
Languages for Formalisation

Fairouz Kamareddine
Heriot-Watt University

Edinburgh, UK

EBL17, Brasil, 12 May 2017

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 1 / 75

Guy Steele’s discussion of most popular programming
language in computer science

Computer Science Metanotation (CSM)

Data Types:
Built-in: numbers, arrays, lists, etc.
User-defined: Records, Abstract Data Types or Symbolic Expressions
(written in BNF).

Code: Inference rules (written in Gentzen notation)

Conditionals: rule dispatch via nondeterministic pattern-matching

Repetition: overlines and/or ellipsis notations, and sometimes
iterators

Primitive expressions: logic and mathematics

Special operation: capture-free substitution within a symbolic
expression

Guy Steele, Its Time for a New Old Language
Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 2 / 75

According to Steele

Early contributors include

Gentzen

Bakus

Naur

Church

Steel focuses around difficulties of use of BNF notation:

Substitution

Overline and Ellipsis

Formalisation and Mechanisation of CSM.

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 3 / 75

Gentzen

Gerhard Gentzen with his rule metanotation for natural deduction:
“3.1. Eine Schluβfigur läβt sich in der Form Screiben:

N1 . . .Nν

B
(ν ≥ 1),

wobei N1, . . . ,Nν Formeln sind. N1, . . . ,Nν heiβen dann
die Oberformlen, B heiβt die Unterformel der Scluβfigur.”

(Gerhard Gentzen, 1934 [18])

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 4 / 75

Backus/Naur

John Backus influenced by Emil Post’s productions gives a syntax to
write production rules with multiple alternatives
for a context-free grammar for the International Algorithmic Language:

“< digit >:≡ 0 or 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9
< integer >:≡< digit > or < integer >< digit >”

(John Backus, 1959)

Peter Naur uses Backus notation where • :≡ =⇒ ::= and
• or =⇒ | and gave nonterminals the same names used in the text.

“ < unsigned integer >::=< digit > | < unsigned integer >< digit >
< integer >::=< unsigned integer > |+ < unsigned integer > |− <
unsigned integer > ”

(Naur, report on Algol 60, CACM)

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 5 / 75

Data Declaration à la Alonzo Church

Type Free

A ::= x | AB | λx .B
(λx .B)C →β B[x := C].

With simple types:

σ ::= T | σ → τ

A ::= x | AB | λx :σ.B

(λx : σ.B)C →β B[x := C].

With dependent types:

A ::= x | ∗ |2 | AB | λx :A.B | Πx :A.B

(λx : A.B)C →β B[x := C].

Sometimes also with (Πx : A.B)C →Π B[x := C].

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 6 / 75

Code à la Alonzo Church

With dependent/polymorphic types

(λ)
Γ, x :A ` b : B Γ ` Πx :A.B : s

Γ ` λx :A.b : Πx :A.B

(appΠ)
Γ ` F : Πx :A.B Γ ` a : A

Γ ` Fa : B[x :=a]

(N-appΠ)
Γ ` F : Πx :A.B Γ ` a : A

Γ ` Fa : (Πx :A.B)a

With simple types:

(λ→)
Γ, x :σ ` b : τ

Γ ` λx :A.b : σ → τ
(Γ ` σ → τ : ∗)

(app)
Γ ` F : τ → σ Γ ` a : τ

Γ ` Fa : σ
Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 7 / 75

In this talk we concentrate on the development of calculi
rather than the development of the notation

The challenge is to develop expressive calculi that have clear syntax,
semantics, and the desirable properties (Church-Rosser, correctness,
termination).

Nonetheless, notation is important.

For example, simply changing the order of functions and arguments,
and restructuring parenthesis, enable us to:

Express things that would hard to do in the old notation.
Reduce proofs of strong normalisation to proofs of weak normalisation.
Make computations more efficient.
Avoid unnecessary/redundant computations and allow for free lazy,
local, or global reductions.

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 8 / 75

Lambda Calculus à la de Bruijn

A := x | AB | λx .B A := x | < B > A | [x]B

I(x) = x , I(λx .B) = [x]I(B), I(AB) = 〈I(B)〉I(A)

(λx .λy .xy)z translates to 〈z〉[x][y]〈y〉x .

The applicator wagon 〈z〉 and abstractor wagon [x] occur NEXT to
each other.

(λx .A)B→β A[x := B] becomes 〈B〉[x] A→β [x := B]A

The “bracketing structure” of ((λx .(λy .λz .–)c)ba)
is ‘[1 [2 [3]2]1]3’, where ‘[i ’ and ‘]i ’ match.

The bracketing structure of 〈a〉〈b〉[x]〈c〉[y][z] 〈d〉 is simpler: [[][]].

〈b〉[x] and 〈c〉[y] are AT-pairs whereas 〈a〉[z] is an AT-couple.

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 9 / 75

Redexes in de Bruijn’s notation

Classical Notation de Bruijn’s Notation

((λx .(λy .λz .zd)c)b)a 〈a〉〈b〉[x]〈c〉[y][z]〈d〉z
↓β ↓β

((λy .λz .zd)c)a 〈a〉〈c〉[y][z]〈d〉z
↓β ↓β

(λz .zd)a 〈a〉[z]〈d〉z
↓β ↓β
ad 〈d〉a

〈a〉 〈b〉 [x] 〈c〉 [y] [z] 〈d〉 z
This maks it easy to study local/global/mini reductions into the
λ-calculus, Kamareddine etal [29, 30]

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 10 / 75

Some notions of reduction studied in the literature

Name In Classical Notation In de Bruijn′s notation

((λx .N)P)Q 〈Q〉〈P〉[x]N
(θ) ↓ ↓

(λx .NQ)P 〈P〉[x]〈Q〉N
(λx .λy .N)P 〈P〉[x][y]N

(γ) ↓ ↓
λy .(λx .N)P [y]〈P〉[x]N

((λx .λy .N)P)Q 〈Q〉〈P〉[x][y]N
(γC) ↓ ↓

(λy .(λx .N)P)Q 〈Q〉[y]〈P〉[x]N

((λx .λy .N)P)Q 〈Q〉〈P〉[x][y]N
(g) ↓ ↓

(λx .N[y := Q])P 〈P〉[x][y := Q]N

? 〈Q〉s[y]N
(βe) ↓ ↓

? s[y := Q]N
Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 11 / 75

A Few Uses of these reductions/term reshuffling

Regnier [42] uses θ and γ in analyzing perpetual reduction strategies.

Term reshuffling is used by Kfoury, Tiuryn, Urzyczyn, Wells in
[34, 32] in analyzing typability problems.

Nederpelt [38], de Groote [11], Kfoury+ Wells [33], and
Kamareddine [27] use generalised reduction and/or term reshuffling in
relating SN to WN.

Ariola etal [1] uses a form of term-reshuffling in obtaining a calculus
that corresponds to lazy functional evaluation.

Kamareddine etal [29, 24, 31, 3] show that they could reduce
space/time needs in computation.

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 12 / 75

Even more: de Bruijn’s generalised reduction has better
properties

(β) (λx .M)N → M[x := N]
(βI) (λx .M)N → M[x := N] if x ∈ FV (M)
(βK) (λx .M)N → M if x 6∈ FV (M)
(θ) (λx .N)PQ → (λx .NQ)P
(βe) (M)s[x]N → s{N[x := M] for s well-balanced.

Kamareddine [27] shows that βe satisfies Church Rosser, PSN,
postponment of K -contraction and conservation (latter 2 properties
fail for β-reduction).

Conservation of βe : If A is βe I -normalisable then A is βe-strongly
normalisable.

Postponment of K -contraction : Hence, discard arguments of
K -redexes after I-reduction. This gives flexibility in implementation:
unnecessary work can be delayed, or even completely avoided.

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 13 / 75

Attempts have been made at establishing some reduction relations for
which postponement of K -contractions and conservation hold.

The picture is as follows (-N stands for normalising and r ∈ {βI , θK}).

(βK -postponement for r) If M →βK
N →r O then

∃P such that M →→+
βI θK

P →→βK
O

(Conservation for βI) If M is βI -N then M is βI -SN
Barendregt’s book

(Conservation for β + θ) If M is βI θK -N then M is β-SN [11]

De Groote does not produce these results for a single reduction
relation, but for β + θ (this is more restrictive than βe).

βe is the first single relation to satisfy βK -postponement and
conservation.

Kamareddine [27] shows that:

(βeK -postponement for βe) If M →βeK
N →βeI

O then
∃P such that M →βeI

P →→+
βeK

O

(Conservation for βe) If M is βeI -N then M is βe-SN

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 14 / 75

λ-calculus and Type Theory: When and Why?

In the 19th century, the need for a more precise style in mathematics
arose, because controversial results had appeared in analysis.

1821: Many of these controversies were solved by the work of Cauchy.
E.g., he introduced a precise definition of convergence in his Cours
d’Analyse [7].

1872: Due to the more exact definition of real numbers given by
Dedekind [12], the rules for reasoning with real numbers became even
more precise.

1895-1897: Cantor began formalizing set theory [5, 6] and made
contributions to number theory.

1889: Peano formalized arithmetic [40], but did not treat logic or
quantification.

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 15 / 75

λ-calculus and Type Theory: When and Why?

1879:
Frege was not satisfied with the use of natural language in mathematics:

“. . . I found the inadequacy of language to be an obstacle;
no matter how unwieldy the expressions I was ready to
accept, I was less and less able, as the relations became
more and more complex, to attain the precision that my
purpose required.”

(Begriffsschrift, Preface)

Frege therefore presented Begriffsschrift [16], the first formalisation of
logic giving logical concepts via symbols rather than natural language.

“[Begriffsschrift’s] first purpose is to provide us with the
most reliable test of the validity of a chain of inferences and
to point out every presupposition that tries to sneak in
unnoticed, so that its origin can be investigated.”

(Begriffsschrift, Preface)

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 16 / 75

Abstraction principle was fundamental to Frege’s
formalisation

The introduction of a very general definition of function was the key to the
formalisation of logic. Frege defined what we will call the Abstraction
Principle.

Abstraction Principle

“If in an expression, [. . .] a simple or a compound sign has one
or more occurrences and if we regard that sign as replaceable in
all or some of these occurrences by something else (but
everywhere by the same thing), then we call the part that
remains invariant in the expression a function, and the
replaceable part the argument of the function.”

(Begriffsschrift, Section 9)

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 17 / 75

The richness of functions required care to avoid paradox

Frege put no restrictions on what could play the role of an argument.

An argument could be a number (as was the situation in analysis),
but also a proposition, or a function.

the result of applying a function to an argument did not have to be a
number.

Frege was aware of some typing rule that does not allow to substitute
functions for object variables or objects for function variables:

“ Now just as functions are fundamentally different from
objects, so also functions whose arguments are and must be
functions are fundamentally different from functions whose
arguments are objects and cannot be anything else. I call
the latter first-level, the former second-level.”

(Function and Concept, pp. 26–27)

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 18 / 75

Richness of functions required a form of self-application

The Begriffsschrift, however, was only a prelude to Frege’s writings.

In Grundlagen der Arithmetik [13] he argued that mathematics can be
seen as a branch of logic.
In Grundgesetze der Arithmetik [14, 17] he described the elementary
parts of arithmetic within an extension of the logical framework of
Begriffsschrift.
Frege approached the paradox threats for a second time at the end of
Section 2 of his Grundgesetze.
He did not apply a function to itself, but to its course-of-values.
“the function Φ(x) has the same course-of-values as the function
Ψ(x)” if:

“ Φ(x) and Ψ(x) always have the same value for the same
argument.”

(Grundgesetze, p. 7)

E.g., let Φ(x) be x ∧ ¬x , and Ψ(x) be x ↔ ¬x , for all propositions x .
Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 19 / 75

Despite extreme care, Frege had paradox

All essential information of a function is contained in its graph.

So a system in which a function can be applied to its own graph
should have similar possibilities as a system in which a function can
be applied to itself.

Frege excluded the paradox threats by forbidding self-application, but
due to his treatment of courses-of-values these threats were able to
enter his system through a back door.

In 1902, Russell wrote to Frege [45] that he had discovered a paradox
in his Begriffsschrift (Begriffsschrift does not suffer from a paradox).

Only six days later, Frege answered that Russell’s derivation of the
paradox was incorrect [15]. That self-application f (f) is not possible
in the Begriffsschrift. And that Russell’s argument could be amended
to a paradox in the system of his Grundgesetze, using the
course-of-values of functions.

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 20 / 75

Paradox also in Peano and Cantor’s systems

Frege’s system was not the only paradoxical one.

The Russell Paradox can be derived in Peano’s system as well, as well
as on Cantor’s Set Theory by defining the class K =def {x | x 6∈ x}
and deriving K ∈ K ←→ K 6∈ K .

Paradoxes were already widely known in antiquity.

The oldest logical paradox: the Liar’s Paradox “This sentence is not
true”, also known as the Paradox of Epimenides. It is referred to in
the Bible (Titus 1:12) and is based on the confusion between
language and meta-language.

The Burali-Forti paradox ([4], 1897) is the first of the modern
paradoxes. It is a paradox within Cantor’s theory on ordinal numbers.

Cantor’s paradox on the largest cardinal number occurs in the same
field. It was discovered by Cantor around 1895, but was not published
before 1932.

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 21 / 75

Russell suggests types to avoid paradoxes

Logicians considered these paradoxes to be out of the scope of logic:
The Liar’s Paradox can be regarded as a problem of linguistics.
The paradoxes of Cantor and Burali-Forti occurred in what was
considered in those days a highly questionable part of mathematics:
Cantor’s Set Theory.

The Russell Paradox, however, was a paradox that could be
formulated in all the systems that were presented at the end of the
19th century (except for Frege’s Begriffsschrift). It was at the very
basics of logic. It could not be disregarded, and a solution to it had
to be found.

In 1903-1908, Russell suggested the use of types to solve the
problem [47].

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 22 / 75

Types and vicious circle principle

“In all the above contradictions there is a common
characteristic, which we may describe as self-reference or
reflexiveness. [. . .] In each contradiction something is said
about all cases of some kind, and from what is said a new
case seems to be generated, which both is and is not of the
same kind as the cases of which all were concerned in what
was said.”

(Mathematical logic as based on the theory of types)

Russell’s plan was, to avoid the paradoxes by avoiding all possible
self-references. He postulated the “vicious circle principle”:

“Whatever involves all of a collection must not be one of
the collection.”

(Mathematical logic as based on the theory of types)

Russell implements this principle very strictly using types.

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 23 / 75

Problems of Ramified Type Theory

The main part of the Principia is devoted to the development of logic
and mathematics using the legal pfs of the ramified type theory.

ramification/division of simple types into orders make rtt not easy
to use.

(Equality) x =L y
def↔ ∀z[z(x)↔ z(y)].

In order to express this general notion in rtt, we have to incorporate
all pfs ∀z : (00)

n
[z(x)↔ z(y)] for n > 1, and this cannot be

expressed in one pf.

Not possible to give a constructive proof of the theorem of the least
upper bound within a ramified type theory.

It is not possible in rtt to give a definition of an object that refers to
the class to which this object belongs (because of the Vicious Circle
Principle). Such a definition is called an impredicative definition.

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 24 / 75

Axiom of Reducibility

Russell and Whitehead tried to solve problems with the axiom of
reducibility:
For each formula f , there is a formula g with a predicative type such
that f and g are (logically) equivalent.

The validity of the Axiom of Reducibility has been questioned from
the moment it was introduced.

Though Weyl [49] made an effort to develop analysis within the
Ramified Theory of Types (without the Axiom of Reducibility),

and various parts of mathematics can be developed within rtt and
without the Axiom,

the general attitude towards rtt (without the axiom) was that the
system was too restrictive, and that a better solution had to be found.

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 25 / 75

Deramification

Ramsey considers it essential to divide the paradoxes into two parts:

logical or syntactical paradoxes (like the Russell paradox, and the
Burali-Forti paradox) are removed

“by pointing out that a propositional function cannot
significantly take itself as argument, and by dividing
functions and classes into a hierarchy of types according to
their possible arguments.”

(The Foundations of Mathematics, p. 356)

Semantical paradoxes are excluded by the hierarchy of orders. These
paradoxes (like the Liar’s paradox, and the Richard Paradox) are based
on the confusion of language and meta-language. These paradoxes
are, therefore, not of a purely mathematical or logical nature. When a
proper distinction between object language and meta-language is
made, these so-called semantical paradoxes disappear immediately.

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 26 / 75

The Simple Theory of Types and Church’s simply typed
λ-calculus

Ramsey [41], and Hilbert and Ackermann [22], simplified the Ramified
Theory of Types rtt by removing the orders. The result is known as
the Simple Theory of Types (stt).

Nowadays, stt is known via Church’s formalisation in λ-calculus.
However, stt already existed (1926) before λ-calculus did (1932),
and is therefore not inextricably bound up with λ-calculus.

How to obtain stt from rtt? Just leave out all the orders and the
references to orders (including the notions of predicative and
impredicative types).

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 27 / 75

Church’s λ-calculus

Church wanted the λ-calculus to be a theory of functions and logic.

The logic part turned out to be inconsistent, so Church restricted the
λ-calculus to a theory of functions (Church 1932).

A := x | AB | λx .A
This type free λ-calculus is the language of the computable function:
f is computable iff f can be written in the type free λ-calculus.

To incorporate logic, Church added the simple types of Ramsey’s
STT, giving us the simply typed λ-calculus (Church 1940).

λ→ is very restrictive.

Numbers, booleans, identity, etc., have to be defined at every level.

We can represent (and type) terms like λx : o.x and λx : ι.x .

We cannot type λx : α.x , where α can be instantiated to any type.

This led to new (modern) type theories that allow more general
notions of functions (e.g, polymorphic).

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 28 / 75

The evolution of functions with Frege, Russell and Church

Historically, functions have been treated as meta-objects.

Function values were the important part, not abstract functions.

In the low level/operational approach there are only function values.

The sine-function, is always expressed with a value: sin(π), sin(x) and
properties like: sin(2x) = 2 sin(x) cos(x).

In many mathematics courses, one calls f (x)—not f —the function.

Frege, Russell and Church wrote x 7→ x + 3 resp. as x + 3, x̂ + 3 and
λx .x + 3.

Principia’s functions are based on Frege’s Abstraction Principles but
can be first-class citizens. Frege used courses-of-values to speak
about functions.

Church made every function a first-class citizen. This is rigid and
does not represent the development of logic in 20th century.

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 29 / 75

Limitation of the notion of function in the λ-calculus

We can enrich types to avoid (some of) the limitations of the
λ-calculus.

But is this enough?

The answer is no, and this is witnessed by the numerous extensions of
logic and computational languages based on the λ-calculus.

E.g., A := x | AB | λx .A | c(A1, . . . ,An) | A[x := B]

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 30 / 75

Summary

General definition of function 1879 [16] is key to Frege’s formalisation
of logic.
Self-application of functions was at the heart of Russell’s paradox
1902 [45].
To avoid paradox Russell controled function application via type
theory.
Russell [46] 1903 gives the first type theory: the Ramified Type
Theory (rtt).
rtt is used in Russell and Whitehead’s Principia Mathematica [50]
1910–1912.
Simple theory of types (stt): Ramsey [41] 1926, Hilbert and
Ackermann [22] 1928.

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 31 / 75

Summary

Church’s simply typed λ-calculus λ→ [8] 1940 = λ-calculus + stt.

The hierarchies of types/orders in rtt and stt are unsatisfactory.

Frege’s functions 6= Principia’s functions 6= λ-calculus functions.

The notion of function adopted in the λ-calculus is unsatisfactory [26].

Not all functions need to be fully abstracted as in the λ-calculus. For
some functions, their values are enough.

Non-first-class functions allow us to stay at a lower order (keeping
decidability, typability, computability, etc.) without losing the
flexibility of the higher-order aspects.

Hence, birth of different systems of functions and types, each with
different functional power.

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 32 / 75

The Challenge

Is to design calculi that work well for all the features needed for
expressive computation languages:

Data Types,
Inference rules,
logic and mathematics,
capture-free substitution within a symbolic expression,

while having a clear syntax, semantics and the desired properties
(Correctness, Termination, Computerisation).

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 33 / 75

Church’s Simply Typed λ-calculus in modern notation

Terms A ::= x | AB | λx :σ.B

Types ::= T | |σ → τ

Γ is an environment (set of declaration).

Rules:

(start)
x : σ ∈ Γ

Γ ` x : σ

(λ)
Γ, x :σ ` A : τ

Γ ` λx :σ.A : σ → τ

(appΠ)
Γ ` A : σ → τ Γ ` B : σ

Γ ` AB : τ

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 34 / 75

Common features of modern types and functions

We can construct a type by abstraction. (Write A : ∗ for A is a type)

λy :A.y , the identity over A has type A→ A
λA:∗.λy :A.y , the polymorphic identity has type ΠA:∗.A→ A

We can instantiate types. E.g., if A = N, then the identity over N
(λy :A.y)[A := N] has type (A→ A)[A := N] or N→ N.
(λA:∗.λy :A.y)N has type (ΠA:∗.A→ A)N = (A→ A)[A := N] or
N→ N.

(λx :α.A)B →β A[x := B] (Πx :α.A)B →Π A[x := B]

Write A→ A as Πy :A.A when y not free in A.

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 35 / 75

The Barendregt Cube

Syntax: A ::= x | ∗ |2 | AB | λx :A.B | Πx :A.B

Formation rule:
Γ ` A : s1 Γ, x :A ` B : s2

Γ ` Πx :A.B : s2
if (s1, s2) ∈ R

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 36 / 75

The β-cube: →β + convβ + appΠ

(axiom) 〈〉 ` ∗ : 2

(start)
Γ ` A : s x 6∈ dom (Γ)

Γ, x :A ` x : A

(weak)
Γ ` A : B Γ ` C : s x 6∈ dom (Γ)

Γ, x :C ` A : B

(Π)
Γ ` A : s1 Γ, x :A ` B : s2 (s1, s2) ∈ R

Γ ` Πx :A.B : s2

(λ)
Γ, x :A ` b : B Γ ` Πx :A.B : s

Γ ` λx :A.b : Πx :A.B

(convβ)
Γ ` A : B Γ ` B ′ : s B =β B ′

Γ ` A : B ′

(appΠ)
Γ ` F : Πx :A.B Γ ` a : A

Γ ` Fa : B[x :=a]

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 37 / 75

6 desirable properties of a type system with reduction r

Types are correct (TC)
If Γ ` A : B then B ≡ 2 or Γ ` B : s fors ∈ {∗,2}.
Subject reduction (SR) If Γ ` A : B and A→→r A

′ then Γ ` A′ : B.

Preservation of types (PT) If Γ ` A : B and B →→r B
′ then

Γ ` A : B ′.

Strong Normalisation (SN) If Γ ` A : B then SN→r (A) and SN→r (B).

Subterms are typable (STT) If A is `-legal and if C is a sub-term of
A then C is `-legal.

Unicity of types

(UT1) If Γ ` A1 : B1 and Γ ` A2 : B2 and A1 =r A2, then
Γ ` B1 =r B2.
(UT2) If Γ ` B1 : s, B1 =r B2 and Γ ` A : B2 then Γ ` B2 : s.

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 38 / 75

Simple Poly-
morphic

Depend-
ent

Constr-
uctors

Related
system

Refs.

λ→ (∗, ∗) λτ [8, 2, 23]
λ2 (∗, ∗) (2, ∗) F [20, 44]
λP (∗, ∗) (∗,2) aut-QE, LF [10, 21]
λω (∗, ∗) (2,2) POLYREC [43]
λP2 (∗, ∗) (2, ∗) (∗,2) [36]
λω (∗, ∗) (2, ∗) (2,2) Fω [20]
λPω (∗, ∗) (∗,2) (2,2)
λC (∗, ∗) (2, ∗) (∗,2) (2,2) CC [9]

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 39 / 75

The 8 Systems

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 40 / 75

Typing Polymorphic identity needs (2, ∗)

y : ∗ ` y : ∗ y : ∗, x :y ` y : ∗
y : ∗ ` Πx :y .y : ∗

by (Π) (∗, ∗)

y : ∗, x : y ` x : y y : ∗ ` Πx :y .y : ∗
y : ∗ ` λx : y .x : Πx :y .y

by (λ)

` ∗ : 2 y : ∗ ` Πx :y .y : ∗
` Πy : ∗.Πx :y .y : ∗

by (Π) by (2, ∗)

y : ∗ ` λx : y .x : Πx :y .y ` Πy : ∗.Πx :y .y : ∗
` λy : ∗.λx : y .x : Πy : ∗.Πx :y .y

by (λ)

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 41 / 75

LF and Frege’s low level notion of function

LF [21] is often described as λP of the Barendregt Cube.
However, Use of Π-formation rule (∗,2) is restricted in LF [19].
We only need a type Πx :A.B : 2 when pat is applied during
construction of the type Πα:prop.∗ of the operator Prf where for a
proposition Σ, Prf(Σ) is the type of proofs of Σ.

prop:∗ ` prop: ∗ prop:∗, α:prop ` ∗:2
prop:∗ ` Πα:prop.∗ : 2

(∗,2) ∈ R.

In LF, this is the only point where the Π-formation rule (∗,2) is used.
But, Prf is only used when applied to Σ:prop. We never use Prf on
its own.
This use is in fact based on a parametric constant rather than on
Π-formation.
Hence, the practical use of LF would not be restricted if we present
Prf in a parametric form, and use (∗,2) as a parameter instead of a
Π-formation rule.
Kamareddine etal [25] precisely locate LF (between λ→ and λP).

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 42 / 75

The Cube with parametric constants

Let (∗, ∗) ⊆ R,P ⊆ {(∗, ∗), (∗,2), (2, ∗), (2,2)}.

λRP = λR and the two rules (
→
C-weak) and (

→
C-app):

Γ ` b : B Γ,∆i ` Bi : si Γ,∆ ` A : s
Γ, c(∆) : A ` b : B

(si , s) ∈ P, c is Γ-fresh

Γ1, c(∆):A, Γ2 ` bi :Bi [xj :=bj]
i−1
j=1 (i = 1, . . . , n)

Γ1, c(∆):A, Γ2 ` A : s (if n = 0)
Γ1, c(∆):A, Γ2 ` c(b1, . . . , bn) : A[xj :=bj]

n
j=1

∆ ≡ x1:B1, . . . , xn:Bn.
∆i ≡ x1:B1, . . . , xi−1:Bi−1

Hence LF is λ→ with Prf(b) a new syntactic entity such that

prop:∗,Prf(α : prop) : ∗,Σ:prop ` Prf(Σ) : ∗

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 43 / 75

Properties of the Refined Cube

(Correctness of types) If Γ ` A : B then
(B ≡ 2 or Γ ` B : S for some sort S).

(Subject Reduction SR) If Γ ` A : B and A→→β A′ then Γ ` A′ : B

(Strong Normalisation) For all `-legal terms M, we have SN→→β
(M).

Other properties such as Uniqueness of types and typability of
subterms hold.

λRP is the system which has Π-formation rules R and parameter
rules P.

Let λRP parametrically conservative (i.e., (s1, s2) ∈ P implies
(s1, s2) ∈ R).

The parameter-free system λR is at least as powerful as λRP.
If Γ `RP a : A then {Γ} `R {a} : {A} .

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 44 / 75

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 45 / 75

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 46 / 75

Logicians versus mathematicians: induction over numbers

Logician uses ind: Ind as proof term for an application of the
induction axiom.
The type Ind can only be described in λR where R =
{(∗, ∗), (∗,2), (2, ∗)}:
Ind = Πp:(N→∗).p0→(Πn:N.Πm:N.pn→Snm→pm)→Πn:N.pn (1)

Mathematician uses ind only with P : N→∗, Q : P0 and
R : (Πn:N.Πm:N.Pn→Snm→Pm) to form a term
(indPQR):(Πn:N.Pn).
The use of the induction axiom by the mathematician is better
described by the parametric scheme (p, q and r are the parameters of
the scheme):

ind(p:N→∗, q:p0, r :(Πn:N.Πm:N.pn→Snm→pm)) : Πn:N.pn (2)

The logician’s type Ind is not needed by the mathematician and the
types that occur in 2 can all be constructed in λR with
R = {(∗, ∗)(∗,2)}.

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 47 / 75

Logicians versus mathematicians: induction over numbers

Mathematician applies the induction axiom and doesn’t need to know
the proof-theoretical backgrounds.

A logician develops the induction axiom (or studies its properties).

(2, ∗) is not needed by the mathematician. It is needed in logician’s
approach in order to form the Π-abstraction Πp:(N→ ∗). · · ·).

Consequently, the type system that is used to describe the
mathematician’s use of the induction axiom can be weaker than the
one for the logician.

Nevertheless, the parameter mechanism gives the mathematician
limited (but for his purposes sufficient) access to the induction
scheme.

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 48 / 75

Parameters: What and Why

We speak about functions with parameters when referring to
functions with variable values in the low-level approach. The x in
f (x) is a parameter.

Parameters enable the same expressive power as the high-level case,
while allowing us to stay at a lower order. E.g. first-order with
parameters versus second-order without [35].

Desirable properties of the lower order theory (decidability, easiness of
calculations, typability) can be maintained, without losing the
flexibility of the higher-order aspects.

This low-level approach is still worthwhile for many exact disciplines.
In fact, both in logic and in computer science it has certainly not
been wiped out, and for good reasons.

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 49 / 75

The π-cube: Rπ = Rβ\ (convβ) ∪ (convβΠ), →βΠ

(λx :α.A)B →β A[x := B]

(Πx :α.A)B →Π A[x := B]

(axiom) (start) (weak) (Π) (λ) (appΠ)

(convβΠ)
Γ ` A : B Γ ` B ′ : s B =βΠ B ′

Γ ` A : B ′

Lemma: Γ `β A : B iff Γ `π A : B

Lemma: The β-cube and the π-cube satisfy the six properties that are
desirable for type systems.

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 50 / 75

The πi -cube: Rπi = Rπ\ (appΠ) ∪ (i-appΠ), →βΠ

(appΠ)
Γ ` F : Πx :A.B Γ ` a : A

Γ ` Fa : B[x :=a]

(axiom) (start) (weak) (Π) (λ)

(convβΠ)
Γ ` A : B Γ ` B ′ : s B =βΠ B ′

Γ ` A : B ′

(i-appΠ)
Γ ` F : Πx :A.B Γ ` a : A

Γ ` Fa : (Πx :A.B)a

Lemma:

If Γ `β A : B then Γ `πi A : B.

If Γ `πi A : B then Γ `β A : [B]Π
where [B]Π is the Π-normal form of B.

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 51 / 75

The πi -cube

The πi -cube loses three of its six properties
Let Γ = z : ∗, x : z . We have that Γ `πi (λy :z .y)x : (Πy :z .z)x .

We do not have TC (Πy :z .z)x 6≡ 2 and Γ 6`πi (Πy :z .z)x : s.
We do not have SR (λy :z .y)x →βΠ x but Γ 6`πi x : (Πy :z .z)x .
We do not have UT2 `πi ∗ : 2, ∗ =βΠ (Πz:∗.∗)α,
α : ∗ `πi (λz:∗.∗)α : (Πz:∗.∗)α and 6`πi (Πz:∗.∗)α : 2

But we have:

We have UT1
We have STT
We have PT
We have SN
We have a weak form of TC If Γ `πi A : B and B does not have a
Π-redex then either B ≡ 2 or Γ `πi B : s.
We have a weak form of SR If Γ `πi A : B, B is not a Π-redex and
A→→βΠ A′ then Γ `πi A

′ : B.

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 52 / 75

The problem can be solved by re-incorporating Frege and
Russell’s notions of low level functions (which was lost in
Church’s notion of function)

(start-a)
Γ ` A : s Γ ` B : A

Γ, x = B:A ` x : A
x 6∈ dom (Γ)

(weak-a)
Γ ` A : B Γ ` C : s Γ ` D : C

Γ, x = D:C ` A : B
x 6∈ dom (Γ)

Figure 1: Basic abbreviation rules BA

(let\)
Γ, x = B:A ` C : D

Γ ` (\x :A.C)B : D[x := B]

Figure 2: (let\) where \ = λ or \ = Π

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 53 / 75

The βa-cube: Rβa = Rβ + BA + letβ, →β

(axiom) (start) (weak) (Π) (λ) (appΠ) (convβ)

(start-a)
Γ ` A : s Γ ` B : A

Γ, x = B:A ` x : A
x 6∈ dom (Γ)

(weak-a)
Γ ` A : B Γ ` C : s Γ ` D : C

Γ, x = D:C ` A : B
x 6∈ dom (Γ)

(letβ)
Γ, x = B:A ` C : D

Γ ` (λx :A.C)B : D[x := B]

Lemma: The βa-cube satisfies the desirable properties except for typability
of subterms.
If A is `-legal and B is a subterm of A such that every bachelor λx :D in B
is also bachelor in A, then B is `-legal.

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 54 / 75

The πa-cube: Rπa = Rπ + BA + letβ + letΠ, →βΠ

(axiom) (start) (weak) (Π) (λ) (appΠ) (convβΠ)

(start-a)
Γ ` A : s Γ ` B : A

Γ, x = B:A ` x : A
x 6∈ dom (Γ)

(weak-a)
Γ ` A : B Γ ` C : s Γ ` D : C

Γ, x = D:C ` A : B
x 6∈ dom (Γ)

(letβ)
Γ, x = B:A ` C : D

Γ ` (λx :A.C)B : D[x := B]

(letΠ)
Γ, x = B:A ` C : D

Γ ` (Πx :A.C)B : D[x := B]

Lemma: The πa-cube satisfies the same properties as the βa.
Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 55 / 75

The πai -cube: Rπai = Rπa\ appΠ + i-appΠ, →βΠ

Let Γ = z : ∗, x : z . We have that Γ `πai (λy :z .y)x : (Πy :z .z)x .

We NOW have TC although Γ 6`πi (Πy :z .z)x : s, we have
Γ `πai (Πy :z .z)x : s
By (weak-a) z : ∗, x : z , y = x : z `πai z : ∗.
Hence by (letΠ) z : ∗, x : z `πai (Πy :z .z)x : ∗[y := x] ≡ ∗.
We NOW have SR (λy :z .y)x →βΠ x .
Although Γ 6`πi x : (Πy :z .z)x , we have Γ `πai x : (Πy :z .z)x
Since z : ∗, x : z `πai x : z , and z : ∗, x : z `πai (Πy :z .z)x : ∗ and
z : ∗, x : z z =βΠ (Πy :z .z)x , we use (convβΠ) to get:
z : ∗, x : z `πai x : (Πy :z .z)x .

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 56 / 75

Identifying λ and Π (see [28])

In the cube, the syntax for terms (functions) and types was
intermixed with the only distinction being λ- versus Π-abstraction.

We unify the two abstractions into one.
T[::= V | S | T[T[| [V:T[.T[
V is a set of variables and S = {∗,2}.
The β-reduction rule becomes
([) ([x :A.B)C →[B[x := C].

Now we also have the old Π-reduction (Πx :A.B)C →Π B[x := C]
which treats type instantiation like function instantiation.

The type formation rule becomes

([1)
Γ ` A : s1 Γ, x :A ` B : s2

Γ ` ([x :A.B) : s2
(s1, s2) ∈ R

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 57 / 75

(axiom) 〈〉 ` ∗ : 2

(start)
Γ ` A : s

Γ, x :A ` x : A
x 6∈ dom (Γ)

(weak)
Γ ` A : B Γ ` C : s

Γ, x :C ` A : B
x 6∈ dom (Γ)

([2)
Γ, x :A ` b : B Γ ` ([x :A.B) : s

Γ ` ([x :A.b) : ([x :A.B)

(app[)
Γ ` F : ([x :A.B) Γ ` a : A

Γ ` Fa : B[x :=a]

(conv)
Γ ` A : B Γ ` B ′ : s B =β B ′

Γ ` A : B ′

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 58 / 75

Translations between the systems with 2 binders and those
with one binder

For A ∈ T , we define A ∈ T[as follows:

s ≡ s x ≡ x AB ≡ A B
λx :A.B ≡ Πx :A.B ≡ [x :A.B.

For contexts we define: 〈〉 ≡ 〈〉 Γ, x : A ≡ Γ, x : A.

For A ∈ T[, we define [A] to be {A′ ∈ T such that A′ ≡ A}.
For context, obviously: [Γ] ≡ {Γ′ such that Γ′ ≡ Γ}.

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 59 / 75

Isomorphism of the cube and the [-cube

If Γ ` A : B then Γ `[A : B.

If Γ `[A : B then there are unique Γ′ ∈ [Γ], A′ ∈ [A] and B ′ ∈ [B]
such that Γ′ `π A′ : B ′.

The [-cube enjoys all the properties of the cube except the unicity of
types.

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 60 / 75

Organised multiplicity of Types for `[and →[[28]

For many type systems, unicity of types is not necessary (e.g. Nuprl).

We have however an organised multiplicity of types.

1 If Γ `[A : B1 and Γ `[A : B2, then B1
�
=[B2.

2 If Γ `[A1 : B1 and Γ `[A2 : B2 and A1 =[A2, then B1
�
=[B2.

3 If Γ `[B1 : s1, B1 =[B2 and Γ `[A : B2 then Γ `[B2 : s1.

4 Assume Γ `[A : B1 and (Γ `[A : B1)−1 = (Γ′,A′,B ′1). Then
B1 =[B2 if:

1 either Γ `[A : B2, (Γ `[A : B2)−1 = (Γ′,A′′,B ′2) and B ′1 =β B ′2,

2 or Γ `[C : B2, (Γ `[C : B2)−1 = (Γ′,C ′,B ′2) and A′ =β C ′.

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 61 / 75

Adding type instantiation to the typing rules of the [-cube

If we change (app[) by (new app[) in the [-cube we lose subject reduction.

(app[)
Γ `[F : (Πx :A.B) Γ `[a : A

Γ `[Fa : B[x := a]

(app[[)
Γ `[F : ([x :A.B) Γ `[a : A

Γ `[Fa : ([x :A.B)a

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 62 / 75

Failure of correctness of types and subject reduction

Correctness of types no longer holds. With (appl[[) one can have
Γ ` A : B without B ≡ 2 or ∃S . Γ ` B : S .

For example, z : ∗, x : z ` ([y :z .y)x : ([y :z .z)x yet ([y :z .z)x 6≡ 2 and
∀s . z : ∗, x : z 6` ([y :z .z)x : s.

Subject Reduction no longer holds. That is, with (appl[):
Γ ` A : B and A→→ A′ may not imply Γ ` A′ : B.

For example, z : ∗, x : z ` ([y :z .y)x : ([y :z .z)x and ([y :z .y)x →[x ,
but one can’t show z : ∗, x : z ` x : ([y :z .z)x .

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 63 / 75

Solving the problem

Keep all the typing rules of the [-cube the same except: replace (conv) by
(new-conv), (appl[) by (appl[[) and add three new rules as follows:

(start-def)
Γ ` A : s Γ ` B : A

Γ, x = B:A ` x : A
x 6∈ dom (Γ)

(weak-def)
Γ ` A : B Γ ` C : s Γ ` D : C

Γ, x = D:C ` A : B
x 6∈ dom (Γ)

(def)
Γ, x = B:A ` C : D

Γ ` ([x :A.C)B : D[x := B]

(new-conv)
Γ ` A : B Γ ` B ′ : s Γ ` B =def B ′

Γ ` A : B ′

(appl[[)
Γ ` F : [x :A.B Γ ` a : A

Γ ` Fa : ([x :A.B)a

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 64 / 75

In the conversion rule, Γ ` B =def B ′ is defined as:

If B =[B
′ then Γ ` B =def B ′

If x = D : C ∈ Γ and B ′ arises from B by substituting one particular
free occurrence of x in B by D then Γ ` B =def B ′.

Our 3 new rules and the definition of Γ ` B =def B ′ are trying to
re-incorporate low-level aspects of functions that are not present in
Church’s λ-calculus.

In fact, our new framework is closer to Frege’s abstraction principle
and the principles ∗9·14 and ∗9·15 of [50].

“∗9·14. If ‘ϕx ’ is significant, then if x is of the same type
as a, ‘ϕa’ is significant, and vice versa.

∗9·15. If, for some a, there is a proposition ϕa, then there
is a function ϕx̂ , and vice versa”

(Principia Mathematica, p. 133)

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 65 / 75

Correctness of types holds.

We demonstrate this with the earlier example.

Recall that we have z : ∗, x : z ` ([y :z .y)x : ([y :z .z)x and want that
for some s, z : ∗, x : z ` ([y :z .z)x : s.

Here is how the latter formula now holds:

z : ∗, x : z ` z : ∗ (start and weakening)
z : ∗, x : z .y : z〉x ` z : ∗ (weakening)
z : ∗, x : z ` ([y :z .z)x : ∗[y := x] ≡ ∗ (def rule)

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 66 / 75

Subject Reduction holds.

We demonstrate this with the earlier example.

Recall that we have z : ∗, x : z ` ([y :z .y)x : ([y :z .z)x and
(λy :z .y)x →β x and we need to show that z : ∗, x : z ` x : ([y :z .z)x .

Here is how the latter formula now holds:

a. z : ∗, x : z ` x : z (start and weakening)
b. z : ∗, x : z ` ([y :z .z)x : ∗ (from 1 above)

z : ∗, x : z ` x : ([y :z .z)x (conversion, a, b, and z =β ([y :z .z)x)

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 67 / 75

Consequences of unifying λ and Π

A term can have many distinct types. E.g., in λP we have:

α : ∗ `β (λx :α.α) : (Πx :α.∗) and α : ∗ `β (Πx :α.α) : ∗

which, when we give up the difference between λ and Π, result in:

α : ∗ `β [x :α]α : [x :α] ∗ and
α : ∗ `β [x :α]α : ∗

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 68 / 75

More generally, in AUT-QE we have the dervived rule:

Γ `β [x1:A1] · · · [xn:An]B : [x1:A1] · · · [xn:An]∗
Γ `β [x1:A1] · · · [xn:An]B : [x1:A1] · · · [xm:Am]∗

0 ≤ m ≤ n (3)

This derived rule (3) has the following equivalent derived rule in λP (and
hence in the higher systmes like λPω):

Γ `β λx1:A1. · · ·λxn:An.B : Πx1:A1. · · ·Πxn:An. ∗ 0 ≤ m ≤ n

Γ `β λx1:A1. · · ·λxm:Am.Πxm+1:Am+1. · · ·Πxn:An.B : Πx1:A1. · · ·Πxm:Am.∗

However, Aut-QE goes further and generalises (3) to a rule of type
inclusion:

Γ `β M : [x1:A1] · · · [xn:An]∗
Γ `β M : [x1:A1] · · · [xm:Am]∗

0 ≤ m ≤ n (Q)

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 69 / 75

The βQ-cube = β-cube + (Qβ)

(Qβ)
Γ ` λi :1..kxi :Ai

.A : Πi :1..n
xi :Ai

.∗
Γ ` λi :1..mxi :Ai

.Πi :m+1..k
xi :Ai

A : Πi :1..m
xi :Ai

.∗
0 ≤ m ≤ n, A 6≡ λx :B .C

Lemma:

The βQ -cube enjoys all the properties of the cube except the unicity of
types.
Rule Qβ and rule (s,2) for s ∈ {∗,2} imply rule (s, ∗).
This means that the type systems λQω and λQω are equal, and that
λQPω and λQPω are equal as well.

Unicity of types fails for the βQ-cube. Take:
A : ∗, x : Πy :A.∗ ` x : Πy :A.∗ and hence by Qβ,
A : ∗, x : Πy :A.∗ ` x : ∗.

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 70 / 75

Cubes

β →β BT convβ app

π →βΠ BT convβΠ app

βa →β BT convβ app BA letλ
πa →βΠ BT convβΠ app BA letλ letΠ

πi →βΠ BT convβΠ i-app

πai →βΠ BT convβΠ i-app BA letλ letΠ

βQ →β BT convβ app Q

πiQ →βΠ BT convβΠ i-app Q

βaQ →β BT convβ app BA letλ Q

πaiQ →βΠ BT convβΠ i-app BA letλ letΠ Q

πQ →βΠ BT convβΠ app Q

πaQ →βΠ BT convβΠ app BA letλ letΠ Q

cπ →βΠ BTc appc

cπa →βΠ BTc appc BAc letcλ letcΠ

cπQ →βΠ BTc appc Qc

cπaQ →βΠ BTc appc BAc letcλ letcΠ Qc

Figure 3: Canonical and Non Canonical Type Systems

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 71 / 75

Properties β-cube [-cube [i -cube [d -cube [ai -cube

Church-Rosser yes yes yes yes yes
Correctness of types yes yes restr. yes yes
Typability of subterms yes yes restr. restr. restr.
Subject reduction yes yes restr. yes yes
Unicity of types yes restr. but restr. yes yes

patterned
Strong normalisation yes yes yes yes yes
types more terms no no yes yes yes

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 72 / 75

Also, PTSs with de Bruijn indices.

Also, PTSs with Curry style typing.

PTSs with intersection types.

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 73 / 75

From Frege’s low level functions to PTSs that capture
strong normalisation

Kamareddine and Wells 2017, has incorporated Frege’s low level of
functions to create PTSs with intersection types which contain all the
ordinary PTSs (including the β-cube given above and its extensions
with parameters/Frege’s functions.

The f -cube is the β-cube extended with finite set declarations in the
form of ordinary mathematical notion of function.

Theorem: If Γ `f A : B then A and B are strongly normalising.

Theorem: If a type free term of the λ-calculus M is strongly
Normalising then M is typable in the f -cube.

Urzyczyn proved U = (λr . h(r(λf λs. f s))(r(λq.λg . g q)))(λo. o o o)
is untypable in Fω. Hence U is untypable in any system of the cube.

But U is strongly normalising.

Kamareddine and Wells 2017 prove that U is typable in the f -cube:
There are Γ,A such that Γ `f U : A.

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 74 / 75

Conclusion

A hierarchy of systems that classify important properties of CR, SN,
SR.

Not only types are used to derive important properties and avoid
paradoxes and non termination, but also types classify non
termination.

We are far away still from having computer help to prove these
properties. It would be nice to have a system that can help us with
the proofs.

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 75 / 75

[1] Zena M. Ariola, Matthias Felleisen, John Maraist, Martin Odersky,
and Philip Wadler. The call-by-need lambda calculus. pages 233–246.

[2] H[endrik] P[ieter] Barendregt. The Lambda Calculus: Its Syntax and
Semantics. North-Holland, revised edition, 1984.

[3] R. Bloo, F. Kamareddine, and R. Nederpelt. The Barendregt Cube
with Definitions and Generalised Reduction. Information and
Computation, 126(2):123–143, 1996.

[4] C. Burali-Forti. Una questione sui numeri transfiniti. Rendiconti del
Circolo Matematico di Palermo, 11:154–164, 1897. English
translation in [48], pages 104–112.

[5] Georg Cantor. Beiträge zur Begründung der transfiniten Mengenlehre
(part 1). Mathematische Annalen, 46:481–512, 1895.

[6] Georg Cantor. Beiträge zur Begründung der transfiniten Mengenlehre
(part 2). Mathematische Annalen, 49:207–246, 1897.

[7] Augustin-Louis Cauchy. Cours d’Analyse de l’École Royale
Polytechnique. Debure, Paris, 1821. Also in Œuvres Complètes (2),
volume III, Gauthier-Villars, Paris, 1897.

[8] Alonzo Church. A formulation of the simple theory of types.
J. Symbolic Logic, 5:56–68, 1940.

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 75 / 75

[9] Thierry Coquand and Gérard Huet. The Calculus of Constructions.
Inform. & Comput., 76:95–120, 1988.

[10] N.G. de Bruijn. The mathematical language Automath – its usage
and some of its extensions. In L. Laudet, D. Lacombe, and
M. Schuetzenberger, editors, Symposium on Automatic
Demonstration, volume 125 of Lecture Notes in Mathematics, pages
29–61, Heidelberg, 1970. Springer-Verlag. Reprinted in [39, A.2].

[11] Philippe de Groote. The conservation theorem revisited. pages
163–178.

[12] Richard Dedekind. Stetigkeit und irrationale Zahlen. Vieweg & Sohn,
Braunschweig, 1872. Fourth edition published in 1912.

[13] G. Frege. Grundlagen der Arithmetik, eine logisch-mathematische
Untersuchung über den Begriff der Zahl. , Breslau, 1884.

[14] G. Frege. Über Sinn und Bedeutung. Zeitschrift für Philosophie und
philosophische Kritik, new series, 100:25–50, 1892. English
translation in [37], pages 157–177.

[15] G. Frege. Letter to Russell. English translation in [48], pages
127–128, 1902.

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 75 / 75

[16] Gottlob Frege. Begriffsschrift: eine der arithmetischen nachgebildete
Formelsprache des reinen Denkens. Nebert, Halle, 1879. Can be
found on pp. 1–82 in [48].

[17] Gottlob Frege. Grundgesetze der Arithmetik, volume 2. Hermann
Pohle, Jena, 1903. Republished 1962 (Olms, Hildesheim).

[18] Gerhard Gentzen. Untersuchungen über das logische Schließen.
Mathematische Zeitschrift, 39:176–210, 405–431, 1934.

[19] J.H. Geuvers. Logics and Type Systems. PhD thesis, Catholic
University of Nijmegen, 1993.

[20] J[ean]-Y[ves] Girard. Interprétation Fonctionnelle et Elimination des
Coupures de l’Arithmétique d’Ordre Supérieur. Thèse d’Etat,
Université de Paris VII, 1972.

[21] R. Harper, F. Honsell, and G. Plotkin. A framework for defining
logics. In Proceedings Second Symposium on Logic in Computer
Science, pages 194–204, Washington D.C., 1987. IEEE.

[22] D. Hilbert and W. Ackermann. Grundzüge der Theoretischen Logik.
Die Grundlehren der Mathematischen Wissenschaften in
Einzeldarstellungen, Band XXVII. Springer Verlag, Berlin, first
edition, 1928.

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 75 / 75

[23] J. Roger Hindley and Jonathan P. Seldin. Introduction to
Combinators and λ-calculus, volume 1 of London Mathematical
Society Student Texts. Cambridge University Press, 1986.

[24] F. Kamareddine, R. Bloo, and R. Nederpelt. On Π-conversion in the
λ-cube and the combination with abbreviations. Ann. Pure Appl.
Logic, 97(1–3):27–45, 1999.

[25] F. Kamareddine, T. Laan, and R. P. Nederpelt. Refining the
Barendregt cube using parameters. In Proc. 5th Int’l Symp.
Functional & Logic Programming, volume 2024 of LNCS, pages
375–389, 2001.

[26] F. Kamareddine, T. Laan, and R. P. Nederpelt. Revisiting the
λ-calculus notion of function. J. Algebraic & Logic Programming,
54:65–107, 2003.

[27] Fairouz Kamareddine. Postponement, conservation and preservation
of strong normalisation for generalised reduction. J. Logic Comput.,
10(5):721–738, 2000.

[28] Fairouz Kamareddine. Typed lambda-calculi with one binder. J.
Funct. Program., 15(5):771–796, 2005.

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 75 / 75

[29] Fairouz Kamareddine and Rob Nederpelt. Refining reduction in the
λ-calculus. J. Funct. Programming, 5(4):637–651, October 1995.

[30] Fairouz Kamareddine and Rob Nederpelt. A useful λ-notation.
Theoret. Comput. Sci., 155(1):85–109, 1996.

[31] Fairouz Kamareddine, Alejandro Ŕıos, and J. B. Wells. Calculi of
generalised β-reduction and explicit substitutions: The type free and
simply typed versions. J. Funct. Logic Programming, 1998(5), June
1998.

[32] A. J. Kfoury and J. B. Wells. A direct algorithm for type inference in
the rank-2 fragment of the second-order λ-calculus. pages 196–207.

[33] A. J. Kfoury and J. B. Wells. New notions of reduction and
non-semantic proofs of β-strong normalization in typed λ-calculi.
pages 311–321.

[34] Assaf J. Kfoury, Jerzy Tiuryn, and Pawe l Urzyczyn. An analysis of
ML typability. J. ACM, 41(2):368–398, March 1994.

[35] Twan Laan and Michael Franssen. Embedding first-order logic in a
pure type system with parameters. J. Log. Comput., 11(4):545–557,
2001.

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 75 / 75

[36] G. Longo and E. Moggi. Constructive natural deduction and its
modest interpretation. Technical Report CMU-CS-88-131, Carnegie
Mellon University, Pittsburgh, USA, 1988.

[37] B. McGuinness, editor. Gottlob Frege: Collected Papers on
Mathematics, Logic, and Philosophy. Basil Blackwell, Oxford, 1984.

[38] Rob Nederpelt. Strong Normalization in a Typed Lambda Calculus
With Lambda Structured Types. PhD thesis, Technical University of
Eindhoven, 1973.

[39] Rob Nederpelt, J. H. Geuvers, and Roel C. de Vrijer. Selected Papers
on Automath, volume 133 of Studies in Logic and the Foundations of
Mathematics. North-Holland, Amsterdam, 1994.

[40] Giuseppe Peano. Árithmetices Principia, Nova Methodo Exposita.
Bocca, Turin, 1889. An English translation can be found on pp.
83–97 in [48].

[41] F.P. Ramsey. The foundations of mathematics. Proceedings of the
London Mathematical Society, 2nd series, 25:338–384, 1926.

[42] Laurent Regnier. Lambda calcul et réseaux. PhD thesis, University
Paris 7, 1992.

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 75 / 75

[43] G.R. Renardel de Lavalette. Strictness analysis via abstract
interpretation for recursively defined types. Information and
Computation, 99:154–177, 1991.

[44] J. C. Reynolds. Towards a theory of type structure. In Colloque sur la
Programmation, volume 19 of LNCS, pages 408–425.
Springer-Verlag, 1974.

[45] B. Russell. Letter to Frege. English translation in [48], pages
124–125, 1902.

[46] B. Russell. The Principles of Mathematics. Allen & Unwin, London,
1903.

[47] B. Russell. Mathematical logic as based on the theory of types.
American Journal of Mathematics, 30:222–262, 1908. Also in [48],
pages 150–182.

[48] J. van Heijenoort. From Frege to Gödel: A Source Book in
Mathematical Logic, 1879–1931. Harvard University Press, 1967.

[49] H. Weyl. Das Kontinuum. Veit, Leipzig, 1918. German; also in: Das
Kontinuum und andere Monographien, Chelsea Pub.Comp., New
York, 1960.

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 75 / 75

[50] Alfred North Whitehead and Bertrand Russel. Principia Mathematica.
Cambridge University Press, 1910–1913. In three volumes published
from 1910 through 1913. Second edition published from 1925 through
1927. Abridged edition published in 1962.

Kamareddine Languages for Formalisation EBL17, Brasil, 12 May 2017 75 / 75

