Probability approximations using Stein's method

Tutorial 2

1. Stein's method for geometric approximation, part II: Let $Z \sim \operatorname{Geom}(p)$ and let W be a non-negative, integer-valued random variable with $\mathbb{P}(W=0)=p$. Define a random variable V which has the same distribution as $(W-1 \mid W>0)$.
(a) Show that

$$
d_{T V}(W, Z) \leq \frac{1-p}{p} \mathbb{P}(W \neq V)
$$

(b) Let $N \sim \operatorname{Geom}(p)$ and let X, X_{1}, X_{2}, \ldots be a sequence of IID positive, integervalued random variables independent of N. Define $W=X_{1}+\cdots+X_{N}$. Such geometric sums arise in a variety of applications in queuing theory, insurance, the analysis of Markov chains and other applications. Show that with this choice of W we may let $V=W+X-1$, and hence that

$$
d_{T V}(W, Z) \leq \frac{1-p}{p} \mathbb{P}(X>1)
$$

2. Let X_{1}, \ldots, X_{n} be indicator random variables with $\mathbb{P}\left(X_{i}=1\right)=p_{i}$. Let $\lambda=p_{1}+\cdots+$ p_{n} and $Z \sim \operatorname{Po}(\lambda)$. For each $i=1, \ldots, n$, let U_{i} have the same distribution as W and let V_{i} have the same distribution as $\left(W-1 \mid X_{i}=1\right)$. Suppose that we can construct U_{i}, V_{i} and X_{i} on the same probability space such that $U_{i}-X_{i} \leq V_{i}$ with probability 1 for each $i=1, \ldots, n$. Show that

$$
d_{T V}(W, Z) \leq \frac{1}{\lambda}\left(\operatorname{Var}(W)-\lambda+2 \sum_{i=1}^{n} p_{i}^{2}\right)
$$

3. Suppose m people each have a birthday on one of n days of the year, where each person's birthday is chosen uniformly at random (independently of everyone else) from the n available days. Let Y_{i} be the number of these m people born on day i, for $i=1, \ldots, n$. Let $X_{i}=I\left(Y_{i}=0\right)$, and $W=X_{1}+\cdots+X_{n}$ count the number of days on which no-one has a birthday.
(a) Show that $\mathbb{E}[W]=n(1-1 / n)^{m}$.
(b) For a given $i \in\{1, \ldots, n\}$, consider the setting in which the Y_{i} people born on day i have their birthday reassigned uniformly at random (and independently of all
else) to one of the remaining $n-1$ days. With this reassignment, let $1+V_{i}$ denote the number of days on which no-one has a birthday. Show that

$$
\mathbb{E}\left[V_{i}\right]=(n-1)\left(1-\frac{1}{n-1}\right)^{m}
$$

4. Let $Z \sim \mathrm{~N}(0,1)$ and let $h: \mathbb{R} \rightarrow \mathbb{R}$ be a measurable function with $\mathbb{E}|h(Z)|<\infty$. By using an appropriate integrating factor, or otherwise, show that a solution to the equation

$$
\begin{equation*}
h(x)-\mathbb{E} h(Z)=f^{\prime}(x)-x f(x) \tag{1}
\end{equation*}
$$

is given by

$$
\begin{aligned}
f(x) & =e^{x^{2} / 2} \int_{-\infty}^{x}(h(y)-\mathbb{E} h(Z)) e^{-y^{2} / 2} d y \\
& =-e^{x^{2} / 2} \int_{x}^{\infty}(h(y)-\mathbb{E} h(Z)) e^{-y^{2} / 2} d y
\end{aligned}
$$

and state the form of the general solution to the equation (1).
5. Let X_{1}, \ldots, X_{n} be independent random variables with $\mathbb{E} X_{i}=0$ and $\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=1$. Let $W=X_{1}+\cdots+X_{n}$. Show that

$$
|\mathbb{E}| W\left|-\sqrt{\frac{2}{\pi}}\right| \leq 4 \sum_{i=1}^{n} \mathbb{E}\left|X_{i}^{3}\right|
$$

