the same except: replace (conv) by
(new-conv), (applp) by (applbb) and add three new rules as follows:

I''trA:s T'THFB:A

(start-def) Fz—BArz A x ¢ boM (I
'HA:B T'HFC:s T'HED:C
(weak-def) T 2—DCr A B x & boM (I')
I'Nr=B:AFC:D
def ’
(def) ['F (ba:A.C)B : D[z := B]
( )FI—A:B I'B':s Tk B=g4sB
new-conv N
'F:bpnpB T'Fa:A
(applbb)

' Fa: (bp.a-B)a
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In the conversion rule, I' - B =4, B’ is defined as:

o If B=, B’ then FI_B:def B’

e lfxt =D :C €T and B’ arises from B by substituting one particular free
occurrence of x in B by D then ' - B =4 B’.

e Our 3 new rules and the definition of I' = B =4, B’ are trying to re-incorporate
low-level aspects of functions that are not present in Church's A-calculus.

e /n fact, our new framework is closer to Frege's abstraction principle and the
principles x9-14 and x9-15 of [55].
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Correctness of types holds.

e \We demonstrate this with the earlier example.

e Recall that we have z : %,z : 2 F (by...y)x : (by...2)x and want that for some
S, 214,212 (by2.2)x 1 8.

e Here is how the latter formula now holds:

zix,xiz bz (start and weakening)
Zik, T ZY2)x oz (weakening)
zi#,x 2 F(bys.2)x: kly :=x] =% (def rule)

PAS2013 50



Subject Reduction holds.

e \We demonstrate this with the earlier example.

e Recall that we have z : %, 2 : 2 F (by...y)x : (by.2.2)x and (A,...y)x —3 x and
we need to show that z : %, 2 : 2 F 2 : (by...2)x.

e Here is how the latter formula now holds:

a. z:¥%,r:z Fx:z (start and weakening)
b. z:x,x:z F (byz.2)x:* (from 1 above)
z:x,x: 2 Fax:(by..2)r (conversion, a, b, and z =3 (b,...2)x)
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De Bruijn’s typed A-calculi started with his Automath

e In 1967, an internationally renowned mathematician called N.G. de Bruijn
wanted to do something never done before: use the computer to formally
check the correctness of mathematical books.

e Such a task needs a good formalisation of mathematics, a good competence
in implementation, and extreme attention to all the details so that nothing is
left informal.

e Implementing extensive formal systems on the computer was never done before.
e De Bruijn, an extremely original mathematician, did every step his own way.

e He proudly announced at the ceremony of the publications of the collected
Automath work: [ did it my way.

e Dirk van Dalen said at the ceremony: The Germans have their 3 B's, but we
Dutch too have our 3 B's: Beth, Brouwer and de Bruijn.
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There is a fourth B:




They look good together




Theme 1: De Bruijn Indices and Explicit Substitutions [14]

e Classical A-calculus: A = x| (Ax.B) | (BC)
(Ax.A)B —3 Alx := B]

o (\z.\y.xy)y —p (A\y.zy)lx = y|] # Ay.yy
o (\x ) \y.xy)y —p (A\y.zy)|lr :=y| =4 (A\z.22)|z 1= y| = Az.yz2

e \r.r and \y.y are the same function. Write this function as Al.

e Assume a free variable list (say z,v, z, ... ).

e (MN21)2 =5 (A2 1D)[1:=2] = A(2[2:=3])(1]2:=3]) = A3 1
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Classical A\-calculus with de Bruijn indices

e leti,n>1and k>0

e A :=n|(AB)|(BC)
(M)B —3 A{1 — B}

. Ui(4B) = Ui(A) Ui(B) i) = { nt+i—1 if n>k
UL(AA) = AU}, 1(4)) Y U n if n<k.

(AlAQ){{i < B}} — (Al{{i < B}}) (AQ{{i < B}})
(AN){i+— B} = A(A{{if+ 1+ B})
n—1 if n>1

nfi — B} = { UiB) if n=i

n f n<zu.

e Numerous implementations of proof checkers and programming languages have
been based on de Bruijn indices.
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From classical \-calculus with de Bruijn indices to
substitution calculus \s [31]

e Write A{n «— B} as Ac™ B and U}(A) as ¢! A.
e A :=n|(AB)|(BC)|(Adc'B)| (¢LB) where i,n>1, k>0.

o-generation (M)B — Ac'B

o-A-transition (M)o'B  — XAo'""!B)

o-app-transition (A1 A3)o'B  — (A10'B) (A3 0'B)
n—1 if n>1

o-destruction no'B — 0yB if n=i
n if n<i

p-A-transition i (M) — XNh i A)

p-app-transition ' (A1 As)  —  (ph Ay) (9L Ag)

p-destruction SO}L;;H _ n+i-—1 !f n >k
n if n<k
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1. The s-calculus (i.e., As minus o-generation) is strongly normalising,

2. The As-calculus is confluent and simulates (in small steps) 3-reduction
3. The As-calculus preserves strong normalisation PSN.

4. The As-calculus has a confluent extension with open terms Ase.

e [he M\s-calculus was the first calculus of substitutions which satisfies all the
above properties 1., 2., 3. and 4.
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Terms:  Av' = IN | AvtAv? | A | Avt[Av®]
Avs =1 | 1 (Av®) | At

Substitutions:

Av [3]

(Beta) Aa)b
(App) (ab)[s]
(Abs) (Aa)ls]
(FVar) 1]a/]
(RVar) n+1la/
(F'VarLift) 1 (s)]
(RVarLift) n+1[1(s)
(VarShift) n (1)

n[s] [1]
n+1

Av satisfies 1., 2.,

terms.

PAS2013

and 3., but does not have a confluent extension on open

59



AO,
Terms: Ao} == IN \ AU%AUTT | Ao | Aaﬂ[Aaﬂ]

Substitutions:  Acf z=idd | T | f (Ao]) | Aot - Ao? | Ao o Ao,
(Beta) Aa)b — alb-id]
(App) (ab)ls] — (als]) (b[s])
(Abs) Als] —  Aali(s))
(Clos) (alshlt] — alsot]
(Varshift1) n(f] — n+1
(Varshift2) n[fos] — n+1[s
(F'VarCons) lla-s] — a
(RVarCons) n+1lla-s] — nls]
(FVarLift1) 1fh(s)] — 1
(F'VarLift2) 1[h(s)ot] — 1]t

(RVarLift1) n+1[f(s)] — nlsoT]
(RVarLift2) n+1[ft(s)ot] — nf[so(]ot)]
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Ao, rules continued

(Map)
(Ass)

(ShiftCons)
(ShiftLift1)
(ShiftLift2)

(Lift1)
(Lift2)
(LiftEnv)
(IdL)
(IdR)
(Liftld)
(Id)

(a-s)ot —
(sot)ou —
To(a-s) —

fof(s) —
To(f(s)ot) —
t(s)oft(t) —
f(s)o(fr(t)ou) —
f(s)ola-t) —

idos —
sotd —
f(td) —

alid —

alt]- (sot)
so(towu)

sol
so(Tot)
fr(sot)

f(sot)ou
a-(sot)

ivd

Ao satisfies 1., 2., and 4., but does not have PSN.
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How is \se obtained from \s?

e They said, we can have open terms (holes in proofs) in Ao, can you do so in
As?

e A= X|n|(AB)|(BC)|(Ac"'B) | (¢.B) where i,n>1, k>0.

e Extending the syntax of As with open terms without extending the As-rules

loses the confluence (even local confluence):
(AX)Y)o!'l — (Xo'Y)oll (AX)Y)o'l — (A X)o'1)(Yo'1)

¢ (Xo'Y)o!l and ((AX)o'1)(Yo'1) have no common reduct.
e But, (A X)o'1)(Yoll) — (Xo?1)o (Yoll)

e Simple: add de Bruijn's metasubstitution and distribution lemmas to the rules
of As:
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o-0 (Ac'B)o?’C — (Ad?T'C)o"(Bo?"THC) if 1 < j

oc-p1 (o, A)c?’B — @i 'A if k<j<k+i
o-p 2 (pLA)o?’B — i(Ac?T"B) if k+i<j

p-o go}“f(A o’B) — (9‘?2+1.A) o’ (¢y1_; B) if J7<k+1
p-p 1 er(p1 A)  — ¢ (Phy1-; A) if  1+j<k
p-p 2 o, (pl A) — Tl A if I<k<l+j

e These extra rules are the rewriting of the well-known meta-substitution (o — o)
and distribution (¢ — o) lemmas (and the 4 extra lemmas needed to prove
them).

e (0 —0):

Alx .= Blly:=C|=Aly:=Cllz :=Bly:=C||ifx #y and z &€ FV(C).

e (p—o0):
updatedA|x := B] = updatedA|x := updated B.
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Where did the extra rules come from?

In de Bruijn’s classical A-calculus we have the lemmas:

(0 —¢ 1) For k<j<k+i wehave: U~ (A) =U}(A){j—B}.
(p—2) For | <k<l+7 wehave: UJ(U(A)) =U/T""1(A).
(0 —p2) For k+i<j wehave: U.(A){j<— B} =U(A{j —1i+1<—B}).

(0 — o) [Meta-substitution lemma] For i < j we have:

A{i—B}{j<C}=A{j+1-CR{i—B{j—i+1-C}}.

e The proof of (60 — o) uses (6 — ¢ 1) and (0 — ¢ 2) both with k£ = 0.

e The proof of (¢ — ¢ 2) requires (p — ¢ 2) with [ = 0.
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Where did the extra rules come from (continued)?

In de Bruijn’s classical A-calculus we also have the lemmas:

(¢ — @ 1) For j <k+1 we have: Uy, (U)(A)) = UJ(Ui pp1_i(A)).

p

(¢ — o) [Distribution lemmaj | | |
For j <k+1 we have: Uy (A{j—B}) =U, (A{i<Ui1_;(B)}.

e (o — 1) with p =0 is needed to prove (¢ — o).
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Theme 2: Lambda Calculus a la de Bruijn

o I(z) =z, I(\x.B)=[I(B), I(AB)= (I(B))Z(A)

o (\x.\y.xy)z translates to (z)|z]|y|(y)z.

e The applicator wagon (z) and abstractor wagon |[x] occur NEXT to each other.

* (

A)5 —3 Alx := B] becomes

A —gxr:=BJA

e The “bracketing structure” of ((\..(A,.A.. — —)c)b)a), is ‘|1 [2 |3 |2
where ‘[;" and ‘|;" match.

e The bracketing structure of (a) () |yl[z](d) is simpler: [ [[]].

PAS2013
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Redexes in de Bruijn’s notation

Classical Notation de Bruijn’s Notation
(- (Ay-Azzd)c)D)a (@) () [z {c)[yl[z[{d)=
lg L
((Ay-Az.zd)c)a (a){c)lyl[z]{d)z
lp lg
(M\..zd)a (a)|z]{d)z
lp lg
ad (d)a
T

(@) () [y] [z (d) 2

e This maks it easy to introduce local/global /mini reductions into the A-calculus

[7]

e Further study of de Bruijn’s notation can be found in [36, 37]
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PAS2013

Some notions of reduction studied in the literature

Name | In Classical Notation | In de Bruijn’s notation
(Ae-N)P)CQ (Q)(P)[z|N
(0) l l
(Ae-NQ) P (P)[z[(Q)N
(Az-Ay-N) yIN
(7) l
Ay-(A V) Y] N
(A0 Ay N) )@ (@) YN
(7o) l l
(Ay- (A N)P)Q (@Q)y] N
((Az-y-N)P)C (Q)(P)[z]ly|N
(9) l l
(Ae- Ny := Q)P (P)|z]ly := QN
i (Q)sly|N
(Be) | l
! sly :== QIN
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A Few Uses of these reductions/term reshuffling

e [48] uses # and ~ in analyzing perpetual reduction strategies.
e Term reshuffling is used in [41, 39] in analyzing typability problems.

e [44, 15, 40, 32] use generalised reduction and/or term reshuffling in relating
SN to WN.

e [1] uses a form of term-reshuffling in obtaining a calculus that corresponds to
lazy functional evaluation.

e [36, 28, 38, 5] shows that they could reduce space/time needs.

e All these works have been heavily influenced by de Bruijn's Automath whose
A-notation facilitated the manipulation of redexes.

e All can be represented clearer in de Bruijn’'s notation.
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An impressive thinker and entertainer

5

Giant Gourme!
Coltage Pie

P .




Even more: de Bruijn’s generalised reduction has better

properties
(8) (\e.M)N — Mz := N]
(Br) (\o.M)N — M[z:=N]  ifxc FV(M)
(Bbr) (Ae-M)N — M if x & FV (M)
EH) E)\x.N)PQ — (Az-NQ)P

)5[x]N — S{N|z :

M| for s well-balanced.

e [32] shows that . satisfies PSN, postponment of K-contraction and
conservation (latter 2 properties fail for G-reduction).

e Conservation of §.: If A is B.I-normalisable then A is §.-strongly normalisable.

e Postponment of K-contraction : Hence, discard arguments of K-redexes after
I-reduction. This gives flexibility in implementation: unnecessary work can be
delayed, or even completely avoided.
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e Attempts have been made at establishing some reduction relations for which
postponement of K-contractions and conservation hold.

e The picture is as follows (-N stands for normalising and r € {37,0K}).

(Bk-postponement for ) If M —p5,, N —, O then 3P such that M _H;IQK P ——p,

(Conservation for () If M is B7-N then M is 37;-SN Barendregt's book
(Conservation for 8 + 6) If M is B10x-N then M is 3-SN  [15]

e De Groote does not produce these results for a single reduction relation, but
for 3+ 6 (this is more restrictive than ,).

e (3. is the first single relation to satisfy Bx-postponement and conservation.

e [32] shows that:

(Ber-postponement for 3.) If M —p5 . N —p , O then 3P such that M —p5 . P —>—>;r
(Conservation for (3.) If M is B.;-N then M is §.-SN
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Here is de Bruijn at a lecture




And here is Henk listening to de Bruijn's tal




This is de Bruijn at 9:15 am lecture my students at a short notice
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