
Automath type inclusion in Barendregt’s Cube

Fairouz Kamareddine & Joe Wells (Heriot-Watt University, Edinburgh, UK)
Daniel ventura (Universidade Federal de Goiás, Goiânia GO, Brazil)

July 2015

CSR-Russia 2015



CSR-Russia 2015 1



Development of Types and Functions

• General definition of function [Frege, 1879] is key to his formalisation of logic.

• Self-application of functions was the heart of Russell’s paradox [Russell, 1902].

• To avoid paradox Russell controled function application via type theory.

• [Russell, 1903] gives the first type theory: the Ramified Type Theory (rtt).

• rtt is used in Principia Mathematica [Whitehead and Russell, 19101, 19272].

• Simple theory of types (stt): [Ramsey, 1926], [Hilbert and Ackermann, 1928].

• The hierarchies of types/orders of rtt and stt are unsatisfactory.

CSR-Russia 2015 2



CSR-Russia 2015 3



Development of Types and Functions continued

• In the 30s Church gave λ-calculus where all functions are 1st-class citizens.

• Frege’s functions 6= Principia’s functions 6= λ-calculus functions.

• In 1940 Church gave simply typed λ-calculus λ→ = λ-calculus + stt.

• Not all functions need to be fully abstracted as in the λ-calculus.

• For some functions, values are enough. E.g., we speak of sin(x) not of sin.

• Without function definitions/abbreviations, e.g. x = A and x = A in B,
mathematics would be infeasible.

• Developments of ordinary mathematical theory in Automath [Benthem Jutting,
1977] revealed that this combined definition and function value mechanism is
vital for keeping proofs manageable and sufficiently readable for humans.

CSR-Russia 2015 4



• Non-first-class functions allow us to stay at a lower order (keeping decidability,
typability, etc.) without losing the flexibility of the higher-order aspects.

• Frege and Russell’s notions of low level functions (which was lost in Church’s
notion of function) allow us not only keep feasibility, but also solve important
problems like correctness of typability and subject reduction (safety).

• Non-first-class functions allow placing the type systems of modern theorem
provers/programming languages like ML, LF and Automath more accurately
in the modern hierarchy of types.

CSR-Russia 2015 5



CSR-Russia 2015 6



The Barendregt Cube

• Syntax: A ::= x | ∗ | 2 | AB | λx:A.B | Πx:A.B

• Formation rule (Π):
Γ ⊢ A : s1 Γ, x:A ⊢ B : s2

Γ ⊢ Πx:A.B : s2

if (s1, s2) ∈ R

Simple Poly-
morphic

Depend-
ent

Constr-
uctors

Related
system

Refs.

λ→ (∗, ∗) λτ [Church, 1940; Ba
λ2 (∗, ∗) (2, ∗) F [Girard, 1972; Reynolds,
λP (∗, ∗) (∗,2) aut-QE, LF [Bruijn, 1968; Harp
λω (∗, ∗) (2,2) POLYREC [Renardel de Lavalette,
λP2 (∗, ∗) (2, ∗) (∗,2) [Longo and Moggi,
λω (∗, ∗) (2, ∗) (2,2) Fω [Girard, 1972]
λPω (∗, ∗) (∗,2) (2,2)
λC (∗, ∗) (2, ∗) (∗,2) (2,2) CC [Coquand and Huet,

CSR-Russia 2015 7



The Barendregt Cube

λ→ λP

λ2 λP2

λω λPω

λCλω

-

6

1

(∗, 2) ∈ R

(2,2) ∈ R

(2, ∗) ∈ R

CSR-Russia 2015 8



The β-cube: →β + convβ + appΠ

(axiom) 〈〉 ⊢ ∗ : 2

(start)
Γ ⊢ A : s x 6∈ dom (Γ)

Γ, x:A ⊢ x : A

(weak)
Γ ⊢ A : B Γ ⊢ C : s x 6∈ dom (Γ)

Γ, x:C ⊢ A : B

(Π)
Γ ⊢ A : s1 Γ, x:A ⊢ B : s2 (s1, s2) ∈ R

Γ ⊢ Πx:A.B : s2

(λ)
Γ, x:A ⊢ b : B Γ ⊢ Πx:A.B : s

Γ ⊢ λx:A.b : Πx:A.B

(convβ)
Γ ⊢ A : B Γ ⊢ B′ : s B =β B′

Γ ⊢ A : B′

(appΠ)
Γ ⊢ F : Πx:A.B Γ ⊢ a : A

Γ ⊢ Fa : B[x:=a]

CSR-Russia 2015 9



Typing Polymorphic identity needs (2, ∗)

•
y : ∗ ⊢ y : ∗ y : ∗, x:y ⊢ y : ∗

y : ∗ ⊢ Πx:y.y : ∗
by (Π) (∗, ∗)

•
y : ∗, x : y ⊢ x : y y : ∗ ⊢ Πx:y.y : ∗

y : ∗ ⊢ λx : y.x : Πx:y.y
by (λ)

•
⊢ ∗ : 2 y : ∗ ⊢ Πx:y.y : ∗

⊢ Πy : ∗.Πx:y.y : ∗
by (Π) (2, ∗)

•
y : ∗ ⊢ λx : y.x : Πx:y.y ⊢ Πy : ∗.Πx:y.y : ∗

⊢ λy : ∗.λx : y.x : Πy : ∗.Πx:y.y
by (λ)

CSR-Russia 2015 10



6 desirable properties of a type system with reduction r

• Types are correct (TC)
If Γ ⊢ A : B then B ≡ 2 or Γ ⊢ B : s fors ∈ {∗, 2}.

• Subject reduction (SR) If Γ ⊢ A : B and A →→r A′ then Γ ⊢ A′ : B.

• Preservation of types (PT) If Γ ⊢ A : B and B →→r B′ then Γ ⊢ A : B′.

• Strong Normalisation (SN) If Γ ⊢ A : B then SN→r(A) and SN→r(B).

• Subterms are typable (STT) If A is ⊢-legal and if C is a sub-term of A then
C is ⊢-legal.

• Unicity of types

– (UT1) If Γ ⊢ A1 : B1 and Γ ⊢ A2 : B2 and Γ ⊢ A1 =r A2, then
Γ ⊢ B1 =r B2.

– (UT2) If Γ ⊢ B1 : s, B1 =r B2 and Γ ⊢ A : B2 then Γ ⊢ B2 : s.

CSR-Russia 2015 11



The evolution of functions with Frege, Russell and Church

• Historically, functions have long been treated as a kind of meta-objects.

• Function values were the important part, not abstract functions.

• In the low level/operational approach there are only function values.

• The sine-function, is always expressed with a value: sin(π), sin(x) and
properties like: sin(2x) = 2 sin(x) cos(x).

• In many mathematics courses, one calls f(x)—and not f—the function.

• Frege, Russell and Church wrote x 7→ x+3 resp. as x+3, x̂+3 and λx.x+3.

• Principia’s functions are based on Frege’s Abstraction Principles but can be
first-class citizens. Frege used courses-of-values to speak about functions.

• Church made every function a first-class citizen. This is rigid and does not
represent the development of logic in 20th century.

CSR-Russia 2015 12



From the point of vue of ML

• The language ML is not based on all of system F (2nd order λ-calculus).

• This was not possible since it was not known then whether type checking and
type finding are decidable.

• ML is based on a fragment of system F for which it was known that type
checking and type finding are decidable.

• 23 years later after the design of ML, Joe Wells showed that type checking
and type finding in system F are undecidable.

• ML has polymorphism but not all the polymorphic power of system F.

• The question is, what system of functions and types does ML use?

• A clean answer can be given when we re-incorporate the low-level function
notion used by Frege and Russell (and de Bruijn) and dismissed by Church.

• ML treats let val id = (fn x ⇒ x) in (id id) end as this Cube term
(λid:(Πα:∗. α → α). id(β → β)(id β))(λα:∗. λx:α. x)

• To type this in the Cube, the (2, ∗) rule is needed (i.e., λ2).

CSR-Russia 2015 13



• ML’s typing rules forbid this expression:
let val id = (fn x ⇒ x) in (fn y ⇒ y y)(id id) end
Its equivalent Cube term is this well-formed typable term of λ2:
(λid : (Πα:∗. α → α).

(λy:(Πα:∗. α → α). y(β → β)(y β))
(λα:∗. id(α → α)(idα)))

(λα:∗. λx:α. x)

• Therefore, ML should not have the full Π-formation rule (2, ∗).

• ML has limited access to the rule (2, ∗).

• ML’s type system is none of those of the eight systems of the Cube.

CSR-Russia 2015 14



LF

• LF [Harper et al., 1987] is often described as λP of the Barendregt Cube.
However, Use of Π-formation rule (∗, 2) is restricted in LF [Geuvers, 1993].

• We only need a type Πx:A.B : 2 when pat is applied during construction of
the type Πα:prop.∗ of the operator Prf where for a proposition Σ, Prf(Σ) is
the type of proofs of Σ.

prop:∗ ⊢ prop: ∗ prop:∗, α:prop ⊢ ∗:2

prop:∗ ⊢ Πα:prop.∗ : 2
.

• In LF, this is the only point where the Π-formation rule (∗, 2) is used.
But, Prf is only used when applied to Σ:prop. We never use Prf on its own.

• This use is in fact based on a parametric constant rather than on Π-formation.
• Hence, the practical use of LF would not be restricted if we present Prf in a

parametric form, and use (∗,2) as a parameter instead of a Π-formation rule.

CSR-Russia 2015 15



Parameters: What and Why

• We speak about functions with parameters when referring to functions with
variable values in the low-level approach. The x in f(x) is a parameter.

• Parameters enable the same expressive power as the high-level case, while
allowing us to stay at a lower order. E.g. first-order with parameters versus
second-order without [Laan and Franssen, 2001].

• Desirable properties of the lower order theory (decidability, easiness of
calculations, typability) can be maintained, without losing the flexibility of
the higher-order aspects.

• This low-level approach is still worthwhile for many exact disciplines. In fact,
both in logic and in computer science it has certainly not been wiped out, and
for good reasons.

CSR-Russia 2015 16



Extending the Cube with parametric constants, see K. etal’01

• We add parametric constants of the form c(b1, . . . , bn) with b1, . . . , bn terms
of certain types and c ∈ C.

• b1, . . . , bn are called the parameters of c(b1, . . . , bn).

• R allows several kinds of Π-constructs. We also use a set P of (s1, s2) where
s1, s2 ∈ {∗, 2} to allow several kinds of parametric constants.

• (s1, s2) ∈ P means that we allow parametric constants c(b1, . . . , bn) : A where
b1, . . . , bn have types B1, . . . , Bn of sort s1, and A is of type s2.

• If both (∗, s2) ∈ P and (2, s2) ∈ P then combinations of parameters allowed.
For example, it is allowed that B1 has type ∗, whilst B2 has type 2.

CSR-Russia 2015 17



The Cube with parametric constants

• Let (∗, ∗) ⊆ R,P ⊆ {(∗, ∗), (∗, 2), (2, ∗), (2,2)}.

• λRP = λR and the two rules (
→

C-weak) and (
→

C-app):

Γ ⊢ b : B Γ,∆i ⊢ Bi : si Γ,∆ ⊢ A : s
Γ, c(∆) : A ⊢ b : B

(si, s) ∈ P , c is Γ-fresh

Γ1, c(∆):A,Γ2 ⊢ bi:Bi[xj:=bj]
i−1

j=1
(i = 1, . . . , n)

Γ1, c(∆):A,Γ2 ⊢ A : s (if n = 0)
Γ1, c(∆):A, Γ2 ⊢ c(b1, . . . , bn) : A[xj:=bj]

n
j=1

∆ ≡ x1:B1, . . . , xn:Bn.
∆i ≡ x1:B1, . . . , xi−1:Bi−1

CSR-Russia 2015 18



Properties of the Refined Cube

• (Correctness of types) If Γ ⊢ A : B then (B ≡ 2 or Γ ⊢ B :
S for some sort S).

• (Subject Reduction SR) If Γ ⊢ A : B and A →→β A′ then Γ ⊢ A′ : B

• (Strong Normalisation) For all ⊢-legal terms M , we have SN→→β
(M).

• Other properties such as Uniqueness of types and typability of subterms hold.

• λRP is the system which has Π-formation rules R and parameter rules P .

• Let λRP parametrically conservative (i.e., (s1, s2) ∈ P implies (s1, s2) ∈ R).

– The parameter-free system λR is at least as powerful as λRP .
– If Γ ⊢

RP a : A then {Γ} ⊢R {a} : {A} .

CSR-Russia 2015 19



Example

• R = {(∗, ∗), (∗, 2)}

P 1 = ∅ P 2 = {(∗, ∗)} P 3 = {(∗, 2)} P 4 = {(∗, ∗), (∗, 2)}

All λRP i for 1 ≤ i ≤ 4 with the above specifications are all equal in power.

• R5 = {(∗, ∗)} P 5 = {(∗, ∗), (∗, 2)}.

λ→ < λR5P 5 < λP: we can to talk about predicates:

α : ∗,
eq(x:α, y:α) : ∗,
refl(x:α) : eq(x, x),

symm(x:α, y:α, p:eq(x, y)) : eq(y, x),
trans(x:α, y:α, z:α, p:eq(x, y), q:eq(y, z)) : eq(x, z)

.

eq not possible in λ→.

CSR-Russia 2015 20



The refined Barendregt Cube

λ→ λP

λ2 λP2

λω λPω

λCλω

-

6

1

-

6

1

(∗
,2

) ∈
R

(2, ∗) ∈ R

(2, ∗) ∈ P

(∗
,2

) ∈
P

(2,2) ∈ P

(2,2) ∈ R

CSR-Russia 2015 21



LF, ML, Aut-68, and Aut-QE in the refined Cube

λ→ λP

λ2 λP2

λω λPω

λCλω

Aut-68 Aut-QEML

LF

CSR-Russia 2015 22



Logicians versus mathematicians and induction over numbers

• Logician uses ind: Ind as proof term for an application of the induction axiom.
The type Ind can only be described in λR where R = {(∗, ∗), (∗,2), (2, ∗)}:

Ind = Πp:(N→∗).p0→(Πn:N.Πm:N.pn→Snm→pm)→Πn:N.pn (1)
• Mathematician uses ind only with P : N→∗, Q : P0 and R :

(Πn:N.Πm:N.Pn→Snm→Pm) to form a term (indPQR):(Πn:N.Pn).

• The use of the induction axiom by the mathematician is better described by
the parametric scheme (p, q and r are the parameters of the scheme):

ind(p:N→∗, q:p0, r:(Πn:N.Πm:N.pn→Snm→pm)) : Πn:N.pn (2)
• The logician’s type Ind is not needed by the mathematician and the types

that occur in 2 can all be constructed in λR with R = {(∗, ∗)(∗,2)}.

CSR-Russia 2015 23



Logicians versus mathematicians and induction over numbers

• Mathematician: only applies the induction axiom and doesn’t need to know
the proof-theoretical backgrounds.

• A logician develops the induction axiom (or studies its properties).

• (2, ∗) is not needed by the mathematician. It is needed in logician’s approach
in order to form the Π-abstraction Πp:(N → ∗). · · · ).

• Consequently, the type system that is used to describe the mathematician’s
use of the induction axiom can be weaker than the one for the logician.

• Nevertheless, the parameter mechanism gives the mathematician limited (but
for his purposes sufficient) access to the induction scheme.

CSR-Russia 2015 24



Common features of modern types and functions

• Write A → A as Πy:A.A when y not free in A.

• We can construct a type by abstraction. (Write A : ∗ for A is a type)

– λy:A.y, the identity over A has type Πy:A.A, i.e. A → A

– λA:∗.λy:A.y, the polymorphic identity has type ΠA:∗.A → A

• We can instantiate types. E.g., if A = N, then the identity over N

– (λA:∗.λy:A.y)N has type (ΠA:∗.A → A)N = (A → A)[A := N] or N → N.

• More clearly

Term λy:A.y λA:∗.λy:A.y (λA:∗.λy:A.y)N
Type Πy:A.A ΠA:∗.Πy:A.A (ΠA:∗.Πy:A.A)N
shorthand A → A ΠA:∗.A → A (ΠA:∗.A → A)N

• (λx:α.A)B →β A[x := B] (Πx:α.A)B →Π A[x := B]

CSR-Russia 2015 25



The π-cube: Rπ = Rβ\ (convβ) ∪ (convβΠ), →βΠ

• (λx:α.A)B →β A[x := B]

• (Πx:α.A)B →Π A[x := B]

(axiom) (start) (weak) (Π) (λ) (appΠ)

(convβΠ)
Γ ⊢ A : B Γ ⊢ B′ : s B =βΠ B′

Γ ⊢ A : B′

Lemma: Γ ⊢β A : B iff Γ ⊢π A : B

Lemma: The β-cube and the π-cube satisfy the six properties that are desirable
for type systems.

CSR-Russia 2015 26



The πi-cube: Rπi
= Rπ\ (appΠ) ∪ (i-appΠ), →βΠ

(appΠ)
Γ ⊢ F : Πx:A.B Γ ⊢ a : A

Γ ⊢ Fa : B[x:=a]

(axiom) (start) (weak) (Π) (λ)

(convβΠ)
Γ ⊢ A : B Γ ⊢ B′ : s B =βΠ B′

Γ ⊢ A : B′

(i-appΠ)
Γ ⊢ F : Πx:A.B Γ ⊢ a : A

Γ ⊢ Fa : (Πx:A.B)a

Lemma:

• If Γ ⊢β A : B then Γ ⊢πi
A : B.

• If Γ ⊢πi
A : B then Γ ⊢β A : [B]Π

where [B]Π is the Π-normal form of B.

CSR-Russia 2015 27



The πi-cube

• The πi-cube loses three of its six properties
Let Γ = z : ∗, x : z. We have that Γ ⊢πi

(λy:z.y)x : (Πy:z.z)x.

– We do not have TC (Πy:z.z)x 6≡ 2 and Γ 6⊢πi
(Πy:z.z)x : s.

– We do not have SR (λy:z.y)x →βΠ x but Γ 6⊢πi
x : (Πy:z.z)x.

– We do not have UT2 ⊢πi
∗ : 2, ∗ =βΠ (Πz:∗.∗)α, α : ∗ ⊢πi

(λz:∗.∗)α :
(Πz:∗.∗)α and 6⊢πi

(Πz:∗.∗)α : 2

• But we have:

– We have UT1
– We have STT
– We have PT
– We have SN
– We have a weak form of TC If Γ ⊢πi

A : B and B does not have a Π-redex
then either B ≡ 2 or Γ ⊢πi

B : s.
– We have a weak form of SR If Γ ⊢πi

A : B, B is not a Π-redex and
A →→βΠ A′ then Γ ⊢πi

A′ : B.

CSR-Russia 2015 28



The problem can be solved by re-incorporating Frege and

Russell’s notions of low level functions (which was lost in

Church’s notion of function)

CSR-Russia 2015 29



Rules for abbreviations

(start-a)
Γ ⊢ A : s Γ ⊢ B : A

Γ, x = B:A ⊢ x : A
x 6∈ dom (Γ)

(weak-a)
Γ ⊢ A : B Γ ⊢ C : s Γ ⊢ D : C

Γ, x = D:C ⊢ A : B
x 6∈ dom (Γ)

Figure 1: Basic abbreviation rules BA

(let\)
Γ, x = B:A ⊢ C : D

Γ ⊢ (\x:A.C)B : D[x := B]

Figure 2: (let\) where \ = λ or \ = Π

CSR-Russia 2015 30



The βa-cube: Rβa = Rβ + BA + letβ, →β

(axiom) (start) (weak) (Π) (λ) (appΠ) (convβ)

(start-a)
Γ ⊢ A : s Γ ⊢ B : A

Γ, x = B:A ⊢ x : A
x 6∈ dom (Γ)

(weak-a)
Γ ⊢ A : B Γ ⊢ C : s Γ ⊢ D : C

Γ, x = D:C ⊢ A : B
x 6∈ dom (Γ)

(letβ)
Γ, x = B:A ⊢ C : D

Γ ⊢ (λx:A.C)B : D[x := B]

Lemma: The βa-cube satisfies the desirable properties except for typability of
subterms.
If A is ⊢-legal and B is a subterm of A such that every bachelor λx:D in B is
also bachelor in A, then B is ⊢-legal.

CSR-Russia 2015 31



The πa-cube: Rπa = Rπ + BA + letβ + letΠ, →βΠ

(axiom) (start) (weak) (Π) (λ) (appΠ) (convβΠ)

(start-a)
Γ ⊢ A : s Γ ⊢ B : A

Γ, x = B:A ⊢ x : A
x 6∈ dom (Γ)

(weak-a)
Γ ⊢ A : B Γ ⊢ C : s Γ ⊢ D : C

Γ, x = D:C ⊢ A : B
x 6∈ dom (Γ)

(letβ)
Γ, x = B:A ⊢ C : D

Γ ⊢ (λx:A.C)B : D[x := B]

(letΠ)
Γ, x = B:A ⊢ C : D

Γ ⊢ (Πx:A.C)B : D[x := B]

Lemma: The πa-cube satisfies the same properties as the βa.

CSR-Russia 2015 32



The πai-cube: Rπai
= Rπa\ appΠ + i-appΠ, →βΠ

Let Γ = z : ∗, x : z. We have that Γ ⊢πai
(λy:z.y)x : (Πy:z.z)x.

• We NOW have TC although Γ 6⊢πi
(Πy:z.z)x : s, we have Γ ⊢πai

(Πy:z.z)x : s

By (weak-a) z : ∗, x : z, y = x : z ⊢πai
z : ∗.

Hence by (letΠ) z : ∗, x : z ⊢πai
(Πy:z.z)x : ∗[y := x] ≡ ∗.

• We NOW have SR (λy:z.y)x →βΠ x.
Although Γ 6⊢πi

x : (Πy:z.z)x, we have Γ ⊢πai
x : (Πy:z.z)x

Since z : ∗, x : z ⊢πai
x : z, and z : ∗, x : z ⊢πai

(Πy:z.z)x : ∗ and
z : ∗, x : z  z =βΠ (Πy:z.z)x, we use (convβΠ) to get:
z : ∗, x : z ⊢πai

x : (Πy:z.z)x.

CSR-Russia 2015 33



Identifying λ and Π

• In the cube of the generalised framework of type systems, we saw that the
syntax for terms (functions) and types was intermixed with the only distinction
being λ- versus Π-abstraction.

• We unify the two abstractions into one.
T♭ ::= V | S | T♭T♭ | ♭V :T♭.T♭

• V is a set of variables and S = {∗, 2}.

• The β-reduction rule becomes (♭) (♭x:A.B)C →♭ B[x := C].

• Now we also have the old Π-reduction (Πx:A.B)C →Π B[x := C] which treats
type instantiation like function instantiation.

• The type formation rule becomes

(♭1)
Γ ⊢ A : s1 Γ, x:A ⊢ B : s2

Γ ⊢ (♭x:A.B) : s2

(s1, s2) ∈ R

CSR-Russia 2015 34



(axiom) 〈〉 ⊢ ∗ : 2

(start)
Γ ⊢ A : s

Γ, x:A ⊢ x : A
x 6∈ dom (Γ)

(weak)
Γ ⊢ A : B Γ ⊢ C : s

Γ, x:C ⊢ A : B
x 6∈ dom (Γ)

(♭2)
Γ, x:A ⊢ b : B Γ ⊢ (♭x:A.B) : s

Γ ⊢ (♭x:A.b) : (♭x:A.B)

(app♭)
Γ ⊢ F : (♭x:A.B) Γ ⊢ a : A

Γ ⊢ Fa : B[x:=a]

(conv)
Γ ⊢ A : B Γ ⊢ B′ : s B =β B′

Γ ⊢ A : B′

CSR-Russia 2015 35



Isomorphism of the cube and the ♭-cube

• For A ∈ T , we define A ∈ T♭ as follows:

– s ≡ s x ≡ x AB ≡ A B

– λx:A.B ≡ Πx:A.B ≡ ♭x:A.B.

• For contexts we define: 〈〉 ≡ 〈〉 Γ, x : A ≡ Γ, x : A.

• For A ∈ T♭, we define [A] to be {A′ ∈ T such that A′ ≡ A}.

• For context, obviously: [Γ] ≡ {Γ′ such that Γ′ ≡ Γ}.

• If Γ ⊢π A : B then Γ ⊢♭ A : B.

• If Γ ⊢♭ A : B then there are unique Γ′ ∈ [Γ], A′ ∈ [A] and B′ ∈ [B] such that
Γ′ ⊢π A′ : B′.

• The ♭-cube enjoys all the properties of the cube except the unicity of types.

CSR-Russia 2015 36



Recall that extending the cube with Π-reduction loses

subject reduction

If we change (appl) by (new appl) in the cube we lose subject reduction.

(appl)
Γ ⊢ F : (Πx:A.B) Γ ⊢ a : A

Γ ⊢ Fa : B[x := a]

(new appl)
Γ ⊢ F : (Πx:A.B) Γ ⊢ a : A

Γ ⊢ Fa : (Πx:A.B)a

The problem was soolved by re-incorporating Frege and Russell’s notions of low
level functions (which was lost in Church’s notion of function).

The same problem and solution can be repeated in our ♭-cube with type
instantiation (Π-reduction).

CSR-Russia 2015 37



Adding type instantiation to the typing rules of the ♭-cube

If we change (app♭) by (new app♭) in the ♭-cube we lose subject reduction.

(app♭)
Γ ⊢♭ F : (Πx:A.B) Γ ⊢♭ a : A

Γ ⊢♭ Fa : B[x := a]

(app♭♭)
Γ ⊢♭ F : (♭x:A.B) Γ ⊢♭ a : A

Γ ⊢♭ Fa : (♭x:A.B)a

CSR-Russia 2015 38



Failure of correctness of types and subject reduction

• Correctness of types no longer holds. With (appl♭♭) one can have Γ ⊢ A : B

without B ≡ 2 or ∃S . Γ ⊢ B : S.

• For example, z : ∗, x : z ⊢ (♭y:z.y)x : (♭y:z.z)x yet (♭y:z.z)x 6≡ 2 and
∀s . z : ∗, x : z 6⊢ (♭y:z.z)x : s.

• Subject Reduction no longer holds. That is, with (appl♭): Γ ⊢ A : B and
A →→ A′ may not imply Γ ⊢ A′ : B.

• For example, z : ∗, x : z ⊢ (♭y:z.y)x : (♭y:z.z)x and (♭y:z.y)x →♭ x, but one
can’t show z : ∗, x : z ⊢ x : (♭y:z.z)x.

CSR-Russia 2015 39



Solving the problem

Keep all the typing rules of the ♭-cube the same except: replace (conv) by
(new-conv), (appl♭) by (appl♭♭) and add three new rules as follows:

(start-def)
Γ ⊢ A : s Γ ⊢ B : A

Γ, x = B:A ⊢ x : A
x 6∈ dom (Γ)

(weak-def)
Γ ⊢ A : B Γ ⊢ C : s Γ ⊢ D : C

Γ, x = D:C ⊢ A : B
x 6∈ dom (Γ)

(def)
Γ, x = B:A ⊢ C : D

Γ ⊢ (♭x:A.C)B : D[x := B]

(new-conv)
Γ ⊢ A : B Γ ⊢ B′ : s Γ ⊢ B =def B′

Γ ⊢ A : B′

(appl♭♭)
Γ ⊢ F : ♭x:A.B Γ ⊢ a : A

Γ ⊢ Fa : (♭x:A.B)a

CSR-Russia 2015 40



In the conversion rule, Γ ⊢ B =def B′ is defined as:

• If B =♭ B′ then Γ ⊢ B =def B′

• If x = D : C ∈ Γ and B′ arises from B by substituting one particular free
occurrence of x in B by D then Γ ⊢ B =def B′.

• Our 3 new rules and the definition of Γ ⊢ B =def B′ are trying to re-incorporate
low-level aspects of functions that are not present in Church’s λ-calculus.

• In fact, our new framework is closer to Frege’s abstraction principle and the
principles ∗9·14 and ∗9·15 of [Whitehead and Russell, 19101, 19272].

CSR-Russia 2015 41



Correctness of types holds.

• We demonstrate this with the earlier example.

• Recall that we have z : ∗, x : z ⊢ (♭y:z.y)x : (♭y:z.z)x and want that for some
s, z : ∗, x : z ⊢ (♭y:z.z)x : s.

• Here is how the latter formula now holds:

z : ∗, x : z ⊢ z : ∗ (start and weakening)
z : ∗, x : z.y = x : z ⊢ z : ∗ (weakening)
z : ∗, x : z ⊢ (♭y:z.z)x : ∗[y := x] ≡ ∗ (def rule)

CSR-Russia 2015 42



Subject Reduction holds.

• We demonstrate this with the earlier example.

• Recall that we have z : ∗, x : z ⊢ (♭y:z.y)x : (♭y:z.z)x and (λy:z.y)x →β x and
we need to show that z : ∗, x : z ⊢ x : (♭y:z.z)x.

• Here is how the latter formula now holds:

a. z : ∗, x : z ⊢ x : z (start and weakening)
b. z : ∗, x : z ⊢ (♭y:z.z)x : ∗ (from 1 above)

z : ∗, x : z ⊢ x : (♭y:z.z)x (conversion, a, b, and z =β (♭y:z.z)x)

CSR-Russia 2015 43



Consequences of unifying λ and Π

• A term can have many distinct types. E.g., in λP we have:

α : ∗ ⊢β (λx:α.α) : (Πx:α.∗) and α : ∗ ⊢β (Πx:α.α) : ∗

which, when we give up the difference between λ and Π, result in:

– α : ∗ ⊢β [x:α]α : [x:α] ∗ and
– α : ∗ ⊢β [x:α]α : ∗

CSR-Russia 2015 44



• More generally, in AUT-QE we have the dervived rule:

Γ ⊢β [x1:A1] · · · [xn:An]B : [x1:A1] · · · [xn:An]∗

Γ ⊢β [x1:A1] · · · [xn:An]B : [x1:A1] · · · [xm:Am]∗
0 ≤ m ≤ n (3)

This derived rule (3) has the following equivalent derived rule in λP (and hence
in the higher systmes like λPω):

Γ ⊢β λx1:A1. · · ·λxn:An.B : Πx1:A1. · · ·Πxn:An. ∗ 0 ≤ m ≤ n

Γ ⊢β λx1:A1. · · ·λxm:Am.Πxm+1:Am+1. · · ·Πxn:An.B : Πx1:A1. · · ·Πxm:Am.∗

However, Aut-QE goes further and generalises (3) to a rule of type inclusion:

Γ ⊢β M : [x1:A1] · · · [xn:An]∗

Γ ⊢β M : [x1:A1] · · · [xm:Am]∗
0 ≤ m ≤ n (Q)

CSR-Russia 2015 45



The βQ-cube = β-cube + (Qβ)

(Qβ)
Γ ⊢ λi:1..k

xi:Ai
.A : Πi:1..n

xi:Ai
.∗

Γ ⊢ λi:1..m
xi:Ai

.Πi:m+1..k
xi:Ai

A : Πi:1..m
xi:Ai

.∗
0 ≤ m ≤ n, A 6≡ λx:B.C

• Lemma:

– The βQ-cube enjoys all the properties of the cube except the unicity of
types.

– Rule Qβ and rule (s,2) for s ∈ {∗, 2} imply rule (s, ∗).
This means that the type systems λQω and λQω are equal, and that λQPω

and λQPω are equal as well.

• Unicity of types fails for the βQ-cube. Take: A : ∗, x : Πy:A.∗ ⊢ x : Πy:A.∗
and hence by Qβ, A : ∗, x : Πy:A.∗ ⊢ x : ∗.

CSR-Russia 2015 46



Organised multiplicity of Types

For many type systems, unicity of types is not necessary (e.g. Nuprl).

We have an organised multiplicity of types.

1. If Γ ⊢ A : B1 and Γ ⊢ A : B2, then B1

⋄
= B2.

2. If Γ ⊢ A1 : B1 and Γ ⊢ A2 : B2 and A1 = A2, then B1

⋄
= B2.

3. If Γ ⊢ B1 : s1, B1 = B2 and Γ ⊢ A : B2 then Γ ⊢ B2 : s1.

CSR-Russia 2015 47



Bibliography

H.P. Barendregt. The Lambda Calculus: its Syntax and Semantics. Studies in Logic and the Foundations of
Mathematics 103. North-Holland, Amsterdam, revised edition, 1984.

L.S. van Benthem Jutting. Checking Landau’s “Grundlagen” in the Automath system. PhD thesis, Eindhoven
University of Technology, 1977. Published as Mathematical Centre Tracts nr. 83 (Amsterdam, Mathematisch

Centrum, 1979).

N.G. de Bruijn. The mathematical language AUTOMATH, its usage and some of its extensions. In M. Laudet,
D. Lacombe, and M. Schuetzenberger, editors, Symposium on Automatic Demonstration, pages 29–61, IRIA,
Versailles, 1968. Springer Verlag, Berlin, 1970. Lecture Notes in Mathematics 125; also in [Nederpelt et al.,

1994], pages 73–100.

A. Church. A formulation of the simple theory of types. The Journal of Symbolic Logic, 5:56–68, 1940.

T. Coquand and G. Huet. The calculus of constructions. Information and Computation, 76:95–120, 1988.

G. Frege. Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. Nebert, Halle,

1879. Also in [Heijenoort, 1967], pages 1–82.

J.H. Geuvers. Logics and Type Systems. PhD thesis, Catholic University of Nijmegen, 1993.

CSR-Russia 2015 48



J.-Y. Girard. Interprétation fonctionelle et élimination des coupures dans l’arithmétique d’ordre supérieur. PhD thesis,
Université Paris VII, 1972.

R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. In Proceedings Second Symposium on Logic

in Computer Science, pages 194–204, Washington D.C., 1987. IEEE.

J. van Heijenoort, editor. From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931. Harvard
University Press, Cambridge, Massachusetts, 1967.

D. Hilbert and W. Ackermann. Grundzüge der Theoretischen Logik. Die Grundlehren der Mathematischen

Wissenschaften in Einzeldarstellungen, Band XXVII. Springer Verlag, Berlin, first edition, 1928.

J.R. Hindley and J.P. Seldin. Introduction to Combinators and λ-calculus, volume 1 of London Mathematical Society
Student Texts. Cambridge University Press, 1986.

Twan Laan and Michael Franssen. Parameters for first order logic. Logic and Computation, 2001.

G. Longo and E. Moggi. Constructive natural deduction and its modest interpretation. Technical Report CMU-CS-
88-131, Carnegie Mellono University, Pittsburgh, USA, 1988.

R.P. Nederpelt, J.H. Geuvers, and R.C. de Vrijer, editors. Selected Papers on Automath. Studies in Logic and the

Foundations of Mathematics 133. North-Holland, Amsterdam, 1994.

CSR-Russia 2015 49



F.P. Ramsey. The foundations of mathematics. Proceedings of the London Mathematical Society, 2nd series, 25:
338–384, 1926.

G.R. Renardel de Lavalette. Strictness analysis via abstract interpretation for recursively defined types. Information

and Computation, 99:154–177, 1991.

J.C. Reynolds. Towards a theory of type structure, volume 19 of Lecture Notes in Computer Science, pages 408–425.
Springer, 1974.

B. Russell. Letter to Frege. English translation in [Heijenoort, 1967], pages 124–125, 1902.

B. Russell. The Principles of Mathematics. Allen & Unwin, London, 1903.

A.N. Whitehead and B. Russell. Principia Mathematica, volume I, II, III. Cambridge University Press, 1910
1, 1927

2.
All references are to the first volume, unless otherwise stated.

CSR-Russia 2015 50


