Probability approximations using Stein's method

Tutorial 1

1. For random variables X and Y, show that $d_{T V}(X, Y) \leq \mathbb{P}(X \neq Y)$.
2. Let $X \sim \operatorname{Po}(\lambda)$ and $Y \sim \operatorname{Po}(\mu)$, where $\mu>\lambda$. By writing down a coupling of (X, Y), show that

$$
d_{T V}(X, Y) \leq 1-e^{\lambda-\mu}
$$

3. Let $W \sim \operatorname{Bin}(n, p)$ have a binomial distribution with parameters n and p. Let $Z \sim$ $\operatorname{Po}(n p)$. Compute an upper bound on $d_{T V}(W, Z)$ in the following cases:
(a) $n=100, p=0.1$; and
(b) $n=1000, p=0.01$.
4. Stein's method for geometric approximation, part I: A random variable Z taking values in the non-negative integers has a geometric distribution with parameter $p \in$ $(0,1)$, written $Z \sim \operatorname{Geom}(p)$, if $\mathbb{P}(Z=k)=p(1-p)^{k}$ for $k=0,1,2, \ldots$. This random variable is often introduced as the waiting time until the first event in a sequence of IID trials, where an event occurs at each time $0,1,2, \ldots$ with probability p independently of the occurrence of events at other times.
(a) Show that, for a bounded function $f: \mathbb{Z}^{+} \rightarrow \mathbb{R}$ with $f(0)=0$, we have

$$
\mathbb{E}[f(Z)]=(1-p) \mathbb{E}[f(Z+1)]
$$

(b) We can use the formula in part (a) to characterize Z and as a starting point in Stein's method for geometric approximation. Show that for a given $A \subseteq \mathbb{Z}^{+}$, the solution $f=f_{A}$ of the Stein equation

$$
(1-p) f(k+1)-f(k)=I(k \in A)-\mathbb{P}(Z \in A)
$$

with $f(0)=0$ is given by

$$
f(k)=\sum_{i \in A}(1-p)^{i}-\sum_{i \in A, i \geq k}(1-p)^{i-k},
$$

and satisfies $\sup _{j, k \in \mathbb{Z}^{+}}|f(j)-f(k)| \leq \frac{1}{p}$.
(c) Let $Z^{\prime} \sim \operatorname{Geom}\left(p^{\prime}\right)$ for $p^{\prime}<p$. Use Stein's method for geometric approximation to show that

$$
d_{T V}\left(Z, Z^{\prime}\right) \leq \frac{p-p^{\prime}}{p}
$$

