
From Principia to Formalised versus Computerised

Maths

Fairouz Kamareddine
USEFUL LOGICS, TYPES, REWRITING and AUTOMATION

Heriot-Watt University
Edinburgh, UK

February 3, 2016

Pre-formalisation in the 19th century)

In the 19th century, the need for a more precise style in mathematics arose,
because controversial results had appeared in analysis.

• 1821: Many of these controversies were solved by the work of Cauchy. E.g.,
he introduced a precise definition of convergence in his Cours d’Analyse [6].

• 1872: Due to the more exact definition of real numbers given by Dedekind [9],
the rules for reasoning with real numbers became even more precise.

• 1895-1897: Cantor began formalizing set theory [4; 5] and made contributions
to number theory.

• 1889: Peano formalized arithmetic [28], but did not treat logic or quantification.

1

Prehistory of Types (formal systems in 19th century)

• 1879: Frege was not satisfied with the use of natural language in mathematics:

“. . . I found the inadequacy of language to be an obstacle; no matter how
unwieldy the expressions I was ready to accept, I was less and less able,
as the relations became more and more complex, to attain the precision
that my purpose required.”

(Begriffsschrift, Preface)

Frege therefore presented Begriffsschrift [10], the first formalisation of logic
giving logical concepts via symbols rather than natural language.

“[Begriffsschrift’s] first purpose is to provide us with the most reliable
test of the validity of a chain of inferences and to point out every
presupposition that tries to sneak in unnoticed, so that its origin can be
investigated.”

(Begriffsschrift, Preface)

2

Prehistory of Types (Begriffsschrift’s functions)

The introduction of a very general definition of function was the key to the
formalisation of logic. Frege defined what we will call the Abstraction Principle.

Abstraction Principle 1.

“If in an expression, [. . .] a simple or a compound sign has one or more
occurrences and if we regard that sign as replaceable in all or some of these
occurrences by something else (but everywhere by the same thing), then we
call the part that remains invariant in the expression a function, and the
replaceable part the argument of the function.”

(Begriffsschrift, Section 9)

3

Prehistory of Types (Begriffsschrift’s functions)

• Frege put no restrictions on what could play the role of an argument.

• An argument could be a number (as was the situation in analysis), but also a
proposition, or a function.

• The result of applying a function to an argument did not have to be a number.

• Frege was aware of some typing rule that does not allow to substitute functions
for object variables or objects for function variables:

“ Now just as functions are fundamentally different from objects, so also
functions whose arguments are and must be functions are fundamentally
different from functions whose arguments are objects and cannot be
anything else. I call the latter first-level, the former second-level.”

(Function and Concept, pp. 26–27)

4

Prehistory of Types (Grundgesetze’s functions)

The Begriffsschrift, however, was only a prelude to Frege’s writings.

• In Grundlagen der Arithmetik [11] he argued that mathematics can be seen as
a branch of logic.

• In Grundgesetze der Arithmetik [12; 13] he described the elementary parts of
arithmetics within an extension of the logical framework of Begriffsschrift.

• He did not apply a function to itself, but to its course-of-values.
“the function Φ(x) has the same course-of-values as the function Ψ(x)” if:

“ Φ(x) and Ψ(x) always have the same value for the same argument.”
(Grundgesetze, p. 7)

• Frege excluded the paradox threats by forbidding self-application, but due to
his treatment of courses-of-values these threats were able to enter his system
through a back door.

• In 1902, Russell wrote to Frege [32] a paradox in Begriffsschrift.

5

• (Begriffsschrift does not suffer from a paradox).

• The Russell Paradox can be derived in Peano’s system as well, as well as on
Cantor’s Set Theory

• Logicians considered other paradoxes to be out of the scope of logic:
The Liar’s Paradox can be regarded as a problem of linguistics.
The paradoxes of Cantor and Burali-Forti occurred in what was considered in
those days a highly questionable part of mathematics: Cantor’s Set Theory.

• The Russell Paradox, however, was a paradox that could be formulated in all
the systems that were presented at the end of the 19th century (except for
Frege’s Begriffsschrift). A solution to it had to be found.

• Russell avoided the paradoxes by avoiding all possible self-references. He
strictly implemented using types the “vicious circle principle”:

• “Whatever involves all of a collection must not be one of the collection.”
(Mathematical logic as based on the theory of types)

6

• Russell [33] 1903 gives the first type theory: the Ramified Type Theory (rtt).

• rtt is used in Russell and Whitehead’s Principia Mathematica [36] 1910–1912.

– The main part of the Principia is devoted to the development of logic and
mathematics using the legal pfs of the ramified type theory.

– ramification/division of simple types into orders make rtt not easy to use.

– (Equality) x =L y
def↔ ∀z[z(x) ↔ z(y)].

In order to express this general notion in rtt, we have to incorporate all pfs
∀z : (00)

n
[z(x) ↔ z(y)] for n > 1, and this cannot be expressed in one pf.

– Not possible to give a constructive proof of the theorem of the least upper
bound within a ramified type theory.

– Russell and Whitehead tried to solve problems with the axiom of reducibility:
For each formula f , there is a formula g with a predicative type such that
f and g are (logically) equivalent.

– The validity of the Axiom of Reducibility has been questioned from the
moment it was introduced.

• Weyl made an effort to develop Analysis within RTT (without Reducibility).

7

• Various parts of Maths can be developed in RTT (without Reducibility), but
attitude was that RTT was too restrictive.

• Simple theory of types (stt): Ramsey1926, Hilbert and Ackermann 1928.

• Church’s simply typed λ-calculus λ→ [7] 1940 = λ-calculus + stt.

• Unsatisfactory hierarchies of types/orders in rtt and stt.

• The notion of function adopted in the λ-calculus is unsatisfactory [22].
Frege’s functions 6= Principia’s functions 6= λ-calculus functions.

• Hence, birth of different systems of functions and types, each with different
functional power.

8

The evolution of functions with Frege, Russell and Church

• Historically, functions have long been treated as a kind of meta-objects.

• Function values were the important part, not abstract functions.

• In the low level/operational approach there are only function values.

• The sine-function, is always expressed with a value: sin(π), sin(x) and
properties like: sin(2x) = 2 sin(x) cos(x).

• In many mathematics courses, one calls f(x)—and not f—the function.

• Frege, Russell and Church wrote x 7→ x+3 resp. as x+3, x̂+3 and λx.x+3.

• Principia’s functions are based on Frege’s Abstraction Principles but can be
first-class citizens. Frege used courses-of-values to speak about functions.

• Church made every function a first-class citizen. This is rigid and does not
represent the development of logic and computation in 20th century.

9

The Barendregt Cube

• Syntax: A ::= x | ∗ | 2 | AB | λx:A.B | Πx:A.B

• Formation rule:
Γ ⊢ A : s1 Γ, x:A ⊢ B : s2

Γ ⊢ Πx:A.B : s2
if (s1, s2) ∈ R

Simple Poly-
morphic

Depend-
ent

Constr-
uctors

Related
system

Refs.

λ→ (∗, ∗) λτ [7; 1; 20]
λ2 (∗, ∗) (2, ∗) F [15; 31]
λP (∗, ∗) (∗,2) aut-QE, LF [3; 16]
λω (∗, ∗) (2,2) POLYREC [30]
λP2 (∗, ∗) (2, ∗) (∗,2) [26]
λω (∗, ∗) (2, ∗) (2,2) Fω [15]
λPω (∗, ∗) (∗,2) (2,2)
λC (∗, ∗) (2, ∗) (∗,2) (2,2) CC [8]

10

11

The β-cube: →β + convβ + appΠ

(axiom) 〈〉 ⊢ ∗ : 2

(start)
Γ ⊢ A : s x 6∈ dom (Γ)

Γ, x:A ⊢ x : A

(weak)
Γ ⊢ A : B Γ ⊢ C : s x 6∈ dom (Γ)

Γ, x:C ⊢ A : B

(Π)
Γ ⊢ A : s1 Γ, x:A ⊢ B : s2 (s1, s2) ∈ R

Γ ⊢ Πx:A.B : s2

(λ)
Γ, x:A ⊢ b : B Γ ⊢ Πx:A.B : s

Γ ⊢ λx:A.b : Πx:A.B

(convβ)
Γ ⊢ A : B Γ ⊢ B′ : s B =β B′

Γ ⊢ A : B′

(appΠ)
Γ ⊢ F : Πx:A.B Γ ⊢ a : A

Γ ⊢ Fa : B[x:=a]

12

6 desirable properties of a type system with reduction r
• Types are correct (TC)

If Γ ⊢ A : B then B ≡ 2 or Γ ⊢ B : s fors ∈ {∗, 2}.

• Subject reduction (SR) If Γ ⊢ A : B and A →→r A′ then Γ ⊢ A′ : B.

• Preservation of types (PT) If Γ ⊢ A : B and B →→r B′ then Γ ⊢ A : B′.

• Strong Normalisation (SN) If Γ ⊢ A : B then SN→r(A) and SN→r(B).

• Subterms are typable (STT) If A is ⊢-legal and if C is a sub-term of A then
C is ⊢-legal.

• Unicity of types

– (UT1) If Γ ⊢ A1 : B1 and Γ ⊢ A2 : B2 and Γ ⊢ A1 =r A2, then
Γ ⊢ B1 =r B2.

– (UT2) If Γ ⊢ B1 : s, B1 =r B2 and Γ ⊢ A : B2 then Γ ⊢ B2 : s.

13

Typing Polymorphic identity needs (2, ∗)

• y : ∗ ⊢ y : ∗ y : ∗, x:y ⊢ y : ∗
y : ∗ ⊢ Πx:y.y : ∗ by (Π) (∗, ∗)

• y : ∗, x : y ⊢ x : y y : ∗ ⊢ Πx:y.y : ∗
y : ∗ ⊢ λx : y.x : Πx:y.y

by (λ)

• ⊢ ∗ : 2 y : ∗ ⊢ Πx:y.y : ∗
⊢ Πy : ∗.Πx:y.y : ∗ by (Π) by (2, ∗)

• y : ∗ ⊢ λx : y.x : Πx:y.y ⊢ Πy : ∗.Πx:y.y : ∗
⊢ λy : ∗.λx : y.x : Πy : ∗.Πx:y.y

by (λ)

14

Which type systems can be extended with features needed

for mathematics?

• There was a surge for explicit substitutions. Lots of work, lots of untied results,
very scattered picture.

• There was a surge for different notions of reductions. Lots of work, lots of
untied results, very scattered picture.

• Explicit contexts, intersection types, Church versus Curry typing, etc. Again,
lots of work, lots of untied results, very scattered picture.

• And for each small extenion, an entire machinery needs to be built and proved
and many questions remain unsolved.

15

From the point of vue of ML

• ML is not based on all of system F (2nd order polymorphic λ-calculus).

• It was not known then if type checking and type finding are decidable in F.

• ML is based on a fragment of system F for which it was known that type
checking and type finding are decidable.

• 23 years later after the design of ML, Wells showed that type checking and
type finding in system F are undecidable.

• ML has polymorphism but not all the polymorphic power of system F.

• The question is, what system of functions and types does ML use?

• A clean answer can be given when we re-incorporate the low-level function
notion used by Frege and Russell (and de Bruijn) and dismissed by Church.

16

• ML treats let val id = (fn x ⇒ x) in (id id) end as this Cube term
(λid:(Πα:∗. α → α). id(β → β)(id β))(λα:∗. λx:α. x)

• To type this in the Cube, the (2, ∗) rule is needed (i.e., λ2).

• ML’s typing rules forbid this expression:
let val id = (fn x ⇒ x) in (fn y ⇒ y y)(id id) end
Its equivalent Cube term is this well-formed typable term of λ2:
(λid : (Πα:∗. α → α).

(λy:(Πα:∗. α → α). y(β → β)(y β))
(λα:∗. id(α → α)(idα)))

(λα:∗. λx:α. x)

• ML has limited access to the Π-formation rule (2, ∗).

• ML’s type system is none of those of the eight systems of the Cube.
[21] places the type system of ML (between λ2 + λω).

17

LF

• LF [16] is often described as λP of the Barendregt Cube.
However, Use of Π-formation rule (∗, 2) is restricted in LF [14].

• We only need a type Πx:A.B : 2 when pat is applied during construction of
the type Πα:prop.∗ of the operator Prf where for a proposition Σ, Prf(Σ) is
the type of proofs of Σ.

prop:∗ ⊢ prop: ∗ prop:∗, α:prop ⊢ ∗:2
prop:∗ ⊢ Πα:prop.∗ : 2

.

• In LF, this is the only point where the Π-formation rule (∗, 2) is used.
But, Prf is only used when applied to Σ:prop. We never use Prf on its own.

• This use is in fact based on a parametric constant rather than on Π-formation.

• Hence, the practical use of LF would not be restricted if we present Prf in a
parametric form, and use (∗,2) as a parameter instead of a Π-formation rule.

• [21] precisely locate LF (between λ→ and λP).

18

Parameters: What and Why

• We speak about functions with parameters when referring to functions with
variable values in the low-level approach. The x in f(x) is a parameter.

• Parameters enable the same expressive power as the high-level case, while
allowing us to stay at a lower order. E.g. first-order with parameters versus
second-order without [25].

• Desirable properties of the lower order theory (decidability, easiness of
calculations, typability) can be maintained, without losing the flexibility of
the higher-order aspects.

• This low-level approach is still worthwhile for many exact disciplines. In fact,
both in logic and in computer science it has certainly not been wiped out, and
for good reasons.

19

Automath

• The first tool for mechanical representation and verification of mathematical
proofs, Automath, has a parameter mechanism.

• Mathematical text in Automath written as a finite list of lines of the form:

x1 : A1, . . . , xn : An ⊢ g(x1, . . . , xn) = t : T.

Here g is a new name, an abbreviation for the expression t of type T and
x1, . . . , xn are the parameters of g, with respective types A1, . . . , An.

• Each line introduces a new definition which is inherently parametrised by the
variables occurring in the context needed for it.

• Developments of ordinary mathematical theory in Automath [2] revealed
that this combined definition and parameter mechanism is vital for keeping
proofs manageable and sufficiently readable for humans.

20

Extending the Cube with parametric constants, see [21]

• We add parametric constants of the form c(b1, . . . , bn) with b1, . . . , bn terms
of certain types and c ∈ C.

• b1, . . . , bn are called the parameters of c(b1, . . . , bn).

• R allows several kinds of Π-constructs. We also use a set P of (s1, s2) where
s1, s2 ∈ {∗, 2} to allow several kinds of parametric constants.

• (s1, s2) ∈ P means that we allow parametric constants c(b1, . . . , bn) : A where
b1, . . . , bn have types B1, . . . , Bn of sort s1, and A is of type s2.

• If both (∗, s2) ∈ P and (2, s2) ∈ P then combinations of parameters allowed.
For example, it is allowed that B1 has type ∗, whilst B2 has type 2.

21

The Cube with parametric constants

• Let (∗, ∗) ⊆ R,P ⊆ {(∗, ∗), (∗, 2), (2, ∗), (2,2)}.

• λRP = λR and the two rules (
→
C-weak) and (

→
C-app):

Γ ⊢ b : B Γ,∆i ⊢ Bi : si Γ,∆ ⊢ A : s
Γ, c(∆) : A ⊢ b : B

(si, s) ∈ P , c is Γ-fresh

Γ1, c(∆):A,Γ2 ⊢ bi:Bi[xj:=bj]
i−1
j=1 (i = 1, . . . , n)

Γ1, c(∆):A,Γ2 ⊢ A : s (if n = 0)
Γ1, c(∆):A, Γ2 ⊢ c(b1, . . . , bn) : A[xj:=bj]

n
j=1

∆ ≡ x1:B1, . . . , xn:Bn.
∆i ≡ x1:B1, . . . , xi−1:Bi−1

22

Properties of the Refined Cube

• (Correctness of types) If Γ ⊢ A : B then (B ≡ 2 or Γ ⊢ B :
S for some sort S).

• (Subject Reduction SR) If Γ ⊢ A : B and A →→β A′ then Γ ⊢ A′ : B

• (Strong Normalisation) For all ⊢-legal terms M , we have SN→→β
(M).

• Other properties such as Uniqueness of types and typability of subterms hold.

• λRP is the system which has Π-formation rules R and parameter rules P .

23

24

25

Logicians versus mathematicians: induction over numbers

• Logician uses ind: Ind as proof term for an application of the induction axiom.
The type Ind can only be described in λR where R = {(∗, ∗), (∗,2), (2, ∗)}:

Ind = Πp:(N→∗).p0→(Πn:N.Πm:N.pn→Snm→pm)→Πn:N.pn (1)

• Mathematician uses ind only with P : N→∗, Q : P0 and R :
(Πn:N.Πm:N.Pn→Snm→Pm) to form a term (indPQR):(Πn:N.Pn).

• The use of the induction axiom by the mathematician is better described by
the parametric scheme (p, q and r are the parameters of the scheme):

ind(p:N→∗, q:p0, r:(Πn:N.Πm:N.pn→Snm→pm)) : Πn:N.pn (2)

• The logician’s type Ind is not needed by the mathematician and the types
that occur in 2 can all be constructed in λR with R = {(∗, ∗)(∗,2)}.

26

Logicians versus mathematicians: induction over numbers

• Mathematician applies the induction axiom and doesn’t need to know the
proof-theoretical backgrounds.

• A logician develops the induction axiom (or studies its properties).

• (2, ∗) is not needed by the mathematician. It is needed in logician’s approach
in order to form the Π-abstraction Πp:(N → ∗). · · ·).

• Consequently, the type system that is used to describe the mathematician’s
use of the induction axiom can be weaker than the one for the logician.

• Nevertheless, the parameter mechanism gives the mathematician limited (but
for his purposes sufficient) access to the induction scheme.

27

• Parameters enable the same expressive power as the high-level case, while
allowing us to stay at a lower order. E.g. first-order with parameters versus
second-order without [25].

• Desirable properties of the lower order theory (decidability, easiness of
calculations, typability) can be maintained, without losing the flexibility of
the higher-order aspects.

• Parameters enable us to find an exact position of type systems in the generalised
framework of type systems.

• Parameters describe the difference between developers and users of systems.

28

Common features of modern types and functions

• Write A → A as Πy:A.A when y not free in A.

• We can construct a type by abstraction. (Write A : ∗ for A is a type)

– λy:A.y, the identity over A has type Πy:A.A, i.e. A → A
– λA:∗.λy:A.y, the polymorphic identity has type ΠA:∗.A → A

• We can instantiate types. E.g., if A = N, then the identity over N

– (λA:∗.λy:A.y)N has type (ΠA:∗.A → A)N = (A → A)[A := N] or N → N.

• More clearly

Term λy:A.y λA:∗.λy:A.y (λA:∗.λy:A.y)N
Type Πy:A.A ΠA:∗.Πy:A.A (ΠA:∗.Πy:A.A)N
shorthand A → A ΠA:∗.A → A (ΠA:∗.A → A)N

• (λx:α.A)B →β A[x := B] (Πx:α.A)B →Π A[x := B]

29

The π-cube: Rπ = Rβ\ (convβ) ∪ (convβΠ), →βΠ

• (λx:α.A)B →β A[x := B]

• (Πx:α.A)B →Π A[x := B]

(axiom) (start) (weak) (Π) (λ) (appΠ)

(convβΠ)
Γ ⊢ A : B Γ ⊢ B′ : s B =βΠ B′

Γ ⊢ A : B′

Lemma: Γ ⊢β A : B iff Γ ⊢π A : B

Lemma: The β-cube and the π-cube satisfy the six properties that are desirable
for type systems.

30

The πi-cube: Rπi
= Rπ\ (appΠ) ∪ (i-appΠ), →βΠ

(appΠ)
Γ ⊢ F : Πx:A.B Γ ⊢ a : A

Γ ⊢ Fa : B[x:=a]

(axiom) (start) (weak) (Π) (λ)

(convβΠ)
Γ ⊢ A : B Γ ⊢ B′ : s B =βΠ B′

Γ ⊢ A : B′

(i-appΠ)
Γ ⊢ F : Πx:A.B Γ ⊢ a : A

Γ ⊢ Fa : (Πx:A.B)a

Lemma:

• If Γ ⊢β A : B then Γ ⊢πi
A : B.

• If Γ ⊢πi
A : B then Γ ⊢β A : [B]Π

where [B]Π is the Π-normal form of B.

31

The πi-cube
• The πi-cube loses three of its six properties

Let Γ = z : ∗, x : z. We have that Γ ⊢πi
(λy:z.y)x : (Πy:z.z)x.

– We do not have TC (Πy:z.z)x 6≡ 2 and Γ 6⊢πi
(Πy:z.z)x : s.

– We do not have SR (λy:z.y)x →βΠ x but Γ 6⊢πi
x : (Πy:z.z)x.

– We do not have UT2 ⊢πi ∗ : 2, ∗ =βΠ (Πz:∗.∗)α, α : ∗ ⊢πi (λz:∗.∗)α :
(Πz:∗.∗)α and 6⊢πi

(Πz:∗.∗)α : 2

• But we have:

– We have UT1
– We have STT
– We have PT
– We have SN
– We have a weak form of TC If Γ ⊢πi

A : B and B does not have a Π-redex
then either B ≡ 2 or Γ ⊢πi

B : s.
– We have a weak form of SR If Γ ⊢πi

A : B, B is not a Π-redex and
A →→βΠ A′ then Γ ⊢πi A′ : B.

32

The problem can be solved by re-incorporating Frege and

Russell’s notions of low level functions (which was lost in

Church’s notion of function)

(start-a)
Γ ⊢ A : s Γ ⊢ B : A

Γ, x = B:A ⊢ x : A
x 6∈ dom (Γ)

(weak-a)
Γ ⊢ A : B Γ ⊢ C : s Γ ⊢ D : C

Γ, x = D:C ⊢ A : B
x 6∈ dom (Γ)

Figure 1: Basic abbreviation rules BA

(let\)
Γ, x = B:A ⊢ C : D

Γ ⊢ (\x:A.C)B : D[x := B]

Figure 2: (let\) where \ = λ or \ = Π

33

The βa-cube: Rβa = Rβ + BA + letβ, →β

(axiom) (start) (weak) (Π) (λ) (appΠ) (convβ)

(start-a)
Γ ⊢ A : s Γ ⊢ B : A

Γ, x = B:A ⊢ x : A
x 6∈ dom (Γ)

(weak-a)
Γ ⊢ A : B Γ ⊢ C : s Γ ⊢ D : C

Γ, x = D:C ⊢ A : B
x 6∈ dom (Γ)

(letβ)
Γ, x = B:A ⊢ C : D

Γ ⊢ (λx:A.C)B : D[x := B]

Lemma: The βa-cube satisfies the desirable properties except for typability of
subterms.
If A is ⊢-legal and B is a subterm of A such that every bachelor λx:D in B is
also bachelor in A, then B is ⊢-legal.

34

The πa-cube: Rπa = Rπ + BA + letβ + letΠ, →βΠ

(axiom) (start) (weak) (Π) (λ) (appΠ) (convβΠ)

(start-a)
Γ ⊢ A : s Γ ⊢ B : A

Γ, x = B:A ⊢ x : A
x 6∈ dom (Γ)

(weak-a)
Γ ⊢ A : B Γ ⊢ C : s Γ ⊢ D : C

Γ, x = D:C ⊢ A : B
x 6∈ dom (Γ)

(letβ)
Γ, x = B:A ⊢ C : D

Γ ⊢ (λx:A.C)B : D[x := B]

(letΠ)
Γ, x = B:A ⊢ C : D

Γ ⊢ (Πx:A.C)B : D[x := B]

Lemma: The πa-cube satisfies the same properties as the βa.

35

The πai-cube: Rπai
= Rπa\ appΠ + i-appΠ, →βΠ

Let Γ = z : ∗, x : z. We have that Γ ⊢πai (λy:z.y)x : (Πy:z.z)x.

• We NOW have TC although Γ 6⊢πi (Πy:z.z)x : s, we have Γ ⊢πai (Πy:z.z)x : s

By (weak-a) z : ∗, x : z, y = x : z ⊢πai
z : ∗.

Hence by (letΠ) z : ∗, x : z ⊢πai
(Πy:z.z)x : ∗[y := x] ≡ ∗.

• We NOW have SR (λy:z.y)x →βΠ x.
Although Γ 6⊢πi

x : (Πy:z.z)x, we have Γ ⊢πai
x : (Πy:z.z)x

Since z : ∗, x : z ⊢πai
x : z, and z : ∗, x : z ⊢πai

(Πy:z.z)x : ∗ and
z : ∗, x : z z =βΠ (Πy:z.z)x, we use (convβΠ) to get:
z : ∗, x : z ⊢πai

x : (Πy:z.z)x.

36

Identifying λ and Π (see [23])

• In the cube, the syntax for terms (functions) and types was intermixed with
the only distinction being λ- versus Π-abstraction.

• We unify the two abstractions into one.
T♭ ::= V | S | T♭T♭ | ♭V :T♭.T♭

• V is a set of variables and S = {∗, 2}.

• The β-reduction rule becomes (♭) (♭x:A.B)C →♭ B[x := C].

• Now we also have the old Π-reduction (Πx:A.B)C →Π B[x := C] which treats
type instantiation like function instantiation.

• The type formation rule becomes

(♭1)
Γ ⊢ A : s1 Γ, x:A ⊢ B : s2

Γ ⊢ (♭x:A.B) : s2
(s1, s2) ∈ R

37

(axiom) 〈〉 ⊢ ∗ : 2

(start)
Γ ⊢ A : s

Γ, x:A ⊢ x : A
x 6∈ dom (Γ)

(weak)
Γ ⊢ A : B Γ ⊢ C : s

Γ, x:C ⊢ A : B
x 6∈ dom (Γ)

(♭2)
Γ, x:A ⊢ b : B Γ ⊢ (♭x:A.B) : s

Γ ⊢ (♭x:A.b) : (♭x:A.B)

(app♭)
Γ ⊢ F : (♭x:A.B) Γ ⊢ a : A

Γ ⊢ Fa : B[x:=a]

(conv)
Γ ⊢ A : B Γ ⊢ B′ : s B =β B′

Γ ⊢ A : B′

38

Consequences of unifying λ and Π

• A term can have many distinct types. E.g., in λP we have:

α : ∗ ⊢β (λx:α.α) : (Πx:α.∗) and α : ∗ ⊢β (Πx:α.α) : ∗
which, when we give up the difference between λ and Π, result in:

– α : ∗ ⊢β [x:α]α : [x:α] ∗ and
– α : ∗ ⊢β [x:α]α : ∗

39

• More generally, in AUT-QE we have the dervived rule:

Γ ⊢β [x1:A1] · · · [xn:An]B : [x1:A1] · · · [xn:An]∗
Γ ⊢β [x1:A1] · · · [xn:An]B : [x1:A1] · · · [xm:Am]∗ 0 ≤ m ≤ n (3)

This derived rule (3) has the following equivalent derived rule in λP (and hence
in the higher systmes like λPω):

Γ ⊢β λx1:A1. · · ·λxn:An.B : Πx1:A1. · · ·Πxn:An. ∗ 0 ≤ m ≤ n

Γ ⊢β λx1:A1. · · ·λxm:Am.Πxm+1:Am+1. · · ·Πxn:An.B : Πx1:A1. · · ·Πxm:Am.∗

However, Aut-QE goes further and generalises (3) to a rule of type inclusion:

Γ ⊢β M : [x1:A1] · · · [xn:An]∗
Γ ⊢β M : [x1:A1] · · · [xm:Am]∗ 0 ≤ m ≤ n (Q)

40

The βQ-cube = β-cube + (Qβ)

(Qβ)
Γ ⊢ λi:1..k

xi:Ai
.A : Πi:1..n

xi:Ai
.∗

Γ ⊢ λi:1..m
xi:Ai

.Πi:m+1..k
xi:Ai

A : Πi:1..m
xi:Ai

.∗ 0 ≤ m ≤ n, A 6≡ λx:B.C

• Lemma:

– The βQ-cube enjoys all the properties of the cube except the unicity of
types.

– Rule Qβ and rule (s,2) for s ∈ {∗, 2} imply rule (s, ∗).
This means that the type systems λQω and λQω are equal, and that λQPω
and λQPω are equal as well.

• Unicity of types fails for the βQ-cube. Take: A : ∗, x : Πy:A.∗ ⊢ x : Πy:A.∗
and hence by Qβ, A : ∗, x : Πy:A.∗ ⊢ x : ∗.

41

Cubes

β →β BT convβ app

π →βΠ BT convβΠ app

βa →β BT convβ app BA letλ
πa →βΠ BT convβΠ app BA letλ letΠ
πi →βΠ BT convβΠ i-app

πai →βΠ BT convβΠ i-app BA letλ letΠ
βQ →β BT convβ app Q

πiQ →βΠ BT convβΠ i-app Q

βaQ →β BT convβ app BA letλ Q

πaiQ →βΠ BT convβΠ i-app BA letλ letΠ Q

πQ →βΠ BT convβΠ app Q

πaQ →βΠ BT convβΠ app BA letλ letΠ Q

cπ →βΠ BTc appc

cπa →βΠ BTc appc BAc letcλ letcΠ
cπQ →βΠ BTc appc Qc

cπaQ →βΠ BTc appc BAc letcλ letcΠ Qc

Figure 3: Canonical and Non Canonical Type Systems

42

Type and function systems using de Bruijn indices and/or

different notations

Classical Notation de Bruijn’s Notation

((λx.(λy.λz.zd)c)b)a 〈a〉〈b〉[x]〈c〉[y][z]〈d〉z
↓β ↓β

((λy.λz.zd)c)a 〈a〉〈c〉[y][z]〈d〉z
↓β ↓β

(λz.zd)a 〈a〉[z]〈d〉z
↓β ↓β

ad 〈d〉a
• Also, PTSs with de Bruijn indices.

• Also, PTSs with Curry style typing.

• PTSs with intersection types.

43

Common Mathematical Language of mathematicians: Cml

+ Cml is expressive: it has linguistic categories like proofs and theorems.

+ Cml has been refined by intensive use and is rooted in long traditions.

+ Cml is approved by most mathematicians as a communication medium.

+ Cml accommodates many branches of mathematics, and is adaptable to new
ones.

– Since Cml is based on natural language, it is informal and ambiguous.

– Cml is incomplete: Much is left implicit, appealing to the reader’s intuition.

– Cml is poorly organised: In a Cml text, many structural aspects are omitted.

– Cml is automation-unfriendly: A Cml text is a plain text and cannot be easily
automated.

44

45

The problem with formal logic

• No logical language is an alternative to Cml

– A logical language does not have mathematico-linguistic categories, is not
universal to all mathematicians, and is not a good communication medium.

– Logical languages make fixed choices (first versus higher order, predicative
versus impredicative, constructive versus classical, types or sets, etc.). But
different parts of mathematics need different choices and there is no universal
agreement as to which is the best formalism.

– A logician reformulates in logic their formalization of a mathematical-text as
a formal, complete text which is structured considerably unlike the original,
and is of little use to the ordinary mathematician.

– Mathematicians do not want to use formal logic and have for centuries done
mathematics without it.

• So, mathematicians kept to Cml.

• We would like to find an alternative to Cml which avoids some of the features
of the logical languages which made them unattractive to mathematicians.

46

What are the options for computerization?

Computers can handle mathematical text at various levels:

• Images of pages may be stored. While useful, this is not a good representation
of language or knowledge.

• Typesetting systems like LaTeX, TeXmacs, can be used.

• Document representations like OpenMath, OMDoc, MathML, can be used.

• Formal logics used by theorem provers (Coq, Isabelle, HOL, Mizar, Isar,
Theorema, etc.) can be used.

I will briefly describe our experience at developing a system named Mathlang
which aimed to bridge the latter 3 levels.

47

The issues with typesetting systems

+ A system like LaTeX, TeXmacs, provides good defaults for visual appearance,
while allowing fine control when needed.

+ LaTeX and TeXmacs support commonly needed document structures, while
allowing custom structures to be created.

– Unless the mathematician is amazingly disciplined, the logical structure of
symbolic formulas is not represented at all.

– The logical structure of mathematics as embedded in natural language text is
not represented. Automated discovery of the semantics of natural language
text is still too primitive and requires human oversight.

48

LATEX exampledraft documents ✓

public documents ✓

computations and proofs ✗

\begin{theorem}[Commutative Law of Addition]\label{theorem:6}
$$x+y=y+x.$$

\end {theorem}
\begin{proof}

Fix y, and \mathfrak{M} be the set of all x for which

the assertion holds.

\begin{enumerate}
\item We have $$y+1=y’,$$

and furthermore, by the construction in

the proof of Theorem~\ref{theorem:4}, $$1+y=y’,$$

so that $$1+y=y+1$$

and 1 belongs to \mathfrak{M}.
\item If x belongs to \mathfrak{M}, then $$x+y=y+x,$$

Therefore $$(x+y)’=(y+x)’=y+x’.$$

By the construction in the proof of

Theorem~\ref{theorem:4}, we have $$x’+y=(x+y)’,$$

hence $$x’+y=y+x’,$$

so that $x’$ belongs to \mathfrak{M}.
\end{enumerate}
The assertion therefore holds for all x.

\end{proof}

49

Full formalization difficulties: choices

A Cml-text is structured differently from a fully formalized text proving the same
facts. Making the latter involves extensive knowledge and many choices:

• The choice of the underlying logical system.

• The choice of how concepts are implemented (equational reasoning,
equivalences and classes, partial functions, induction, etc.).

• The choice of the formal foundation: a type theory (dependent?), a set theory
(ZF? FM?), a category theory? etc.

• The choice of the proof checker: Automath, Isabelle, Coq, PVS, Mizar, HOL,
...

An issue is that one must in general commit to one set of choices.

50

Full formalization difficulties: informality

Any informal reasoning in a Cml-text will cause various problems when fully
formalizing it:

• A single (big) step may need to expand into a (series of) syntactic proof
expressions. Very long expressions can replace a clear Cml-text.

• The entire Cml-text may need reformulation in a fully complete syntactic
formalism where every detail is spelled out. New details may need to be woven
throughout the entire text. The text may need to be turned inside out.

• Reasoning may be obscured by proof tactics, whose meaning is often ad hoc
and implementation-dependent.

Regardless, ordinary mathematicians do not find the new text useful.

51

Coq example

draft documents ✗

public documents ✗

computations and proofs ✓

From Module Arith.Plus of Coq standard library (http://coq.inria.fr/).

Lemma plus sym: (n,m:nat)(n+m)=(m+n).

Proof.

Intros n m ; Elim n ; Simpl rew ; Auto with arith.

Intros y H ; Elim (plus n -Sm m y) ; Simpl rew ; Auto with arith.

Qed.

52

Mathlang’s Goal: Open borders between mathematics, logic

and computation

• Ordinary mathematicians avoid formal mathematical logic.

• Ordinary mathematicians avoid proof checking (via a computer).

• Ordinary mathematicians may use a computer for computation: there are over
1 million people who use Mathematica (including linguists, engineers, etc.).

• Mathematicians may also use other computer forms like Maple, LaTeX, etc.

• But we are not interested in only libraries or computation or text editing.

• We want freedeom of movement between mathematics, logic and computation.

• At every stage, we must have the choice of the level of formalilty and the
depth of computation.

53

Aim for Mathlang? (Kamareddine and Wells 2001, 2002)

Can we formalise a mathematical text, avoiding as much as possible the
ambiguities of natural language, while still guaranteeing the following four goals?

1. The formalised text looks very much like the original mathematical text (and
hence the content of the original mathematical text is respected).

2. The formalised text can be fully manipulated and searched in ways that respect
its mathematical structure and meaning.

3. Steps can be made to do computation (via computer algebra systems) and
proof checking (via proof checkers) on the formalised text.

4. This formalisation of text is not much harder for the ordinary mathematician
than LATEX. Full formalization down to a foundation of mathematics is not
required, although allowing and supporting this is one goal.

(No theorem prover’s language satisfies these goals.)

54

Mathlang

draft documents ✓

public documents ✓

computations and proofs ✓
• A Mathlang text captures the grammatical and reasoning aspects of

mathematical structure for further computer manipulation.

• A weak type system checks Mathlang documents at a grammatical level.

• A Mathlang text remains close to its Cml original, allowing confidence that
the Cml has been captured correctly.

• We have been developing ways to weave natural language text into Mathlang.

• Mathlang aims to eventually support all encoding uses.

• The Cml view of a Mathlang text should match the mathematician’s
intentions.

• The formal structure should be suitable for various automated uses.

55

Example of a MathLang Path

56

What is CGa?

• CGa is a formal language derived from MV (N.G. de Bruijn 1987) and WTT
(Kamareddine and Nederpelt 2004) which aims at expliciting the grammatical
role played by the elements of a CML text.

• The structures and common concepts used in CML are captured by CGa with a
finite set of grammatical/linguistic/syntactic categories: Term “

√
2”, set “Q”,

noun “number”, adjective “even”, statement “a = b”, declaration “Let a be
a number”, definition “An even number is..”, step “a is odd, hence a 6= 0”,
context “Assume a is even”.

term set noun adjective statement declaration definition

step context .

• Generally, each syntactic category has a corresponding weak type.

• CGa’s type system derives typing judgments to check whether the reasoning
parts of a document are coherently built.

57

Weak Type Theory

In Weak Type Theory (or Wtt) we have the following linguistic categories:

• On the atomic level: variables, constants and binders,

• On the phrase level: terms T , sets S, nouns N and adjectives A,

• On the sentence level: statements P and definitions D,

• On the discourse level: contexts ΓI , lines l and books B.

58

Categories of syntax of WTT

Other category abstract syntax symbol
expressions E = T |S|N |P E

parameters P = T |S|P (note:
→
P is a list of Ps) P

typings T = S : SET |S : STAT |T : S|T : N|T : A T
declarations Z = VS : SET |VP : STAT |VT : S|VT : N Z

59

Main categories of syntax of WTT
level category abstract syntax symbol

atomic variables V = VT |VS|VP x

constants C = CT |CS|CN |CA|CP c

binders B = BT |BS|BN |BA|BP b

phrase terms T = CT(
→
P)|BT

Z(E)|VT t

sets S = CS(
→
P)|BS

Z(E)|VS s

nouns N = CN(
→
P)|BN

Z (E)|AN n

adjectives A = CA(
→
P)|BA

Z(E) a

sentence statements P = CP (
→
P)|BP

Z(E)|VP S

definitions D = Dϕ|DP D

Dϕ = CT(
→
V) := T |CS(

→
V) := S|

CN(
→
V) := N|CA(

→
V) := A

DP = CP (
→
V) := P

discourse contexts ΓI = ∅ | ΓI,Z | ΓI, P Γ

lines l = ΓI ⊲ P | ΓI ⊲ D l

books B = ∅ | B ◦ l B

60

Derivation rules

(1) B is a weakly well-typed book: ⊢ B :: book.

(2) Γ is a weakly well-typed context relative to book B: B ⊢ Γ :: cont.

(3) t is a weakly well-typed term, etc., relative to book B and context Γ:

B; Γ ⊢ t :: T, B; Γ ⊢ s :: S, B; Γ ⊢ n :: N,
B; Γ ⊢ a :: A, B; Γ ⊢ p :: P, B; Γ ⊢ d :: D

OK(B; Γ). stands for: ⊢ B :: book, and B ⊢ Γ :: cont

61

Examples of derivation rules

• dvar(∅) = ∅ dvar(Γ′, x : W) = dvar(Γ′), x dvar(Γ′, P) = dvar(Γ′)

OK(B; Γ), x ∈ VT/S/P, x ∈ dvar(Γ)
B; Γ ⊢ x :: T/S/P

(var)

B; Γ ⊢ n :: N , B; Γ ⊢ a :: A
B; Γ ⊢ an :: N

(adj−noun)

⊢ ∅ :: book
(emp−book)

B; Γ ⊢ p :: P
⊢ B ◦ Γ ⊲ p :: book

B; Γ ⊢ d :: D
⊢ B ◦ Γ ⊲ d :: book

(book−ext)

62

Properties of WTT

• Every variable is declared If B; Γ ⊢ Φ :: W then FV (Φ) ⊆ dvar(Γ).

• Correct subcontexts If B ⊢ Γ :: cont and Γ′ ⊆ Γ then B ⊢ Γ′ :: cont.

• Correct subbooks If ⊢ B :: book and B′ ⊆ B then ⊢ B′ :: book.

• Free constants are either declared in book or in contexts If B; Γ ⊢ Φ :: W,
then FC(Φ) ⊆ prefcons(B) ∪ defcons(B).

• Types are unique If B; Γ ⊢ A :: W1 and B; Γ ⊢ A :: W2, then W1 ≡ W2.

• Weak type checking is decidable there is a decision procedure for the question
B; Γ ⊢ Φ :: W ?.

• Weak typability is computable there is a procedure deciding whether an answer
exists for B; Γ ⊢ Φ :: ? and if so, delivering the answer.

63

Definition unfolding

• Let ⊢ B :: book and Γ ⊲ c(x1, . . . , xn) := Φ a line in B.

• We write B ⊢ c(P1, . . . , Pn)
δ→ Φ[xi := Pi].

• Church-Rosser If B ⊢ Φ
δ→→ Φ1 and B ⊢ Φ

δ→→ Φ2 then there exists Φ3

such that B ⊢ Φ1
δ→→ Φ3 andf B ⊢ Φ2

δ→→ Φ3.

• Strong Normalisation Let ⊢ B :: book. For all subformulas Ψ occurring

in B, relation
δ→ is strongly normalizing (i.e., definition unfolding inside a

well-typed book is a well-founded procedure).

64

CGa Weak Type Checking

Let M be a set ,

y and x are natural numbers ,

if x belongs to M

then x + y = y + x

65

CGa Weak Type checking detects grammatical errors

Let M be a set ,

y and x are natural numbers ,

if x belongs to M

then x + y ⇐ error

66

67

What is TSa?

• TSa builds the bridge between a CML text and its grammatical interpretation
and adjoins to each CGa expression a string of words and/or symbols which
aims to act as its CML representation.

• TSa plays the role of a user interface

• TSa can flexibly represent natural language mathematics.

• The author wraps the natural language text with boxes representing the
grammatical categories (as we saw before).

• The author can also give interpretations to the parts of the text.

68

Rewrite rules enable natural language representation

Take the example 0 + a0 = a0 = a(0 + 0) = a0 + a0

69

St e p

St a t e m e n t St a t e m e n tSo u r i n g
T e r mT e r m T e r m

St e p

St a t e m e n t St a t e m e n t

T e r mT e r m T e r mT e r m

Figure 4: Example for a simple shared souring
70

reordering/position Souring

<in> <n>n ∈ <N>N

ann = <in> <2> <N>N contains <1> <n>n

71

Sta te me n t
So u r i n gSo u r i n g

Se t Te r m

Sta te me n t
Se tTe r m

p o s it i o n 1
p o s it i o n 2

Figure 5: Example for a position souring

72

map souring

ann = <map> <>Let <list> <a>a and b be in <R>R

This is expanded to

T (ann) = <> <a> <R> <> <R>

73

So u r in g
De c la ra t io n

So u r in g
Te r mTe r m

Se t
S te p

De c la ra t io n De c la ra t io n

Te r m Te r m Se tSe t 74

75

What is DRa?

• DRa Document Rhetorical structure aspect.

• Structural components of a document like chapter, section, subsection,
etc.

• Mathematical components of a document like theorem, corollary, definition,
proof, etc.

• Relations between above components.

• These enhance readability, and ease the navigation of a document.

• Also, these help to go into more formal versions of the document.

76

Relations

Description
Instances of the StructuralRhetoricalRole class:
preamble, part, chapter, section, paragraph, etc.
Instances of the MathematicalRhetoricalRole class:
lemma, corollary, theorem, conjecture, definition, axiom, claim,
proposition, assertion, proof, exercise, example, problem, solution, etc.

Relation
Types of relations:
relatesTo, uses, justifies, subpartOf, inconsistentWith, exemplifies

77

What does the mathematician do?

• The mathematician wraps into boxes and uniquely names chunks of text

• The mathematician assigns to each box the structural and/or mathematical
rhetorical roles

• The mathematician indicates the relations between wrapped chunks of texts

78

Lemma 1. For m, n ∈ N one has: m2 = 2n2 =⇒ m = n = 0.
Define on N the predicate:

P (m) ⇐⇒ ∃n.m
2

= 2n
2

& m > 0.

Claim. P (m) =⇒ ∃m′ < m.P (m′). Indeed suppose m2 = 2n2 and m > 0. It follows that m2 is even, but
then m must be even, as odds square to odds. So m = 2k and we have

2n
2

= m
2

= 4k
2

=⇒ n
2

= 2k
2

Since m > 0, if follows that m2 > 0, n2 > 0 and n > 0. Therefore P (n). Moreover, m2 = n2 + n2 > n2, so
m2 > n2 and hence m > n. So we can take m′ = n.

By the claim ∀m ∈ N.¬P (m), since there are no infinite descending sequences of natural numbers.
Now suppose m2 = 2n2 with m 6= 0. Then m > 0 and hence P (m). Contradiction. Therefore m = 0.

But then also n = 0.
Corollary 1.

√
2 /∈ Q.

Suppose
√

2 ∈ Q, i.e.
√

2 = p/q with p ∈ Z, q ∈ Z − {0}. Then
√

2 = m/n with m = |p|, n = |q| 6= 0. It
follows that m2 = 2n2. But then n = 0 by the lemma. Contradiction shows that

√
2 /∈ Q.

Barendregt

79

80

81

The automatically generated dependency Graph

82

83

Different provers have

• different syntax

• different requirements to the
structure of the text
e.g.

– no nested theorems/lemmas
– only backward references
– ...

• Aim: Skeleton should be
as close as possible to the
mathematician’s text but with re-
arrangements when necessary

Example of nested theorems/lemmas (Moller, 03, Chapter

III,2)

The automatic generation of a proof skeleton

84

The DG for the example

85

Straight-forward translation of the first part

86

Solution: Re-ordering

87

Finishing the skeleton

88

Skeleton for Mizar

89

DRa annotation into Mizar skeleton for Barendregt’s

example (Retel’s PhD thesis)

90

The Mizar and Coq rules for the dictionary

Role Mizar rule Coq rule

axiom %name :%body ; Axiom %name : %body .

definition definition %name : %nl %body %nl end; Definition :%body .

theorem theorem %name: %nl %body Theorem %name %body .

proof proof %nl %body %nl end; Proof %name : %body .

cases per cases; %nl— %body

case suppose %nl %body %nl end; %body

existencePart existence %nl %body %body

uniquenessPart uniqueness %nl %body %body

91

Rich skeletons for Coq
Rule No Annotation ann Coq translation SCoq (ann)

coq1) <#> Set

coq2) <#> Prop

coq3) <id> <N> id : N

coq4) <id> <S> id : S

coq5) <id> id

coq6) <id> p1 ... pn
<N> id : SCoq

p1

!

→ ... → SCoq

pn

!

→ N

coq7) <id> p1 ... pn
<S> id : SCoq

p1

!

→ ... →— SCoq

pn

!

→ S

92

coq8) <id> p1 ... pn id : SCoq

p1

!

→ ... → SCoq

pn

!

→ Prop

coq9) <id> p1 ... pn id : SCoq

p1

!

→ ... → SCoq

pn

!

→ Set

coq10) <id> p1 ... pn (id SCoq

p1

!

... SCoq

pn

!

)

coq11) <id> p1 ... pn (id SCoq

p1

!

... SCoq

pn

!

)

coq12) <id> p1 ... pn (id SCoq

p1

!

... SCoq

pn

!

)

coq13) <id> id

coq14)

93

the left hand side of the definition is translated according to rule (coq14))
withsubset A B.

The right hand side is translated with the rules coq5), coq10), coq11) and coq12)
and the result is

forall x (impl (in x A) (in x B))

Putting left hand and right hand side together and taking the outer DRa
annotation we get the translation

Definition subset A B := forall x (impl (in x A) (in x B))

94

Figure 7: Theorem 17 of Landau’s “Grundlagen der Analysis”

The automatic translation is:

Theorem th117 x y z : (leq x y /\ leq y z) → leq x z .

95

Rich skeletons for Isabelle

<carriernonempty> <not> <set-equal> <R>a non <emptyset>empty set

The corresponding translation into Isabelle is:

assumes carriernonempty: ”not (set-equal R emptyset)”

96

An example of a full formalisation in Coq via MathLang

Figure 8: The path for processing the Landau chapter

97

98

Chapter 1 of Landau

• 5 axioms which we annotate with the mathematical role “axiom”, and give
them the names“ax11” - “ax15”.

• 6 definitions which we annotate with the mathematical role “definition”, and
give them names “def11” - “def16”.

• 36 nodes with the mathematical role “theorem”, named “th11” - “th136” and
with proofs “pr11” - “pr136”.

• Some proofs are partitioned into an existential part and a uniqueness part.

• Other proofs consist of different cases which we annotate as unproved nodes
with the mathematical role “case”.

99

Figure 9: The DRa tree of sections 1 and 2 of chapter 1 of Landau’s book

100

• The relations are annotated in a straightforward manner.

• Each proof justifies its corresponding theorem.

• Axiom 5 (“ax15”) is the axiom of induction. So every proof which uses
induction, uses also this axiom.

• Definition 1 (“def11”) is the definition of addition. Hence every node which
uses addition also uses this definition.

• Some theorems use other theorems via texts like: “By Theorem ...”.

• In total we have 36 justifies relations, 154 uses relations, 6 caseOf, 3
existencePartOf and 3 uniquenessPartOf relations.

• The DG and GoTO are automatically generated.

• The GoTO is automatically checked and no errors result. So, we proceed to
the next stage: automatically generating the SGa.

101

Figure 10: The DG of sections 1 and 2 of chapter 1 of Landau’s book

102

DG of sections 1..4

With the help of the Caa annotations and the automatically generated rich proof
skeleton, Zengler (who was not familiar with Coq) completed the Coq proofs of

the whole of chapter one in a couple of hours.

103

[1] H.P. Barendregt. The Lambda Calculus: its Syntax and Semantics. Studies in
Logic and the Foundations of Mathematics 103. North-Holland, Amsterdam,
revised edition, 1984.

[2] L.S. van Benthem Jutting. Checking Landau’s “Grundlagen” in the Automath
system. PhD thesis, Eindhoven University of Technology, 1977. Published
as Mathematical Centre Tracts nr. 83 (Amsterdam, Mathematisch Centrum,
1979).

[3] N.G. de Bruijn. The mathematical language AUTOMATH, its usage and
some of its extensions. In M. Laudet, D. Lacombe, and M. Schuetzenberger,
editors, Symposium on Automatic Demonstration, pages 29–61, IRIA,
Versailles, 1968. Springer Verlag, Berlin, 1970. Lecture Notes in Mathematics
125; also in [27], pages 73–100.

104

[4] G. Cantor. Beiträge zur Begründung der transfiniten Mengenlehre (Erster
Artikel). Mathematische Annalen, 46:481–512, 1895.

[5] G. Cantor. Beiträge zur Begründung der transfiniten Mengenlehre (Zweiter
Artikel). Mathematische Annalen, 49:207–246, 1897.

[6] A.-L. Cauchy. Cours d’Analyse de l’Ecole Royale Polytechnique. Debure,
Paris, 1821. Also as Œuvres Complètes (2), volume III, Gauthier-Villars,
Paris, 1897.

[7] A. Church. A formulation of the simple theory of types. The Journal of
Symbolic Logic, 5:56–68, 1940.

[8] T. Coquand and G. Huet. The calculus of constructions. Information and
Computation, 76:95–120, 1988.

[9] R. Dedekind. Stetigkeit und irrationale Zahlen. Vieweg & Sohn,
Braunschweig, 1872.

105

[10] G. Frege. Begriffsschrift, eine der arithmetischen nachgebildete Formel-
sprache des reinen Denkens. Nebert, Halle, 1879. Also in [18], pages
1–82.

[11] G. Frege. Grundlagen der Arithmetik, eine logisch-mathematische
Untersuchung über den Begriff der Zahl. , Breslau, 1884.

[12] G. Frege. Grundgesetze der Arithmetik, begriffschriftlich abgeleitet, volume I.
Pohle, Jena, 1892. Reprinted 1962 (Olms, Hildesheim).

[13] G. Frege. Grundgesetze der Arithmetik, begriffschriftlich abgeleitet,
volume II. Pohle, Jena, 1903. Reprinted 1962 (Olms, Hildesheim).

[14] J.H. Geuvers. Logics and Type Systems. PhD thesis, Catholic University of
Nijmegen, 1993.

[15] J.-Y. Girard. Interprétation fonctionelle et élimination des coupures dans
l’arithmétique d’ordre supérieur. PhD thesis, Université Paris VII, 1972.

106

[16] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.
In Proceedings Second Symposium on Logic in Computer Science, pages
194–204, Washington D.C., 1987. IEEE.

[17] Robert Harper and Greg Morrisett. Compiling polymorphism using intensional
type analysis. [17].

[18] J. van Heijenoort, editor. From Frege to Gödel: A Source Book in
Mathematical Logic, 1879–1931. Harvard University Press, Cambridge,
Massachusetts, 1967.

[19] D. Hilbert and W. Ackermann. Grundzüge der Theoretischen Logik. Die
Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen,
Band XXVII. Springer Verlag, Berlin, first edition, 1928.

[20] J.R. Hindley and J.P. Seldin. Introduction to Combinators and λ-calculus,
volume 1 of London Mathematical Society Student Texts. Cambridge
University Press, 1986.

107

[21] F. Kamareddine, L. Laan, and R.P. Nederpelt. Refining the Barendregt cube
using parameters. In Proceedings of the Fifth International Symposium on
Functional and Logic Programming, FLOPS 2001, pages 375–389, 2001.

[22] F. Kamareddine, T. Laan, and R. Nederpelt. Revisiting the notion of
function. Logic and Algebraic programming, 54:65–107, 2003.

[23] Fairouz Kamareddine. Typed lambda-calculi with one binder. J. Funct.
Program., 15(5):771–796, 2005.

[24] Fairouz Kamareddine, Roel Bloo, and Rob Nederpelt. On pi-conversion in
the lambda-cube and the combination with abbreviations. Ann. Pure Appl.
Logic, 97(1-3):27–45, 1999.

[25] Twan Laan and Michael Franssen. Parameters for first order logic. Logic
and Computation, 2001.

[26] G. Longo and E. Moggi. Constructive natural deduction and its modest

108

interpretation. Technical Report CMU-CS-88-131, Carnegie Mellono
University, Pittsburgh, USA, 1988.

[27] R.P. Nederpelt, J.H. Geuvers, and R.C. de Vrijer, editors. Selected Papers
on Automath. Studies in Logic and the Foundations of Mathematics 133.
North-Holland, Amsterdam, 1994.

[28] G. Peano. Arithmetices principia, nova methodo exposita. Bocca, Turin,
1889. English translation in [18], pages 83–97.

[29] F.P. Ramsey. The foundations of mathematics. Proceedings of the London
Mathematical Society, 2nd series, 25:338–384, 1926.

[30] G.R. Renardel de Lavalette. Strictness analysis via abstract interpretation for
recursively defined types. Information and Computation, 99:154–177, 1991.

[31] J.C. Reynolds. Towards a theory of type structure, volume 19 of Lecture
Notes in Computer Science, pages 408–425. Springer, 1974.

109

[32] B. Russell. Letter to Frege. English translation in [18], pages 124–125, 1902.

[33] B. Russell. The Principles of Mathematics. Allen & Unwin, London, 1903.

[34] M. Takahashi. λ-calculi with conditional rules. [34].

[35] H. Weyl. Das Kontinuum. Veit, Leipzig, 1918. German; also in: Das
Kontinuum und andere Monographien, Chelsea Pub.Comp., New York, 1960.

[36] A.N. Whitehead and B. Russell. Principia Mathematica, volume I, II, III.
Cambridge University Press, 19101, 19272. All references are to the first
volume, unless otherwise stated.

110

