Probability approximations using Stein's method

Tutorial 1: Solutions

1. For any set A, we may write

$$
\begin{aligned}
\mathbb{P}(X \in A)-\mathbb{P}(Y \in A)= & \mathbb{P}(X \in A, X=Y)+\mathbb{P}(X \in A, X \neq Y) \\
& -\mathbb{P}(Y \in A, X=Y)-\mathbb{P}(Y \in A, X \neq Y) \\
= & \mathbb{P}(X \in A, X \neq Y)-\mathbb{P}(Y \in A, X \neq Y) \\
\leq & \mathbb{P}(X \neq Y)
\end{aligned}
$$

A similar argument also gives $\mathbb{P}(Y \in A)-\mathbb{P}(X \in A) \leq \mathbb{P}(X \neq Y)$, so that

$$
|\mathbb{P}(X \in A)-\mathbb{P}(Y \in A)| \leq \mathbb{P}(X \neq Y)
$$

as required.
2. We construct our coupling $(\widehat{X}, \widehat{Y})$ by letting $\widehat{X}=X$ and $\widehat{Y}=\widehat{X}+Z$, where $Z \sim$ $\operatorname{Po}(\mu-\lambda)$. The inequality from the previous question then gives

$$
d_{T V}(X, Y) \leq \mathbb{P}(\widehat{X} \neq \widehat{Y})=\mathbb{P}(Z>0)=1-\mathbb{P}(Z=0)=1-e^{\lambda-\mu}
$$

3. In each case we have $n p=10$. In the setting (as we have here) where the p_{i} are all equal to p, the Poisson approximation bound of Theorem 2.9 that we obtained through Stein's method becomes

$$
d_{T V}(W, Z) \leq\left(1-e^{-n p}\right) p \leq p
$$

In the two cases given this is
(a)

$$
d_{T V}(W, Z) \leq 0.1
$$

(b)

$$
d_{T V}(W, Z) \leq 0.01
$$

Of course, we can get slightly better bounds by including the factor of $1-e^{-n p}$, but this is very close to 1 here, so doesn't make much of a difference. Note also that the bounds we obtain here are significantly better than we would get from Theorem 2.6.
4. (a) We have

$$
\begin{aligned}
\mathbb{E} f(Z) & =p \sum_{j=0}^{\infty}(1-p)^{j} f(j)=p(1-p) \sum_{j=1}^{\infty}(1-p)^{j-1} f(j) \\
& =p(1-p) \sum_{j=0}^{\infty}(1-p)^{j} f(j+1)=(1-p) \mathbb{E} f(Z+1),
\end{aligned}
$$

as required.
(b) Substituting the given expression for f into the Stein equation confirms that it is a solution to that equation. We have that

$$
f(j)-f(k)=\sum_{i \in A, i \geq k}(1-p)^{i-k}-\sum_{i \in A, i \geq j}(1-p)^{i-j}
$$

and since neither term on the RHS can be larger than $\sum_{i=0}^{\infty}(1-p)^{i}=\frac{1}{p}$, the stated bound on f follows.
(c) From part (a) we have that $\mathbb{E} f\left(Z^{\prime}\right)=\left(1-p^{\prime}\right) \mathbb{E} f\left(Z^{\prime}+1\right)$.

Following Stein's method, we use the Stein equation from part (b) to write

$$
\begin{aligned}
\mathbb{P}\left(Z^{\prime} \in A\right)-\mathbb{P}(Z \in A) & =(1-p) \mathbb{E} f\left(Z^{\prime}+1\right)-\mathbb{E} f\left(Z^{\prime}\right) \\
& =(1-p) \mathbb{E} f\left(Z^{\prime}+1\right)-\left(1-p^{\prime}\right) \mathbb{E} f\left(Z^{\prime}+1\right) \\
& =\left(p^{\prime}-p\right) \mathbb{E} f\left(Z^{\prime}+1\right) .
\end{aligned}
$$

Taking the supremum over sets $A \subseteq \mathbb{Z}^{+}$and using the bound on f from part (b) gives us the required result.

