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Summary

General definition of function 1879 [22] is key to Frege’s formalisation
of logic.

Self-application of functions was at the heart of Russell’s paradox
1902 [49].

To avoid paradox Russell controled function application via type
theory.

Russell [50] 1903 gives the first type theory: the Ramified Type
Theory (rtt).

rtt is used in Russell and Whitehead’s Principia Mathematica [53]
1910–1912.
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Summary

Simple theory of types (stt): Ramsey [46] 1926, Hilbert and
Ackermann [30] 1928.

Church’s simply typed λ-calculus λ→ [17] 1940 = λ-calculus + stt.

The hierarchies of types (and orders) as found in rtt and stt are
unsatisfactory.

The notion of function adopted in the λ-calculus is unsatisfactory [33].

Hence, birth of different systems of functions and types, each with
different functional power.

We discuss the evolution of functions and types and their use in logic,
language and computation.
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Summary

Frege’s functions 6= Principia’s functions 6= λ-calculus functions.

Not all functions need to be fully abstracted as in the λ-calculus. For
some functions, their values are enough.

Non-first-class functions allow us to stay at a lower order (keeping
decidability, typability, computability, etc.) without losing the
flexibility of the higher-order aspects.

Furthermore, non-first-class functions allow placing the type systems
of modern theorem provers/programming languages like ML, LF and
Automath more accurately in the modern formal hierarchy of types.

Another issue that we touch on is the lessons learned from formalising
mathematics in logic (à la Principia) and in proof checkers (à la
Automath, or any modern proof checker).
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Prehistory of Types (formal systems in 19th century) In the 19th century,
the need for a more precise style in mathematics arose, because
controversial results had appeared in analysis.

1821: Many of these controversies were solved by the work of Cauchy.
E.g., he introduced a precise definition of convergence in his Cours
d’Analyse [16].

1872: Due to the more exact definition of real numbers given by
Dedekind [21], the rules for reasoning with real numbers became even
more precise.

1895-1897: Cantor began formalizing set theory [14, 15] and made
contributions to number theory.

1889: Peano formalized arithmetic [45], but did not treat logic or
quantification.

Kamareddine and ULTRA () Types and Functions since Principia and the Computerisation of Language and MathematicsLethbridge, February 2015 5 / 117



Prehistory of Types (formal systems in 19th century)

1879:
Frege was not satisfied with the use of natural language in mathematics:

“. . . I found the inadequacy of language to be an obstacle;
no matter how unwieldy the expressions I was ready to
accept, I was less and less able, as the relations became
more and more complex, to attain the precision that my
purpose required.”

(Begriffsschrift, Preface)

Frege therefore presented Begriffsschrift [22], the first formalisation of
logic giving logical concepts via symbols rather than natural language.

“[Begriffsschrift’s] first purpose is to provide us with the
most reliable test of the validity of a chain of inferences and
to point out every presupposition that tries to sneak in
unnoticed, so that its origin can be investigated.”

(Begriffsschrift, Preface)
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Prehistory of Types (Begriffsschrift’s functions)

The introduction of a very general definition of function was the key to the
formalisation of logic. Frege defined what we will call the Abstraction
Principle.

Abstraction Principle

“If in an expression, [. . . ] a simple or a compound sign has one
or more occurrences and if we regard that sign as replaceable in
all or some of these occurrences by something else (but
everywhere by the same thing), then we call the part that
remains invariant in the expression a function, and the
replaceable part the argument of the function.”

(Begriffsschrift, Section 9)
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Prehistory of Types (Begriffsschrift’s functions)

Frege put no restrictions on what could play the role of an argument.

An argument could be a number (as was the situation in analysis),
but also a proposition, or a function.

the result of applying a function to an argument did not have to be a
number.

Frege was aware of some typing rule that does not allow to substitute
functions for object variables or objects for function variables:

“ Now just as functions are fundamentally different from
objects, so also functions whose arguments are and must be
functions are fundamentally different from functions whose
arguments are objects and cannot be anything else. I call
the latter first-level, the former second-level.”

(Function and Concept, pp. 26–27)
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Prehistory of Types (Grundgesetze’s functions) The Begriffsschrift,
however, was only a prelude to Frege’s writings.

In Grundlagen der Arithmetik [23] he argued that mathematics can be
seen as a branch of logic.

In Grundgesetze der Arithmetik [24, 26] he described the elementary
parts of arithmetics within an extension of the logical framework of
Begriffsschrift.

Frege approached the paradox threats for a second time at the end of
Section 2 of his Grundgesetze.

He did not apply a function to itself, but to its course-of-values.

“the function Φ(x) has the same course-of-values as the function
Ψ(x)” if:

“ Φ(x) and Ψ(x) always have the same value for the same
argument.”

(Grundgesetze, p. 7)

E.g., let Φ(x) be x ∧ ¬x , and Ψ(x) be x ↔ ¬x , for all propositions x .
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Prehistory of Types (Grundgesetze’s functions)

All essential information of a function is contained in its graph.

So a system in which a function can be applied to its own graph
should have similar possibilities as a system in which a function can
be applied to itself.

Frege excluded the paradox threats by forbidding self-application, but
due to his treatment of courses-of-values these threats were able to
enter his system through a back door.

In 1902, Russell wrote to Frege [49] that he had discovered a paradox
in his Begriffsschrift (Begriffsschrift does not suffer from a paradox).

Only six days later, Frege answered that Russell’s derivation of the
paradox was incorrect [25]. That self-application f (f ) is not possible
in the Begriffsschrift. And that Russell’s argument could be amended
to a paradox in the system of his Grundgesetze, using the
course-of-values of functions.
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Prehistory of Types (paradox in Peano and Cantor’s systems)

Frege’s system was not the only paradoxical one.

The Russell Paradox can be derived in Peano’s system as well, as well
as on Cantor’s Set Theory by defining the class K =def {x | x 6∈ x}
and deriving K ∈ K ←→ K 6∈ K .

Paradoxes were already widely known in antiquity.

The oldest logical paradox: the Liar’s Paradox “This sentence is not
true”, also known as the Paradox of Epimenides. It is referred to in
the Bible (Titus 1:12) and is based on the confusion between
language and meta-language.

The Burali-Forti paradox ([13], 1897) is the first of the modern
paradoxes. It is a paradox within Cantor’s theory on ordinal numbers.

Cantor’s paradox on the largest cardinal number occurs in the same
field. It discovered by Cantor around 1895, but was not published
before 1932.
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Prehistory of Types (paradoxes)

Logicians considered these paradoxes to be out of the scope of logic:
The Liar’s Paradox can be regarded as a problem of linguistics.
The paradoxes of Cantor and Burali-Forti occurred in what was
considered in those days a highly questionable part of mathematics:
Cantor’s Set Theory.

The Russell Paradox, however, was a paradox that could be
formulated in all the systems that were presented at the end of the
19th century (except for Frege’s Begriffsschrift). It was at the very
basics of logic. It could not be disregarded, and a solution to it had
to be found.

In 1903-1908, Russell suggested the use of types to solve the
problem [51].
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Prehistory of Types (vicious circle principle)

“In all the above contradictions there is a common
characteristic, which we may describe as self-reference or
reflexiveness. [. . . ] In each contradiction something is said
about all cases of some kind, and from what is said a new
case seems to be generated, which both is and is not of the
same kind as the cases of which all were concerned in what
was said.”

(Mathematical logic as based on the theory of types)

Russell’s plan was, to avoid the paradoxes by avoiding all possible
self-references. He postulated the “vicious circle principle”:

“Whatever involves all of a collection must not be one of
the collection.”

(Mathematical logic as based on the theory of types)

Russell implements this principle very strictly using types.
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Problems of Ramified Type Theory

The main part of the Principia is devoted to the development of logic
and mathematics using the legal pfs of the ramified type theory.

ramification/division of simple types into orders make rtt not easy
to use.

(Equality) x =L y
def↔ ∀z[z(x)↔ z(y)].

In order to express this general notion in rtt, we have to incorporate
all pfs ∀z : (00)

n
[z(x)↔ z(y)] for n > 1, and this cannot be

expressed in one pf.

Not possible to give a constructive proof of the theorem of the least
upper bound within a ramified type theory.

It is not possible in rtt to give a definition of an object that refers to
the class to which this object belongs (because of the Vicious Circle
Principle). Such a definition is called an impredicative definition.
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Axiom of Reducibility

Russell and Whitehead tried to solve problems with the axiom of
reducibility:
For each formula f , there is a formula g with a predicative type such
that f and g are (logically) equivalent.

The validity of the Axiom of Reducibility has been questioned from
the moment it was introduced.

Though Weyl [52] made an effort to develop analysis within the
Ramified Theory of Types (without the Axiom of Reducibility),

and various parts of mathematics can be developed within rtt and
without the Axiom,

the general attitude towards rtt (without the axiom) was that the
system was too restrictive, and that a better solution had to be found.
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Deramification

Ramsey considers it essential to divide the paradoxes into two parts:

logical or syntactical paradoxes (like the Russell paradox, and the
Burali-Forti paradox) are removed

“by pointing out that a propositional function cannot
significantly take itself as argument, and by dividing
functions and classes into a hierarchy of types according to
their possible arguments.”

(The Foundations of Mathematics, p. 356)

Semantical paradoxes are excluded by the hierarchy of orders. These
paradoxes (like the Liar’s paradox, and the Richard Paradox) are based
on the confusion of language and meta-language. These paradoxes
are, therefore, not of a purely mathematical or logical nature. When a
proper distinction between object language and meta-language is
made, these so-called semantical paradoxes disappear immediately.
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The Simple Theory of Types

Ramsey [46], and Hilbert and Ackermann [30], simplified the Ramified
Theory of Types rtt by removing the orders. The result is known as
the Simple Theory of Types (stt).

Nowadays, stt is known via Church’s formalisation in λ-calculus.
However, stt already existed (1926) before λ-calculus did (1932),
and is therefore not inextricably bound up with λ-calculus.

How to obtain stt from rtt? Just leave out all the orders and the
references to orders (including the notions of predicative and
impredicative types).
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Limitation of the simply typed λ-calculus

λ→ is very restrictive.

Numbers, booleans, the identity function have to be defined at every
level.

We can represent (and type) terms like λx : o.x and λx : ι.x .

We cannot type λx : α.x , where α can be instantiated to any type.

This led to new (modern) type theories that allow more general
notions of functions (e.g, polymorphic).
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The evolution of functions with Frege, Russell and Church

Historically, functions have long been treated as a kind of
meta-objects.

Function values were the important part, not abstract functions.

In the low level/operational approach there are only function values.

The sine-function, is always expressed with a value: sin(π), sin(x) and
properties like: sin(2x) = 2 sin(x) cos(x).

In many mathematics courses, one calls f (x)—and not f —the
function.

Frege, Russell and Church wrote x 7→ x + 3 resp. as x + 3, x̂ + 3 and
λx .x + 3.

Principia’s functions are based on Frege’s Abstraction Principles but
can be first-class citizens. Frege used courses-of-values to speak
about functions.

Church made every function a first-class citizen. This is rigid and
does not represent the development of logic in 20th century.
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Functionalisation and Instantiation [39] assessed evolution of the function
concept from two points of vue:

Functionalisation: the construction of a function out of an expression,
as in constructing the function λx .x × 3 + x from the expression
2× 3 + 2.

Functionalisation is

Abstraction from a subexpression e.g., moving from 2× 3 + 2 to
x × 3 + x
Function construction e.g., turning x × 3 + x into λx .x × 3 + x .

Instantiation: the calculation of a function value when a suitable
argument is assigned to the function,
as in the construction of 2× 3 + 2 by applying the function
λx .x × 3 + x to 2.

Instantiation is:

Application construction e.g., (λx .x × 3 + x)2 the application of
λx .x × 3 + x to 2
Concretisation to a subexpression e.g., calculating (λx .x × 3 + x)2 to
2× 3 + 2.
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λ-calculus does not fully represent functionalisation

1 Abstraction from a subexpression 2 + 3 7→ x + 3

2 Function construction x + 3 7→ λx .x + 3

3 Application construction (λx .x + 3)2

4 Concretisation to a subexpression (λx .(x + 3))2→ 2 + 3

cannot abstract only half way: x + 3 is not a function, λx .x + 3 is.

cannot apply x + 3 to an argument: (x + 3)2 does not evaluate to
2+3.
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Common features of modern types and functions

We can construct a type by abstraction. (Write A : ∗ for A is a type)

λy :A.y , the identity over A has type A→ A
λA:∗.λy :A.y , the polymorphic identity has type ΠA:∗.A→ A

We can instantiate types. E.g., if A = N, then the identity over N

(λy :A.y)[A := N] has type (A→ A)[A := N] or N→ N.
(λA:∗.λy :A.y)N has type (ΠA:∗.A→ A)N = (A→ A)[A := N] or
N→ N.

(λx :α.A)B →β A[x := B ] (Πx :α.A)B →Π A[x := B ]

Write A→ A as Πy :A.A when y not free in A.
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The Barendregt Cube

Syntax: A ::= x | ∗ | 2 | AB | λx :A.B | Πx :A.B

Formation rule:
Γ ⊢ A : s1 Γ, x :A ⊢ B : s2

Γ ⊢ Πx :A.B : s2
if (s1, s2) ∈ R
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Simple Poly-
morphic

Depend-
ent

Constr-
uctors

Related
system

Refs.

λ→ (∗, ∗) λτ [17, 7, 31]
λ2 (∗, ∗) (2, ∗) F [? ? ]
λP (∗, ∗) (∗,2) aut-QE, LF [11, 28]
λω (∗, ∗) (2,2) POLYREC [48]
λP2 (∗, ∗) (2, ∗) (∗,2) [43]
λω (∗, ∗) (2, ∗) (2,2) Fω [? ]
λPω (∗, ∗) (∗,2) (2,2)
λC (∗, ∗) (2, ∗) (∗,2) (2,2) CC [18]
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The 8 Systems
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Typing Polymorphic identity needs (2, ∗)

y : ∗ ⊢ y : ∗ y : ∗, x :y ⊢ y : ∗
y : ∗ ⊢ Πx :y .y : ∗ by (Π) (∗, ∗)

y : ∗, x : y ⊢ x : y y : ∗ ⊢ Πx :y .y : ∗
y : ∗ ⊢ λx : y .x : Πx :y .y

by (λ)

⊢ ∗ : 2 y : ∗ ⊢ Πx :y .y : ∗
⊢ Πy : ∗.Πx :y .y : ∗ by (Π) by (2, ∗)

y : ∗ ⊢ λx : y .x : Πx :y .y ⊢ Πy : ∗.Πx :y .y : ∗
⊢ λy : ∗.λx : y .x : Πy : ∗.Πx :y .y

by (λ)
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The story so far of the evolution of functions and types

Functions have gone through a long process of evolution involving
various degrees of
abstraction/construction/instantiation/concretisation/evaluation.

Types too have gone through a long process of evolution involving
various degrees of
abstraction/construction/instantiation/concretisation/evaluation.

During their progress, some aspects have been added or removed.

The development of types and functions have been interlinked and
their abstraction/construction/instantiation/concretisation/evaluation
have much in common.

We also argue that some of the aspects that have been dismissed
during their evolution need to be re-incorporated.
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From the point of vue of ML

The language ML is not based on all of system F (2nd order
polymorphic λ-calculus).

This was not possible since it was not known then whether type
checking and type finding are decidable.

ML is based on a fragment of system F for which it was known that
type checking and type finding are decidable.

23 years later after the design of ML, Wells showed that type
checking and type finding in system F are undecidable.

ML has polymorphism but not all the polymorphic power of system F.

The question is, what system of functions and types does ML use?

A clean answer can be given when we re-incorporate the low-level
function notion used by Frege and Russell (and de Bruijn) and
dismissed by Church.

ML treats let val id = (fn x ⇒ x) in (id id) end as this Cube term
(λid:(Πα:∗. α→ α). id(β → β)(id β))(λα:∗. λx :α. x)
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To type this in the Cube, the (2, ∗) rule is needed (i.e., λ2).

ML’s typing rules forbid this expression:
let val id = (fn x ⇒ x) in (fn y ⇒ y y)(id id) end
Its equivalent Cube term is this well-formed typable term of λ2:
(λid : (Πα:∗. α→ α).

(λy :(Πα:∗. α→ α). y(β → β)(y β))
(λα:∗. id(α→ α)(id α)))

(λα:∗. λx :α. x)

Therefore, ML should not have the full Π-formation rule (2, ∗).
ML has limited access to the rule (2, ∗).
ML’s type system is none of those of the eight systems of the Cube.

[32] places the type system of ML (between λ2 + λω).
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LF

LF [28] is often described as λP of the Barendregt Cube.
However, Use of Π-formation rule (∗,2) is restricted in LF [27].

We only need a type Πx :A.B : 2 when pat is applied during
construction of the type Πα:prop.∗ of the operator Prf where for a
proposition Σ, Prf(Σ) is the type of proofs of Σ.

prop:∗ ⊢ prop: ∗ prop:∗, α:prop ⊢ ∗:2
prop:∗ ⊢ Πα:prop.∗ : 2

.

In LF, this is the only point where the Π-formation rule (∗,2) is used.
But, Prf is only used when applied to Σ:prop. We never use Prf on
its own.

This use is in fact based on a parametric constant rather than on
Π-formation.

Hence, the practical use of LF would not be restricted if we present
Prf in a parametric form, and use (∗,2) as a parameter instead of a
Π-formation rule.

[32] precisely locate LF (between λ→ and λP).

Kamareddine and ULTRA () Types and Functions since Principia and the Computerisation of Language and MathematicsLethbridge, February 2015 30 / 117



Parameters: What and Why

We speak about functions with parameters when referring to
functions with variable values in the low-level approach. The x in
f (x) is a parameter.

Parameters enable the same expressive power as the high-level case,
while allowing us to stay at a lower order. E.g. first-order with
parameters versus second-order without [42].

Desirable properties of the lower order theory (decidability, easiness of
calculations, typability) can be maintained, without losing the
flexibility of the higher-order aspects.

This low-level approach is still worthwhile for many exact disciplines.
In fact, both in logic and in computer science it has certainly not
been wiped out, and for good reasons.
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Automath

The first tool for mechanical representation and verification of
mathematical proofs, Automath, has a parameter mechanism.

Mathematical text in Automath written as a finite list of lines of
the form:
x1 : A1, . . . , xn : An ⊢ g(x1, . . . , xn) = t : T .
Here g is a new name, an abbreviation for the expression t of type T
and x1, . . . , xn are the parameters of g , with respective types
A1, . . . ,An.

Each line introduces a new definition which is inherently parametrised
by the variables occurring in the context needed for it.

Developments of ordinary mathematical theory in Automath [9]
revealed that this combined definition and parameter mechanism is
vital for keeping proofs manageable and sufficiently readable for
humans.
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Extending the Cube with parametric constants, see [32]

We add parametric constants of the form c(b1, . . . , bn) with
b1, . . . , bn terms of certain types and c ∈ C.
b1, . . . , bn are called the parameters of c(b1, . . . , bn).

R allows several kinds of Π-constructs. We also use a set P of (s1, s2)
where s1, s2 ∈ {∗,2} to allow several kinds of parametric constants.

(s1, s2) ∈ P means that we allow parametric constants
c(b1, . . . , bn) : A where b1, . . . , bn have types B1, . . . ,Bn of sort s1,
and A is of type s2.

If both (∗, s2) ∈ P and (2, s2) ∈ P then combinations of parameters
allowed.
For example, it is allowed that B1 has type ∗, whilst B2 has type 2.
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The Cube with parametric constants

Let (∗, ∗) ⊆ R,P ⊆ {(∗, ∗), (∗,2), (2, ∗), (2,2)}.
λRP = λR and the two rules (

→

C-weak) and (
→

C-app):

Γ ⊢ b : B Γ,∆i ⊢ Bi : si Γ,∆ ⊢ A : s
Γ, c(∆) : A ⊢ b : B

(si , s) ∈ P, c is Γ-fresh

Γ1, c(∆):A,Γ2 ⊢ bi :Bi [xj :=bj ]
i−1
j=1 (i = 1, . . . , n)

Γ1, c(∆):A,Γ2 ⊢ A : s (if n = 0)
Γ1, c(∆):A,Γ2 ⊢ c(b1, . . . , bn) : A[xj :=bj ]

n
j=1

∆ ≡ x1:B1, . . . , xn:Bn.
∆i ≡ x1:B1, . . . , xi−1:Bi−1
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Properties of the Refined Cube

(Correctness of types) If Γ ⊢ A : B then
(B ≡ 2 or Γ ⊢ B : S for some sort S).

(Subject Reduction SR) If Γ ⊢ A : B and A→→β A′ then Γ ⊢ A′ : B

(Strong Normalisation) For all ⊢-legal terms M, we have SN→→β
(M).

Other properties such as Uniqueness of types and typability of
subterms hold.

λRP is the system which has Π-formation rules R and parameter
rules P.

Let λRP parametrically conservative (i.e., (s1, s2) ∈ P implies
(s1, s2) ∈ R).

The parameter-free system λR is at least as powerful as λRP.
If Γ ⊢RP a : A then {Γ} ⊢R {a} : {A} .
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Example

R = {(∗, ∗), (∗,2)}
P1 = ∅ P2 = {(∗, ∗)} P3 = {(∗,2)} P4 =
{(∗, ∗), (∗,2)}
All λRPi for 1 ≤ i ≤ 4 with the above specifications are all equal in
power.

R5 = {(∗, ∗)} P5 = {(∗, ∗), (∗,2)}.
λ→ < λR5P5 < λP: we can to talk about predicates:

α : ∗,
eq(x:α, y:α) : ∗,
refl(x:α) : eq(x, x),

symm(x:α, y:α, p:eq(x, y)) : eq(y, x),
trans(x:α, y:α, z:α, p:eq(x, y), q:eq(y, z)) : eq(x, z)

.

eq not possible in λ→.
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Logicians versus mathematicians: induction over numbers

Logician uses ind: Ind as proof term for an application of the
induction axiom.
The type Ind can only be described in λR where R =
{(∗, ∗), (∗,2), (2, ∗)}:
Ind = Πp:(N→∗).p0→(Πn:N.Πm:N.pn→Snm→pm)→Πn:N.pn (1)

Mathematician uses ind only with P : N→∗, Q : P0 and
R : (Πn:N.Πm:N.Pn→Snm→Pm) to form a term
(indPQR):(Πn:N.Pn).

The use of the induction axiom by the mathematician is better
described by the parametric scheme (p, q and r are the parameters of
the scheme):

ind(p:N→∗, q:p0, r :(Πn:N.Πm:N.pn→Snm→pm)) : Πn:N.pn (2)

The logician’s type Ind is not needed by the mathematician and the
types that occur in 2 can all be constructed in λR with
R = {(∗, ∗)(∗,2)}.
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Logicians versus mathematicians: induction over numbers

Mathematician applies the induction axiom and doesn’t need to know
the proof-theoretical backgrounds.

A logician develops the induction axiom (or studies its properties).

(2, ∗) is not needed by the mathematician. It is needed in logician’s
approach in order to form the Π-abstraction Πp:(N→ ∗). · · · ).
Consequently, the type system that is used to describe the
mathematician’s use of the induction axiom can be weaker than the
one for the logician.

Nevertheless, the parameter mechanism gives the mathematician
limited (but for his purposes sufficient) access to the induction
scheme.

Kamareddine and ULTRA () Types and Functions since Principia and the Computerisation of Language and MathematicsLethbridge, February 2015 40 / 117



Parameters enable the same expressive power as the high-level case,
while allowing us to stay at a lower order. E.g. first-order with
parameters versus second-order without [42].

Desirable properties of the lower order theory (decidability, easiness of
calculations, typability) can be maintained, without losing the
flexibility of the higher-order aspects.

Parameters enable us to find an exact position of type systems in the
generalised framework of type systems.

Parameters describe the difference between developers and users of
systems.
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Identifying λ and Π (see [36])

In the cube, the syntax for terms (functions) and types was
intermixed with the only distinction being λ- versus Π-abstraction.

We unify the two abstractions into one.
T♭ ::= V | S | T♭T♭ | ♭V:T♭.T♭
V is a set of variables and S = {∗,2}.
The β-reduction rule becomes
(♭) (♭x :A.B)C →♭ B [x := C ].

Now we also have the old Π-reduction (Πx :A.B)C →Π B [x := C ]
which treats type instantiation like function instantiation.

The type formation rule becomes

(♭1)
Γ ⊢ A : s1 Γ, x :A ⊢ B : s2

Γ ⊢ (♭x :A.B) : s2
(s1, s2) ∈ R
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(axiom) 〈〉 ⊢ ∗ : 2

(start)
Γ ⊢ A : s

Γ, x :A ⊢ x : A
x 6∈ dom (Γ)

(weak)
Γ ⊢ A : B Γ ⊢ C : s

Γ, x :C ⊢ A : B
x 6∈ dom (Γ)

(♭2)
Γ, x :A ⊢ b : B Γ ⊢ (♭x :A.B) : s

Γ ⊢ (♭x :A.b) : (♭x :A.B)

(app♭)
Γ ⊢ F : (♭x :A.B) Γ ⊢ a : A

Γ ⊢ Fa : B [x :=a]

(conv)
Γ ⊢ A : B Γ ⊢ B ′ : s B =β B ′

Γ ⊢ A : B ′
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Translations between the systems with 2 binders and those with one binder

For A ∈ T , we define A ∈ T♭ as follows:

s ≡ s x ≡ x AB ≡ A B
λx:A.B ≡ Πx:A.B ≡ ♭x:A.B.

For contexts we define: 〈〉 ≡ 〈〉 Γ, x : A ≡ Γ, x : A.

For A ∈ T♭, we define [A] to be {A′ ∈ T such that A′ ≡ A}.
For context, obviously: [Γ] ≡ {Γ′ such that Γ′ ≡ Γ}.
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Isomorphism of the cube and the ♭-cube

If Γ ⊢ A : B then Γ ⊢♭ A : B.

If Γ ⊢♭ A : B then there are unique Γ′ ∈ [Γ], A′ ∈ [A] and B ′ ∈ [B ]
such that Γ′ ⊢π A′ : B ′.

The ♭-cube enjoys all the properties of the cube except the unicity of
types.
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Organised multiplicity of Types for ⊢♭ and →♭ [36] For many type systems,
unicity of types is not necessary (e.g. Nuprl).

We have however an organised multiplicity of types.

1
If Γ ⊢♭ A : B1 and Γ ⊢♭ A : B2, then B1

⋄
=♭ B2.

2
If Γ ⊢♭ A1 : B1 and Γ ⊢♭ A2 : B2 and A1 =♭ A2, then B1

⋄
=♭ B2.

3
If Γ ⊢♭ B1 : s1, B1 =♭ B2 and Γ ⊢♭ A : B2 then Γ ⊢♭ B2 : s1.

4
Assume Γ ⊢♭ A : B1 and (Γ ⊢♭ A : B1)

−1 = (Γ′,A′,B ′

1). Then
B1 =♭ B2 if:

1 either Γ ⊢♭ A : B2, (Γ ⊢♭ A : B2)
−1 = (Γ′, A′′, B ′

2) and B ′

1 =β B ′

2,
2

or Γ ⊢♭ C : B2, (Γ ⊢♭ C : B2)
−1 = (Γ′, C ′, B ′

2) and A′ =β C ′.
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Extending the cube with Π-reduction loses subject reduction [37] If we
change (appl) by (new appl) in the cube we lose subject reduction.

(appl)
Γ ⊢ F : (Πx :A.B) Γ ⊢ a : A

Γ ⊢ Fa : B [x := a]

(new appl)
Γ ⊢ F : (Πx :A.B) Γ ⊢ a : A

Γ ⊢ Fa : (Πx :A.B)a

[37] solved the problem by re-incorporating Frege and Russell’s notions of
low level functions (which was lost in Church’s notion of function).

The same problem and solution can be repeated in our ♭-cube.
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Adding type instantiation to the typing rules of the ♭-cube If we change
(app♭) by (new app♭) in the ♭-cube we lose subject reduction.

(app♭)
Γ ⊢♭ F : (Πx :A.B) Γ ⊢♭ a : A

Γ ⊢♭ Fa : B [x := a]

(app♭♭)
Γ ⊢♭ F : (♭x :A.B) Γ ⊢♭ a : A

Γ ⊢♭ Fa : (♭x :A.B)a
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Failure of correctness of types and subject reduction

Correctness of types no longer holds. With (appl♭♭) one can have
Γ ⊢ A : B without B ≡ 2 or ∃S . Γ ⊢ B : S .

For example, z : ∗, x : z ⊢ (♭y :z .y)x : (♭y :z .z)x yet (♭y :z .z)x 6≡ 2 and
∀s . z : ∗, x : z 6⊢ (♭y :z .z)x : s.

Subject Reduction no longer holds. That is, with (appl♭):
Γ ⊢ A : B and A→→ A′ may not imply Γ ⊢ A′ : B .

For example, z : ∗, x : z ⊢ (♭y :z .y)x : (♭y :z .z)x and (♭y :z .y)x →♭ x ,
but one can’t show z : ∗, x : z ⊢ x : (♭y :z .z)x .
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Solving the problem Keep all the typing rules of the ♭-cube the same
except: replace (conv) by (new-conv), (appl♭) by (appl♭♭) and add three
new rules as follows:

(start-def)
Γ ⊢ A : s Γ ⊢ B : A

Γ, x = B :A ⊢ x : A
x 6∈ dom (Γ)

(weak-def)
Γ ⊢ A : B Γ ⊢ C : s Γ ⊢ D : C

Γ, x = D:C ⊢ A : B
x 6∈ dom (Γ)

(def)
Γ, x = B :A ⊢ C : D

Γ ⊢ (♭x :A.C )B : D[x := B ]

(new-conv)
Γ ⊢ A : B Γ ⊢ B ′ : s Γ ⊢ B =def B ′

Γ ⊢ A : B ′

(appl♭♭)
Γ ⊢ F : ♭x :A.B Γ ⊢ a : A

Γ ⊢ Fa : (♭x :A.B)a
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In the conversion rule, Γ ⊢ B =def B ′ is defined as:

If B =♭ B ′ then Γ ⊢ B =def B ′

If x = D : C ∈ Γ and B ′ arises from B by substituting one particular
free occurrence of x in B by D then Γ ⊢ B =def B ′.

Our 3 new rules and the definition of Γ ⊢ B =def B ′ are trying to
re-incorporate low-level aspects of functions that are not present in
Church’s λ-calculus.

In fact, our new framework is closer to Frege’s abstraction principle
and the principles ∗9·14 and ∗9·15 of [53].
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Correctness of types holds.

We demonstrate this with the earlier example.

Recall that we have z : ∗, x : z ⊢ (♭y :z .y)x : (♭y :z .z)x and want that
for some s, z : ∗, x : z ⊢ (♭y :z .z)x : s.

Here is how the latter formula now holds:

z : ∗, x : z ⊢ z : ∗ (start and weakening)
z : ∗, x : z .y : z〉x ⊢ z : ∗ (weakening)
z : ∗, x : z ⊢ (♭y :z .z)x : ∗[y := x ] ≡ ∗ (def rule)
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Subject Reduction holds.

We demonstrate this with the earlier example.

Recall that we have z : ∗, x : z ⊢ (♭y :z .y)x : (♭y :z .z)x and
(λy :z .y)x →β x and we need to show that z : ∗, x : z ⊢ x : (♭y :z .z)x .

Here is how the latter formula now holds:

a. z : ∗, x : z ⊢ x : z (start and weakening)
b. z : ∗, x : z ⊢ (♭y :z .z)x : ∗ (from 1 above)

z : ∗, x : z ⊢ x : (♭y :z .z)x (conversion, a, b, and z =β (♭y :z .z)x)
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De Bruijn’s typed λ-calculi started with his Automath

In 1967, an internationally renowned mathematician called N.G. de
Bruijn wanted to do something never done before: use the computer
to formally check the correctness of mathematical books.

Such a task needs a good formalisation of mathematics, a good
competence in implementation, and extreme attention to all the
details so that nothing is left informal.

Implementing extensive formal systems on the computer was never
done before.

De Bruijn, an extremely original mathematician, did every step his
own way.

He proudly announced at the ceremony of the publications of the
collected Automath work: I did it my way.

Dirk van Dalen said at the ceremony: The Germans have their 3 B’s,
but we Dutch too have our 3 B’s: Beth, Brouwer and de Bruijn.
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There is a fourth B:
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They look good together
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Theme 1: De Bruijn Indices and Explicit Substitutions [19]
Classical λ-calculus: A ::= x | (λx .B) | (BC )

(λx .A)B →β A[x := B ]

(λx .λy .xy)y →β (λy .xy)[x := y ] 6= λy .yy

(λx .λy .xy)y →β (λy .xy)[x := y ] =α (λz .xz)[x := y ] = λz .yz

λx .x and λy .y are the same function. Write this function as λ1.

Assume a free variable list (say x , y , z , . . . ).

(λλ2 1)2→β (λ2 1)[1 := 2] = λ(2[2 := 3])(1[2 := 3]) = λ3 1
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Classical λ-calculus with de Bruijn indices

Let i , n ≥ 1 and k ≥ 0

A ::= n | (λB) | (BC )
(λA)B →β A{{1← B}}

U i
k(AB) = U i

k(A)U i
k(B)

U i
k(λA) = λ(U i

k+1(A))

U i
k(n) =

{

n + i− 1 if n > k
n if n ≤ k .

(A1A2){{i← B}} = (A1{{i← B}}) (A2{{i← B}})
(λA){{i← B}} = λ(A{{i + 1← B}})

n{{i← B}} =







n− 1 if n > i
U i

0(B) if n = i
n if n < i .

Numerous implementations of proof checkers and programming
languages have been based on de Bruijn indices.
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Substitution calculus λs [35]

Write A{{n← B}} as Aσn B and U i
k(A) as ϕi

kA.

A ::= n | (λB) | (BC ) | (AσiB) | (ϕi
kB) where i , n ≥ 1 , k ≥ 0 .

σ-generation (λA)B −→ A σ1 B

σ-λ-transition (λA)σiB −→ λ(A σi+1 B)

σ-app-transition (A1 A2)σiB −→ (A1 σiB) (A2 σiB)

σ-destruction nσiB −→







n− 1 if n > i
ϕi

0 B if n = i
n if n < i

ϕ-λ-transition ϕi
k(λA) −→ λ(ϕi

k+1 A)

ϕ-app-transition ϕi
k(A1 A2) −→ (ϕi

k A1) (ϕi
k A2)

ϕ-destruction ϕi
k n −→

{

n + i− 1 if n > k
n if n ≤ k
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1. The s-calculus (i.e., λs minus σ-generation) is strongly normalising,

2. The λs-calculus is confluent and simulates (in small steps)
β-reduction

3. The λs-calculus preserves strong normalisation PSN.

4. The λs-calculus has a confluent extension with open terms λse.

The λs-calculus was the first calculus of substitutions which satisfies
all the above properties 1., 2., 3. and 4.
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λυ [8] Terms: Λυt ::= IN | ΛυtΛυt | λΛυt | Λυt [Λυs ]
Substitutions: Λυs ::=↑ | ⇑ (Λυs) | Λυt .

(Beta) (λa) b −→ a [b/]

(App) (a b)[s] −→ (a [s]) (b [s])

(Abs) (λa)[s] −→ λ(a [⇑(s)])

(FVar) 1 [a/] −→ a

(RVar) n + 1 [a/] −→ n

(FVarLift) 1 [⇑(s)] −→ 1

(RVarLift) n + 1 [⇑(s)] −→ n [s] [↑]
(VarShift) n [↑] −→ n + 1

λυ satisfies 1., 2., and 3., but does not have a confluent extension on open
terms.
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λσ⇑ Terms: Λσt
⇑ ::= IN | Λσt

⇑Λσt
⇑ | λΛσt

⇑ | Λσt
⇑[Λσs

⇑]
Substitutions: Λσs

⇑ ::= id | ↑ | ⇑ (Λσs
⇑) | Λσt

⇑ · Λσs
⇑ | Λσs

⇑ ◦ Λσs
⇑.

(Beta) (λa) b −→ a [b · id ]

(App) (a b)[s] −→ (a [s]) (b [s])

(Abs) (λa)[s] −→ λ(a [⇑(s)])

(Clos) (a [s])[t] −→ a [s ◦ t]

(Varshift1) n [↑] −→ n + 1

(Varshift2) n [↑ ◦ s] −→ n + 1 [s]

(FVarCons) 1 [a · s] −→ a

(RVarCons) n + 1 [a · s] −→ n [s]

(FVarLift1) 1 [⇑(s)] −→ 1

(FVarLift2) 1 [⇑(s) ◦ t] −→ 1 [t]

(RVarLift1) n + 1 [⇑(s)] −→ n[s ◦ ↑]
(RVarLift2) n + 1 [⇑(s) ◦ t] −→ n[s ◦ (↑ ◦ t)]
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λσ⇑ rules continued

(Map) (a · s) ◦ t −→ a [t] · (s ◦ t)

(Ass) (s ◦ t) ◦ u −→ s ◦ (t ◦ u)

(ShiftCons) ↑ ◦ (a · s) −→ s

(ShiftLift1) ↑ ◦ ⇑(s) −→ s ◦ ↑
(ShiftLift2) ↑ ◦ (⇑(s) ◦ t) −→ s ◦ (↑ ◦ t)

(Lift1) ⇑(s)◦ ⇑(t) −→ ⇑(s ◦ t)

(Lift2) ⇑(s) ◦ (⇑(t) ◦ u) −→ ⇑(s ◦ t) ◦ u

(LiftEnv) ⇑(s) ◦ (a · t) −→ a · (s ◦ t)

(IdL) id ◦ s −→ s

(IdR) s ◦ id −→ s

(LiftId) ⇑(id) −→ id

(Id) a [id ] −→ a

λσ⇑ satisfies 1., 2., and 4., but does not have PSN.

Kamareddine and ULTRA () Types and Functions since Principia and the Computerisation of Language and MathematicsLethbridge, February 2015 63 / 117



How is λse obtained from λs?

They said, we can have open terms (holes in proofs) in λσ, can you
do so in λs?

A ::= X |n | (λB) | (BC ) | (AσiB) | (ϕi
kB) where i , n ≥ 1 , k ≥ 0 .

Extending the syntax of λs with open terms without extending the
λs-rules loses the confluence (even local confluence):
((λX )Y )σ11→ (Xσ1Y )σ11
((λX )Y )σ11→ ((λX )σ11)(Y σ11)

(Xσ1Y )σ11 and ((λX )σ11)(Y σ11) have no common reduct.

But, ((λX )σ11)(Y σ11)→→ (Xσ21)σ1(Y σ11)
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Simple: add de Bruijn’s metasubstitution and distribution lemmas to the
rules of λs

Add the well-known meta-substitution (σ − σ) and distribution
(ϕ− σ) lemmas (and the 4 extra lemmas needed to prove them).

σ-σ (AσiB) σj C −→ (A σj+1 C)σi (B σj−i+1 C) if i ≤ j

σ-ϕ 1 (ϕi
k A) σj B −→ ϕi−1

k A if k < j < k + i

σ-ϕ 2 (ϕi
k A) σj B −→ ϕi

k(A σj−i+1 B) if k + i ≤ j

ϕ-σ ϕi
k (A σj B) −→ (ϕi

k+1 A) σj (ϕi
k+1−j B) if j ≤ k + 1

ϕ-ϕ 1 ϕi
k (ϕj

l A) −→ ϕj
l (ϕ

i
k+1−j A) if l + j ≤ k

ϕ-ϕ 2 ϕi
k (ϕj

l A) −→ ϕj+i−1
l A if l ≤ k < l + j

(σ − σ):
A[x := B ][y := C ] = A[y := C ][x := B [y := C ]] if x 6= y and
x 6∈ FV (C ).

(ϕ− σ):
updatedA[x := B ] = updatedA[x := updatedB ].
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Where did the extra rules come from? In de Bruijn’s classical λ-calculus
we have the lemmas:

1 (σ − ϕ 1) For k < j < k + i we have: U i−1
k (A) = U i

k(A){{j←B}} .
2 (ϕ− ϕ 2) For l ≤ k < l + j we have: U i

k(U
j
l (A)) = U j+i−1

l (A) .

3 (σ − ϕ 2) For k + i ≤ j we have:
U i

k(A){{j←B}} = U i
k(A{{j− i + 1←B}}) .

4 (σ − σ) [Meta-substitution lemma] For i ≤ j we have:
A{{i←B}}{{j←C}} = A{{j + 1←C}}{{i←B{{j− i + 1←C}}}}.

The proof of (σ − σ) uses (σ − ϕ 1) and (σ − ϕ 2) both with k = 0.

The proof of (σ − ϕ 2) requires (ϕ− ϕ 2) with l = 0.
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Where did the extra rules come from (continued)? In de Bruijn’s classical
λ-calculus we also have the lemmas:

1 (ϕ− ϕ 1) For j ≤ k + 1 we have:
U i

k+p(U
j
p(A)) = U j

p(U
i
k+p+1−j (A)) .

2 (ϕ− σ) [Distribution lemma]
For j ≤ k + 1 we have:
U i

k(A{{j←B}}) = U i
k+1(A){{j←U i

k+1−j (B)}} .

(ϕ− ϕ 1) with p = 0 is needed to prove (ϕ− σ).
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Theme 2: Lambda Calculus à la de Bruijn

I(x) = x , I(λx .B) = [x ]I(B), I(AB) = 〈I(B)〉I(A)

(λx .λy .xy)z translates to 〈z〉[x ][y ]〈y〉x .

The applicator wagon 〈z〉 and abstractor wagon [x ] occur NEXT to
each other.

(λx .A)B→β A[x := B ] becomes 〈B〉[x ] A→β [x := B ]A

The “bracketing structure” of (( λx .(λy .λz .–)c)ba)
is [1 [2 [3 ]2 ]1 ]3’, where ‘[i ’ and ‘]i ’ match.

The bracketing structure of 〈a〉〈b〉[x ]〈c〉[y ][z ] 〈d〉 is simpler: [ [ ][ ]].

〈b〉[x ] and 〈c〉[y ] are AT-pairs whereas 〈a〉[z ] is an AT-couple.
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Redexes in de Bruijn’s notation

Classical Notation de Bruijn’s Notation

((λx .(λy .λz .zd)c)b)a 〈a〉〈b〉[x ]〈c〉[y ][z ]〈d〉z
↓β ↓β

((λy .λz .zd)c)a 〈a〉〈c〉[y ][z ]〈d〉z
↓β ↓β

(λz .zd)a 〈a〉[z ]〈d〉z
↓β ↓β
ad 〈d〉a

〈a〉 〈b〉 [x ] 〈c〉 [y ] [z ] 〈d〉 z

This maks it easy to study local/global/mini reductions into the
λ-calculus [12, 3, 34]
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Some notions of reduction studied in the literature
Name In Classical Notation In de Bruijn′s notation

((λx .N)P)Q 〈Q〉〈P〉[x ]N
(θ) ↓ ↓

(λx .NQ)P 〈P〉[x ]〈Q〉N
(λx .λy .N)P 〈P〉[x ][y ]N

(γ) ↓ ↓
λy .(λx .N)P [y ]〈P〉[x ]N

((λx .λy .N)P)Q 〈Q〉〈P〉[x ][y ]N
(γC ) ↓ ↓

(λy .(λx .N)P)Q 〈Q〉[y ]〈P〉[x ]N

((λx .λy .N)P)Q 〈Q〉〈P〉[x ][y ]N
(g) ↓ ↓

(λx .N[y := Q])P 〈P〉[x ][y := Q]N

? 〈Q〉s[y ]N
(βe) ↓ ↓

? s[y := Q]N
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A Few Uses of these reductions/term reshuffling

[47] uses θ and γ in analyzing perpetual reduction strategies.

Term reshuffling is used in [2, 40] in analyzing typability problems.

[1, 20, 41, 5] use generalised reduction and/or term reshuffling in
relating SN to WN.

[6] uses a form of term-reshuffling in obtaining a calculus that
corresponds to lazy functional evaluation.

[3, 38, 4, 10] shows that they could reduce space/time needs.

All these works have been heavily influenced by de Bruijn’s Automath
whose λ-notation facilitated the manipulation of redexes.

All can be represented clearer in de Bruijn’s notation.
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Even more: de Bruijn’s generalised reduction has better properties

(β) (λx .M)N → M[x := N]
(βI ) (λx .M)N → M[x := N] if x ∈ FV (M)
(βK ) (λx .M)N → M if x 6∈ FV (M)
(θ) (λx .N)PQ → (λx .NQ)P
(βe) (M)s[x ]N → s{N[x := M] for s well-balanced.

[5] shows that βe satisfies PSN, postponment of K -contraction and
conservation (latter 2 properties fail for β-reduction).

Conservation of βe : If A is βe I -normalisable then A is βe -strongly
normalisable.

Postponment of K -contraction : Hence, discard arguments of
K -redexes after I-reduction. This gives flexibility in implementation:
unnecessary work can be delayed, or even completely avoided.
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Attempts have been made at establishing some reduction relations for
which postponement of K -contractions and conservation hold.

The picture is as follows (-N stands for normalising and r ∈ {βI , θK}).

(βK -postponement for r) If M →βK
N →r O then ∃P such that M →→+

βI θK

(Conservation for βI ) If M is βI -N then M is βI -SN Barendregt’s
(Conservation for β + θ) If M is βI θK -N then M is β-SN [20]

De Groote does not produce these results for a single reduction
relation, but for β + θ (this is more restrictive than βe).

βe is the first single relation to satisfy βK -postponement and
conservation.

[5] shows that:

(βeK -postponement for βe) If M →βeK
N →βeI

O then ∃P such that M →βeI

(Conservation for βe) If M is βeI -N then M is βe -SN
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Common Mathematical Language of mathematicians: Cml

+ Cml is expressive: it has linguistic categories like proofs and
theorems.

+ Cml has been refined by intensive use and is rooted in long traditions.

+ Cml is approved by most mathematicians as a communication
medium.

+ Cml accommodates many branches of mathematics, and is adaptable
to new ones.

– Since Cml is based on natural language, it is informal and ambiguous.

– Cml is incomplete: Much is left implicit, appealing to the reader’s
intuition.

– Cml is poorly organised: In a Cml text, many structural aspects are
omitted.

– Cml is automation-unfriendly: A Cml text is a plain text and cannot
be easily automated.
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The problem with formal logic

No logical language is an alternative to Cml

A logical language does not have mathematico-linguistic categories, is
not universal to all mathematicians, and is not a good communication
medium.
Logical languages make fixed choices (first versus higher order,
predicative versus impredicative, constructive versus classical, types or
sets, etc.). But different parts of mathematics need different choices
and there is no universal agreement as to which is the best formalism.
A logician reformulates in logic their formalization of a
mathematical-text as a formal, complete text which is structured
considerably unlike the original, and is of little use to the ordinary
mathematician.
Mathematicians do not want to use formal logic and have for centuries
done mathematics without it.

So, mathematicians kept to Cml.

We would like to find an alternative to Cml which avoids some of the
features of the logical languages which made them unattractive to
mathematicians.
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What are the options for computerization?

Computers can handle mathematical text at various levels:

Images of pages may be stored. While useful, this is not a good
representation of language or knowledge.

Typesetting systems like LaTeX, TeXmacs, can be used.

Document representations like OpenMath, OMDoc, MathML, can be
used.

Formal logics used by theorem provers (Coq, Isabelle, HOL, Mizar,
Isar, etc.) can be used.

We are gradually developing a system named Mathlang which we hope will
eventually allow building a bridge between the latter 3 levels.

This talk aims at discussing the motivations rather than the details.
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The issues with typesetting systems

+ A system like LaTeX, TeXmacs, provides good defaults for visual
appearance, while allowing fine control when needed.

+ LaTeX and TeXmacs support commonly needed document structures,
while allowing custom structures to be created.

– Unless the mathematician is amazingly disciplined, the logical
structure of symbolic formulas is not represented at all.

– The logical structure of mathematics as embedded in natural
language text is not represented. Automated discovery of the
semantics of natural language text is still too primitive and requires
human oversight.
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LATEX example
draft documents ✓
public documents ✓

computations and proofs ✗

\begin{theorem}[Commutative Law of Addition]\label{theorem:6}
$$x+y=y+x.$$

\end {theorem}
\begin{proof}
Fix $y$, and $\mathfrak{M}$ be the set of all $x$ for which

the assertion holds.

\begin{enumerate}
\item We have $$y+1=y’,$$

and furthermore, by the construction in

the proof of Theorem \ref{theorem:4}, $$1+y=y’,$$

so that $$1+y=y+1$$

and $1$ belongs to $\mathfrak{M}$.
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\item If $x$ belongs to $\mathfrak{M}$, then $$x+y=y+x,$$

Therefore

$$(x+y)’=(y+x)’=y+x’.$$

By the construction in the proof of

Theorem \ref{theorem:4}, we have $$x’+y=(x+y)’,$$

hence

$$x’+y=y+x’,$$

so that $x’$ belongs to $\mathfrak{M}$.
\end{enumerate}
The assertion therefore holds for all $x$.

\end{proof}
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Full formalization difficulties: choices

A Cml-text is structured differently from a fully formalized text proving
the same facts. Making the latter involves extensive knowledge and many
choices:

The choice of the underlying logical system.

The choice of how concepts are implemented (equational reasoning,
equivalences and classes, partial functions, induction, etc.).

The choice of the formal foundation: a type theory (dependent?), a
set theory (ZF? FM?), a category theory? etc.

The choice of the proof checker: Automath, Isabelle, Coq, PVS,
Mizar, HOL, ...

An issue is that one must in general commit to one set of choices.
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Full formalization difficulties: informality

Any informal reasoning in a Cml-text will cause various problems when
fully formalizing it:

A single (big) step may need to expand into a (series of) syntactic
proof expressions. Very long expressions can replace a clear Cml-text.

The entire Cml-text may need reformulation in a fully complete
syntactic formalism where every detail is spelled out. New details may
need to be woven throughout the entire text. The text may need to
be turned inside out.

Reasoning may be obscured by proof tactics, whose meaning is often
ad hoc and implementation-dependent.

Regardless, ordinary mathematicians do not find the new text useful.
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Coq example
draft documents ✗

public documents ✗

computations and proofs ✓

From Module Arith.Plus of Coq standard library
(http://coq.inria.fr/).

Lemma plus sym: (n,m:nat)(n+m)=(m+n).

Proof.

Intros n m ; Elim n ; Simpl rew ; Auto with arith.

Intros y H ; Elim (plus n -Sm m y) ; Simpl rew ; Auto with arith.

Qed.
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Mathlang’s Goal: Open borders between mathematics, logic and
computation

Ordinary mathematicians avoid formal mathematical logic.

Ordinary mathematicians avoid proof checking (via a computer).

Ordinary mathematicians may use a computer for computation: there
are over 1 million people who use Mathematica (including linguists,
engineers, etc.).

Mathematicians may also use other computer forms like Maple,
LaTeX, etc.

But we are not interested in only libraries or computation or text
editing.

We want freedeom of movement between mathematics, logic and
computation.

At every stage, we must have the choice of the level of formalilty and
the depth of computation.
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Aim for Mathlang? (Kamareddine and Wells 2001, 2002)

Can we formalise a mathematical text, avoiding as much as possible the
ambiguities of natural language, while still guaranteeing the following four
goals?

1 The formalised text looks very much like the original mathematical
text (and hence the content of the original mathematical text is
respected).

2 The formalised text can be fully manipulated and searched in ways
that respect its mathematical structure and meaning.

3 Steps can be made to do computation (via computer algebra systems)
and proof checking (via proof checkers) on the formalised text.

4 This formalisation of text is not much harder for the ordinary
mathematician than LATEX. Full formalization down to a foundation of
mathematics is not required, although allowing and supporting this is
one goal.

(No theorem prover’s language satisfies these goals.)
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Mathlang
draft documents ✓

public documents ✓

computations and proofs ✓

A Mathlang text captures the grammatical and reasoning aspects of
mathematical structure for further computer manipulation.

A weak type system checks Mathlang documents at a grammatical
level.

A Mathlang text remains close to its Cml original, allowing
confidence that the Cml has been captured correctly.

We have been developing ways to weave natural language text into
Mathlang.

Mathlang aims to eventually support all encoding uses.

The Cml view of a Mathlang text should match the mathematician’s
intentions.

The formal structure should be suitable for various automated uses.
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Example of a MathLang Path
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What is CGa? (Maarek’s PhD thesis)

CGa is a formal language derived from MV (N.G. de Bruijn 1987) and
WTT (Kamareddine and Nederpelt 2004) which aims at expliciting
the grammatical role played by the elements of a CML text.

The structures and common concepts used in CML are captured by
CGa with a finite set of grammatical/linguistic/syntactic categories:
Term “

√
2”, set “Q”, noun “number”, adjective “even”, statement

“a = b”, declaration “Let a be a number”, definition “An even
number is..”, step “a is odd, hence a 6= 0”, context “Assume a is
even”.
term set noun adjective statement declaration definition

step context .

Generally, each syntactic category has a corresponding weak type.

CGa’s type system derives typing judgments to check whether the
reasoning parts of a document are coherently built.
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Weak Type Theory In Weak Type Theory (or Wtt) we have the following
linguistic categories:

On the atomic level: variables, constants and binders,

On the phrase level: terms T , sets S, nouns N and adjectives A,

On the sentence level: statements P and definitions D,

On the discourse level: contexts ΓI , lines l and books B.
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Categories of syntax of WTT
Other category abstract syntax symbol

expressions E = T |S|N |P E

parameters P = T |S|P (note:
→

P is a list of Ps) P

typings T = S : SET |S : STAT |T : S|T : N|T : A T
declarations Z = VS : SET |VP : STAT |VT : S|VT : N Z
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level category abstract syntax symbol

atomic variables V = VT |VS |VP x
constants C = CT |CS |CN |CA|CP c
binders B = BT |BS |BN |BA|BP b

phrase terms T = CT (
→

P)|BT
Z

(E)|VT t

sets S = CS(
→

P)|BS
Z
(E)|VS s

nouns N = CN(
→

P)|BN
Z

(E)|AN n

adjectives A = CA(
→

P)|BA
Z
(E) a

sentence statements P = CP(
→

P)|BP
Z
(E)|VP S

definitions D = Dϕ|DP D

Dϕ = CT (
→

V ) := T |CS(
→

V ) := S|
CN(

→

V ) := N|CA(
→

V ) := A
DP = CP(

→

V ) := P

discourse contexts ΓI = ∅ | ΓI,Z | ΓI,P Γ
lines l = ΓI ⊲ P | ΓI ⊲D l
books B = ∅ | B ◦ l B

Kamareddine and ULTRA () Types and Functions since Principia and the Computerisation of Language and MathematicsLethbridge, February 2015 91 / 117



Derivation rules

(1) B is a weakly well-typed book: ⊢ B :: book.

(2) Γ is a weakly well-typed context relative to book B : B ⊢ Γ :: cont.

(3) t is a weakly well-typed term, etc., relative to book B and context Γ:

B ; Γ ⊢ t :: T , B ; Γ ⊢ s :: S , B ; Γ ⊢ n :: N,
B ; Γ ⊢ a :: A, B ; Γ ⊢ p :: P , B ; Γ ⊢ d :: D

OK (B ; Γ). stands for: ⊢ B :: book, and B ⊢ Γ :: cont
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Examples of derivation rules

dvar(∅) = ∅ dvar(Γ′, x : W ) = dvar(Γ′), x
dvar(Γ′,P) = dvar(Γ′)

OK (B ; Γ), x ∈ VT/S/P, x ∈ dvar(Γ)

B ; Γ ⊢ x :: T/S/P
(var)

B ; Γ ⊢ n :: N, B ; Γ ⊢ a :: A

B ; Γ ⊢ an :: N
(adj−noun)

⊢ ∅ :: book
(emp−book)

B ; Γ ⊢ p :: P

⊢ B ◦ Γ ⊲ p :: book

B ; Γ ⊢ d :: D

⊢ B ◦ Γ ⊲ d :: book
(book−ext)
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Properties of WTT

Every variable is declared If B ; Γ ⊢ Φ :: W then FV (Φ) ⊆ dvar(Γ).

Correct subcontexts If B ⊢ Γ :: cont and Γ′ ⊆ Γ then
B ⊢ Γ′ :: cont.

Correct subbooks If ⊢ B :: book and B ′ ⊆ B then ⊢ B ′ :: book.

Free constants are either declared in book or in contexts If
B ; Γ ⊢ Φ :: W, then FC (Φ) ⊆ prefcons(B) ∪ defcons(B).

Types are unique If B ; Γ ⊢ A :: W1 and B ; Γ ⊢ A :: W2, then
W1 ≡W2.

Weak type checking is decidable there is a decision procedure for the
question B ; Γ ⊢ Φ :: W ?.

Weak typability is computable there is a procedure deciding whether
an answer exists for B ; Γ ⊢ Φ :: ? and if so, delivering the answer.
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Definition unfolding

Let ⊢ B :: book and Γ ⊲ c(x1, . . . , xn) := Φ a line in B .

We write B ⊢ c(P1, . . . ,Pn)
δ→ Φ[xi := Pi ].

Church-Rosser If B ⊢ Φ
δ→→ Φ1 and B ⊢ Φ

δ→→ Φ2 then there

exists Φ3 such that B ⊢ Φ1
δ→→ Φ3 andf B ⊢ Φ2

δ→→ Φ3.

Strong Normalisation Let ⊢ B :: book. For all subformulas Ψ

occurring in B , relation
δ→ is strongly normalizing (i.e., definition

unfolding inside a well-typed book is a well-founded procedure).
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CGa Weak Type Checking

Let M be a set ,

y and x are natural numbers ,

if x belongs to M

then x + y = y + x
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CGa Weak Type checking detects grammatical errors

Let M be a set ,

y and x are natural numbers ,

if x belongs to M

then x + y ⇐ error
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How complete is the CGa?
CGa is quite advanced but remains under development according to
new translations of mathematical texts. Are the current CGa
categories sufficient?

The metatheory of WTT has been established in (Kamareddine and
Nederepelt 2004). That of CGa remains to be established. However,
since CGa is quite similar to WTT, its metatheory might be similar to
that of WTT.

The type checker for CGa works well and gives some useful error
messages. Error messages should be improved.
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What is TSa? Lamar’s PhD thesis

TSa builds the bridge between a CML text and its grammatical
interpretation and adjoins to each CGa expression a string of words
and/or symbols which aims to act as its CML representation.

TSa plays the role of a user interface

TSa can flexibly represent natural language mathematics.

The author wraps the natural language text with boxes representing
the grammatical categories (as we saw before).

The author can also give interpretations to the parts of the text.
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What is DRa? Retel’s PhD thesis

DRa Document Rhetorical structure aspect.

Structural components of a document like chapter, section,
subsection, etc.

Mathematical components of a document like theorem, corollary,
definition, proof, etc.

Relations between above components.

These enhance readability, and ease the navigation of a document.

Also, these help to go into more formal versions of the document.
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Relations

Description

Instances of the StructuralRhetoricalRole class:
preamble, part, chapter, section, paragraph, etc.

Instances of the MathematicalRhetoricalRole class:
lemma, corollary, theorem, conjecture, definition, axiom, claim,
proposition, assertion, proof, exercise, example, problem, solution, etc.

Relation

Types of relations:
relatesTo, uses, justifies, subpartOf, inconsistentWith, exemplifies
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What does the mathematician do?

The mathematician wraps into boxes and uniquely names chunks of
text

The mathematician assigns to each box the structural and/or
mathematical rhetorical roles

The mathematician indicates the relations between wrapped chunks
of texts
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Lemma 1. For m, n ∈ N one has: m2 = 2n2 =⇒ m = n = 0.
Define on N the predicate:

P(m) ⇐⇒ ∃n.m2 = 2n2 & m > 0.

Claim. P(m) =⇒ ∃m′ < m.P(m′). Indeed suppose m2 = 2n2 and m > 0. It follows
that m2 is even, but then m must be even, as odds square to odds. So m = 2k and we
have

2n2 = m
2 = 4k2 =⇒ n

2 = 2k2

Since m > 0, if follows that m2 > 0, n2 > 0 and n > 0. Therefore P(n). Moreover,
m2 = n2 + n2 > n2, so m2 > n2 and hence m > n. So we can take m′ = n.

By the claim ∀m ∈ N.¬P(m), since there are no infinite descending sequences of
natural numbers.

Now suppose m2 = 2n2 with m 6= 0. Then m > 0 and hence P(m). Contradiction.
Therefore m = 0. But then also n = 0.
Corollary 1.

√
2 /∈ Q.

Suppose
√

2 ∈ Q, i.e.
√

2 = p/q with p ∈ Z, q ∈ Z − {0}. Then
√

2 = m/n with
m = |p|, n = |q| 6= 0. It follows that m2 = 2n2. But then n = 0 by the lemma.
Contradiction shows that

√
2 /∈ Q.

Barendregt
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The automatically generated dependency Graph
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An example of a full formalisation in Coq via MathLang

D R aC G aT S a
D e g r e e o f f o r m a l i s i n gI n p u t fi l e s r i c h p r o o fs k e l e t o n c o m p l e t ef o r m a l i s e dC o q v e r s i o nT e X m a c sd o c u m e n t

Figure 1: The path for processing the Landau chapter
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Chapter 1 of Landau

5 axioms which we annotate with the mathematical role “axiom”, and
give them the names“ax11” - “ax15”.

6 definitions which we annotate with the mathematical role
“definition”, and give them names “def11” - “def16”.

36 nodes with the mathematical role “theorem”, named “th11” -
“th136” and with proofs “pr11” - “pr136”.

Some proofs are partitioned into an existential part and a uniqueness
part.

Other proofs consist of different cases which we annotate as unproved
nodes with the mathematical role “case”.
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Figure 2: The DRa tree of sections 1 and 2 of chapter 1 of Landau’s book
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The relations are annotated in a straightforward manner.

Each proof justifies its corresponding theorem.

Axiom 5 (“ax15”) is the axiom of induction. So every proof which
uses induction, uses also this axiom.

Definition 1 (“def11”) is the definition of addition. Hence every node
which uses addition also uses this definition.

Some theorems use other theorems via texts like: “By Theorem ...”.

In total we have 36 justifies relations, 154 uses relations, 6 caseOf, 3
existencePartOf and 3 uniquenessPartOf relations.

The DG and GoTO are automatically generated.

The GoTO is automatically checked and no errors result. So, we
proceed to the next stage: automatically generating the SGa.
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Figure 3: The DG of sections 1 and 2 of chapter 1 of Landau’s book
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DG of sections 1..4

With the help of the CGa annotations and the automatically generated
rich proof skeleton, Zengler (who was not familiar with Coq) completed
the Coq proofs of the whole of chapter one in a couple of hours.
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Some points to consider

We do not at all assume/prefer one type/logical theory instead of
another.

MathLang aims to do some amount of type checking even for
non-fully-formalized mathematics. This corresponds roughly to
grammatical conditions.

MathLang aims to support automated processing of mathematical
knowledge.

MathLang aims to be independent of any foundation of mathematics.

MathLang allows anyone to be involved, whether a mathematician, a
computer engineer, a computer scientist, a linguist, a logician, etc.
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