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1 Introduction

One of the main goals of applied probability is to calculate probabilities of interest arising
from statistical models of reality. If we are lucky, our models are not too far from reality. If
we are very, very lucky, we can calculate those probabilities without too much effort.

Usually we are not so lucky. We can write down a model to help us understand the number
of tosses of a fair coin we are likely to need before we first observe the pattern ‘Heads Tails
Heads’ in three consecutive coin tosses, but calculating the probability that this pattern first
occurs on the seventh, eighth and ninth coin tosses is too tedious to be practical. One solution
to this issue is to use computer simulations to estimate these probabilities. Another solution
(and the one we will focus on here) is to turn to limit theorems and approximations.

We can understand a limit theorem as telling us that asymptotically (e.g., as some underlying
parameter of the system, or sample size, tends to infinity) our probability of interest tends to
a certain limit. The study of limit theorems in probability theory has a long and rich history:
results related to the central limit theorem date back to de Moivre in the 1730s, who used a
normal distribution to approximate probabilities associated with binomial random variables,
and the convergence of certain binomial distributions to a Poisson limit was first established
by Poisson in 1837. Generalizations and extensions of these prototypical examples continue
to find applications in diverse fields.

However, these limit theorems in isolation have some serious drawbacks as tools for under-
standing how probabilities of interest behave in practical examples: we don’t have an ‘infinite
sample size’ in our experiment, we may have 50 observations. Is 50 ‘close to infinity’? What
does that question even mean? Referring to limit theorems without any indication of a corre-
sponding error bound as naive, Aldous [1] writes

“It is hard to give any argument for the relevance of a proof of a naive limit theorem, except
as a vague reassurance that your approximation is sensible, and a good heuristic argument
seems equally reassuring.”

We would like to have a bit more certainty that our estimates are reasonable, perhaps in the
form of explicit error bounds in our approximations.

For example, while the result that sufficiently well-behaved maximum likelihood estimators
in statistics are asymptotically normally distributed is useful, it would be even better if we



could quantify numerically the maximum error we may be making when we use a normal
approximation to construct a confidence interval for our parameter of interest.

In this mini-course we will look at techniques which give us approximations for probabilities
that are difficult to calculate, accompanied by explicit error bounds for these approximations.
We will mainly focus on a technique known as Stein’s method (also referred to as the Stein—
Chen method). Charles Stein’s seminal 1972 paper [41] first introduced this technique in the
setting of normal approximation for sums of weakly dependent random variables. This was
followed by work of Louis Chen [12], a student of Stein, who applied the same ideas to prove
Poisson approximation results. Since then, these same techniques have been applied in a wide
range of settings.

Compared other techniques for proving error bounds in probability approximations, Stein’s
method has two principal advantages:

(1) It is applicable in a wide variety of settings, including univariate, multivariate and
stochastic process approximations, and

(i1) It can handle dependence between underlying random variables in a natural way.

In this course we will look at applications of Stein’s method in univariate settings only, and
mainly in the setting of discrete probability distributions. This will allow us to focus on the
main ideas underlying the technique without additional technical complications associated
with continuous or multivariate distributions. The aim is for this course to be accessible to
anyone who has taken an undergraduate-level course covering introductory discrete probabil-
ity. For those who want to go beyond this starting point, some suggestions for further reading
are given in Section 5.

We use the remainder of this section to introduce some notation, and to refresh the funda-
mentals of discrete probability. Most of the material of the course is covered in Section 2,
where we study Poisson approximations with a focus on applications to random graphs and
Markov chains. Some further topics are covered in Sections 3 and 4 to illustrate the breadth
of application of Stein’s method.

Of course, Stein’s method is not the only technique for probability approximations, though
it is a powerful one. The book [10] gives an overview of many probability approximation
techniques, and is an excellent starting point for those interested in this general area.

1.1 Notation

We let P denote ‘probability’, so P(X = 2) denotes the probability that the random variable
X takes the value 2, and P(X € A) is the probability that X takes a value in the set A.

Similarly, E will denote ‘expectation’, so that E[X] is the expected value (or mean) of a
random variable X. As a reminder, for a random variable X which takes values in the set Z*
of non-negative integers, this expectation is defined by E[X] = ", ., kP(X = k).



Var(X) is the variance of a random variable X, defined by Var(X) = E [(X — E[X])?].

‘IID’ stands for ‘independent and identically distributed’.

2 Poisson approximation

The random variable Z has a Poisson distribution with mean A > 0 if

e AN
P(Z =k) = T
for k = 0,1,2,.... We write Z ~ Po(\). Throughout this section we will let the random

variable Z have this Poisson distribution.

The Poisson distribution is well-studied as a model for rare events, and as a limiting distribu-
tion in such settings, dating back to the work of Poisson in the 1830s. As an initial example,
consider IID (independent and identically distributed) random variables X, X5, ..., X,,, each
of which takes the value 1 with probability A\/n and the value O with probability 1 — \/n.
Their sum W = X; + --- + X, has a binomial distribution with parameters n and \/n, and
probability mass function

n\ (A" AN\ F n! A" AN\ "F
P(W=k)= — 1—— =—Q| - 1——
wen=@) )0 e () 03)
fork=0,1,...,n.
As n — o0, this probability converges to the probability P(Z = k). To see this, we note that
' n —k
hm — ™ 1 Gm (1-2) —e*.  and  lim (1-2) =1,

To show that the probability mass function of our binomial random variable converges to the
probability mass function of a Poisson random variable is thus not too hard. Thinking about
how we can go further than this leads to some interesting (and much trickier!) questions,
including

* Can we bound the error in the approximation? For example, how big is

sup |P(W =k) —P(Z =k)|?

This is a natural question, but one that is awkward to tackle directly: to bound

()02 -

directly in a meaningful way is not straightforward.




* Can we generalize this example? What happens if our indicator random variables X;
have different distributions? What if they are no longer independent? As we will see
in this course, many examples and applications of interest involve underlying random
variables which are dependent, so this is an important question.

In this course we will answer both of these questions simultaneously, through the study of
Stein’s method for Poisson approximation, as developed by Chen [12]. This is a powerful
technique which allows us to find explicit error bounds in Poisson approximation settings and
which can naturally handle dependence in the underlying random variables.

Before studying Stein’s method for Poisson approximation, we will study some other coupling
techniques for Poisson approximation for sums of independent indicator random variables.
These will help us lay the groundwork for the couplings used in Stein’s method, and also
allow us to illustrate the benefits of results established by Stein’s method over other available
bounds even in the independent case.

Throughout this section we will let X,..., X,, be (possibly dependent) indicator random
variables (i.e., they may each take the value 0 or 1). We will write p;, = P(X; = 1) and
A = > p;. We are interested in the approximation of the sum W = X; +--- + X,, by a
Poisson random variable Z ~ Po(\). Note that both W' and Z have mean \.

For the most part, we will assess closeness of non-negative, integer-valued random variables
using the total variation distance, defined by

dry(W,Z) = sup |P(W € A) —P(Z € A)|.

ACZ+

There are other, equivalent ways of expressing the total variation distance. For example, we
have the following.

Lemma 2.1. Let W and Z be random variables taking values in the non-negative integers.
Then

dTV WZ ZUP) (Z:j)|

Proof. Let A={k e Z* :P(W =k) > P(Z = k)}. We have that
P(WeA)-P(ZeA) =) [PW =j)—P(Z=j)],and
P(W e A)—P(ZeA)=P(Z € A) —P(W € &) = Y [P(Z=j)—P(W =j)].

Noting that each of the terms in the sums is non-negative, adding these expressions gives
2AP(W € A) —P(Z € A)] Zup P(Z = j)|.

Finally, we note that this choice of A maximizes the supremum in the definition of the total
variation distance. O



2.1 Poisson approximation by maximal coupling

Before we discuss Stein’s method for Poisson approximation, we give a brief account of a
simple coupling bound for Poisson approximation for sums of independent indicator random
variables, due to Le Cam.

A coupling is a construction of two (or more) random variables with given (marginal) dis-
tributions on the same probability space. That is, given two random variables with fixed
distributions, we are constructing a joint distribution function which has these given marginal
distributions. Formally, we have the following.

Definition 2.2. The pair of random variables ()? , EA/) is a coupling of the random variables
(X,Y) if X has the same distribution as X, and Y has the same distribution as'Y .

Le Cam’s results use the notion of maximal coupling, which we define below.

Definition 2.3. A coupling (X,Y) of random variables (X,Y) is maximal if

Y
P(X { (X,Y) is a coupling of (X, Y)}

Before we give a Poisson approximation bound, we note some properties of maximal cou-
plings, which we state without proof.

Lemma 2.4. Let ()? , EA/) be a maximal coupling of the non-negative, integer-valued random
variables X and Y. Then

Lemma 2.5. If()A(, 17) is a maximal coupling of X and Y,

dry (X, Y)=P(X £Y).

We are now in a position to state and prove the following well-known Poisson approximation
result, due to Le Cam.

Theorem 2.6. Let X1, ..., X, be independent indicator random variables, with P(X; = 1) =
pi- Let W =X+ -+ X,and \=EW =p; + -+ pu. If Z ~ Po()\),

drv(W, Z) < ZP?

=1



Proof. We may construct a Poisson random variable Z with mean A as the sum of independent
Poisson random variables whose means sum to A. Using this, we write Z = " | Z;, where

Using Lemma 2.4, we couple X; and Z; maximally for each ¢ to get ()A(,, Z) with

P(X; = Zi) me{ﬂ” =7),P(Z; = j)}
= min{1 — p;,e "} + min{p;, pie P} =1 —pi +pie ™ > 1—p.

Then, since (E?:l X, Z) is a coupling of W and Z,

dry(W,Z) <P (Z)A(z # ZZ) <P (U {)AQ # Z}) < ZP(Az‘ £ 7;) < Zp?

i=1

This is an elegant result, but there is much room for improvement. To see this, consider the
following results, established for sums of independent Bernoulli random variables by Le Cam
[11] using operator techniques:

dry (W, Z) < 4.5maxp;, and

dry (W, Z) <8X7') " p?. (1)
i=1

This last inequality is proved under the assumption that max; p; < 1/4. We are most interested
in the second of these inequalities, which can represent a substantial improvement over the
bound of Theorem 2.6 when )\ is large, achieved by the inclusion of the ‘magic factor’ of A~1.
We note also that there is no obvious way of extending the argument of Theorem 2.6 to cover
sums of dependent indicator random variables.

2.2 Stein’s method for Poisson approximation

Stein’s method for Poisson approximation has the advantage of being able to handle depen-
dence between the indicator random variables X;. We will also see that results here include
‘magic factors’ akin to that in Le Cam’s result (1) which were missing in the coupling argu-
ment of Theorem 2.6.

Before proceeding further, we need a little more notation. For any function g : ZT — R we
let A be the forward difference operator, so that Ag(j) = g(j+1) —g(j). We let || - || denote
the supremum norm, so that ||g||.. = sup, |g(x)|.



The starting point of Stein’s method is the observation that if Z ~ Po(\) then

KP(Z =k)=\P(Z =k —1),

foreach k = 1,2, ... .. Using this we can compute that, for any bounded function g : Z* — R,
E[Z9(2)) = Y kg(k)P(Z = k) = A g(k)B(Z = k — 1)
k=0 k=1
=AY gk+1)P(Z =k)=AIE[g(Z +1)].
k=0

We conclude that if Z ~ Po(\), then E[Z¢(Z)] = AE[g(Z + 1)] for any bounded function
g. In fact, the converse is true too, and we have the following characterization of the Poisson
distribution.

Lemma 2.7. A non-negative, integer-valued random variable X has a Poisson distribution
with mean X if and only if
AE [g(X +1)] = E [Xg(X)]

for all bounded g : 7+ — R.
This characterization is at the heart of Stein’s method. We know that
AE[g(Z +1)] —E[Z29(Z)] =0
for all well-behaved g if Z is Poisson with mean \. We may perhaps hope that
AR [g(W +1)] = E[Wg(W)] = 0

for all well-behaved g if W is approximately Poisson with mean A. With a clever choice of
function g, Stein’s method makes this intuition precise and gives us a way of using the quantity
AE [g(W +1)] — E[Wg(WW)] to quantify the distance of W from Poisson.

Consider the following equation: For a given function h : Z* — R, we let f = fj, solve
h(j) —Eh(Z) = Af(G+1) = jf (), 2

with f(0) = 0. We will call (2) the Stein equation for the Poisson distribution.

Taking our Stein equation (2), replacing 5 with W and taking expectations we have that
Eh(W) —Eh(Z) =EN (W +1) = Wf(W)] . 3)

If W is approximately Poisson, then the LHS should be small for all well-behaved functions
h. So, the RHS should also be small. To make this idea precise (for the case of total variation



distance) we note that the supremum of the absolute value of the LHS of (3) over all indicators
of subsets of Z* is dpry (W, Z). Denoting this class of functions by

H={I(€A):ACZ"},
we may therefore write

dry(W, Z) = sup [ER(W) — Eh(Z)| = sup [E[Af(W +1) = WfF(W)]| . ©)
heH heH

It is not (yet!) clear that this is a useful way of representing this total variation distance, but
this turns out to give access to techniques and applications which other methods do not. One
advantage of bounding the RHS of (4), rather than the total variation distance directly, is that
it only depends on the single random variable 1¥. The dependence on our Poisson target Z is
implicit in the form of the RHS (which came from our characterization of the Poisson), but Z
itself does not appear explicitly on the RHS.

A selection of metrics other than the total variation distance may be treated similarly, by
choosing a different class of functions H. For the purposes of this section we concentrate on
total variation distance only.

The solution f of our Stein equation (2) with the choice h(-) = I(- € A) for some A C Z* is
given by
I(j<k)-P(Z<Fk)

M= 2 ez =nmz=))

When applying Stein’s method we will need bounds on this function f, which we give below
without proof. See Lemma 1.1.1 of [6] for proofs and further discussion.

Lemma 2.8. Ifh € H,

/2 1—e?
< mi — < .

Note that these bounds do not depend on h, nor on the random variable W of interest. In
particular, they do not need to be computed every time we want to apply Stein’s method to a
new example. Such bounds are known as Stein factors, or magic factors.

To see how we may bound (4) in practice, we first consider the case where W is a sum of
independent indicator random variables.

2.3 Sums of independent indicator random variables

Consider again the setting of Theorem 2.6. In the following theorem, note the improvement
over the results stated in Section 2.1. We retain the magic factor of A~! appearing in (1),
but without the restriction on the p;. The argument here, and its extension to the setting of
dependent indicator random variables, is due to Chen [12].



Theorem 2.9. Ler X, ..., X, be independent indicator random variables, with P(X; = 1) =
pi. Let W =X+ + X,and \=EW =p, + -+ -+ p,. If Z ~ Po()\),

A n
P
=1

Proof. By writing A = >"""  p;and W =" | X;, we have that

drv(W, Z) < (1 -

EN(W+1)=W[fW ZEpz (W +1) = X; f(W)] .

=1

For each i we let W, = W — X, and then write E[X; f(W)] = p;E[f(W; + 1)]. Hence,

EAf(W+1) - Zpl — f(Wi+1)] .

Since

ELf(W+1) = f(Wi+ 1] < sup [ASlloEIW — Wi

1—e?

< EX;
1—e?

= )\ Di

ENV 1 1)~ W) < (1‘6 )sz

(using Lemma 2.8) we have that

]

It is worth noting that the bound given by Theorem 2.9 is of the right order; we have the
corresponding lower bound

dry (W, Z) > imm{1 —} sz

due to Barbour and Hall [5].

The argument of Theorem 2.9 may be relatively easily extended to the case of sums of locally
dependent indicator random variables (i.e., where there is some relatively weak dependence
between some of the X;); see [12] for details. We do not pursue this here, but instead con-
sider coupling approaches to applying Stein’s method for Poisson approximation of sums of
indicator random variables.

10



2.4 A coupling approach for sums of dependent indicators

Here and in the sections that follow we will define a coupling that can be used in conjunc-
tion with Stein’s method for Poisson approximation of sums of dependent indicator random
variables. We will see how the bounds we obtain simplify considerably in the case of some
monotonicity within this coupling, and look at several applications to Poisson approximation
problems.

Theorem 2.10. Let X, ..., X, be indicator random variables with P(X; = 1) = p;. Let
A=p1+---+pyand Z ~ Po(\). Foreachi = 1,...,n, let U; have the same distribution as
W and let V; have the same distribution as (W — 1|X; = 1). Then

n

drv (W, Z)

E|U; — V.

Proof. Using our Stein equation for Poisson approximation,

dry(W, Z) < sup [EAf(W +1) = W f(W)]]

ACZ+

= sup > Elpf(W+1) - Xif(W)]‘

ACZ* |5

ACZ+*

= sup sz (Ui+1) f(Vle)]‘

< sup szElf (Ui +1) = f(Vi +1)]

ACZ*

n

1—€_>‘
<——_pEU -V,
=1

where we have used Lemma 2.8 in our final inequality. 0

The coupling we have used here is closely related to size biasing: see, for example, [3] for an
extensive discussion of the role of size biasing in applied probability. As we will see in the
following examples, it is often relatively natural to construct the random variables U; and V;
in order to be able to then evaluate the upper bound of Theorem 2.10.

2.5 Example: Visits to a rare set in a Markov chain

We consider an application of Theorem 2.10 taken from Section 8.5 of [6].

Let &,&,, ... be a Markov chain with state space Z and transition matrix P. That is, P is an
infinite matrix whose entries are probabilities and whose rows each sum to 1. We denote the

11



(i,7)th entry of P by P, ;. If § = i, we choose &, according to the probability distribution
given by

P(€1 = jl& =) = P,
for each 5 € Z. Note that this does not depend on ¢.

We let PZ(T) denote the m-step transition probability defined by P( =P(&am = jl& = 1).

We will assume that our Markov chain has a stationary distribution, which we denote by p, so
that 11(A) is the probability given to the set of states A C Z by this stationary distribution. For
notational simplicity, we write y; for ({i}). Recall that this stationary distribution is defined
such that if & has the distribution pu, then &; also has this distribution for all ¢ > s, and can
be calculated using P = p, where p is a row vector containing the elements p;. We will
assume that &; has our stationary distribution .

In the theorem below we will give a bound for Poisson approximation for the number of visits
of our Markov chain to the set of states A C 7Z during time 1, ..., n. We will think of this set
A as a ‘rare set’ (in the sense that ;(A) is small) in order for this approximation to be good.

Theorem 2.11. Let &1,&s, . . . be a stationary Markov chain on the state space 7., as described
above. For a given A C Z, let W denote the number of visits of our Markov chain to the set
Aintime 1,... ,nand \ = E[W]. Then

dry(W,Z) < (1 —e) | ZMZl ) — sl |

rsEA 7>1

where Z ~ Po(\).

Proof. We write W = X + --- + X,,, where X; = I(§ € A), and we note that the X; are
identically distributed. With U; and V; defined as in Theorem 2.10, our result will follow if we
can construct these random variables in such a way that

E|U; — Vi| < ZMTZI PY) — il .

TSEA, j>1

We now sketch the argument that achieves such a coupling for each fixed :.

We choose (£/,&!) in such a way that &/ has the distribution y restricted to A and & has the
distribution 1. We then define Markov chains for times earlier and later than ¢ in the following
way:

* For {(&,,,&! ;) - 7 = 1} we choose a maximal coupling of two copies of our Markov
chain started from the states &, and &/, respectively. We let T+ denote the coupling time,
the first time j > 1 at which §{, ; = &7, .

* For {(&_;, &’ ;) : j > 1} we choose a maximal coupling of two copies of the time rever-
sal our Markov chain started from the states £, and &', respectively. This time reversal
is a Markov chain with transition matrix whose (r, s)th entry is given by 1, Ps .. /i, We
let T~ denote the coupling time, the minimal j > 1 at which §{ ; = & .

12



We then define

n

Ui=) I €d) and Vi+1=) I(&€A,

j=1 Jj=1
which we can check have the required distributions, and satisfy
Ui = Vil S I(&] € A)+ ) {I(T > jU(E,, € A) + (€ € A)
=1
] FI(T > G, € A)+ (g, € A))}.
This gives us that
E|U; — Vil < p(A)+ Y {P(TF > j.&,; € A)+P(T™ > j, & _; € A)
i>1
" +P(T* > 5,8\, € A +P(T > 4,8, € A)}. (5

Properties of maximal couplings of Markov chains developed by Griffeath [27] then give us,
for example, that

+
. / 1 y
P(TF > j,&.,€A) = Z [m ZMTP,E’S) - Ms]

sEA reA

1 .
< ——= Yy [P —p]t,
) 2 200

where [-]* denotes the positive part of the given expression. Similar inequalities may be
written down for the other probabilities in (5), from which the desired result follows. O

There are many other applications of Stein’s method to approximation problems for Markov
chains available in the literature: see, for example [8, 16, 17, 20, 21, 33, 36].

2.6 Monotonicity in coupling

The upper bound in Theorem 2.10 can often be delicate to estimate, requiring a detailed study
of the random variables U; and V;. However, the upper bound simplifies considerably if we
have some monotonicity in this coupling construction. We see this in the two results in this
section, where we obtain upper bounds that depend essentially only on the first two moments
of W. As illustrated by the examples that follow, this monotonicity arises in a variety of
settings of interest. Many further examples in which we can exploit this monotonicity are
considered by Barbour, Holst and Janson [6].

Theorem 2.12. With notation as in Theorem 2.10, if U; > V; with probability 1 for each
i1=1,...,n, then
_ Var(W)

EW] -

dry(W,Z) <1

13



Proof. Under our monotonicity assumption, Theorem 2.10 gives

n

dry (W, Z) < E|U;, — Vi| = E[U; — V] Zpl [U; — V.
We have .

=1
and

n

ZPiE[Vi] = ZPZE[W - 1X; =1] = ZPJE[WDQ =1]-A=) E[X,W]- A

=1

=E[W? — XA = Var(W) + \? — \.
Combining these gives

Var(W)

dry (W, Z) < E[W]

(A= Var(W) = N+ X)) =1-—

> =

as required. [

A similar argument using a monotonicity condition which is (close to) the reverse of that above
gives the following result.

Theorem 2.13. With notation as in Theorem 2.10, if we can construct U;, V; and X; on the
same probability space such that U; — X; < V; with probability 1 for eacht =1, ... n, then

(Var(W) —A+2 ipf) .

drv(W, Z) <

> =

2.7 Examples: Birthdays and random graphs
A birthday problem

Suppose m people each have a birthday on one of n days of the year, where each person’s
birthday is chosen uniformly at random (independently of everyone else) from the n available
days. Let Y; be the number of these m people born on day i, fori = 1,...,n. Let X; = I(Y; =
0),and W = X; + --- + X, count the number of days on which no-one has a birthday. We
consider Poisson approximation for W, beginning by noting that A = E[W] = n(1 — 1/n)™.

We construct U; by taking it equal to W. For each V;, consider the setting in which the Y;
people born on day ¢ have their birthday reassigned uniformly at random (and independently
of all else) to one of the remaining n — 1 days. With this reassignment, let 1 + V; denote the

14



number of days on which no-one has a birthday. We have that V; has the same distribution as
(W—=1]X;=1)and that E[V;] = (n — 1)(1 — 1/(n — 1))™.

Note that with this construction U; > V; with probability 1, since for each of the n — 1 days
other than day 7 the reassignment we made in constructing V; can only reduce the chance that
no-one has a birthday on that day. Hence, Theorem 2.12 gives

dTV(VV,Z)gnO_l)m_(n_n (1_ ! )m

n n—1

Triangles in an Erdos—Rényi random graph

Let G = G(n, p) be an Erd6s—Rényi random graph with n vertices (i.e., nodes) in which each
pair of vertices is connected by an edge between them with probability p, independently of all
other pairs of vertices. This is a well-known and well-studied model for random networks.

Let I" be the set of all (g) triples (z, y, z) of vertices in GG, and for v € T', let X, be an indicator
that the three corresponding vertices form a triangle (i.e., that all edges between these three
vertices are present in the graph). Note that each of these random variables X, has the same
distribution, and so for the remainder of this example we may fix a = (1, 2, 3) without loss of
generality.

Let W =) ser X p count the number of triangles in . We can construct U, by letting it be
equal to W. We can construct V,, by adding all the possible edges between vertices 1, 2 and 3
into our graph if they are not already present and letting 1 + V,, denote the number of triangles
in our augmented graph.

Since W — X, counts the number of triangles in our original graph (except possibly for the
triangle involving the vertices (1,2, 3)), and V,, counts the same quantity for a graph which
has at least as many edges as our original graph, it is clear that V, > W — X, with probability
1. We may therefore apply Theorem 2.13.

We note that EX5 = p? for all 3 € T, and so A = EW = (})p®. It can be shown that
Var(W) = A [1 — p* + 3(n — 3)p*(1 — p)] ,
and so Theorem 2.13 gives
dry(W, Z) < p* +3(n = 3)p*(1 - p),
where Z ~ Po(\).

2.8 Extensions and generalizations of Poisson approximation
results

We conclude this section by giving some brief remarks on generalizations and extensions of
the Poisson approximation results using the Stein’s method that we have discussed.

15



1. Translated Poisson approximation: One main disadvantage of Poisson approximation
(compared to, for example, normal approximation) is that the Poisson distribution has
only one parameter we are able to choose. Rollin [37, 38] has explored a two-parameter
translated Poisson approximation, allowing one to (almost) match the first two moments
of W with those of the approximating random variable. The added flexibility offered
by a second parameter allows us to get closer approximations than we are able to with
a simple Poisson approximation, and to get reasonable error bounds in settings where a
simple Poisson approximation is not useful.

2. Compound Poisson approximation: A natural generalization of Poisson approxima-
tion is to consider compound Poisson approximation, where the approximating random
variable has the form Y; + - - - 4+ Y}, where the Y; are independent and identically dis-
tributed positive random variables and N has a Poisson distribution. This allows a much
greater range of applications in which reasonable approximations can be obtained: it al-
lows for situations in which rare events can happen in ‘clumps’. Consider, for example,
the number of observed runs of » Heads in a sequence of independent coin tosses, each
coin showing Heads with probability p. The probability of seeing such a run of Heads
at a given time is p”, but having just observed one, we observe another at the next time
point with (the relatively large) probability p. Thus, the usefulness of a Poisson approxi-
mation may be limited; instead we may want to use a compound Poisson approximation,
where we are assume that the occurrence of ‘clumps’ is rare (i.e., approximately Pois-
son), and the random variables Y; take account of the number of events we see in each
clump. For more background on this idea, see the book by Aldous [1].

Stein’s method for compound Poisson approximation was first studied by Barbour, Chen
and Loh [4], using the Stein equation

h(j) —EMZ) =Y kNS (G + k) — 3£ (),

where A\ = EN, p; = P(Y; = j) and \; = Ap;, which is a natural generalization of
the Stein equation for Poisson approximation. Unfortunately, the solution of this Stein
equation is not as well-behaved as we might hope, with the solution f being bounded
only exponentially in A in the general case. This limits how useful the resulting approx-
imation bounds will be. There are, however, some cases in which bounds of an order
comparable to those in the Poisson case (as in Lemma 2.8) are available. This includes
when kA, > (k + 1)Agqq for all & [4], or when >~ (5 — 1)\ < %ZJ JAj [7]. These
conditions each quantify the idea of the approximating compound Poisson distribution
being ‘not too far from Poisson’. In these cases, useful compound Poisson approxima-
tion theorems may be derived in a wide range of applications. Extending this range of
applications remains an active area of research.

3. Poisson process approximation: Many of the techniques we have considered here can
be extended to the setting of approximation by a Poisson process (i.e., approximation
of the path of a stochastic process by a Poisson process). A stochastic process is a
Poisson process if (i) the count of events in a given set has a Poisson distribution, and (ii)
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counts in disjoint sets are independent random variables. In this setting, we can define
a suitable coupling in terms of the Palm process, and we can characterize a Poisson
process based on the fact that a Poisson process has the same distribution as its reduced
Palm version. This can be used to define a Stein equation for the Poisson process,
which then yields explicit error bounds in approximation of a point process by a Poisson
process in appropriate metrics. See [15] for a discussion of this approach to Poisson
process approximation via Stein’s method.

3 Normal approximation by Stein’s method

As we have already noted, normal approximation was the first setting in which Stein’s method
was applied [41], and was also the main focus of Stein’s 1986 monograph [42] that amply
demonstrated the power and versatility of this technique. We will use this section to outline
Stein’s method for normal approximation, and in particular we will see that the core ideas are
the same as those we have just discussed for Poisson approximation. We will look at how
this approach can be applied in a variety of settings using various different ideas, again with
a focus on coupling techniques. Much of our discussion here is based upon the book [13] of
Chen, Goldstein and Shao, which is an excellent starting point for a much deeper discussion
of Stein’s method for normal approximation.

We recall that a normal random variable with mean 1 € R and variance o2 > 0 has density

function given by ,
1 —(z —
Ouo(r) = o exp {%} 7
for x € R. The normal distribution with mean 0 and variance 1 is described as a standard
normal distribution, and has a density function which we denote by ¢. The corresponding dis-
tribution function is denoted by ® () = [ ¢(y) dy = P(Z < z), where here and throughout
this section we let Z have a standard normal distribution, which we denote by Z ~ N(0, 1).

3.1 The Stein equation and its solution

Our starting point is the relatively simple observation that a random variable Z has a standard
normal distribution if and only if

Ef'(Z) =E[Zf(Z)],

for all absolutely continuous functions f : R — R for which these expectations exist. As in the
Poisson case above, this characterization gives us a starting point from which we can define a
Stein equation and hence bound the distance of a given random variable from a normal: Given
a real-valued random variable W (with mean zero and variance one) which we think of as
approximately normal, we hope that

Ef'(W) ~ EW f(W)],
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for all f as above.

Suppose we have a given function h : R — R, and let f = f;, be the function satisfying
f(0) = 0 and which solves the following Stein equation:

h(z) —EW(Z) = f'(x) =z f(x), (6)
for all x € R, where Z ~ N(0, 1).
We will measure the distance between 1/ and Z by using metrics of the form

dn(W, Z) = sup [ER(W) — Eh(Z)],
heH

where H is a suitably rich class of functions. Note that the total variation distance we have
used for error bounds in Poisson approximation may be written in this form. There are two
principal metrics that are most commonly used in the setting of normal approximation:

o If we take H = Hy = {h : |h(z) — h(y)| < |z — y| forall z,y € R} to be the set of
all Lipschitz functions on R with Lipschitz constant 1, then we obtain the Wasserstein
distance:

dw(W,Z) = sup |[ER(W) —Eh(Z)].
heHw

» If we take H = Hx = {I;.<, : y € R} to be the set of indicator functions of semi-
infinite intervals, we obtain the Kolmogorov distance:

dx(W, Z) = sup IP(W <y) —P(Z <y)l.
ye

So, beginning with the Stein equation (6), replacing x by W, taking expectations, and then
taking the supremum over the class of functions H, we have

dn(W, 2) = sup ELf'(W) =W W]l @)

This equation is the essence of Stein’s method for normal approximation.

As in the Poisson case, one big advantage here is that it turns out to be considerably simpler to
bound the RHS of this equation than to bound the LHS directly. Partly, this is due to the fact
that the random variable Z ~ N(0, 1) does not appear directly on the RHS, but only implicitly
in the form of the equation itself. Thus, we no longer have to work with two random variables
(W and %), but only with the random variable .

There are several techniques available for bounding the RHS of (7) which we will discuss later
in this section. All of these will require some estimates of the boundedness or smoothness of
the function f = f,, which we discuss below. It is worth emphasising that the Stein equation
we use here, and bounds on the corresponding solution f do not depend on the random variable
W we wish to approximate, only on the fact that our target distribution is normal.

Before we consider properties of f, we first state formally the characterization of the standard
normal distribution from which this work springs; the proof of this result is deferred until
Section 3.4.
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Lemma 3.1. If X has a standard normal distribution, then
Ef(X) = EXf(X)] (8

for all absolutely continuous functions f : R — R with E|f'(Z)| < oc. Conversely, if (8)
holds for all bounded, continuous and piecewise continuously differentiable functions f with
Elgf'(Z)| < oo, then X has a standard normal distribution.

The solution of the Stein equation (6) is given by the following lemma.

Lemma 3.2. Let h : R — R be a measurable function with E|h(Z)| < oo. The unique
bounded solution to the Stein equation (6) is given by

flz) = e/ /z (h(y) —ER(Z)) e ¥ /* dy

—0o0

== [ (hty) ~ BHZ) e dy.

There are many bounds available on the solution f to the Stein equation; see Section 2.2 of
[13] for a wide selection. We state here only one such bound, whose proof we will sketch in
Section 3.4.

Lemma 3.3. Let f be the function defined in Lemma 3.2. If h is absolutely continuous then

1Moo < 2017 |oo - )

3.2 Sums of independent random variables

To illustrate the application of the above framework, we prove a central limit theorem for sums
of independent random variables whose proof dates back to the pioneering work of Stein [41].

Theorem 3.4. Let X1, ..., X, be independent random variables with EX; = 0 and Var(X;) =
o? for each i. Suppose that o3 + - -+ + 02 = land let W = X; + - -- + X,,. Then

dw(W,2) <4 E|X}|,

i=1

where Z ~ N(0,1).

Proof. We write W; = W — X, for each 7. Using (7), we need to bound

sup [E[f'(W) =W f(W)]].

heHw
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To that end, we firstly note that E[W f(W)] = E>"" | X, f(W; + X;). Then, using a Taylor
expansion,

1
0

By independence, the first term vanishes on taking expectations. Hence,
E[W f(W)] = Eé X? /01 f'(W; +uX;) du.
Also,
BL7(1) = EZ o2 7/()

- EZ o (W;) + EZ o2 (f/(W) = F(W5)

- Ei;Xff’(Wi) + Ez (FOV) - FOV)
Combining these, _ _

E[f/(W) = W §(W)]
- EZX / P — POV 4 uX0) du+ E Z o2 (W) — F/(W5) .

By the mean value theorem, | f'(W;) — f'(W; + uX;)| < |X|||f"]|c. The same bound may
also be applied in the second term of the above (with © = 1). Hence

n

[EL W) = WEON < 1/l D (BIXP| + o7ELXi]) < 201"l Y EIXT.

i=1 i=1

Applying the bound (9), we then have

ELf (W) =W W] < 4/l Y EIXP].

i=1

The proof is completed by noting that ||A/||o < 1 for each h € Hyy. O

As (perhaps) suggested by the above application, it is often significantly easier in the normal
setting to prove approximation results in ‘smooth metrics’ (such as the Wasserstein distance)
where the functions h € H satisfy some differentiability or other smoothness conditions.
However, these are certainly not the only metrics of interest. For example, the Kolmogorov
distance is of practical importance, but relies on (non-smooth) indicator test functions 2. One
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solution to this problem is to replace h by a smoothed version, and then to control the dif-
ference between the original test function /& and its smoothed version. This typically works
well, though leads to additional technical complications compared to proving results in smooth
metrics.

Somewhat weaker bounds in non-smooth distances can also be established by exploiting gen-
eral inequalities such as that in the lemma below (see page 13 of [14]), whose proof we give
in Section 3.4.

Lemma 3.5. Suppose that there exists 6 > 0 such that, for any h € Hyy,
S| W oo Then dg (W, Z) < 2¢/6.

ER(W)—Eh(Z)| <

Unfortunately results such as these typically do not give the best possible error bounds and
rates of convergence in many examples and applications, including in the case of sums of
independent random variables as we consider here.

Note that these difficulties do not arise in the settings where the underlying distributions are
discrete, as in the Poisson case.

3.3 Couplings and other approaches

In this section we will briefly describe a selection of approaches that have been successfully
applied in conjunction with Stein’s method for normal approximation to yield explicit error
bounds in normal approximation in settings more exotic than sums of independent random
variables. While we will not discuss applications in detail, or provide proofs for many of the
results we state, we will give references indicating where many further details can be found.

3.3.1 Local dependence

The argument of Theorem 3.4 may be extended to the case where X4, ..., X, satisfy a local
dependence assumption. We let W = ) jeT X, where J is a fixed index set with n elements.
We assume that EX,; = 0 for all j and that Var(W) = 1. For any subset A C 7, we define
X4 ={X, :j € A}. There are numerous ways that assumptions of local dependence can be
made, here we will follow [14] and assume the following:

For each 7 € 7, there exist A; C B; C J such that X is
independent of X A¢ and X 4, is independent of X Be- (10)

Under this assumption, Chen and Shao [14] give the following bound.

Theorem 3.6. Let {X; : i« € J} be such that EX; = 0 for each i and (10) holds. Let
W =3".c; X, and assume that Var(W) = 1. Letn; = > ., Xjand 7, = 3. _p X;. Then

JEA;

dw(W, Z) < QZ {E|Ximimi| + [E[Xom][E|7:[} + ZE|X17712| ;
eJ eJ

JEB;
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where Z ~ N(0,1).

Note that if the random variables X; were independent, then we could choose A; = B; = {i},
so that 7; = 7, = X;. We can then use Theorem 3.6 to obtain dy (W, Z) < 5%, E[X}|,
which is only slightly worse than the bound we obtained directly in this case in Theorem 3.4.

Example: Local maxima on a graph

Consider a graph G = (V,€) and IID continuous random variables {¢; : i € V}. For each
vertex i we let N; = {j € V : {i,j} € £} be the set of vertices neighbouring i. Define the
indicator random variables

v [ 1 iG> ¢ forall j € N;,
! 0, otherwise.

that show when vertex i is a local maximum. Then Y = ). _,, ¥ counts the number of local
maxima on the graph.

If we write d(i, j) for the distance between vertices ¢ and j in the graph (that is, the minimum
number of edges that need to be used to move from 7 to j), then (10) is satisfied with the
choices A; = {j € V:d(i,7) <2} and B; = Ujes, A; = {j € V : d(i,j) < 4}.

3.3.2 Exchangeable pairs

Historically, one of the earliest approaches to Stein’s method for normal approximation for a
random variable I/ (with mean zero and variance 1, say) relied on the construction of a pair
(W, W’) of exchangeable random variables. Recall that (W, W’) are said to be exchangeable
if the bivariate distributions of (W, W'’) and (W’ W) are identical. In addition to exchange-
ability, we will assume the following ‘linear regression’ condition:

E[W/|W] = (1— \)W,

for some A € (0, 1). See [42] for an extensive discussion of this approach. Subsequent work
allows for a relaxation of this condition, for example in permitting a remainder term to appear.

Under this condition, the following theorem may be established. See Section 4.5 of [13] for a

proof.

Theorem 3.7. Let W satisfy EW = 0 and Var(W) = 1. Let (W, W’) be exchangeable and
such that E[W'|W| = (1 — \)W for some \ € (0,1). Then

dw (W, Z) < \/%\/Var (E[(W = W)2W]) + E[[W = W[]| |

1
2\

where Z ~ N(0,1).
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As an illustration of the construction of an exchangeable pair satisfying the conditions of
Theorem 3.7, suppose W = X; + - - - 4+ X, is a sum of IID random variables, each with mean
zero, and with Var(W) = 1. Letting [ be uniformly distributed on {1, ..., n} (independent of
all else) and X7, ..., X be independent copies of X1, ..., X,, we may write

W =W — X, + X}

Then W and W’ are exchangeable and it can be shown that E[W’'|W] = (1 — 1) W.

Exchangeable pairs satisfying the conditions of Theorem 3.7 can also be constructed as suc-
cessive states of a reversible Markov chain in stationarity.

3.3.3 The zero-biased coupling

The zero-biased transformation of a distribution was first introduced by Goldstein and Reinert
[24]:

Definition 3.8. Let W be a random variable with mean zero and finite variance o. The
random variable W7 has the W -zero-biased distribution if

E[Wg(W)] = o*Eg' (W?),

for all absolutely continuous functions g : R — R for which these expectations exist.

It was shown in [24] that 1/ * exists for all W with zero mean and finite variance. This random
variable W# is always continuous (regardless of whether W is discrete or continuous), and
has density function given by

pP(x) = o PE[W Ly -

The definition of this zero-biasing transformation is motivated by the fact that the mean-zero
normal distribution is the unique fixed point of this transformation: Stein’s characterization of
the normal distribution can be equivalently stated by saying that Z has a mean-zero normal
distribution if and only if Z and Z* have the same distribution. We might therefore expect that
we can use a measure of distance between W and W~ to quantify how far 11/ is from normal.
The following result (proved by Goldstein and Reinert [24]) does this.

Theorem 3.9. Let EW = 0 and Var(W) = 1. Then
dw (W, Z) <2E|W — W?|,

where Z ~ N(0,1) and W*# has the W -zero-biased distribution.

23



Proof. For any h € Hyy, we use the Stein equation (6) to write

[ER(W) — ER(Z)| = [E[f'(W)] = EW f(W)]| = [Ef' (W) — Ef'(W?)|
< N NoBIW = W2 < 2[|hf[|E[W — W,

where the final inequality uses (9). The result follows by taking the supremum over h €
Hw . O]

This result can be applied by constructing 1 and W* on the same probability space, and thus

bounding the expected difference between them. There has been much work on how this can
be done in various settings: see [13] for several approaches and applications.

3.4 Selected proofs
Proof of Lemma 3.1

Necessity: We, essentially, use an integration by parts approach here. Let f be an absolutely
continuous function such that E|f'(Z)| < oo. If X ~ N(0, 1) then

Ef (X) = \/Lz_w / Flz)e ™% da

- # U(; (@) (/OO —ye '/ dy) d:c+/ooo f'(z) (/m ye /2 dy) d:r} :

Using Fubini’s theorem, we then have

ero=—/ ( / @) o ta ([ r@ )l

\/—/ (0)]ye™"/* dy
—B[Xf(X

Sufficiency: Fix z € R. Let f be the function defined by Lemma 3.2, with the choice
h(x) = Ij;<.y. This function f is continuous and piecewise continuously differentiable, and
we also know that f is bounded. Hence, by assumption

0=E[f'(X) = Xf(X)] = Ellix<y] —P(Z <2) =P(X < 2) - P(Z < 2),

so that X has a standard normal distribution.
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Sketch proof of Lemma 3.3

Differentiating the Stein equation (6), we have
f'(@) = (L+a?) f(z) + z[h(z) — ER(Z)] + W' (x). (11)

‘We can show that

h(z) — BA(Z) — /

—00

T

h'(2)®(z2)dz — /OO B (2)[1—®(2)]dz, (12)

where ®(2) = P(Z < z). Letting ¢(z) be the corresponding density function, we can use the
fact that p(z) f(z) = [*_[h(y) — ER(Z)]e(y) dy together with (12) to show that

xT

o) f(x) = [1 — B(a) /

—00

B (2)B(2) dz + D(x) /Oo W —®(x)dz.  (13)

Now, define 0(z) = igg It can shown that 6”(xz) > 0 for all x, and that the following
equations hold:

0"(x) =2+ (14 2%)0(z), (14)
0" (—z) = % —0"(x). (15)

Combining (11)—(15) we can show that

f"(x) = h(z) — 9”(—x)/ B (2)®(z)dz — 0" (x) /OO R (2)[1—®(2)]dz. (16)

—00

xT

After showing that

0 (—2) / (2) dz + 0 (x) /oou _B(2)de =1,

—00

for all z, the proof is completed by using the triangle inequality in (16).

Proof of Lemma 3.5

We may assume that § < 1/4, otherwise the result is trivial. Now, let o = §/2(27)1/%. For a
fixed z, let ho(x) be 1 for x < z, be 0 for > z + «, and interpolate linearly between these
two values for z < x < z + a. Itis clear that ||//||.c = 1/, and by the assumptions of the
lemma we have

P(W < 2) — P(Z < 2) < Eho (W) — Eho(Z) + Eha(Z) — P(Z < 2)
) ) o
< 4+P:z<Z< < -4 — < 202m) VA2 < 9512
_a+ (z < _Z+a>_a+\/ﬂ_ (2m) %0 < 20

A similar argument gives P(W < 2) — P(Z < z) > —24'/2 and completes the proof.
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4 Additional topics

In this section we give brief, high-level overviews of some further topics that we could have
covered in a longer version of this course and some further topics of current research interest
related to the material we have discussed.

4.1 Other distributional approximations
There are numerous other topics we could have also considered in this course, even in the
setting of univariate approximation, including

* binomial approximation [19],

* geometric approximation [33],

* negative binomial approximation [40],

* exponential approximation [34],

* beta approximation [25],

* chi-square approximation [23],

* Laplace approximation [32], and

* variance-gamma approximation [22],

among many others. Most of these topics have been considered by a number of researchers;
the references given here are intended to represent an entry point into the literature, and not an
exhaustive bibliography on each topic.

As (perhaps) suggested by the structure of these notes, it is typically the case that Stein’s
method is developed and introduced for a single limiting law at a time. There have been,
however, several works which present a more unified approach to treating families of random
variables simultaneously. For example,

* Brown and Xia [9] have considered the general setting of approximation by the equilib-
rium distribution of a birth—death process,

* Eichelsbacher and Reinert [18] studied approximation by discrete Gibbs measures, and

* Arras and Houdré [2] have worked on approximation by infinitely divisible distributions
with finite first moment, where we recall that a random variable Z is infinitely divisible
if, for each n > 1, there are IID random variables 7, ,,, ..., Z, , such that Z; ,, +--- +
Zy,.» has the same disribution as Z.

Beyond the univariate setting, see, for example [35] and [15] for starting points in the large
amount of literature available on multivariate normal approximation and Poisson process ap-
proximation, respectively.
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4.2 The Malliavin-Stein method

We note relatively recent work combining Stein’s method with the tools of Malliavin calculus,
which remains an active area of research. The characterization of the normal distribution
which we use as the starting point of Stein’s method can be thought of as an integration-
by-parts formula with respect to the normal density function (writing an integral of a given
function as an integral of the derivative of that function multiplied by another term). There
is also an integration-by-parts formula at the heart of the Malliavin calculus, involving the
Malliavin derivative and the generator of the Ornstein—Uhlenbeck semigroup. This formula
may be combined with the techniques of Stein’s method for normal approximation.

One important result in this area is the well-known ‘fourth moment theorem’ which states that
distributions of a (suitably standardised) sequence of elements of a Wiener chaos converge to
the normal distribution if and only if the corresponding sequence of fourth moments converge
to 3, the fourth moment of a standard normal distribution. This is a considerable simplification
of the usual method of moments, which needs all moments to converge in order to obtain this
convergence of distributions. See the book of Nourdin and Peccati [31] for a starting point in
the study of these techniques.

4.3 Applications in data analysis and machine learning

It is quite often relatively straightforward to write down the kind of characterization you need
as a starting point for Stein’s method. For example, for a continuous random variable Z with
differentiable density function p which is positive on the whole real line, it can easily be
checked that

P'(Z)

@] =0,

for all functions f for which this expectation is defined. It is typically only when we want
to solve and apply the corresponding Stein equation that we have to focus our attention on a
particular target distribution Z rather than a large class of such distributions.

E\|f(Z) -

With access to a characterization of our random variable Z (i.e., an operator A such that
E[Af(Z)] = 0 for all functions f for which the expectation is defined), we can define the
Stein discrepancy between Z and another random variable W by

sup [E[Af(W)]],

feF
which will depend on the particular class of functions F that we choose. This is difficult to
compute in practice; much of what we have looked at in these notes are ways to find reason-
able upper bounds for these kinds of quantities. In 2015, Gorham and Mackey [26] introduced
a new, efficiently computable Stein discrepancy between a given data sample and target ex-
pectations, and used this as a tool to compare different sampling techniques. For example, in
the setting of Markov chain Monte Carlo estimators, we may compare techniques which trade
off bias against a reduced variance. Subsequent developments in this direction have included
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the combination of Stein discrepancies with the theory of reproducing kernel Hilbert spaces
to give a tool that can be used in goodness-of-fit tests and model evaluation, with the benefit
that it does not depend on the normalizing constants of the unknown distributions [29]. Since
these normalizing constants can be very difficult to calculate, this is very useful in practical
applications.

Another current research area at the interface of Stein’s method and machine learning is the
development of the Stein variational gradient descent algorithm, which can be used to select
a representative sample of points from an unknown probability distribution. It does this by
exploiting an interesting connection between the Stein discrepancy and the Kullback—Leibler
divergence, which gives a measure of the distance between two distributions. This algorithm
reduces the Kullback—Leibler divergence between our sample and the target distribution using
a gradient-based approach [30].

There are many further interesting recent developments related to the application of ideas
from Stein’s method in data analysis and machine learning; this is a very active area of current
research.

5 Further reading

For those who want to go beyond the introduction to probability approximations in general,
and Stein’s method in particular, that we have covered in this mini-course, the following books
and papers give good starting points for the vast literature in this area:

* An introduction limit theorems in probability at an undergraduate level is given by
Lesigne [28];

« Ata more advanced level, Cekanavi&ius [10] gives a survey of numerous methods avail-
able for probability approximations;

* The paper by Ross [39] gives a survey of Stein’s method that makes an excellent starting
point for the study of this technique;

* Barbour, Holst and Janson [6] is dedicated to Poisson approximation by Stein’s method,
with an emphasis on coupling-based approaches;

* An extensive treatment of Stein’s method for normal approximation is given by Chen,
Goldstein and Shao [13]; and

* Nourdin and Peccati [31] give a book-length treatment of the use of Malliavin calculus
in conjunction with Stein’s method for normal approximation.
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