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And God created Aristotle

Assume a problem Π,
If you give me an algorithm to solve Π, I can check whether this
algorithm really solves Π.
But, if you ask me to find an algorithm to solve Π, I may go on forever
trying but without success.

But, this result was already known to Aristotle:
Assume a proposition Φ.

If you give me a proof of Φ, I can check whether this proof really
proves Φ.
But, if you ask me to find a proof of Φ, I may go on forever trying but
without success.

In fact, programs are proofs:
program = algorithm = computable function = λ-term.
By the PAT principle: Proofs are λ-terms.
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Pre Computerisation

Much later than Aristotle, Leibniz (1646–1717) conceived of automated
deduction, i.e., to find

a language L in which arbitrary concepts could be formulated, and

a method to determine the correctness of statements in L.

In other words, Leibniz wanted a language and a method that could carry
out proof checking and proof finding. However, according to Aristotle and
(later results by) Gödel and Turing, such a method can not work for every
statement.
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Pre Computerisation

1879:
Frege was not satisfied with the use of natural language in mathematics:

“. . . I found the inadequacy of language to be an obstacle;
no matter how unwieldy the expressions I was ready to
accept, I was less and less able, as the relations became
more and more complex, to attain the precision that my
purpose required.”

(Begriffsschrift, Preface)
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Pre Computerisation

General definition of function [8] is key to Frege’s formalisation.

Self-application of functions was at the heart of Russell’s paradox [30].

To avoid paradox Russell controled function application via type
theory rtt.

rtt is used in Russell and Whitehead’s Principia Mathematica.

Church’s simply typed λ-calculus λ→ [4] 1940 = λ-calculus + stt.

The hierarchies of types/orders in rtt and stt are unsatisfactory.

Hence, birth of different systems of functions and types, each with
different functional power.
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Language and Machine of the computable: By 1936

Church: f is computable iff f can be written in λ-calculus.

A ::= x | AB | λx .B
(λx .B)C →β B[x := C ].

Turing: f is computable iff f can be run on a Turing Machine.

Size of computable functions is the size of N.

Size of non computable functions is the size of R.

|N| is countable (drop of water).

|R| is uncountable (an ocean).

This is impressive considering that until end of 19th century, they
were still asking What is a real number?

Kamareddine Computerisation
Data-Mining, Paris, 8 September 2017 6

/ 78



The Rest of the 20th century

Design and continue to improve the language and machine of the
computable.

Turing machine very hard to work with and very slow.
λ-calculus does not have logic and programs written in lambda calculus
would be incomprehensible to humans.

We know the size of the computable, but:

Even if a function is computable, we may not be able to compute it. It
may be so hard to compute. Work on improving complexity.
We still don’t know whether some function are or are not computable.
Keep working on putting these functions to the corresponding class.

Computers are improving a lot faster than languages and softwares for
these machines.
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The Challenge

Is to design frameworks that work well for all the features needed for
expressive computation:

Data Types

Built-in: numbers, arrays, lists, etc.
User-defined: Records, Abstract Data Types or Symbolic Expressions
(written in BNF).

Code: Inference rules,
logic and mathematics,
capture-free substitution within a symbolic expression,

while having a clear syntax, semantics and the desired properties
(Correctness, Termination).
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Data Declaration à la Alonzo Church

Type Free

A ::= x | AB | λx .B
(λx .B)C →β B[x := C ].

With simple types:

σ ::= T | σ → τ

A ::= x | AB | λx :σ.B

(λx : σ.B)C →β B[x := C ].

With dependent types:

A ::= x | ∗ |2 | AB | λx :A.B | Πx :A.B

(λx : A.B)C →β B[x := C ].
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Code à la Alonzo Church

With dependent/polymorphic types

(λ)
Γ, x :A ` b : B Γ ` Πx :A.B : s

Γ ` λx :A.b : Πx :A.B

(appΠ)
Γ ` F : Πx :A.B Γ ` a : A

Γ ` Fa : B[x :=a]

With simple types:

(λ→)
Γ, x :σ ` b : τ

Γ ` λx :A.b : σ → τ

(app)
Γ ` F : τ → σ Γ ` a : τ

Γ ` Fa : σ
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Even a minor change can mean big things

For example, simply changing the order of functions and arguments, and
restructuring parenthesis, enable us to:

Express things that would hard to do in the old notation.

Reduce proofs of strong normalisation to proofs of weak
normalisation.

Make computations more efficient.

Avoid unnecessary/redundant computations and allow for free lazy,
local, or global reductions.

Kamareddine Computerisation
Data-Mining, Paris, 8 September 2017 11

/ 78



Lambda Calculus à la de Bruijn

A := x | AB | λx .B A := x | < B > A | [x ]B

(λx .λy .xy)z 〈z〉[x ][y ]〈y〉x .

(λx .A)B→β A[x := B] 〈B〉[x ] A→β [x := B]A

(( λx .(λy .λz .–)c)ba) [1 [2 [3 ]2 ]1

〈a〉〈b〉[x ]〈c〉[y ][z ] 〈d〉 [ [ ][ ]].
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Redexes in de Bruijn’s notation

Classical Notation de Bruijn’s Notation

((λx .(λy .λz .zd)c)b)a 〈a〉〈b〉[x ]〈c〉[y ][z ]〈d〉z
↓β ↓β

((λy .λz .zd)c)a 〈a〉〈c〉[y ][z ]〈d〉z
↓β ↓β

(λz .zd)a 〈a〉[z ]〈d〉z
↓β ↓β
ad 〈d〉a

〈a〉 〈b〉 [x ] 〈c〉 [y ] [z ] 〈d〉 z
This maks it easy to study local/global/mini reductions into the
λ-calculus, Kamareddine etal [17, 18]
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Some notions of reduction studied in the literature

Name In Classical Notation In de Bruijn′s notation
((λx .N)P)Q 〈Q〉〈P〉[x ]N

(θ) ↓ ↓
(λx .NQ)P 〈P〉[x ]〈Q〉N

(λx .λy .N)P 〈P〉[x ][y ]N
(γ) ↓ ↓

λy .(λx .N)P [y ]〈P〉[x ]N

((λx .λy .N)P)Q 〈Q〉〈P〉[x ][y ]N
(γC ) ↓ ↓

(λy .(λx .N)P)Q 〈Q〉[y ]〈P〉[x ]N

((λx .λy .N)P)Q 〈Q〉〈P〉[x ][y ]N
(g) ↓ ↓

(λx .N[y := Q])P 〈P〉[x ][y := Q]N

? 〈Q〉s[y ]N
(βe) ↓ ↓

? s[y := Q]N
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A Few Uses of these reductions/term reshuffling

Regnier [27] uses θ and γ in analyzing perpetual reduction strategies.

Term reshuffling is used by Kfoury, Tiuryn, Urzyczyn, Wells in
[22, 20] in analyzing typability problems.

Nederpelt [24], de Groote [7], Kfoury+ Wells [21], and
Kamareddine [16] use generalised reduction and/or term reshuffling in
relating SN to WN.

Ariola etal [1] uses a form of term-reshuffling in obtaining a calculus
that corresponds to lazy functional evaluation.

Kamareddine etal [17, 14, 19, 3] show that they could reduce
space/time needs in computation.
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Even more: de Bruijn’s generalised reduction has better
properties

(β) (λx .M)N → M[x := N]
(βI ) (λx .M)N → M[x := N] if x ∈ FV (M)
(βK ) (λx .M)N → M if x 6∈ FV (M)
(θ) (λx .N)PQ → (λx .NQ)P
(βe) (M)s[x ]N → s{N[x := M] for s well-balanced.

Kamareddine [16] shows that βe satisfies Church Rosser, PSN,
postponment of K -contraction and conservation (latter 2 properties
fail for β-reduction).

Conservation of βe : If A is βe I -normalisable then A is βe-strongly
normalisable.

Postponment of K -contraction : Hence, discard arguments of
K -redexes after I-reduction. This gives flexibility in implementation:
unnecessary work can be delayed, or even completely avoided.

Kamareddine Computerisation
Data-Mining, Paris, 8 September 2017 16

/ 78



Attempts have been made at establishing some reduction relations for
which postponement of K -contractions and conservation hold.

The picture is as follows (-N stands for normalising and r ∈ {βI , θK}).

(βK -postponement for r) If M →βK
N →r O then

∃P such that M →→+
βI θK

P →→βK
O

(Conservation for βI ) If M is βI -N then M is βI -SN
Barendregt’s book

(Conservation for β + θ) If M is βI θK -N then M is β-SN [7]

De Groote does not produce these results for a single reduction
relation, but for β + θ (this is more restrictive than βe).

βe is the first single relation to satisfy βK -postponement and
conservation.

Kamareddine [16] shows that:

(βeK -postponement for βe) If M →βeK
N →βeI

O then
∃P such that M →βeI

P →→+
βeK

O

(Conservation for βe) If M is βeI -N then M is βe-SN
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Church’s Simply Typed λ-calculus in modern notation

Terms A ::= x | AB | λx :σ.B

Types ::= T | σ → τ

Γ is an environment (set of declaration).

Rules:

(start)
x : σ ∈ Γ

Γ ` x : σ

(λ)
Γ, x :σ ` A : τ

Γ ` λx :σ.A : σ → τ

(appΠ)
Γ ` A : σ → τ Γ ` B : σ

Γ ` AB : τ
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The Barendregt Cube

Syntax: A ::= x | ∗ |2 | AB | λx :A.B | Πx :A.B

Formation rule:
Γ ` A : s1 Γ, x :A ` B : s2

Γ ` Πx :A.B : s2
if (s1, s2) ∈ R
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The β-cube: →β + convβ + appΠ

(axiom) 〈〉 ` ∗ : 2

(start)
Γ ` A : s x 6∈ dom (Γ)

Γ, x :A ` x : A

(weak)
Γ ` A : B Γ ` C : s x 6∈ dom (Γ)

Γ, x :C ` A : B

(Π)
Γ ` A : s1 Γ, x :A ` B : s2 (s1, s2) ∈ R

Γ ` Πx :A.B : s2

(λ)
Γ, x :A ` b : B Γ ` Πx :A.B : s

Γ ` λx :A.b : Πx :A.B

(convβ)
Γ ` A : B Γ ` B ′ : s B =β B ′

Γ ` A : B ′

(appΠ)
Γ ` F : Πx :A.B Γ ` a : A

Γ ` Fa : B[x :=a]
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Simple Poly-
morphic

Depend-
ent

Constr-
uctors

Related
system

Refs.

λ→ (∗, ∗) λτ [4, 2, 13]
λ2 (∗, ∗) (2, ∗) F [10, 29]
λP (∗, ∗) (∗,2) aut-QE, LF [6, 11]
λω (∗, ∗) (2,2) POLYREC [28]
λP2 (∗, ∗) (2, ∗) (∗,2) [23]
λω (∗, ∗) (2, ∗) (2,2) Fω [10]
λPω (∗, ∗) (∗,2) (2,2)
λC (∗, ∗) (2, ∗) (∗,2) (2,2) CC [5]

Kamareddine Computerisation
Data-Mining, Paris, 8 September 2017 21

/ 78



The 8 Systems
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Fifty Years of a whole variety of proof assistants and
programming languages

The proof of the Kepler’s conjecture was checked in a mixture of
Isabelle and HOL Light.

The proof of the four color theorem was checked in Coq.

Landau book on foundations of Analysis was checked in Automath.

60% of the Compendium of Complete Lattices, was checked in Mizar.

Numerous other provers/checkers. Why were they created? And what
are they used for?

Not to forget a huge number of programming lanaguages/paradigms
each with a different purpose.
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Kepler’s conjecture

Kepler 17th century: No packing of congruent balls in Euclediean
space has density greater than the density of the face-centered cubic
packing (74.04%).

Sam Ferguson and Tom Hales proved it in 1998 but was not
published until 2006

The Flyspec project lasted over 10 years to give a computer proof of
the Kepler conjecture.
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Four colour theorem

Given any separation of the plane into contiguous regions, producing
a figure called a map, no more than four colours are required to color
the regions of the map so that no two afjacent regions have the same
color.
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Four colour theorem

1976: This was the first major theorem proved using a computer:
huge bits by hand, huge bits by computer.

Proof not acceptable: computer assisted part infeasible for humans to
check by hand.

Revised version given in 1997.

Fully computer checked in 2005.
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Common Mathematical Language of mathematicians:
Cml

+ Cml is expressive: it has linguistic categories like proofs and
theorems.

+ Cml has been refined by intensive use and is rooted in long traditions.

+ Cml is approved by most mathematicians as a communication
medium.

+ Cml accommodates many branches of mathematics, and is adaptable
to new ones.

– Since Cml is based on natural language, it is informal and ambiguous.

– Cml is incomplete: Much is left implicit, appealing to the reader’s
intuition.

– Cml is poorly organised: In a Cml text, many structural aspects are
omitted.

– Cml is automation-unfriendly: A Cml text is a plain text and cannot
be easily automated.
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The problem with formal logic

No logical language is an alternative to Cml
A logical language is not universal to all mathematicians, and is not a
good communication medium.
Logical languages make fixed choices (first versus higher order,
predicative versus impredicative, constructive versus classical, types or
sets, etc.). But different parts of mathematics need different choices
and there is no universal agreement as to which is the best formalism.
A logician reformulates in logic their formalization of a
mathematical-text as a formal text which is structured considerably
unlike the original, and is of little use to the ordinary mathematician.
Mathematicians do not want to use formal logic and have for centuries
done mathematics without it.

So, mathematicians kept to Cml. But Cml is difficult to
computerise and formalise (either in a logical framework or computer
system).
We would like to find an alternative to Cml which avoids some of the
features of the logical languages which made them unattractive to
mathematicians.
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What are the options for computerization?

Computers can handle mathematical text at various levels:

Images of pages may be stored. While useful, this is not a good
representation of language or knowledge.

Typesetting systems like LaTeX, TeXmacs, can be used.

Document representations like OpenMath, OMDoc, MathML, can be
used.

Formal logics used by theorem provers (Coq, Isabelle, HOL, Mizar,
Isar, etc.) can be used.

We are gradually developing a system named Mathlang which we hope will
eventually allow building a bridge between the latter 3 levels.

This talk aims at discussing the motivations rather than the details.
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The issues with typesetting systems

+ A system like LaTeX, TeXmacs, provides good defaults for visual
appearance, while allowing fine control when needed.

+ LaTeX and TeXmacs support commonly needed document structures,
while allowing custom structures to be created.

– Unless the mathematician is amazingly disciplined, the logical
structure of symbolic formulas is not represented at all.

– The logical structure of mathematics as embedded in natural
language text is not represented. Automated discovery of the
semantics of natural language text is still too primitive and requires
human oversight.
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LATEX example
draft documents 3
public documents 3

computations and proofs 7

\begin{theorem}[Commutative Law of Addition] \label{theorem:6}
$$x+y=y+x.$$

\end {theorem}
\begin{proof}
Fix $y$, and $\mathfrak{M}$ be the set of all $x$ for which

the assertion holds.

\begin{enumerate}
\item We have $$y+1=y’,$$

and furthermore, by the construction in

the proof of Theorem \ref{theorem:4}, $$1+y=y’,$$

so that $$1+y=y+1$$

and $1$ belongs to $\mathfrak{M}$.
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\item If $x$ belongs to $\mathfrak{M}$, then $$x+y=y+x,$$

Therefore

$$(x+y)’=(y+x)’=y+x’.$$

By the construction in the proof of

Theorem \ref{theorem:4}, we have $$x’+y=(x+y)’,$$

hence

$$x’+y=y+x’,$$

so that $x’$ belongs to $\mathfrak{M}$.
\end{enumerate}
The assertion therefore holds for all $x$.

\end{proof}
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Full formalization difficulties: choices

A Cml-text is structured differently from a fully formalized text proving
the same facts. Making the latter involves extensive knowledge and many
choices:

The choice of the underlying logical system.

The choice of how concepts are implemented (equational reasoning,
equivalences and classes, partial functions, induction, etc.).

The choice of the formal foundation: a type theory (dependent?), a
set theory (ZF? FM?), a category theory? etc.

The choice of the proof checker: Automath, Isabelle, Coq, PVS,
Mizar, HOL, ...

An issue is that one must in general commit to one set of choices.
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Full formalization difficulties: informality

Any informal reasoning in a Cml-text will cause various problems when
fully formalizing it:

A single (big) step may need to expand into a (series of) syntactic
proof expressions. Very long expressions can replace a clear Cml-text.

The entire Cml-text may need reformulation in a fully complete
syntactic formalism where every detail is spelled out. New details may
need to be woven throughout the entire text. The text may need to
be turned inside out.

Reasoning may be obscured by proof tactics, whose meaning is often
ad hoc and implementation-dependent.

Regardless, ordinary mathematicians do not find the new text useful.
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Coq example
draft documents 7

public documents 7

computations and proofs 3

From Module Arith.Plus of Coq standard library
(http://coq.inria.fr/).

Lemma plus sym: (n,m:nat)(n+m)=(m+n).

Proof.

Intros n m ; Elim n ; Simpl rew ; Auto with arith.

Intros y H ; Elim (plus n -Sm m y) ; Simpl rew ; Auto with arith.

Qed.
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Mathlang’s Goal: Open borders between mathematics,
logic and computation

Ordinary mathematicians avoid formal mathematical logic.

Ordinary mathematicians avoid proof checking (via a computer).

Ordinary mathematicians may use a computer for computation: there
are over 1 million people who use Mathematica (including linguists,
engineers, etc.).

Mathematicians may also use other computer forms like Maple,
LaTeX, etc.

But we are not interested in only libraries or computation or text
editing.

We want freedeom of movement between mathematics, logic and
computation.

At every stage, we must have the choice of the level of formalilty and
the depth of computation.
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Aim for Mathlang? (Kamareddine and Wells 2001, 2002)

Can we formalise a mathematical text, avoiding as much as possible the
ambiguities of natural language, while still guaranteeing the following four
goals?

1 The formalised text looks very much like the original mathematical
text (and hence the content of the original mathematical text is
respected).

2 The formalised text can be fully manipulated and searched in ways
that respect its mathematical structure and meaning.

3 Steps can be made to do computation (via computer algebra systems)
and proof checking (via proof checkers) on the formalised text.

4 This formalisation of text is not much harder for the ordinary
mathematician than LATEX. Full formalization down to a foundation of
mathematics is not required, although allowing and supporting this is
one goal.

(No theorem prover’s language satisfies these goals.)
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Mathlang
draft documents 3

public documents 3

computations and proofs 3

A Mathlang text captures the grammatical and reasoning aspects of
mathematical structure for further computer manipulation.

A weak type system checks Mathlang documents at a grammatical
level.

A Mathlang text remains close to its Cml original, allowing
confidence that the Cml has been captured correctly.

We have been developing ways to weave natural language text into
Mathlang.

Mathlang aims to eventually support all encoding uses.

The Cml view of a Mathlang text should match the mathematician’s
intentions.

The formal structure should be suitable for various automated uses.
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Example of a MathLang Path
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What is CGa? (Maarek’s PhD thesis)

CGa is a formal language derived from MV (N.G. de Bruijn 1987) and
WTT (Kamareddine and Nederpelt 2004) which aims at expliciting
the grammatical role played by the elements of a CML text.

The structures and common concepts used in CML are captured by
CGa with a finite set of grammatical/linguistic/syntactic categories:
Term “

√
2”, set “Q”, noun “number”, adjective “even”, statement

“a = b”, declaration “Let a be a number”, definition “An even
number is..”, step “a is odd, hence a 6= 0”, context “Assume a is
even”.
term set noun adjective statement declaration definition

step context .

Generally, each syntactic category has a corresponding weak type.

CGa’s type system derives typing judgments to check whether the
reasoning parts of a document are coherently built.
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Weak Type Theory

In Weak Type Theory (or Wtt) we have the following linguistic
categories:

On the atomic level: variables, constants and binders,

On the phrase level: terms T , sets S, nouns N and adjectives A,

On the sentence level: statements P and definitions D,

On the discourse level: contexts ΓI , lines l and books B.
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Categories of syntax of WTT

Other category abstract syntax symbol

expressions E = T |S|N |P E

parameters P = T |S|P (note:
→
P is a list of Ps) P

typings T = S : SET |S : STAT |T : S|T : N|T : A T
declarations Z = VS : SET |VP : STAT |VT : S|VT : N Z
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level category abstract syntax symbol

atomic variables V = VT |VS |VP x
constants C = CT |CS |CN |CA|CP c
binders B = BT |BS |BN |BA|BP b

phrase terms T = CT (
→
P)|BTZ(E)|VT t

sets S = CS(
→
P)|BSZ(E)|VS s

nouns N = CN(
→
P)|BNZ(E)|AN n

adjectives A = CA(
→
P)|BAZ(E) a

sentence statements P = CP(
→
P)|BPZ(E)|VP S

definitions D = Dϕ|DP D

Dϕ = CT (
→
V ) := T |CS(

→
V ) := S|

CN(
→
V ) := N|CA(

→
V ) := A

DP = CP(
→
V ) := P

discourse contexts ΓI = ∅ | ΓI,Z | ΓI,P Γ
lines l = ΓI . P | ΓI .D l
books B = ∅ | B ◦ l B
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Derivation rules

(1) B is a weakly well-typed book: ` B :: book.

(2) Γ is a weakly well-typed context relative to book B: B ` Γ :: cont.

(3) t is a weakly well-typed term, etc., relative to book B and context Γ:

B; Γ ` t :: T , B; Γ ` s :: S , B; Γ ` n :: N,
B; Γ ` a :: A, B; Γ ` p :: P, B; Γ ` d :: D

OK (B; Γ). stands for: ` B :: book, and B ` Γ :: cont
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Examples of derivation rules

dvar(∅) = ∅ dvar(Γ′, x : W ) = dvar(Γ′), x
dvar(Γ′,P) = dvar(Γ′)

OK (B; Γ), x ∈ VT/S/P, x ∈ dvar(Γ)

B; Γ ` x :: T/S/P
(var)

B; Γ ` n :: N, B; Γ ` a :: A
B; Γ ` an :: N

(adj−noun)

` ∅ :: book (emp−book)

B; Γ ` p :: P
` B ◦ Γ . p :: book

B; Γ ` d :: D
` B ◦ Γ . d :: book

(book−ext)
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Properties of WTT

Every variable is declared If B; Γ ` Φ :: W then FV (Φ) ⊆ dvar(Γ).

Correct subcontexts If B ` Γ :: cont and Γ′ ⊆ Γ then
B ` Γ′ :: cont.

Correct subbooks If ` B :: book and B ′ ⊆ B then ` B ′ :: book.

Free constants are either declared in book or in contexts If
B; Γ ` Φ :: W, then FC (Φ) ⊆ prefcons(B) ∪ defcons(B).

Types are unique If B; Γ ` A :: W1 and B; Γ ` A :: W2, then
W1 ≡W2.

Weak type checking is decidable there is a decision procedure for the
question B; Γ ` Φ :: W ?.

Weak typability is computable there is a procedure deciding whether
an answer exists for B; Γ ` Φ :: ? and if so, delivering the answer.
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Definition unfolding

Let ` B :: book and Γ . c(x1, . . . , xn) := Φ a line in B.

We write B ` c(P1, . . . ,Pn)
δ→ Φ[xi := Pi ].

Church-Rosser If B ` Φ
δ→→ Φ1 and B ` Φ

δ→→ Φ2 then there

exists Φ3 such that B ` Φ1
δ→→ Φ3 andf B ` Φ2

δ→→ Φ3.

Strong Normalisation Let ` B :: book. For all subformulas Ψ

occurring in B, relation
δ→ is strongly normalizing (i.e., definition

unfolding inside a well-typed book is a well-founded procedure).
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CGa Weak Type Checking

Let M be a set ,

y and x are natural numbers ,

if x belongs to M

then x + y = y + x
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CGa Weak Type checking detects grammatical errors

Let M be a set ,

y and x are natural numbers ,

if x belongs to M

then x + y ⇐ error
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How complete is the CGa?

CGa is quite advanced but remains under development according to
new translations of mathematical texts. Are the current CGa
categories sufficient?

The metatheory of WTT has been established in (Kamareddine and
Nederepelt 2004). That of CGa remains to be established. However,
since CGa is quite similar to WTT, its metatheory might be similar to
that of WTT.

The type checker for CGa works well and gives some useful error
messages. Error messages should be improved.
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What is TSa? Lamar’s PhD thesis

TSa builds the bridge between a CML text and its grammatical
interpretation and adjoins to each CGa expression a string of words
and/or symbols which aims to act as its CML representation.

TSa plays the role of a user interface

TSa can flexibly represent natural language mathematics.

The author wraps the natural language text with boxes representing
the grammatical categories (as we saw before).

The author can also give interpretations to the parts of the text.
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Interpretations

There is 0an element 0 in RR such that eq plus aa + 00 = aa .

{ 0 : R; eq ( plus ( a, 0 ), a ); };

There is 0an element 0 in RR such that eq plus aa + 00 = aa .

There is 0an element 0 in RR such that eq plus aa + 00 equals aa .

00 ∈ RR , eq plus aa + 00 = aa .
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Rewrite rules enable natural language representation

Take the example 0 + a0 = a0 = a(0 + 0) = a0 + a0

eq 0 + a0= shared a0 eq = shared a(0 + 0) eq = a0 + a0

eq 0 + a0 a0 eq a0 a(0 + 0) eq a(0 + 0) a0 + a0

T

Step

Statement

eq

Statement

eq

Souring

shared

Term

b

Term

a

Term

c

Step

Statement

eq

Statement

eq

Term

b

Term

a

Term

c

Term

b

Figure 1: Example for a simple shared souring
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reordering/position Souring

<in> <n>n ∈ <N>N

ann = <in> <2> <N>N contains <1> <n>n

Statement

in

Souring

1

Souring

2

Set

N

Term

n

Statement

in

Set

N

Term

n

T

position 1

position 2

Figure 2: Example for a position souring
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map souring

ann = <map> <>Let <list> <a>a and <b>b be in <R>R

This is expanded to

T (ann) = <> <a> <R> <> <b> <R>
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T

Souring

list

Declaration

Souring

map

Term

b

Term

a

Set

R

Step

Declaration Declaration

Term

a

Term

b

Set

R

Set

R

Figure 3: Example for a map souring

Kamareddine Computerisation
Data-Mining, Paris, 8 September 2017 60

/ 78



How complete is TSa?

TSa provides useful interface facilities but it is still under
development.

So far, only simple rewrite (souring) rules are used and they are not

comprehensive. E.g., unable to cope with things like

n times︷ ︸︸ ︷
x = . . . = x .

The TSa theory and metatheory need development.
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What is DRa? Retel’s PhD thesis

DRa Document Rhetorical structure aspect.

Structural components of a document like chapter, section,
subsection, etc.

Mathematical components of a document like theorem, corollary,
definition, proof, etc.

Relations between above components.

These enhance readability, and ease the navigation of a document.

Also, these help to go into more formal versions of the document.
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Relations

Description

Instances of the StructuralRhetoricalRole class:
preamble, part, chapter, section, paragraph, etc.

Instances of the MathematicalRhetoricalRole class:
lemma, corollary, theorem, conjecture, definition, axiom, claim,
proposition, assertion, proof, exercise, example, problem, solution, etc.

Relation
Types of relations:
relatesTo, uses, justifies, subpartOf, inconsistentWith, exemplifies
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What does the mathematician do?

The mathematician wraps into boxes and uniquely names chunks of
text

The mathematician assigns to each box the structural and/or
mathematical rhetorical roles

The mathematician indicates the relations between wrapped chunks
of texts
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Lemma 1. For m, n ∈ N one has: m2 = 2n2 =⇒ m = n = 0.
Define on N the predicate:

P(m) ⇐⇒ ∃n.m2 = 2n2 & m > 0.

Claim. P(m) =⇒ ∃m′ < m.P(m′). Indeed suppose m2 = 2n2 and m > 0. It follows
that m2 is even, but then m must be even, as odds square to odds. So m = 2k and we
have

2n2 = m2 = 4k2 =⇒ n2 = 2k2

Since m > 0, if follows that m2 > 0, n2 > 0 and n > 0. Therefore P(n). Moreover,
m2 = n2 + n2 > n2, so m2 > n2 and hence m > n. So we can take m′ = n.

By the claim ∀m ∈ N.¬P(m), since there are no infinite descending sequences of
natural numbers.

Now suppose m2 = 2n2 with m 6= 0. Then m > 0 and hence P(m). Contradiction.
Therefore m = 0. But then also n = 0.
Corollary 1.

√
2 /∈ Q.

Suppose
√

2 ∈ Q, i.e.
√

2 = p/q with p ∈ Z, q ∈ Z − {0}. Then
√

2 = m/n with
m = |p|, n = |q| 6= 0. It follows that m2 = 2n2. But then n = 0 by the lemma.
Contradiction shows that

√
2 /∈ Q.

Barendregt
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The automatically generated dependency Graph

Dependency Graph (DG)

A

E
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H
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C

D

justifies
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uses
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uses
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An example of a full formalisation in Coq via MathLang

DRa

CGa

TSa

Degree of formalising

Input files rich proof
skeleton

complete
formalised
Coq version

TeXmacs 

document

Figure 4: The path for processing the Landau chapter
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Chapter 1 of Landau

5 axioms which we annotate with the mathematical role “axiom”, and
give them the names“ax11” - “ax15”.

6 definitions which we annotate with the mathematical role
“definition”, and give them names “def11” - “def16”.

36 nodes with the mathematical role “theorem”, named “th11” -
“th136” and with proofs “pr11” - “pr136”.

Some proofs are partitioned into an existential part and a uniqueness
part.

Other proofs consist of different cases which we annotate as unproved
nodes with the mathematical role “case”.
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Figure 5: The DRa tree of sections 1 and 2 of chapter 1 of Landau’s book
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The relations are annotated in a straightforward manner.

Each proof justifies its corresponding theorem.

Axiom 5 (“ax15”) is the axiom of induction. So every proof which
uses induction, uses also this axiom.

Definition 1 (“def11”) is the definition of addition. Hence every node
which uses addition also uses this definition.

Some theorems use other theorems via texts like: “By Theorem ...”.

In total we have 36 justifies relations, 154 uses relations, 6 caseOf, 3
existencePartOf and 3 uniquenessPartOf relations.

The DG and GoTO are automatically generated.

The GoTO is automatically checked and no errors result. So, we
proceed to the next stage: automatically generating the SGa.
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Figure 6: The DG of sections 1 and 2 of chapter 1 of Landau’s book
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DG of sections 1..4

With the help of the CGa annotations and the automatically generated
rich proof skeleton, Zengler (who was not familiar with Coq) completed

the Coq proofs of the whole of chapter one in a couple of hours.
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Some points to consider

MathLang aims to support automated processing of knowledge.

MathLang aims to be independent of any foundation of
mathematics.

MathLang allows anyone to be involved, whether a mathematician, a
computer engineer, a computer scientist, a linguist, a logician, etc.

MathLang aims to allow any level of computerisation, from simple
text processing, to calculations with a software tool (e.g., MatLab,
Mathematica, SPSS, etc) to full formalisations and correctness (in
Isabelle, Coq, Mizar, etc).

MathLang allows processing of incomplete information (draft
specifications rather than fully worked out details).

MathLang can be used to check safety and correctness of software.
E.g., brewery making, medical equipment, court cases, etc.
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