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Computers  are everywhere
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An Old Computer: ABACI (2700 years BC)  
                         Mesopotamia 
Leonardo de Pisa (Fibonacci) (libre Abaci) 
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A New Computer 5000 years later 
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Computers explain the world 
better/faster/cheaper/safer 

  
●The Human Genome Project, which sequenced 
the chemical base pairs that make up human DNA  
was solved by computers. 
●Computers help us simulate/model real-life 
situations (e.g. spread of disease) and understand 
them better. 
●With its huge amount of data, and fast processing 
power, a computer can in 1 minute do calculations 
that will take  all the people of an entire country 
well  over 1 year  to carry out. 
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Are you safe in the air without 
computers? 
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Computers improve farming
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Computers are used in 
surgery
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Computer Tech Scans 
Use computer programs to 

explain people’s internal 
structure

Kamareddine From the Foundation of Mathematics to the Birth of ComputationGoiana, Brasil, 17 May 2017 9 / 67



Personalised Patient Care
  
“in the 1980s, I labored heads-down for a year in a 
wet lab sequencing 140 base pairs of genes. It 
was hard work. Using the gene sequencing 
machines at the New York Genome Center, this 
year we will sequence 65 million base pairs every 
second (4 billion every minute). Stunning.” 

President and Scientific Director, New York Genome Center, 
is using computers for personalised patient care, 2014
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Computers enable good medical 
treatment

● IBM Watson is poised to change the way human 
beings make decisions about medicine.  
●The initial goal is to help oncologists make better 
decisions for cancer treatment.  
●Eventually, the computer will also aid in the 
diagnosis and treatment of other chronic diseases. 
●Using Watson, a process that takes 3 weeks-3 
months for a research organisation can be carried 
out  in just under 3 minutes,  making profound 
success in cancer treatment.  

New York Genome Center and IBM Watson announce 
collaboration, 2014
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IBM Watson
● Watson computers are being "trained" in science 
and medicine. 
●Technicians feed Watson medical textbooks and 
journals, patient histories, treatment guidelines. 
●The oncologist queries Watson about a course of 
treatment for a lung or breast cancer patient. 
● Using its massively parallel processors to review 
millions of pages of text in seconds, patient history, 
Watson generates hypotheses for treatment  as 
separate options with varying levels of confidence. 
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They help us solve crimes
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Deep Learning computers
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Deep Learning computers
  
●Google Brains is a network of 1,000 computers 
programmed to learn. 
●When fed with 10 million images from Utube, it 
decided that the internet is full of cat videos. 
●Computers are able to learn, but task remains 
difficult  
●Very difficult to recognise faces, voice, translate 
between different languages, help predict useful 
drugs, etc. 
●We have barely begun, there is a  long way to go. 
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Some proofs need computers to 
either be completed or being trusted, 

or being understood.   
  

  

The Kepler Conjecture 17th century: no packing of 
congruent balls in Euclidean space has density 
greater than the density of the face-centered cubic 
packing (74.04%).  
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Some proofs need computers to 
either be completed or being trusted, 

or being understood.   
  

  
• Sam Ferguson and Tom Hales proved the Kepler 
Conjecture in 1998, but it was not published until 
2006. 

•  The Flyspeck project lasted over 10 years to give 
a computer proof of the Kepler Conjecture.  
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The Four colour theorem: 
given any separation of a plane into contiguous  regions, producing a figure called a map, no more than four colors are required to color 
the regions of the map so that no two adjacent regions have the same color
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First Major theorem proved 
using computer

● In any separation of a plane into contiguous 
regions producing a map, no more than four 
colours are required to colour the regions so 
that no 2 adjacent regions have the same 
colour. 

● 1976 by Appel and Haken: huge bits by hand 
and huge bits by computer. 

●  Proof not acceptable: Computer assisted part 
infeasible for human to check by hand.
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Revised proof and full 
computer checking

● A revised version of earlier proof was given 
in 1997.  

● Would not have been possible to give it if 
we didn't have the original proof. 

● The correctness of theorem was computer 
checked in 2005.
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Fifty Years of a whole variety of proof assistants and
programming languages

The proof of the Kepler’s conjecture was checked in a mixture of
Isabelle and HOL Light.

The proof of the four color theorem was checked in Coq.

Landau book on foundations of Analysis was checked in Automath.

60% of the Compendium of Complete Lattices, was checked in Mizar.

Numerous other provers/checkers. Why were they created? And what
are they used for?

Not to forget a huge number of programming lanaguages/paradigms
each with a different purpose.
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Logic/Mathematics/Computation: A word of warning

Logic is OLD. Mathematics is OLD. But, SO IS computation.

Just like in the times of ancient China, of Aristotle in Greece, of
Euclides in Alexandria Egypt, or of AlHambra/Andalucia or of
Modern Europe (Frege/Russell), deduction/Logic was taken as a
foundation for thought.

Computation was also taken throughout as an essential tool in
mathematics, in astronomy, in architecture, in farming, etc.

Our ancestors used sandy beaches to compute the circomference of a
circle, and to work out approximations/values of numbers like π.

The word algorithm dates back centuries? Algorithms existed in
anciant Egypt at the time of Hypatia. The word is named after
Al-Khawarizmi.

But even more impressively, the following important 20th century
(un)computability result was known to Aristotle.
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Assume a problem Π,
If you give me an algorithm to solve Π, I can check whether this
algorithm really solves Π.
But, if you ask me to find an algorithm to solve Π, I may go on forever
trying but without success.

But, this result was already known to Aristotle:
Assume a proposition Φ.

If you give me a proof of Φ, I can check whether this proof really
proves Φ.
But, if you ask me to find a proof of Φ, I may go on forever trying but
without success.

In fact, programs are proofs:
program = algorithm = computable function = λ-term.
By the PAT principle: Proofs are λ-terms.
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Much later than Aristotle, Leibniz (1646–1717) conceived of automated
deduction, i.e., to find

a language L in which arbitrary concepts could be formulated, and
a method to determine the correctness of statements in L.

In other words, Leibniz wanted a language and a method that could carry
out proof checking and proof finding. However, according to Aristotle and
(later results by) Gödel and Turing, such a method can not work for every
statement.
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A short history of numbers

natural numbers like 0, 1, 2, which were used to count (sheep for
example);

integers like 0, 1, -1, 2, -2, etc. which were also used to count;

rational numbers which are the quotients or fractions of integers like
2/3 and which were used to measure (the anciants used
anthyphairesis/Alternated substitution to evaluate Ratios);

2/3 = 0.6666666... where 6 repeats over and over
41/333 = 0.123123123123... where 123 repeats over and over.

irrational numbers like
√

2,
√

3, π;

π = 3.14159265358979323846264338...√
2 = 1.41421356237309504880168872420969807856967187537694...
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The calculus and the paradoxes of motion

Zeno of Elea, C. 590-525 B.C.E., devised some paradoxical arguments
against the possibility of motion.

Since the calculus was developed partly to deal with motion, these
paradoxical arguments are important for the foundations of analysis.

Three of the most important of these are in Aristotle in his Physics.

Dichotomy. There is no motion, because what moves must arrive at
the middle of its course before it reaches the end. In other words, to
leave the room, you first have to get halfway to the door, then you
have to get halfway from that point to the door, etc. No matter how
close you are to the door, you have to go half the remaining distance
before proceeding.
Arrow. The flying arrow is at rest, because a thing is at rest when
occupying its own space at a given time, as the arrow does at every
instant of its alleged flight.
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It started with incommensurability

According to Webster’s dictionary, commensurability is divisibility
without remainder by a common unit.

Hence 6 and 9 are commensurable (since they are both divisible by 3).

Attempts to find the unit which measures exactly the side and
diagonal of a square led to the proof of the incommensurability of the
side and diagonal of a square.

This result on incommensurability implies that
√

2 is not a rational
number. That is, it cannot be represented as the quotient of two
integers.
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With incommensurability, number was no longer everything

The discovery of the incommensurability of the side and diagonal of a
square showed that the Pythagorean idea that number is everything
would not work.

The Pythagoreans needed to treat quantities which are not numbers.

For them, numbers are rationals and quantities are the
incommensurable (which we call real numbers).

The Greeks constructed geometric figures (recall Euclid), but took
numbers as given. They separated numbers, which are discrete, from
continuous magnitudes (quantities/real numbers).

They did not use fractions to approximate continuous magnitudes.

They did not construct the reals, nor multiply them nor divide them,
etc.
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Euclid used Euclid used anthyphairesis to find the greatest
common divisor of two numbers

r1

r1 r1 r1 r1

... :

r1 r2

r0

Figure 1: Anthyphairesis
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Ratio of 12 to 5

5

5 5 1 1

1

2

2

212

Figure 2: Ratio of 12 to 5
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Ratio of 22 to 6

6

6 6 6 2 2
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422

Figure 3: Ratio of 22 to 6
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Ratio of
√

2 to 1

..

1

1

3− 2
√

2

√
2− 1

√
2− 1

√
2− 1

√
2

Figure 4: Ratio of
√

2 to 1
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The ratio of 15 to 4 is [3, 1, 3]

4

4 4 4 1 1 1

1

3

315/4
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The ratio of 20 to 7 is [2, 1, 6]
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The ratio of 15 to 10 is [1, 2]

10

10

5

5

5

515/10
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The ratio of
√

3 to 1 is characterised by
[1, 1, 2, 1, 2, 1, 2, ...] = [1, 1, 2]

... 2−
√

3

√
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3− 1
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1

√
3
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Real numbers need to be constructed (using
approximations like Dedekind cuts, Cauchy sequences, etc.)

The idea of using fractions to approximate continuous magnitudes
developed first in the Arab world during the middle ages in Europe,
and came to Europe in the 16th and 17th centuries.

This idea would have been assumed by both Newton and Leibniz.

Although the Greeks did not construct magnitudes (real numbers),
they still studied them after discovery of incommensurability.
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In 18th and 19th century, irrational numbers were divided
into two categories: Algebraic and transcendental

A number is algebraic if it is the root of a non-zero polynomial with
rational coefficients. For example,

√
2 is algebraic since it is the

solution to x2 − 2 = 0.

An irrational number that is not algebraic is called transcendental
(i.e. cannot be made of algebraic equations). For example, π is
transcendental.

Transcendental was coined by Leibniz in 17th cenetury who showed
that sin(x) is not an algebraic function of x .

Until the discovery of irrationals like
√

2, the pythagorean expected all
numbers to be rational.
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The discovery of transcendental numbers

Until the 17th century it was expected that numbers should fit the
algebraic mould.

In the 18th century it was shown that π is irrational and conjectured
that π is transcendental.

In the 19th century, proofs were given of the existence of transcendtal
numbers and that π is transcendental.

Once π was shown transcendtal meant that the old problem of
squaring the circle became impossible.
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Researchers in the 19th century continued to go deeper
into numbers

1821: Many controversies in analysis were solved by Cauchy. E.g., he
gave a precise definition of convergence in his Cours d’Analyse.

1872: Due to the more exact definition of real numbers given by
Dedekind, the rules for reasoning with real numbers became even
more precise.

1895-1897: Cantor began formalizing set theory and made
contributions to number theory.

1889: Peano formalized arithmetic, but did not seriously treat logic or
quantification.

Cantor’s diagnolisation argument and the size of the natural numbers
versus the size of the real numbers will impact the size of what can
be computable versus what cannot.
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Cantor proved that algebraic numbers are countable.

Hence there are only as many algebraic numbers as there are natural
numbers.

Cantor proved that the transcendental numbers are uncountable.

Cantor proved that the size of the algebraic numbers is infinite, but is
the smallest infinite that exists.

The size of the transcendental numbers is a much much larger infinite.

Think of the first inifinite number (the size of the algebraic numbers)
as a dot of water.

Think of the second infinite number (the size of the transcendental
numbers) as a whole lake.
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Depressing implication for computation

Later on it was shown that:

The size of the computable functions is the size of the algebraic
numbers, the smallest infinite ℵ0.

The size of the non-computable functions is the size of the
transcendental numbers (the monster infinite), which according to
Cantor’s Continuum hypothesis is the infinite ℵ1 which is the next
one up after ℵ0.

This means that there are a lot more functions that are impossible to
compute than there are computable functions.
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Formal systems in the 19th century symbols (not natural
language) define logical concepts

This need for a more precise style in mathematics arose, because
controversial results had appeared in analysis.

We mentioned Cantor, Peano, Dedekind, Cauchy, etc.

1879:
Frege was not satisfied with the use of natural language in mathematics:

“. . . I found the inadequacy of language to be an obstacle;
no matter how unwieldy the expressions I was ready to
accept, I was less and less able, as the relations became
more and more complex, to attain the precision that my
purpose required.”

(Begriffsschrift, Preface)

Frege therefore presented Begriffsschrift, the first formalisation of
logic giving logical concepts via symbols rather than natural language.
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A general definition of functions

“[Begriffsschrift’s] first purpose is to provide us with the most
reliable test of the validity of a chain of inferences and to point
out every presupposition that tries to sneak in unnoticed, so that
its origin can be investigated.”

(Begriffsschrift, Preface)

The introduction of a very general definition of function was the key
to the formalisation of logic. Frege defined the Abstraction Principle.

Abstraction Principle

“If in an expression, [. . . ] a simple or a compound sign has one
or more occurrences and if we regard that sign as replaceable in
all or some of these occurrences by something else (but
everywhere by the same thing), then we call the part that
remains invariant in the expression a function, and the
replaceable part the argument of the function.”

(Begriffsschrift, Section 9)
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Russell’s paradox due to self-application of functions
Hilbert’s program

1892-1903 Frege’s Grundgesetze der Arithmetik, could handle
elementary arithmetic, set theory, logic, and quantification.

Self-application of functions (not in Begriffsschrift) was at the heart
of Russell’s paradox 1902 [14].

Also in the early 1900s, Hilbert, a master in posing difficult problems
wanted to believe that any logical statement can either have a proof
or be disproved.

More than 30 years later, Hilbert’s wish was negatively answered by
Turing (Turing machines), Goedel (incompleteness results) and
Church (λ-calculus).
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Can we solve/compute everything?

Following from Leibniz and Frege, interest grew and researchers were
calling for logical methods that could decisively answer questions at
hand.

Hilbert was one of these most influential voices.

Hilbert believed that every mathematical problem should either have
a solution or we should definitely know that no such solution exists.

For example, if given the problem of finding an integer whose square
is 2, you should reply that there are no such integers (hence you know
that this problem has no solutions).

On the other hand, if given the problem of finding an integer whose
square is 4, you should give either integer 2 or integer -2 (hence this
problem has 2 solutions).

Hilbert did not want to allow for the unknown. He is famous for saying:

“We must Know. We will know.”

(Hilbert)
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Back in 1928, Hilbert posed a problem which became known as the
Entscheidung Problem or the Decision Problem.

This problem dates back to Leibniz and asks for an algorithm that
takes as input a statement of first order logic and returns as output
one of two possible answers: yes when the statement is always valid,
or no otherwise.

So, for the statement is there an integer whose square is 2 the answer
is no.

For the statement is there an integer whose square is 4 the answer is
yes.

Hilbert advocated the idea (which became known as Hilbert’s
program) that there should be

a complete (i.e., every true formula can be derived) and
consistent (i.e., does not contain a contradiction)

axiomatization of all of mathematics such that every mathematical
problem should either have a solution or we should definitely know
that no such solution exist.
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The results of the 1930s would establish the limitations of computers
even before computers were built.

No matter how fast and advanced computers get (and they are
advancing at an amzing speed, considering that they did not exist in
1930s).

Before we knew what computers could do, we had results telling us
what computers could never do.

These results of the limitations of the computer, will never change.

They are set in stone just like the impossibility of squaring a circle.
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Can we solve/compute everything?

Turing answered the question via a machine for running/computing
programs.
a function f is computable iff f can be computed on a Turing
machine.
Church invented the λ-calculus, a language for describing programs.
a function f is computable iff f can be described in the λ-calculus.
Note that Church’s λ-calculus was initially intended as a language of
programs and logic, but it turned out to be inconsistent (Kleene and
Rosser) and Church restricted the λ-calculus to programs.
Goedel’s result meant that no absolute guarantee can be given that
many significant branches of mathematics are entirely free of
contradictions.
This means: we can compute a very small (∞ly countable, size of IN)
amount compared to what we will never be able to compute
(uncountable, size of IR).
Hilbert’s dream was shattered. According to historian of Mathematics
Ivor Grattan-Guinness, Hilbert behaved coldly towards Goedel.
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How did this foundational work influence programming?

By the 1950s we had the computer, we knew what a computable
functon is, and programming languages started in earnest.
For example, untyped λ-calculus was adopted by John McCarthy in
1958 in the language LISP.
Algol 60 (1958) and Algol 68 (1958) were also developed.
Also, the earlier work of Frege, Russell and Whitehead, Hilbert, etc.,
on the formalisaton of mathematics, were now being
complemented/replaced in the 1960s by the computerisation of
mathematics.
De Bruijn’s Automath and Trybulec’s Mizar were conceived around
1967.
But before we can talk more about programming languages, theorem
provers or the computerisation of mathematics, we need to go back
and look at the Paradoxes and their solution and how this influenced
on expressivity.
I will only discuss the solution to the paradoxes using type theory (I
will not discuss set theory or category theory).
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Why Type Theory?

To avoid paradox Russell controlled function application via type
theory.

Russell [15] 1903 gives the first type theory: the Ramified Type
Theory (rtt). But, types existed since the time of Euclid (325 B.C.).
And Frege did use typing to avoid paradoxes (still the paradoxes
sneaked from the backdoor).

rtt is used in Russell and Whitehead’s Principia Mathematica
1910–1912.

Simple theory of types (stt): Ramsey [11] 1926, Hilbert and
Ackermann [7] 1928.

Church’s simply typed λ-calculus λ→ 1940 = λ-calculus + stt.

Simply typed λ-calculus was adopted in theorem provers like HOL and
was used to make sense of other programming languages (e.g.,
pascal).
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Then, simple types were independently extended to polymorphic logic
and programming languages.

Dependent types (necessary for reasoning about proofs inside the
system) were also introduced in Automath by de Bruijn.

Polymorphic types are used in programming languages like ML
although not the full 2nd order λ-calculus since type Checking and
typability in the 2nd order λ-calculus is undecidable (this was an open
problem for over 25 years and was shown in 1995 by Joe Wells).

And the search continues for better and better programming
languages.

Types continue to play an influential role in the design and
implementation of programming languages and theorem provers.
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Russell suggests types to avoid paradoxes

Logicians considered these paradoxes to be out of the scope of logic:
The Liar’s Paradox can be regarded as a problem of linguistics.
The paradoxes of Cantor and Burali-Forti occurred in what was
considered in those days a highly questionable part of mathematics:
Cantor’s Set Theory.

The Russell Paradox, however, was a paradox that could be
formulated in all the systems that were presented at the end of the
19th century (except for Frege’s Begriffsschrift). It was at the very
basics of logic. It could not be disregarded, and a solution to it had
to be found.

In 1903-1908, Russell suggested the use of types to solve the
problem [16].
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Types and vicious circle principle

“In all the above contradictions there is a common
characteristic, which we may describe as self-reference or
reflexiveness. [. . . ] In each contradiction something is said
about all cases of some kind, and from what is said a new
case seems to be generated, which both is and is not of the
same kind as the cases of which all were concerned in what
was said.”

(Mathematical logic as based on the theory of types)

Russell’s plan was, to avoid the paradoxes by avoiding all possible
self-references. He postulated the “vicious circle principle”:

“Whatever involves all of a collection must not be one of
the collection.”

(Mathematical logic as based on the theory of types)

Russell implements this principle very strictly using types.
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Church’s λ-calculus

Church wanted the λ-calculus to be a theory of functions and logic.

The logic part turned out to be inconsistent, so Church restricted the
λ-calculus to a theory of functions (Church 1932).

A := x | AB | λx .A
This type free λ-calculus is the language of the computable function:
f is computable iff f can be written in the type free λ-calculus.

To incorporate logic, Church added the simple types of Ramsey’s
STT, giving us the simply typed λ-calculus (Church 1940).

λ→ is very restrictive.

Numbers, booleans, identity, etc., have to be defined at every level.

We can represent (and type) terms like λx : o.x and λx : ι.x .

We cannot type λx : α.x , where α can be instantiated to any type.

This led to new (modern) type theories that allow more general
notions of functions (e.g, polymorphic).
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The evolution of functions with Frege, Russell and Church

Historically, functions have been treated as meta-objects.

Function values were the important part, not abstract functions.

In the low level/operational approach there are only function values.

The sine-function, is always expressed with a value: sin(π), sin(x) and
properties like: sin(2x) = 2 sin(x) cos(x).

In many mathematics courses, one calls f (x)—not f —the function.

Frege, Russell and Church wrote x 7→ x + 3 resp. as x + 3, x̂ + 3 and
λx .x + 3.

Principia’s functions are based on Frege’s Abstraction Principles but
can be first-class citizens. Frege used courses-of-values to speak
about functions.

Church made every function a first-class citizen. This is rigid and
does not represent the development of logic in 20th century.
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Summary
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The Challenge

Is to design calculi that work well for all the features needed for
expressive computation languages:

Data Types,
Inference rules,
logic and mathematics,
capture-free substitution within a symbolic expression,

while having a clear syntax, semantics and the desired properties
(Correctness, Termination, Computerisation).
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Church’s Simply Typed λ-calculus in modern notation

Terms A ::= x | AB | λx :σ.B

Types ::= T | |σ → τ

Γ is an environment (set of declaration).

Rules:

(start)
x : σ ∈ Γ

Γ ` x : σ

(λ)
Γ, x :σ ` A : τ

Γ ` λx :σ.A : σ → τ

(appΠ)
Γ ` A : σ → τ Γ ` B : σ

Γ ` AB : τ
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Common features of modern types and functions

We can construct a type by abstraction. (Write A : ∗ for A is a type)

λy :A.y , the identity over A has type A→ A
λA:∗.λy :A.y , the polymorphic identity has type ΠA:∗.A→ A

We can instantiate types. E.g., if A = N, then the identity over N
(λy :A.y)[A := N] has type (A→ A)[A := N] or N→ N.
(λA:∗.λy :A.y)N has type (ΠA:∗.A→ A)N = (A→ A)[A := N] or
N→ N.

(λx :α.A)B →β A[x := B] (Πx :α.A)B →Π A[x := B]

Write A→ A as Πy :A.A when y not free in A.
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The Barendregt Cube

Syntax: A ::= x | ∗ |2 | AB | λx :A.B | Πx :A.B

Formation rule:
Γ ` A : s1 Γ, x :A ` B : s2

Γ ` Πx :A.B : s2
if (s1, s2) ∈ R

Kamareddine From the Foundation of Mathematics to the Birth of ComputationGoiana, Brasil, 17 May 2017 61 / 67



The β-cube: →β + convβ + appΠ

(axiom) 〈〉 ` ∗ : 2

(start)
Γ ` A : s x 6∈ dom (Γ)

Γ, x :A ` x : A

(weak)
Γ ` A : B Γ ` C : s x 6∈ dom (Γ)

Γ, x :C ` A : B

(Π)
Γ ` A : s1 Γ, x :A ` B : s2 (s1, s2) ∈ R

Γ ` Πx :A.B : s2

(λ)
Γ, x :A ` b : B Γ ` Πx :A.B : s

Γ ` λx :A.b : Πx :A.B

(convβ)
Γ ` A : B Γ ` B ′ : s B =β B ′

Γ ` A : B ′

(appΠ)
Γ ` F : Πx :A.B Γ ` a : A

Γ ` Fa : B[x :=a]
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6 desirable properties of a type system with reduction r

Types are correct (TC)
If Γ ` A : B then B ≡ 2 or Γ ` B : s fors ∈ {∗,2}.
Subject reduction (SR) If Γ ` A : B and A→→r A

′ then Γ ` A′ : B.

Preservation of types (PT) If Γ ` A : B and B →→r B
′ then

Γ ` A : B ′.

Strong Normalisation (SN) If Γ ` A : B then SN→r (A) and SN→r (B).

Subterms are typable (STT) If A is `-legal and if C is a sub-term of
A then C is `-legal.

Unicity of types

(UT1) If Γ ` A1 : B1 and Γ ` A2 : B2 and A1 =r A2, then
Γ ` B1 =r B2.
(UT2) If Γ ` B1 : s, B1 =r B2 and Γ ` A : B2 then Γ ` B2 : s.
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Simple Poly-
morphic

Depend-
ent

Constr-
uctors

Related
system

Refs.

λ→ (∗, ∗) λτ [2, 1, 8]
λ2 (∗, ∗) (2, ∗) F [5, 13]
λP (∗, ∗) (∗,2) aut-QE, LF [4, 6]
λω (∗, ∗) (2,2) POLYREC [12]
λP2 (∗, ∗) (2, ∗) (∗,2) [9]
λω (∗, ∗) (2, ∗) (2,2) Fω [5]
λPω (∗, ∗) (∗,2) (2,2)
λC (∗, ∗) (2, ∗) (∗,2) (2,2) CC [3]
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The 8 Systems
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From Frege’s low level functions to PTSs that capture
strong normalisation

Kamareddine and Wells 2017, has incorporated Frege’s low level of
functions to create PTSs with intersection types which contain all the
ordinary PTSs (including the β-cube given above and its extensions
with parameters/Frege’s functions.

The f -cube is the β-cube extended with finite set declarations in the
form of ordinary mathematical notion of function.

Theorem: If Γ `f A : B then A and B are strongly normalising.

Theorem: If a type free term of the λ-calculus M is strongly
Normalising then M is typable in the f -cube.

Urzyczyn proved U = (λr . h(r(λf λs. f s))(r(λq.λg . g q)))(λo. o o o)
is untypable in Fω. Hence U is untypable in any system of the cube.

But U is strongly normalising.

Kamareddine and Wells 2017 prove that U is typable in the f -cube:
There are Γ,A such that Γ `f U : A.
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Conclusion

A hierarchy of systems that classify important properties of CR, SN,
SR.

Not only types are used to derive important properties and avoid
paradoxes and non termination, but also types classify non
termination.

We are far away still from having computer help to prove these
properties. It would be nice to have a system that can help us with
the proofs.
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Université de Paris VII, 1972.

[6] R. Harper, F. Honsell, and G. Plotkin. A framework for defining
logics. In Proceedings Second Symposium on Logic in Computer
Science, pages 194–204, Washington D.C., 1987. IEEE.

[7] D. Hilbert and W. Ackermann. Grundzüge der Theoretischen Logik.
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