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1 Introduction

The study of limit theorems in probability theory has a long and rich history: results related to
the central limit theorem date back to de Moivre in the 1730s, who used a normal distribution
to approximate probabilities associated with binomial random variables, and the convergence
of the binomial distribution Bin(n, λ/n) to the Poisson distribution Po(λ) as n→∞ was first
established by Poisson in 1837. Generalizations and extensions of these prototypical examples
continue to find applications in diverse fields.

There are numerous techniques which may be used to establish limit theorems in probability.
In these lectures we will focus on one, the Stein–Chen method (also referred to as Stein’s
method). Compared to many other techniques, Stein’s method has three principal advantages:

(i) It is applicable in a wide variety of settings, including univariate, multivariate and
stochastic process limits;

(ii) It can handle dependence between the underlying random variables; and

(iii) Alongside limit theorems, we can (usually) establish explicit bounds on the error in the
approximation.

In these lectures we will mostly look at applications of Stein’s method in univariate settings.
Most of our attention will focus on coupling techniques that may be applied in conjunction
with Stein’s method, though we will also mention several other approaches to Stein’s method.

Charles Stein’s seminal 1972 paper [59] first introduced his technique in the setting of Gaus-
sian approximation for sums of weakly dependent random variables. This was followed by
work of Louis Chen [17], a student of Stein, who applied the same ideas to prove Poisson
approximation results. Since then, these same techniques have been applied in a wide range
of settings.
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Good surveys of Stein’s method can be found in the book edited by Barbour and Chen [8]
and the paper by Ross [55]. The book [19] by Chen, Goldstein and Shao gives an extensive
treatment of Stein’s method for Gaussian approximation. The book [10] by Barbour, Holst
and Janson is dedicated to Poisson approximations, with an emphasis on coupling-based ap-
proaches. These books all also present material beyond the case of univariate approximations.

We will begin with the case of Gaussian approximation (and some related topics) in Section
2. In Section 3 we will consider exponential approximation, and then in Section 4 we will
move from a continuous to a discrete setting, looking at Poisson approximation. Again in a
discrete context, Section 5 looks at approximation by geometric sums. Finally, in Section 6
we conclude with a brief look at one case in which multiple distributions may be considered
simultaneously, the case of approximation by an infinitely divisible distribution with finite
mean.

There are numerous other topics we could have also considered, even in the setting of univari-
ate approximation, including binomial approximation [34], negative binomial approximation
[56], beta approximation [41], chi-square approximation [38], approximation by the Laplace
distribution [49] and variance-gamma approximation [37], among many others. We indicate
these references here as an entry point into the relevant literature.

Beyond the univariate setting, see, for example [52] and [21] for starting points in the large
amount of literature available on multivariate Gaussian approximation and Poisson process
approximation, respectively.

2 Gaussian approximation and related topics

2.1 Introduction

As we have already noted, Gaussian approximation was the first setting in which Stein’s
method was applied [59], and was also the main focus of Stein’s 1986 monograph [60] that
amply demonstrated the power and versatility of this technique. We will use this first part of
this section to outline the basic idea behind Stein’s method, before stating and proving the
lemmas necessary to make this approach rigorous. Following this, we will look at how this
approach can be applied in a variety of settings using various different ideas. Our focus here
will be on coupling techniques, though we will indicate briefly some of the other ideas which
have also been successfully applied in conjunction with Stein’s method for Gaussian approx-
imation. Much of our discussion here is based upon the book [19] of Chen, Goldstein and
Shao.

The starting point for Stein’s method for Gaussian approximation is the relatively simple ob-
servation that a random variable Z has a standard Gaussian distribution if and only if

Ef ′(Z) = E[Zf(Z)] ,

for all absolutely continuous functions f : R 7→ R for which these expectations exist.
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Given a real-valued random variable W (with mean zero and variance one) which we think of
(in some sense) as approximately Gaussian, we may therefore hope that

Ef ′(W ) ≈ E[Wf(W )] ,

for all f as above. Roughly speaking, Stein’s method quantifies the proximity of W to Gaus-
sian by bounding the difference between the LHS and RHS of the above, over a wide enough
class of functions f to give useful information.

To make this idea precise, suppose we have a given test function h : R 7→ R, and let f = fh
be the unique bounded solution to the following Stein equation:

h(x)− Eh(Z) = f ′(x)− xf(x) , (1)

for all x ∈ R, where Z ∼ N(0, 1).

We may usefully quantify the proximity of W and Z by a variety of metrics of the form

dH(W,Z) = sup
h∈H
|Eh(W )− Eh(Z)| ,

where H is a suitably rich class of functions. For example, if we take H = HW = {h :
|h(x) − h(y)| ≤ |x − y| for all x, y ∈ R} to be the set of all Lipschitz functions on R with
Lipschitz constant 1, then we obtain the Wasserstein distance:

dW (W,Z) = sup
h∈HW

|Eh(W )− Eh(Z)| .

Similarly, if we takeH = HK = {I{·≤y} : y ∈ R}, we obtain the Kolmogorov distance:

dK(W,Z) = sup
y∈R
|P(W ≤ y)− P(Z ≤ y)| .

So, beginning with the Stein equation (1), replacing x by W , taking expectations, and then
taking the supremum over the class of functionsH, we have

dH(W,Z) = sup
h∈H
|E[f ′(W )−Wf(W )]| . (2)

This equation is the essence of Stein’s method for Gaussian approximation. The advantage
here is that it turns out to be considerably simpler to bound the RHS of this equation than to
bound the LHS directly. Partly, this is due to the fact that the random variable Z ∼ N(0, 1)
does not appear directly on the RHS, but only implicitly in the form of the equation itself.
Thus, we no longer have to work with two random variables (W and Z), but only with the
random variable W .

There are several techniques available for bounding the RHS of (2) which we will discuss later
in this section. All of these will require some estimates of the boundedness or smoothness of
the function f = fh, which we discuss below. It is worth emphasising that the Stein equation
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we use here, and bounds on the corresponding solution f do not depend on the random variable
W we wish to approximate, only on the fact that our target distribution is Gaussian.

Before we consider properties of f , we first state formally the characterisation of the standard
Gaussian distribution from which this work springs; the proof of this result is deferred until
later in this section. Throughout the remainder of this section, we let Z ∼ N(0, 1).

Lemma 2.1. If X has a standard Gaussian distribution, then

Ef ′(X) = E[Xf(X)] (3)

for all absolutely continuous functions f : R 7→ R with E|f ′(Z)| < ∞. Conversely, if (3)
holds for all bounded, continuous and piecewise continuously differentiable functions f with
E|f ′(Z)| <∞, then X has a standard Gaussian distribution.

The solution of the Stein equation (1) is given by the following lemma.

Lemma 2.2. Let h : R 7→ R be a measurable function with E|h(Z)| < ∞. The unique
bounded solution to the Stein equation (1) is given by

f(x) = ex
2/2

∫ x

−∞
(h(y)− Eh(Z)) e−y

2/2 dy

= −ex2/2
∫ ∞
x

(h(y)− Eh(Z)) e−y
2/2 dy .

Exercise: Use the integrating factor e−x2/2 to solve the differential equation (1) and hence
prove Lemma 2.2.

Bounds on the solution to this function f will be expressed in terms of the supremum norm:
for any function g, let

‖g‖∞ = sup
x
|g(x)| .

There are many bounds available on the solution f to the Stein equation; see Section 2.2 of
[19] for a wide selection. We state here only the bounds that we will need for the particular
applications we will discuss later on.

Lemma 2.3. Let f be the function defined in Lemma 2.2.

(i) If h is absolutely continuous then

‖f ′′‖∞ ≤ 2‖h′‖∞ . (4)

(ii) For any u, v, w ∈ R and any h with ‖h‖∞ ≤ 1,

|(w + u)f(w + u)− (w + v)f(w + v)| ≤

(
|w|+

√
2π

4

)
(|u|+ |v|) . (5)
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Proof. We sketch the proof of (4) below. For a proof of (5), see Lemma 2.3 of [19].

Differentiating the Stein equation (1), we have

f ′′(x) = (1 + x2)f(x) + x[h(x)− Eh(Z)] + h′(x) . (6)

We can show that

h(x)− Eh(Z) =

∫ x

−∞
h′(z)Φ(z) dz −

∫ ∞
x

h′(z)[1− Φ(z)] dz , (7)

where Φ(z) = P(Z ≤ z). Letting ϕ(z) be the corresponding density function, we can use the
fact that ϕ(x)f(x) =

∫ x
−∞[h(y)− Eh(Z)]ϕ(y) dy together with (7) to show that

−ϕ(x)f(x) = [1− Φ(x)]

∫ x

−∞
h′(z)Φ(z) dz + Φ(x)

∫ ∞
x

h′(z)[1− Φ(z)] dz . (8)

Now, define θ(x) = Φ(x)
ϕ(x)

. It can shown that θ′′(x) ≥ 0 for all x, and that the following
equations hold:

θ′′(x) = x+ (1 + x2)θ(x) , (9)

θ′′(−x) =
1 + x2

ϕ(x)
− θ′′(x) . (10)

Combining (6)–(10) we can show that

f ′′(x) = h′(x)− θ′′(−x)

∫ x

−∞
h′(z)Φ(z) dz − θ′′(x)

∫ ∞
x

h′(z)[1− Φ(z)] dz . (11)

After showing that

θ′′(−x)

∫ x

−∞
Φ(z) dz + θ′′(x)

∫ ∞
x

[1− Φ(z)] dz = 1 ,

for all x, the proof is completed by using the triangle inequality in (11).

Proof of Lemma 2.1

Necessity: We, essentially, use an integration by parts approach here. Let f be an absolutely
continuous function such that E|f ′(Z)| <∞. If X ∼ N(0, 1) then

Ef ′(X) =
1√
2π

∫ ∞
−∞

f ′(x)e−x
2/2 dx

=
1√
2π

[∫ 0

−∞
f ′(x)

(∫ x

−∞
−ye−y2/2 dy

)
dx+

∫ ∞
0

f ′(x)

(∫ ∞
x

ye−y
2/2 dy

)
dx

]
.
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Using Fubini’s theorem, we then have

Ef ′(X) =
1√
2π

[∫ 0

−∞

(∫ 0

y

f ′(x) dx

)
(−y)e−y

2/2 dy +

∫ ∞
0

(∫ x

0

f ′(x) dx

)
ye−y

2/2 dy

]
=

1√
2π

∫ ∞
−∞

[f(y)− f(0)]ye−y
2/2 dy

= E[Xf(X)] .

Sufficiency: Fix z ∈ R. Let f be the function defined by Lemma 2.2, with the choice
h(x) = I{x≤z}. This function f is continuous and piecewise continuously differentiable, and
we know from Lemma 2.3 that f is bounded. Hence, by assumption

0 = E[f ′(X)−Xf(X)] = E[I{X≤z}]− P(Z ≤ z) = P(X ≤ z)− P(Z ≤ z) ,

so that X has a standard normal distribution.

2.2 Sums of independent random variables

To illustrate the application of the above framework, we prove a central limit theorem for sums
of independent random variables.

Theorem 2.4. LetX1, . . . , Xn be independent random variables with EXi = 0 and Var(Xi) =
σ2
i for each i. Suppose that σ2

1 + · · ·+ σ2
n = 1 and let W = X1 + · · ·+Xn. Then

dW (W,Z) ≤ 4
n∑
i=1

E|X3
i | ,

where Z ∼ N(0, 1).

Proof. We write Wi = W −Xi for each i. Using (2), we need to bound

sup
h∈HW

|E [f ′(W )−Wf(W )] | .

To that end, we firstly note that E[Wf(W )] = E
∑n

i=1Xif(Wi + Xi). Then, using a Taylor
expansion,

Xif(Wi +Xi) = Xif(Wi) +X2
i

∫ 1

0

f ′(Wi + uXi) du .

By independence, the first term vanishes on taking expectations. Hence,

E[Wf(W )] = E
n∑
i=1

X2
i

∫ 1

0

f ′(Wi + uXi) du .
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Also,

E[f ′(W )] = E
n∑
i=1

σ2
i f
′(W )

= E
n∑
i=1

σ2
i f
′(Wi) + E

n∑
i=1

σ2
i (f ′(W )− f ′(Wi))

= E
n∑
i=1

X2
i f
′(Wi) + E

n∑
i=1

σ2
i (f ′(W )− f ′(Wi)) .

Combining these,

E[f ′(W )−Wf(W )]

= E
n∑
i=1

X2
i

∫ 1

0

(f ′(Wi)− f ′(Wi + uXi)) du+ E
n∑
i=1

σ2
i (f ′(W )− f ′(Wi)) .

By the mean value theorem, |f ′(Wi) − f ′(Wi + uXi)| ≤ |Xi|‖f ′′‖∞. The same bound may
also be applied in the second term of the above (with u = 1). Hence

|E[f ′(W )−Wf(W )]| ≤ ‖f ′′‖∞
n∑
i=1

(
E|X3

i |+ σ2
iE|Xi|

)
≤ 2‖f ′′‖∞

n∑
i=1

E|X3
i | .

Applying the bound (4), we then have

|E[f ′(W )−Wf(W )]| ≤ 4‖h′‖∞
n∑
i=1

E|X3
i | .

The proof is completed by noting that ‖h′‖∞ ≤ 1 for each h ∈ HW .

As (perhaps) suggested by the above application, it is often significantly easier in the Gaussian
setting to prove approximation results in ‘smooth metrics’ (such as the Wasserstein distance)
where the functions h ∈ H satisfy some differentiability of other smoothness conditions.
However, these are certainly not the only metrics of interest. For example, the Kolmogorov
distance is of practical importance, but relies on (non-smooth) indicator test functions h. One
solution to this problem is to replace h by a smoothed version, and then to control the dif-
ference between the original test function h and its smoothed version. This typically works
well, though leads to additional technical complications compared to proving results in smooth
metrics.

Somewhat weaker bounds in non-smooth distances can also be established by exploiting gen-
eral inequalities such as that in the lemma below (see page 13 of [8]).

Lemma 2.5. Suppose that there exists δ > 0 such that, for any h ∈ HW , |Eh(W )−Eh(Z)| ≤
δ‖h′‖∞. Then dK(W,Z) ≤ 2

√
δ.
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Proof. We may assume that δ < 1/4, otherwise the result is trivial. Now, let α = δ1/2(2π)1/4.
For a fixed z, let hα(x) be 1 for x ≤ z, be 0 for x ≥ z + α, and interpolate linearly between
these two values for z < x < z + α. It is clear that ‖h′‖∞ = 1/α, and by the assumptions of
the lemma we have

P(W ≤ z)− P(Z ≤ z) ≤ Ehα(W )− Ehα(Z) + Ehα(Z)− P(Z ≤ z)

≤ δ

α
+ P(z ≤ Z ≤ z + α) ≤ δ

α
+

α√
2π
≤ 2(2π)−1/4δ1/2 ≤ 2δ1/2 .

A similar argument gives P(W ≤ z)− P(Z ≤ z) ≥ −2δ1/2 and completes the proof.

Note that these difficulties do not arise in the settings where the underlying distributions are
discrete.

2.3 Coupling and other approaches to Stein’s method for
Gaussian approximation

In this section we will describe a selection of approaches that have been successfully applied in
conjunction with Stein’s method for Gaussian approximation to yield explicit error bounds in
Gaussian approximation in settings more exotic than sums of independent random variables.

2.3.1 Local dependence

The argument of Theorem 2.4 may be extended to the case where X1, . . . , Xn satisfy a local
dependence assumption. We letW =

∑
j∈J Xj , where J is a fixed index set with n elements.

We assume that EXj = 0 for all j and that Var(W ) = 1. For any subset A ⊆ J , we define
XA = {Xj : j ∈ A}. There are numerous ways that assumptions of local dependence can be
made, here we will follow [20] and assume the following:

For each i ∈ J , there exist Ai ⊆ Bi ⊆ J such that Xi is
independent of XAci

and XAi is independent of XBci
. (12)

Under this assumption, we have the following bound.

Theorem 2.6. Let {Xi : i ∈ J } be such that EXi = 0 for each i and (12) holds. Let
W =

∑
j∈J Xj , and assume that Var(W ) = 1. Let ηi =

∑
j∈Ai Xj and τi =

∑
j∈Bi Xj . Then

dW (W,Z) ≤ 2
∑
i∈J

{E|Xiηiτi|+ |E[Xiηi]|E|τi|}+
∑
i∈J

E|Xiη
2
i | ,

where Z ∼ N(0, 1).
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Proof. Let h ∈ HW , and f be the corresponding solution to the Stein equation. We have

E[Wf(W )] =
∑
i∈J

E [Xif(W )] =
∑
i∈J

E [Xi {f(W )− f(W − ηi)}] ,

using the independence of Xi and W − ηi. Thus, we may write

E[Wf(W )] =
∑
i∈J

E [Xi {f(W )− f(W − ηi)− ηif ′(W )}] + E

[(∑
i∈J

Xiηi

)
f ′(W )

]
.

Now, since EXi = 0 for each i, and by the independence of Xi and XAci
,

1 = E[W 2] =
∑
i∈J

∑
j∈J

E[XiXj] =
∑
i∈J

E[Xiηi] ,

giving

E[f ′(W )−Wf(W )] = −E

[∑
i∈J

(Xiηi − E[Xiηi]) f
′(W )

]
−
∑
i∈J

E [Xi {f(W )− f(W − ηi)− ηif ′(W )}] .

Since W − τi and Xiηi are independent, we may further write

E[f ′(W )−Wf(W )] = −E

[∑
i∈J

(Xiηi − E[Xiηi]) (f ′(W )− f ′(W − τi))

]
−
∑
i∈J

E [Xi {f(W )− f(W − ηi)− ηif ′(W )}] .

Exercise: Use suitable Taylor expansions to show the following:∣∣∣∣∣E
[∑
i∈J

(Xiηi − E[Xiηi]) (f ′(W )− f ′(W − τi))

]∣∣∣∣∣ ≤ ‖f ′′‖∞∑
i∈J

{E|Xiηiτi|+ |E[Xiηi]|E|τi|} ,∣∣∣∣∣∑
i∈J

E [Xi {f(W )− f(W − ηi)− ηif ′(W )}]

∣∣∣∣∣ ≤ 1

2
‖f ′′‖∞

∑
i∈J

E|Xiη
2
i | .

The proof is complete on applying (4).

Note that if the random variables Xi were independent, then we could choose Ai = Bi = {i},
so that ηi = τi = Xi. We can then use Theorem 2.6 to obtain dW (W,Z) ≤ 5

∑
i∈J E|X3

i |,
which is only slightly worse than the bound we obtained directly in this case in Theorem 2.4.
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Example: Local maxima on a graph

Consider a graph G = (V , E) and IID continuous random variables {ξi : i ∈ V}. For each
vertex i we let Ni = {j ∈ V : {i, j} ∈ E} be the set of vertices neighbouring i. Define the
indicator random variables

Yi =

{
1, if ξi > ξj for all j ∈ Ni ,
0, otherwise .

that show when vertex i is a local maximum. Then Y =
∑

i∈V Yi counts the number of local
maxima on the graph.

If we write d(i, j) for the distance between vertices i and j in the graph (that is, the minimum
number of edges that need to be used to move from i to j), then (12) is satisfied with the
choices Ai = {j ∈ V : d(i, j) ≤ 2} and Bi = ∪j∈AiAj = {j ∈ V : d(i, j) ≤ 4}.

Exercise: Show that if G is a regular graph with degree d (i.e., all vertices have d edges), then
EY = |V|/(d+ 1) and (more challenging!)

Var(Y ) =
∑

i,j∈V,d(i,j)=2

s(i, j)(2d+ 2− s(i, j))−1(d+ 1)−2 ,

where s(i, j) = |Ni ∩Nj|.

2.3.2 Exchangeable pairs

Historically, one of the earliest approaches to Stein’s method for Gaussian approximation for
a random variable W (with mean zero and variance 1, say) relied on the construction of a pair
(W,W ′) of exchangeable random variables (i.e., for which (W,W ′) has the same distribution
as (W ′,W )) satisfying the following ‘linear regression’ condition:

E[W ′|W ] = (1− λ)W ,

for some λ ∈ (0, 1). Subsequent work allows for a relaxation of this condition, for example in
permitting a remainder term to appear.

This condition appears, in some sense, as an analogue of the fact that if (W,W ′) were bivariate
normal with correlation ρ, then E[W ′|W ] = ρW .

Under this condition, the following theorem (which we give without proof; see Section 4.5 of
[19]) may be established.

Theorem 2.7. Let W have distribution function F , and satisfy EW = 0 and Var(W ) = 1. Let
(W,W ′) be exchangeable and such that E[W ′|W ] = (1− λ)W for some λ ∈ (0, 1). Then

dW (W,Z) ≤ 1

2λ

[√
2

π

√
Var (E[(W ′ −W )2|W ]) + E[|W ′ −W |3]

]
,

where Z ∼ N(0, 1).

11



The starting point of the proof of this result is the observation that for (W,W ′) exchangeable,
Eg(W,W ′) = 0 for all antisymmetric functions g for which this expectation exists. We apply
this with the choice

g(x, y) = (x− y)[f(y) + f(x)] ,

where we will take f to be the solution of our Stein equation, which is sufficiently bounded to
guarantee existence of the expectation. Hence,

0 = E [(W −W ′)(f(W ′) + f(W ))]

= E [(W −W ′)(f(W ′)− f(W ))] + 2E [f(W )(W −W ′)]

= E [(W −W ′)(f(W ′)− f(W ))] + 2E [f(W )E[W −W ′|W ]]

= E [(W −W ′)(f(W ′)− f(W ))] + 2λE [Wf(W )] ,

so that
E [Wf(W )] =

1

2λ
E [(W −W ′)(f(W ′)− f(W ))] .

As an illustration of the construction of an exchangeable pair satisfying the conditions of
Theorem 2.7, suppose W = X1 + · · ·+Xn is a sum of IID random variables, each with mean
zero, and with Var(W ) = 1. Letting I be uniformly distributed on {1, . . . , n} (independent
of all else) and X ′1, . . . , X

′
n be independent copies of X1, . . . , Xn, we may write W ′ = W −

XI +X ′I . Then W and W ′ are exchangeable.

Exercise: In this setting, show that E[W ′|W ] =
(
1− 1

n

)
W .

Exchangeable pairs satisfying the conditions of Theorem 2.7 can also be constructed as suc-
cessive states of a reversible Markov chain in stationarity with stationary distribution F . For
example, let W be the sum of a simple random sample (without replacement) of size n from
a set of numbers S = {a1, . . . , aN} of size N > n. We assume appropriate normalisation to
give EW = 0 and Var(W ) = 1. We may construct a Markov chain whose state space consists
of subsets of S of size n. This Markov chain evolves according to the following rule: at each
time step, choose uniformly at random an element of S in your current sample, and an element
of S not in your current sample, and interchange them. We start the chain in stationarity, so
that it remains stationary, and it is clearly reversible. Letting W and W ′ be two consecutive
states of this chain, these random variables are exchangeable, and we may prove the linearity
condition required by Theorem 2.7 in a similar way to the IID example above.

2.3.3 The zero-biased coupling

The zero-biased transformation of a distribution was first introduced by Goldstein and Reinert
[40]:

Definition 2.8. Let W be a random variable with mean zero and finite variance σ2. The
random variable W z has the W -zero-biased distribution if

E[Wg(W )] = σ2Eg′(W z) ,

for all absolutely continuous functions g : R 7→ R for which these expectations exist.
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It was shown in [40] that W z exists for all W with zero mean and finite variance. This random
variable W z is always continuous (regardless of whether W is discrete or continuous), and
has density function given by

pz(x) = σ−2E[W1{W>x}] .

Exercise: Check that this is indeed the density function of W z.

Exercise: Verify that for any constant c 6= 0, (cW )z is equal in distribution to cW z.

It is clear from the definition and Stein’s characterisation of the Gaussian distribution that
the Gaussian (with mean zero and variance σ2) is the unique fixed point of the zero-bias
transformation. We may quantify how closeW is to Gaussian with the following result, which
follows almost immediately from the definition.

Theorem 2.9. Let EW = 0 and Var(W ) = 1. Then

dW (W,Z) ≤ 2E|W −W z| ,

where Z ∼ N(0, 1) and W z has the W -zero-biased distribution.

Proof. For any h ∈ HW , we use the Stein equation (1) to write

|Eh(W )− Eh(Z)| = |E[f ′(W )]− E[Wf(W )]| = |Ef ′(W )− Ef ′(W z)|
≤ ‖f ′′‖∞E|W −W z| ≤ 2‖h′‖∞E|W −W z| ,

where the final inequality uses (4). The result follows by taking the supremum over h ∈
HW .

We illustrate this result with an application to a sum of independent random variables. For this,
we will need the following lemma, which allows us to construct the zero-biased distribution
of the sum in terms of the zero-biased distribution of the individual summands.

Lemma 2.10. Let X1, . . . , Xn be independent, mean zero random variables with Var(Xi) =
σ2
i . Let σ2 = σ2

1 + · · · + σ2
n > 0 and let W = X1 + · · · + Xn. Define the random index I ,

independent of X1, . . . , Xn, such that

P(I = i) =
σ2
i

σ2
, i = 1, . . . , n .

IfXz
i has theXi-zero-biased distribution (independent of I andXj for j 6= i), then the random

variable
W z = W −XI +Xz

I

has the W -zero-biased distribution.

13



Proof. For all absolutely continuous functions g (either directly or by using a suitable limiting
argument), we use independence of the underlying random variables to write

E[Wg(W )] =
n∑
i=1

E[Xig(W )] =
n∑
i=1

E

[
Xig

(
Xi +

∑
j 6=i

Xj

)]

=
n∑
i=1

σ2
iE

[
g′

(
Xz
i +

∑
j 6=i

Xj

)]
= σ2

n∑
i=1

σ2
i

σ2
E [g′ (W −Xi +Xz

i )]

= σ2Eg′(W −XI +Xz
I ) = σ2Eg′(W z) .

Suppose now that X1, . . . , Xn are independent, mean zero random variables whose variances
sum to 1. Letting W = X1 + · · · + Xn and Z ∼ N(0, 1), we may combine the above results
to get that

dW (W,Z) ≤ 2E|XI −Xz
I | = 2

n∑
i=1

σ2
iE|Xi −Xz

i | ,

using the notation of Lemma 2.10. Taking g(x) = x2sgn(x), so that g′(x) = 2|x|, in the
definition of Xz

i gives us that

σ2
iE|Xz

i | ≤
1

2
E|X3

i | ,

so that by the triangle inequality

dW (W,Z) ≤ 2
n∑
i=1

(
σ2
iE|Xi|+

1

2
E|X3

i |
)
.

Many other situations may also be treated by the bound in Theorem 2.9; see Chapter 4 of [19]
for several applications of this result.

In proving bounds in normal approximation in Kolmogorov distance using zero-biased cou-
plings, assumptions of boundedness of the underlying coupling are often very useful, as illus-
trated by the following theorem (which is given as Theorem 5.1 of [19]).

Theorem 2.11. LetW be a random variable with mean zero and variance 1. LettingW z have
theW -zero-biased distribution, suppose we may constructW andW z on the same space such
that |W −W z| ≤ δ almost surely. Then

dK(W,Z) ≤ 2.03δ ,

where Z ∼ N(0, 1).
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Proof. For any z ∈ R, we let Φ(z) = P(Z ≤ z) and apply a well-known inequality for
increments of Φ to write

P(W ≤ z)− Φ(z) = [Φ(z − δ)− Φ(z)] + P(W ≤ z)− Φ(z − δ)

≥ − δ√
2π

+ P(W ≤ z)− Φ(z − δ) . (13)

Now, let f be the solution to the Stein equation (1) for the test function h(x) = I{x≤z−δ}. Then
we have that

f ′(W z) = I{W z≤z−δ} − Φ(z − δ) +W zf(W z)

≤ I{W≤z} − Φ(z − δ) +W zf(W z) . (14)

Taking expectations in (14) and applying this in (13) we obtain

P(W ≤ z)− Φ(z) ≥ − δ√
2π

+ E [f ′(W z)−W zf(W z)]

= − δ√
2π

+ E [Wf(W )−W zf(W z)] . (15)

Letting ∆ = W z −W and using (5) we have

|E [Wf(W )−W zf(W z)] | = |E [Wf(W )− (W + ∆)f(W + ∆)] |

≤ E

[(
|W |+

√
2π

4

)
|∆|

]

≤ δ

(
1 +

√
2π

4

)
.

Combining this with (15) we have

P(W ≤ z)− Φ(z) ≥ −δ

(
1√
2π

+ 1 +

√
2π

4

)
≥ −2.03δ .

A similar argument gives the reverse inequality, and the result follows by taking the supremum
over z ∈ R.

Example: Combinatorial central limit theorem

Let (ai,j)
n
i,j=1 be an array of real numbers and π a uniformly chosen permutation of {1, . . . , n}.

Let Y =
∑n

i=1 ai,π(i). We further define

a•• =
1

n2

n∑
i,j=1

ai,j , ai• =
1

n

n∑
j=1

ai,j , and a•j =
1

n

n∑
i=1

ai,j .
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Note that EY = na•• and

Var(Y ) = σ2 =
1

n− 1

n∑
i,j=1

(ai,j − ai• − a•j + a••)
2 .

See, for example, Section 4.4 of [19]. Letting W = σ−1(Y − na••) and

C = max
1≤i,j≤n

|ai,j − ai• − a•j + a••| ,

the proof of Theorem 6.1 of [19] shows that E|W − W z| ≤ 8Cσ−1, and so we have from
Theorem 2.11 that

dK(W,Z) ≤ 16.3C

σ
.

2.3.4 The size-biased coupling

Given a non-negative random variable Y with EY = µ > 0, we may define Y ?, the size-biased
version of Y , by letting

µE[g(Y ?)] = E[Y g(Y )] ,

for all functions g : R+ 7→ R for which these expectations exist. The strongest links between
size-biasing and Stein’s method come when considering Poisson approximation, and we will
discuss the construction and properties of size-biased random variables in detail in Section 4.
For now, we just note that this construction can also be used to yield Gaussian approximation
results. As in the zero-biasing case above, assumptions of boundedness of size-biased cou-
plings may be used to help yield bounds in Kolmogorov distance. We state one typical result
here (for a proof, see Section 5.3 of [19]), but defer any further discussion of size-biasing until
Section 4.

Theorem 2.12. Let Y be a non-negative random variable with mean 0 < µ <∞ and variance
0 < σ2 < ∞. Suppose Y ? may be coupled to Y in such a way that |Y ? − Y | ≤ A almost
surely, for some A. Let W = (Y − µ)/σ. Then

dK(W,Z) ≤ 6µA2

σ3
+

2µ

σ2

√
Var(E[Y ? − Y |Y ]) ,

where Z ∼ N(0, 1).

2.3.5 The Malliavin–Stein method

Finally in this section, we note relatively recent work combining Stein’s method with the tools
of Malliavin calculus. This begins with the observation that the Malliavin calculus integration
by parts formula may be combined with analogous techniques at the heart of the proof of
the characterisation of the Gaussian distribution, Lemma 2.1. See the book of Nourdin and
Peccati [47] for a starting point for the study of these techniques.
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2.4 Variance bounds using zero biasing

Isoperimetric inequalities, giving upper bounds on the variance of a function of a random
variable, have a long and rich history, beginning with the work of Chernoff [22]. Chernoff
proved that if Z ∼ N(0, σ2) then

Var(g(Z)) ≤ σ2E[(g′(Z))2] ,

for any absolutely continuous function g : R 7→ R such that g(Z) has finite variance. This
inequality has since been investigated and generalized by many authors, including Cacoullos
[14], Chen [18], Klaassen [44] and Borovkov and Utev [12]. To accompany these upper
variance bounds, many of these authors have also established corresponding lower bounds, in
the form of generalized Cramér-Rao inequalities. In particular, if Z ∼ N(0, σ2) we have

Var(g(Z)) ≥ σ2E[g′(Z)]2,

see, for example, [14]. There has since been much further work on such inequalities. Here
we present (a special case of) some recent work [28] that allows the proof of such upper and
lower variance bounds in the framework of zero-biased couplings.

Let W be a random variable with mean zero and finite, non-zero variance σ2. Recall the
defining relation for the zero-biased distribution:

E[Wα(W )] = σ2Eα′(W z) , (16)

for all absolutely continuous functions α : R 7→ R for which these expectations exist.

Let g be a real-valued differentiable function such that all expectations and variances written
below exist. We then have that

Var(g(W )) ≤ E
[
(g(W )− g(0))2] = E

[(∫ W

0

g′(u) du

)2
]

≤ E
[
W

∫ W

0

(g′(u))
2
du

]
,

where the final equality follows from the Cauchy-Schwarz inequality. Applying (16) and rules
for differentiating integrals we deduce that

Var(g(W )) ≤ σ2E
[
(g′(W z))

2
]
. (17)

The definition (16) can also readily be combined with the Cauchy-Schwarz inequality to obtain
lower variance bounds:

(E [Wg(W )])2 = (E [W (g(W )− E[g(W )])])2 ≤ E
[
W 2
]

Var(g(W )) .

Then from (16) we have
Var(g(W )) ≥ σ2(E [g′(W z)])2 .
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It would, of course, be preferable to have variance bounds in terms of the original random
variableW rather than its zero-biased version. Using that, for any twice differentiable function
g, we have ∣∣g′(x+ t)2 − g′(x)2

∣∣ ≤ 2‖g′g′′‖∞|t| ,

we may immediately deduce from (17) that

Var(g(W )) ≤ σ2E
[
g′(W )2

]
+ 2σ2‖g′g′′‖∞E|W z −W | . (18)

This can be applied in situations in which the zero-biased coupling is bounded, as in the
combinatorial central limit theorem considered in Section 2.3.3.

We use the reminder of this section to explore the example in which W is a sum of (suitably
normalised) independent and identically distributed Bernoulli random variables, each with
parameter p = 1− q. That is, W = X1 + · · ·+Xn, where, for each i,

P
(
Xi =

q
√
npq

)
= p , and P

(
Xi =

−p
√
npq

)
= q ,

so that EXi = 0 and Var(Xi) = 1/n.

In this case, using Lemma 2.10 in conjunction with (18) gives the bound

Var(g(W )) ≤ E
[
g′(W )2

]
+ 2‖g′g′′‖∞E|Xz

1 −X1| .

Exercise: Show that we may construct Xz
1 as U−p√

npq
, where U ∼ U(0, 1) has a uniform distri-

bution.

Using this fact, Corollary 4.1 of [19] shows that we may couple X1 and Xz
1 such that E|Xz

1 −
X1| = p2+q2

2
√
npq

, which gives

Var(g(W )) ≤ E
[
g′(W )2

]
+ ‖g′g′′‖∞

p2 + q2

√
npq

.

We may derive tighter bounds in this example under restrictions on the class of functions
g we consider. Again using the fact that a zero-biased Bernoulli distribution is uniformly
distributed, we have that Xz

1 is smaller than X1 in a convex sense; that is, Eβ(Xz
1 ) ≤ Eβ(X1)

for all convex functions β. Using Lemma 2.10 together with standard closure properties of
convex ordering under mixtures and convolutions (see Section 3.A of [58]), it then follows
that W z is smaller than W in a convex sense.

Using this fact, (17) gives
Var(g(W )) ≤ E

[
g′(W )2

]
,

for any function g such that the function x 7→ g′(x)2 is convex.
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3 Exponential approximation

3.1 Introduction

We use this section to illustrate how the same principles we have developed for Gaussian
approximation using Stein’s method may also be used in many other contexts. We do this
by looking at exponential approximation. We will later also study Poisson approximation,
among other topics. Recall that Z ∼ Exp(ν) has an exponential distribution with rate ν if Z
has density function νe−νz for z > 0. See [16], [36] and [50] for approaches to Stein’s method
for exponential approximation; the particular techniques we discuss here are developed by
[50].

As in the Gaussian case, we begin with a suitable characterisation of the exponential distribu-
tion.

Lemma 3.1. A random variable X has and exponential distribution with rate 1, written X ∼
Exp(1), if and only if

Ef ′(X) = Ef(X)− f(0) , (19)

for all absolutely continuous f : R+ 7→ R such that E|f ′(Z)| <∞, where Z ∼ Exp(1).

Exercise: Check that if X ∼ Exp(1) then (19) holds for f as in the above lemma.

Exercise: Prove the other part of the lemma too: check that the condition (19) shows that the
Laplace transform of X is that of an exponential random variable with rate 1.

Using this characterisation, we define the following Stein equation: for a given function h :
R+ 7→ R, we let f : R+ 7→ R be such that f(0) = 0 and

f ′(x)− f(x) = h(x)− Eh(Z) , (20)

where Z ∼ Exp(1). Note that f defined in this way is unique.

Exercise: Check that f is given by

f(x) = −ex
∫ ∞
x

[h(t)− Eh(Z)] e−t dt . (21)

In order to apply this in practice we will (as in the Gaussian case) need bounds on the solution
to this Stein equation. The bound that we will need here is presented in the following lemma;
a selection of other analogous bounds may be derived similarly.

Lemma 3.2. Let h : R+ 7→ R be absolutely continuous and let f solve (20). Then

‖f ′′‖∞ ≤ 2‖h′‖∞ . (22)
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Proof. Differentiating (20), since h is absolutely continuous, we have that f satisfies

f ′′(x) = f ′(x) + h′(x) ,

and so it remains only to prove that |f ′(x)| ≤ ‖h′‖∞. By the same arguments that showed that
(21) solves (20) in the exercise above, we may show that

f ′(x) = −ex
∫ ∞
x

h′(t)e−t dt ,

from which it follows that

|f ′(x)| ≤ ‖h′‖∞ex
∫ ∞
x

e−t dt = ‖h′‖∞ ,

as required.

We will again focus on relevant coupling techniques which may be applied in conjunction
with Stein’s method for exponential approximation. Other approaches (e.g., exchangeable
pairs [36]) are available. We use the equilibrium coupling, defined below in this continuous
setting. Discrete analogues of this coupling have also been employed for geometric [51] and
negative binomial [56] approximations.

Definition 3.3. Let W ≥ 0 be a random variable with mean λ. The random variable W e has
the equilibrium distribution with respect to W if

Eg(W )− g(0) = λEg′(W e) ,

for all Lipschitz functions g : R+ 7→ R.

The key to this definition is that the exponential distribution is the unique fixed-point of this
transformation; this follows from (a slight generalisation of) our characterisation of the ex-
ponential distribution. That is, we can think of our characterisation of the exponential distri-
bution as saying that X and Xe have the same distribution if and only if X is exponentially
distributed.

Equivalently, we may define W e by using the integrated tail of W :

P(W e ≤ x) =
1

EW

∫ x

0

P(W > y) dy ,

which is familiar from renewal theory and other areas. Again, it is easy to see from this that if
X is exponential, then X and Xe have the same distribution.

In what follows we will consider approximation in the Wasserstein distance, defined by

dW (W,Z) = sup
h∈HW

|Eh(W )− Eh(Z)| ,
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whereHW = {h : R 7→ R | |h(x)−h(y)| ≤ |x−y|} is the set of 1-Lipschitz functions. Now,
using (20) we have that

dW (W,Z) ≤ sup
h∈HW

|Ef ′(W )− Ef(W )|

= sup
h∈HW

|Ef ′(W )− Ef ′(W e)| ≤ sup
h∈HW

‖f ′′‖∞E|W e −W | .

We now apply (22) to obtain the following result.

Proposition 3.4. Let W ≥ 0 be a random variable with EW = 1 and Var(W ) <∞. Then

dW (W,Z) ≤ 2E|W e −W | ,

where Z ∼ Exp(1).

Note that the second moment condition here ensures that W e has finite mean. In the next
section, we apply this result to the approximation of suitably scaled geometric sums by an
exponential distribution.

3.2 Approximation of geometric sums

In this section, we will consider the case where W = p
∑N

i=1 Yi, where Y1, Y2, . . . are inde-
pendent, non-negative, square-integrable random variables with EYi = 1, and N is a positive
integer-valued random variable independent of the Yi with mean 1/p. A classical theorem of
Rényi states that if N is geometrically distributed, then W converges in distribution to expo-
nential as p → 0. We will give a proof of the following result, which complements Rényi’s
theorem with explicit error bounds, and applies in the somewhat more general setting where
N is not necessarily geometric. The result here was established by Peköz and Röllin [50]. In
fact, they established a more powerful result, allowing some dependence between the Yi.

Theorem 3.5. Let W = p
∑N

i=1 Yi, where Y1, Y2, . . . are independent, non-negative, square-
integrable random variables with EYi = 1, andN is a positive integer-valued random variable
independent of the Yi with mean 1/p. Let M be a positive integer-valued random variable on
the same probability space as N , satisfying

P(M = m) = pP(N ≥ m) .

Let Y e
i have the equilibrium coupling of Yi, and be independent of M , N and Yj for j 6= i.

Then

dW (W,Z) ≤ 2p (E|YM − Y e
M |+ E|N −M |)

≤ 2p
(

1 +
µ2

2
+ E|N −M |

)
,

where Z ∼ Exp(1) and µ2 = supi E[Y 2
i ].
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Proof. We begin by constructing the random variable W e.

Exercise: Let h : R+ 7→ R be a Lipschitz function with h(0) = 0, and define g(m) =
h(p

∑m
i=1 Yi). Show that

E

[
h′

(
p
M−1∑
i=1

Yi + pY e
M

)∣∣∣∣∣M
]

=
1

p
E [g(M)− g(M − 1)|M ] ,

and that
1

p
E [g(M)− g(M − 1)| (Yi)i≥1] = E [g(N)| (Yi)i≥1] .

Hence, conclude that we may let

W e = p

[
M−1∑
i=1

Yi + Y e
M

]
. (23)

Now, using (23) and Proposition 3.4, we have that

dW (W,Z) ≤ 2pE

∣∣∣∣∣∣Y e
M − YM + sgn(N −M)

M∨N∑
i=(M∧N)+1

Yi

∣∣∣∣∣∣
≤ 2p [E|Y e

M − YM |+ E|N −M |] ,

which gives the first bound of the theorem. For the second inequality, we have

E [|Y e
M − YM | |M ] ≤ E[Y e

M |M ] + E[YM |M ]

=
1

2
E[Y 2

M |M ] + 1

≤ µ2

2
+ 1 ,

where the equality uses the definition of the equilibrium coupling.

Note that M is defined using a discrete version of the equilibrium coupling, for which the
geometric distribution (with mean 1/p) is the unique fixed point; i.e., if N is geometrically
distributed, then we may choose M = N in Theorem 3.5. We may think of the term E|N −
M | as measuring how close N is to geometric. See [51] for applications of this discrete
equilibrium coupling to geometric approximation.

Hence, note that the upper bound of Theorem 3.5 is zero if N is geometrically distributed and
the Yi are exponentially distributed.

Exercise: Check that (with notation as in Theorem 3.5) if Yi ∼ Exp(1) andN is geometrically
distributed, then M is also geometrically distributed and W ∼ Exp(1).

We will return to the study of geometric sums in Section 5, where we will consider approxi-
mation by (rather than for) geometric sums.
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4 Poisson approximation and related topics

Throughout this section we will let X1, . . . , Xn be (possibly dependent) Bernoulli random
variables. We will write pi = EXi and λ =

∑n
i=1 pi. We are interested in the approximation

of W = X1 + · · ·+Xn by a Poisson random variable Z ∼ Po(λ) with mass function P(Z =

j) = e−λλj

j!
for j ∈ Z+.

For the most part, we will assess closeness of non-negative, integer-valued random variables
using the total variation distance:

dTV (W,Z) =
1

2

∞∑
j=0

|P(W = j)− P(Z = j)| = sup
‖h‖∞≤1

|Eh(W )− Eh(Z)| .

4.1 Poisson approximation by maximal coupling

Before we discuss the Stein–Chen method for Poisson approximation, we give a brief account
of a simple coupling bound for Poisson approximation for sums of independent Bernoulli
random variables, due to Le Cam.

Definition 4.1. A coupling (X̂, Ŷ ) of random variables (X, Y ) is maximal if

P(X̂ = Ŷ ) = sup
{
P(X̃ = Ỹ ) : (X̃, Ỹ ) is a coupling of (X, Y )

}
.

Before we give a Poisson approximation bound, we note some properties of maximal cou-
plings (which we state without proof).

Lemma 4.2. Let (X̂, Ŷ ) be a maximal coupling of the non-negative, integer-valued random
variables X and Y . Then

P(X̂ = Ŷ ) =
∞∑
j=0

min{P(X = j),P(Y = j)} .

Lemma 4.3. If (X̂, Ŷ ) is a maximal coupling of X and Y

dTV (X, Y ) = P(X̂ 6= Ŷ ) .

We are now in a position to state and prove the following well-known Poisson approximation
result.

Theorem 4.4 (Le Cam). Let X1, . . . , Xn be independent Bernoulli random variables, with
EXi = pi. Let W = X1 + · · ·+Xn and λ = EW = p1 + · · ·+ pn. If Z ∼ Po(λ),

dTV (W,Z) ≤
n∑
i=1

p2
i .
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Proof. Write Z =
∑n

i=1 Zi, where Zi ∼ Po(pi). We can coupleXi and Zi maximally for each
i (using Lemma 4.2) to get (X̂i, Ẑi) with

P(X̂i = Ẑi) =
∞∑
j=0

min{P(Xi = j),P(Zi = j)}

= min{1− pi, e−pi}+ min{pi, pie−pi} = 1− pi + pie
−pi ≥ 1− p2

i .

Then, since
(∑n

i=1 X̂i,
∑n

i=1 Ẑi

)
is a coupling of W and Z,

dTV (W,Z) ≤ P

(
n∑
i=1

X̂i 6=
n∑
i=1

Ẑi

)
≤ P

(
n⋃
i=1

{
X̂i 6= Ẑi

})
≤

n∑
i=1

P(X̂i 6= Ẑi) ≤
n∑
i=1

p2
i .

This is an elegant result, but there is much room for improvement. To see this, consider the
following results, established for sums of independent Bernoulli random variables by [15]
using operator techniques:

dTV (W,Z) ≤ 4.5 max
i
pi ,

dTV (W,Z) ≤ 8λ−1

n∑
i=1

p2
i , (24)

this last inequality proved under the assumption maxi pi ≤ 1/4. We are most interested in the
second of these inequalities, which can represent a substantial improvement over the bound of
Theorem 4.4 when λ is large, achieved by the inclusion of the “magic factor” of λ−1

4.2 The Stein–Chen method for Poisson approximation

As in the case of Gaussian approximation, the Stein–Chen method has the advantage of being
able to handle dependence between the random variables Xi. We will also see that results
here include “magic factors” akin to that in Le Cam’s result (24) and that were missing in the
coupling argument of Theorem 4.4.

Before proceeding further, we need a little notation. Let Z+ denote the non-negative integers.
For any function g : Z+ 7→ R we let ∆ be the forward difference operator, so that ∆g(j) =
g(j + 1)− g(j).

As in the Gaussian case, the starting point of Stein’s method is a characterization of the Poisson
distribution (with a proof similar to the Gaussian and exponential cases we have already seen).

Lemma 4.5. A non-negative, integer-valued random variable X has a Poisson distribution
with mean λ, written X ∼ Po(λ), if and only if

λE [g(X + 1)] = E [Xg(X)]

for all bounded g : Z+ 7→ R.
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Exercise: Verify that if Z ∼ Po(λ), then λE [g(Z + 1)] = E [Zg(Z)] for all bounded g :
Z+ 7→ R.

We may now write down the corresponding Stein equation: For a given function h : Z+ 7→ R,
we let f = fh solve

h(j)− Eh(Z) = λf(j + 1)− jf(j) . (25)

This is used in an analogous way to previous Stein equations we have seen. Replacing j with
W and taking expectations we have that

Eh(W )− Eh(Z) = E [λf(W + 1)−Wf(W )] .

If W ≈ Po(λ), then the LHS should be small for a suitably large class of functions h. So, the
RHS should also be small. We can ‘measure how close W is to Poisson’ by looking at how
large the RHS can become for h in some suitable class. To make this idea precise (for the case
of total variation distance) let

H = HTV = {h : Z+ 7→ R | ‖h‖∞ ≤ 1}

Then

dTV (W,Z) = sup
h∈HTV

|Eh(W )− Eh(Z)| = sup
h∈HTV

|E [λf(W + 1)−Wf(W )]| . (26)

Other metrics may be treated similarly. For example, defining the Wasserstein distance

dW (W,Z) =
∞∑
j=0

|P(W ≤ j)− P(Z ≤ j)| = sup
h∈HW

|Eh(W )− Eh(Z)| ,

whereHW = {h : Z+ 7→ R | ‖∆h‖ ≤ 1} is the set of Lipschitz functions, we have

dW (W,Z) = sup
h∈HW

|E [λf(W + 1)−Wf(W )]| .

We will need bounds on the solution f of this Stein equation, which are given below without
proof. The interested reader is referred to Lemmas 1.1.1 and 1.1.5 of [10] for proofs and
further discussion.

Lemma 4.6. 1. If h ∈ HTV ,

‖f‖∞ ≤ min

{
1,

√
2

eλ

}
and ‖∆f‖∞ ≤

1− e−λ

λ
.

2. If h ∈ HW ,

‖f‖∞ ≤ 3 and ‖∆f‖∞ ≤ 3 min

{
1,

√
1

λ

}
.
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Note that these bounds do not depend on h, nor on the random variable W of interest. Such
bounds are known as Stein factors, or magic factors.

To see how we may bound (26) in practice, we first consider the case where W is a sum of
independent Bernoulli random variables.

4.2.1 Independent summands

In the following theorem, note the improvement over previous results. We retain the magic
factor of λ−1 appearing in (24), but without the restriction on the pi. The argument here, and
its extension to the setting of local dependence, is due to Chen [17].

Theorem 4.7. Let X1, . . . , Xn be independent Bernoulli random variables, with EXi = pi.
Let W = X1 + · · ·+Xn and λ = EW = p1 + · · ·+ pn. If Z ∼ Po(λ),

dTV (W,Z) ≤
(

1− e−λ

λ

) n∑
i=1

p2
i .

Proof. For each i we write Wi = W −Xi. We begin by noting that

E [λf(W + 1)−Wf(W )] =
n∑
i=1

E [pif(W + 1)−Xif(W )] .

For each i, E[Xif(W )] = piE[f(Wi + 1)] and so

E [λf(W + 1)−Wf(W )] =
n∑
i=1

piE [f(W + 1)− f(Wi + 1)] .

Since

|E [f(W + 1)− f(Wi + 1)]| ≤ sup
h∈HTV

‖∆f‖∞E|W −Wi|

≤
(

1− e−λ

λ

)
EXi

=

(
1− e−λ

λ

)
pi ,

(using Lemma 4.6) we have that

|E [λf(W + 1)−Wf(W )]| ≤
(

1− e−λ

λ

) n∑
i=1

p2
i .
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It is worth noting that the bound given by Theorem 4.7 is of the right order. We have the
corresponding lower bound

dTV (W,Z) ≥ 1

32
min

{
1,

1

λ

} n∑
i=1

p2
i ;

See Barbour and Hall [9].

4.2.2 Dependent summands: the local approach

One of the advantages to Stein’s approach is that the argument of Theorem 4.7 may be eas-
ily adapted to cover the case where the Xi are no longer independent. In the Poisson case,
there are two widely used approaches to doing this: the ‘local approach’ and the ‘coupling
approach’. We will begin with a brief look at the local approach (due to Chen [17]), but most
of our attention will be devoted to the coupling approach.

Theorem 4.8. Let X1, . . . , Xn be Bernoulli random variables, with EXi = pi. Let W =
X1 + · · ·+Xn and λ = EW = p1 + · · ·+ pn. For each i, divide {1, . . . , i− 1, i+ 1, . . . , n}
into two subsets Γi and Θi so that, informally,

Γi = {j : Xj is strongly dependent on Xi} .

Let Zi =
∑

j∈Γi
Xj and Wi =

∑
j∈Θi

Xj . If Z ∼ Po(λ),

dTV (W,Z) ≤
(

1− e−λ

λ

) n∑
i=1

(piE[Xi + Zi] + E[XiZi]) +

√
2

eλ

n∑
i=1

E |pi − E[Xi|Wi]| .

Proof. We write

E [λf(W + 1)−Wf(W )] =
n∑
i=1

E [pif(W + 1)−Xif(W )]

=
n∑
i=1

E [pif(W + 1)− pif(Wi + 1)]

+
n∑
i=1

E [pif(Wi + 1)−Xif(Wi + 1)]

+
n∑
i=1

E [Xif(Wi + 1)−Xif(W )] .

For each i we have the bounds

|f(W + 1)− f(Wi + 1)| ≤ ‖∆f‖∞(Xi + Zi) ,

|Xif(Wi + 1)−Xif(W )| ≤ ‖∆f‖∞XiZi ,

|E [pif(Wi + 1)−Xif(Wi + 1)]| ≤ ‖f‖∞E |pi − E[Xi|Wi]| .
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Combining all these we have

|E [λf(W + 1)−Wf(W )]|

≤ ‖∆f‖∞
n∑
i=1

(piE[Xi + Zi] + E[XiZi]) + ‖f‖∞
n∑
i=1

E |pi − E[Xi|Wi]| ,

from which the result follows using Lemma 4.6.

In the case where Xi are independent, we choose Γi = ∅ for each i and recover the bound of
Theorem 4.7.

Example: the birthday problem

This example is taken from [5]. Suppose m balls (people) are thrown independently and
equiprobably into d boxes (days of the year). Let W be the number of pairs that go into the
same box. How close is W to Poisson?

Let Γ be the set of all 2–subsets of {1, . . . ,m}. That is, Γ = {i ⊂ {1, . . . ,m} : |i| = 2}.
If i = {i1, i2}, we write Xi for the indicator that balls i1 and i2 land in the same box. So,
W =

∑
i∈ΓXi.

Note that EXi = d−1 for all i ∈ Γ, and so λ = EW =
(
m
2

)
d−1. Also, E[XiXj] = d−2 for all

i 6= j.

We choose Γi = {j ∈ Γ \ {i} : i ∩ j 6= ∅}. Then Xi is independent of Xj for all j 6∈ Γi ∪ {i}
and so the final term of the bound in Theorem 4.8 vanishes.

We obtain

dTV (W,Z) ≤
(

1− e−λ

λ

)∑
i∈Γ

(piE[Xi + Zi] + E[XiZi])

=

(
1− e−λ

λ

)(
m

2

)(
2(m− 1) + 1

d2
+

2(m− 1)

d2

)
=

(
1− e−λ

λ

)(
m

2

)
4m− 3

d2

≤ 8λ(1− e−λ)
m− 1

.

4.3 The size-biased coupling and monotonicity

Definition 4.9. If W is a non-negative, integer-valued random variable with mean λ > 0, we
let W ? have the W -size-biased distribution, given by

P(W ? = j) =
jP(W = j)

λ
.
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Equivalently, we may define W ? by letting

λE[g(W ?)] = E[Wg(W )] , (27)

for all g : Z+ 7→ R for which the expectations above exist.

With this definition, it is clear that we may write our Stein equation as

Eh(W )− Eh(Z) = λE [f(W + 1)− f(W ?)] . (28)

Note that we may also rewrite our characterization of the Poisson distribution by saying that
X has a Poisson distribution if and only if X + 1 is equal in distribution to X?.

Since the absolute value of the RHS of (28) may be bounded by λ‖∆f‖∞E|W + 1−W ?|, we
immediately obtain the following from Lemma 4.6.

Theorem 4.10. Let W be a non-negative, integer-valued random variable with EW = λ > 0.
Let Z ∼ Po(λ). Then

dTV (W,Z) ≤ min{1, λ}E|W + 1−W ?| .

The size-biased coupling approach to the Stein–Chen method for Poisson approximation is
often easiest to apply in the presence of monotonicity, either some form of ‘negative depen-
dence’ or ‘positive dependence’. In the remainder of this section we will focus on results in
the presence of such monotonicity (basing our discussion on [31]), but see [10] for a more
extensive discussion, including results that hold without any monotonicity.

Definition 4.11. For any two random variables X and Y , Y is stochastically larger than
X (written X ≤st Y ) if P(X > t) ≤ P(Y > t) for all t. This is equivalent to having
Eg(X) ≤ Eg(Y ) for all increasing functions g, and to the existence of a coupling (X̃, Ỹ ) of
(X, Y ) such that X̃ ≤ Ỹ almost surely.

4.3.1 Negative dependence

Our ‘negative dependence’ assumption is that W ? ≤st W + 1. Consider the following cases
in which this condition holds:

1. W is ultra log-concave (of degree∞). That is,

(j + 1)P(W = j + 1)

P(W = j)
is increasing in j .

Or, equivalently, W ? ≤lr W + 1. Here ‘≤lr’ is the likelihood ratio ordering, which is
known to be stronger than the stochastic ordering ≤st. The ULC(∞) class was intro-
duced by Liggett [46] to capture negative dependence.

29



2. W = X1 + · · ·+Xn is a sum of (dependent) Bernoulli random variables with

Cov(g1(Xi), g2(W −Xi)) ≤ 0 ,

for each i = 1, . . . , n and all increasing functions g1 and g2. That is, X1, . . . , Xn are
totally negatively dependent (TND); see Papadatos and Papathanasiou [48], who show
that TND Bernoulli random variables also satisfy the well-known negative dependence
property of being negatively related.

Let Wi = W − Xi and g be an increasing function. In the case where X1, . . . , Xn are
TND we have that, almost surely,

E[Wg(W )] =
n∑
i=1

E[Xig(W )] ≤
n∑
i=1

E[Xig(Wi + 1)] ≤
n∑
i=1

E[Xi]E[g(Wi + 1)]

≤
n∑
i=1

E[Xi]E[g(W + 1)] = E[W ]E[g(W + 1)] ,

so that W ? ≤st W + 1.

Theorem 4.12. Let W be a non-negative, integer-valued random variable with EW = λ > 0.
Suppose that W ∗ ≤st W + 1. Then

dTV (W,Z) ≤ 1− e−λ

λ
[λ− Var(W )] ,

where Z ∼ Po(λ).

Proof. We have

Ef(W + 1)− Ef(W ?) =
∞∑
j=0

f(j)
[
P(W + 1 = j)− P(W ? = j)

]
=
∞∑
j=0

∆f(j)
[
P(W + 1 > j)− P(W ? > j)

]
.

Hence, taking absolute values and using our Stein equation,

dTV (W,Z) ≤ λ sup
h∈HTV

‖∆f‖∞
∞∑
j=0

|P(W + 1 > j)− P(W ? > j)| .

Our negative dependence assumption allows us to remove the absolute values from this ex-
pression, so that (applying Lemma 4.6) we obtain

dTV (W,Z) ≤ (1− e−λ)E[W + 1−W ?] =
1− e−λ

λ
[λ− Var(W )] .
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In order to be able to apply this result, we will need to understand how to construct the size-
biased random variable W ?, particularly in the case where W = X1 + · · · + Xn is a sum of
dependent Bernoulli random variables. The following lemma allows us to do this, so that we
can verify the monotonicity condition needed for Theorem 4.12. This result, together with an
extensive discussion of the role of size biasing in various areas of applied probability, can be
found in [6].

Lemma 4.13. Let W = X1 + · · · + Xn be a sum of dependent Bernoulli random variables.
Let pi = EXi and λ = EW = p1 + · · ·+ pn > 0. Let I be a random variable, independent of
all else, with P(I = i) = pi/λ. Then

W ? = 1 +
∑
j 6=I

XI
j

has the W -size-biased distribution, where XI
j

d
= (Xj|XI = 1).

Examples: the hypergeometric distribution and coupon collecting

Suppose we have N balls in an urn, of which n are red and the remaining N − n are white.
We select m of these N balls, uniformly at random without replacement (so that any of the(
N
m

)
subsets of m balls are equally likely to be chosen).

Let Xi, i = 1, . . . , n, be an indicator that red ball i is chosen as part of our sample, so that
W = X1 + · · · + Xn counts the number of red balls chosen in our sample. These Xi are
exchangeable, so without loss of generality we may assume (in the notation of Lemma 4.13)
that I = 1.

Now carry out the following procedure:

• if the red ball labelled 1 is in our sample, do nothing.

• if the red ball labelled 1 is not in our sample, choose uniformly at random one of the m
balls in the sample, and replace it with the red ball labelled 1.

Now let X(1)
i , i = 2, . . . , n, be an indicator that red ball i is in this (potentially modified)

sample of balls. Clearly we have that X(1)
i ≤ Xi almost surely for each i = 2, . . . , n. Lemma

4.13 tells us that we may take

W ? = 1 +
n∑
j=2

X
(1)
j ≤st 1 +

n∑
j=2

Xj ≤st W + 1 ,

and so our negative dependence assumption holds.

Then, since EW = λ = mn
N

and

Var(W ) =
mn(N − n)(n−m)

N2(N − 1)
,
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Theorem 4.12 gives us that

dTV (W,Z) ≤ n

N − 1
+

m

N − 1
− mn

N(N − 1)
− 1

N − 1
.

where Z ∼ Po(λ).

Exercise: Now suppose that we have n urns and k balls. Each of these k balls is thrown
into an urn which is chosen uniformly at random. Let Xi, i = 1, . . . , n, be an indicator
that urn i remains empty after all k balls are distributed. Then W = X1 + · · · + Xn counts
the number of empty urns. Note that, as in the hypergeometric example above, these Xi are
exchangeable random variables. Use a procedure similar to that of the example above to show
that W ? ≤st W + 1. Show also that EW = λ = n

(
1− 1

n

)k, P(Xi = 1, Xj = 1) =
(
1− 2

n

)k
for i 6= j, and that

Var(W ) = λ

[
1−

(
1− 1

n

)k]
+ n(n− 1)

[(
1− 2

n

)k
−
(

1− 1

n

)2k
]
.

Hence, use Theorem 4.12 to give an explicit bound in the Poisson approximation for W .

4.3.2 Positive dependence

It would be natural to conjecture that our positive dependence condition would be “W + 1 ≤st
W ?”, however this is not the case. (Exercise: use the supports of these two random variables
to argue that this condition would not make sense.)

We focus on the case where W = X1 + · · · + Xn is a sum of dependent Bernoulli random
variables, and let the random index I , independent of all else, be defined as in Lemma 4.13.
In this case our ‘positive dependence’ condition is that W + 1 − XI ≤st W ?. Under this
condition we obtain the following.

Theorem 4.14. Let W = X1 + · · · + Xn, with Xj , λ and the random index I as in Lemma
4.13. Assume W + 1−XI ≤st W ?. Then

dTV (W,Z) ≤ 1− e−λ

λ

[
Var(W )− λ+ 2

n∑
j=1

p2
j

]
,

where Z ∼ Po(λ).

Exercise: Prove this result by making suitable modifications to the proof of Theorem 4.12.

Example: triangles in an Erdős–Rényi random graph

Let G = G(n, p) be an Erdős–Rényi random graph with n vertices, in which each pair of
vertices has an edge between them with probability p, independently of all other pairs of
vertices.
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Let Γ be the set of all
(
n
3

)
triples (x, y, z) of vertices inG, and for α ∈ Γ, letXα be an indicator

that the three corresponding vertices form a triangle (i.e., that all edges between these three
vertices are present in the graph). Note that these random variables Xα are exchangeable, so
for the remainder of this example we fix α = (1, 2, 3) and (in the notation of Lemma 4.13)
take I = α.

Let W =
∑

β∈ΓXβ count the number of triangles in G. For β ∈ Γ, we let X(α)
β be an

indicator that a triangle is present at β in the graph constructed by adding to G any edges
missing between vertices in α. Clearly we have that X(α)

β ≥ Xβ almost surely, and so using
Lemma 4.13 we have

W + 1−Xα = 1 +
∑

β∈Γ\{α}

Xβ ≤st 1 +
∑

β∈Γ\{α}

X
(α)
β = W ? ,

so that our positive dependence assumption holds. To apply the bound of Theorem 4.14, we
note that EXβ = p3 for all β ∈ Γ, and so λ = EW =

(
n
3

)
p3.

Exercise: Show that

Var(W ) = λ
[
1− p3 + 3(n− 3)p2(1− p)

]
.

Combining all these ingredients, Theorem 4.14 gives

dTV (W,Z) ≤ p3 + 3(n− 3)p2(1− p) ,

where Z ∼ Po(λ).

4.4 Further applications of monotone size-biased couplings

In this section we look at some other situations in which the our negative dependence assump-
tion W ∗ ≤st W + 1 may be used to compare the random variable W with a Poisson random
variable of the same mean. These comparisons are each in a different sense, but make use of
the same monotonicity assumption on the size-biased coupling.

4.4.1 Bounds on the Poincaré constant

For a non-negative, integer-valued random variable W , we define the Poincaré (or inverse
spectral gap) constant by

RW = sup
g∈G(W )

{
E[g(W )2]

E[∆g(W )2]

}
,

where the supremum is taken over the set

G(W ) = {g : Z+ 7→ R with E[g(W )2] <∞ and E[g(W )] = 0} .
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Exercise: Show that RW ≥ Var(W ).

In general, the problem of finding sharp upper bounds on RW is a hard one. Note for what
follows that Z ∼ Po(λ) is characterised by the fact that RZ = λ.

Daly and Johnson [29] prove the following result.

Theorem 4.15. Let W be a non-negative, integer-valued random variable with mean λ, and
let Y ≥ 1 be a random variable defined on the same space as W such that W ? ≤st W + Y .
Then for any g ∈ G(W ),

E[g(W )2] ≤ λ

∞∑
j=0

∆g(j)2P(j − Y < W ≤ j) .

We have the immediate corollary

Corollary 4.16. Let W be a non-negative, integer-valued random variable. Suppose that
W ? ≤st W + 1. Then RW ≤ EW .

The proof of Theorem 4.15 uses the kernel function given by equation (2.17) of [44]:

χ(i, j) = I(bx0c ≤ j < i)− I(i ≤ j < bx0c)− (x0 − bx0c)I(j = bx0c) , (29)

for some x0 ∈ R, and uses the following lemma.

Lemma 4.17. Let W be a non-negative, integer-valued random variable. Then for any g ∈
G(W ) and any x0 ∈ R,

E[g(W )2] ≤
∞∑
j=0

∆g(j)2

∞∑
i=0

(i− x0)P (W = i)χ(i, j) . (30)

Proof. For any given integer i, we consider the cases {i < x0}, {i > x0} and {i = x0} to
deduce that, for any function h,

∞∑
j=0

χ(i, j)h(j) =


−
∑bx0c−1

j=i h(j) + (bx0c − x0)h(bx0c) for i < bx0c,
(bx0c − x0)h(bx0c) for i = bx0c,∑i−1
bx0c h(j) + (bx0c − x0)h(bx0c) for i > x0.

Now let h ≡ ∆g to get that
∑∞

j=0 χ(i, j)∆g(j) = g(i)− g∗, where

g∗ = g(bx0c) + ∆g(bx0c)(x0 − bx0c) .

In particular, taking h(j) ≡ 1 we deduce that
∑∞

j=0 χ(i, j) = (i − x0). Observe that by the
Cauchy–Schwarz inequality this means that

(g(i)− g∗)2 =

(
∞∑
j=0

χ(i, j)∆g(j)

)2

≤

(
∞∑
j=0

χ(i, j)

)(
∞∑
j=0

χ(i, j)∆g(j)2

)

= (i− x0)

(
∞∑
j=0

χ(i, j)∆g(j)2

)
. (31)
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Note that although χ(i, j) is a signed measure on j, the use of the Cauchy–Schwarz inequality
is justified since χ(i, j) has constant sign for any given i. If i ≥ bx0c then χ(i, j) ≥ 0 for all
j, and otherwise we have that χ(i, j) ≤ 0 for all j.

The lemma follows on combining (31) with the fact that, for all g ∈ G(W ),

E[g(W )2] ≤
∞∑
i=0

P (W = i) (g(i)− g∗)2 ,

and reversing the order of summation in the resulting expression.

Theorem 4.15 follows immediately from Lemma 4.17. To see this, choose x0 = EW = λ.
Then, using the definition of size-biasing, for a fixed j ∈ Z the inner sum in (30) can be
expressed as

EWχ(W, j)− λEχ(W, j) = λ (Eχ(W ?, j)− Eχ(W, j))

≤ λE [χ(W + Y, j)− χ(W, j)] , (32)

using the negative dependence assumption of Theorem 4.15, and the fact that χ(i, j) is in-
creasing in i for fixed j. Using (29), and assuming that j ≥ bx0c first, we have that, for any
w, z ∈ Z,

χ(w + z, j)− χ(w, j) = I(j < w + z)− I(j < w) = I(w ≤ j < w + z). (33)

Similarly, Equation (33) also holds in the case j < bx0c. Substituting this in (32) we obtain
λP(W ≤ j < W + Y ) = λP(j − Y < W ≤ j) as required to complete the proof of Theorem
4.15.

4.4.2 Entropy bounds

We define the entropy H(W ) of a non-negative, integer-valued random variable W in the
usual way, although for convenience we take natural logarithms:

H(W ) = −
∞∑
i=0

P(W = i) log(P(W = i)) .

In this section we will state (but not prove) a result which lets us compare the entropy of a
random variableW satisfying our negative dependence property with that of a Poisson random
variable of the same mean (λ, say). In fact, we will go further: defining a parametric family
of random variables which evolves from W to Z ∼ Po(λ), we will study the evolution of the
entropy along this path.

For any α ∈ [0, 1], we define the thinning operator Tα by letting TαW =
∑W

i=1 ηi, where
η1, η2, . . . are IID Bernoulli random variables (independent of W ) with mean α. We will write
Zλ for a Poisson random variable with mean λ.
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We will define the required family of random variables using the operator Uα, given by

UαW = TαW + Z(1−α)λ , (34)

where Z(1−α)λ is independent of all else. In what follows we will write Wα for a random
variable equal in distribution to UαW for α ∈ [0, 1]. Note that W1 is equal in distribution to
W , and that W0 ∼ Po(λ).

It is easy to see that, for any α ∈ [0, 1], we have E[Wα] = E[W ] = λ. We also note that
we have a semigroup-like property: for any α, β ∈ [0, 1], Uβ(UαW ) is equal in distribution
to UαβW . Finally, it is useful to note that Uα acts trivially on Poisson distributions. That is,
UαZλ is equal in distribution to Zλ for any λ ≥ 0 and α ∈ [0, 1]. Further properties of the
operators Uα, and their link with the M/M/∞ queue, are discussed by Johnson [42].

Theorem 5.1 of [42] shows that for W within the ultra log-concave class ULC(∞) of random
variables, the entropy of Wα is a decreasing and concave function of α. In particular, this
implies that the Poisson distribution has maximum entropy in this class.

Based on the arguments given by [42], we can show that the same result applies in the wider
class of random variables W satisfying our negative dependence assumption. See [25] for the
proof.

Theorem 4.18. Let W be a non-negative, integer-valued random variable satisfying W ? ≤st
W + 1. Then

∂

∂α
H(Wα) ≤ 0 and

∂2

∂α2
H(Wα) ≤ 0 , (35)

with equality if and only if W has a Poisson distribution.

Note that although no closed-form expression exists for H(Zλ), there are several bounds on
this quantity available in the literature. For example, there is the well-known bound

H(Zλ) ≤
1

2
log

(
2πe

(
λ+

1

12

))
.

The proof of Theorem 4.18 uses the following closure property:

Lemma 4.19. Let W be a non-negative, integer-valued random variable with positive mean.
If we have W ? ≤st W + 1 then W ?

α ≤st Wα + 1 for all α ∈ [0, 1].

The proof of this lemma uses Lemma 4.13 on the size-biasing of sums, as well as various
closure properties of stochastic ordering.

4.5 Concentration via size-biased couplings

As well as monotonicity of size-biased couplings, a simplifying assumption which is both
useful and relevant in applications is that of boundedness of size-biased couplings. In the case
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where |W −W ?| is bounded almost surely, Gaussian approximation results for W are given
in Section 5.3 of [19].

Another situation in which boundedness of size-biased couplings may be applied is in estab-
lishing concentration inequalities for W . For example, Ghosh and Goldstein [39] establish the
following result.

Theorem 4.20. Let W be a non-negative, integer-valued random variable with mean and
variance λ and σ2, respectively, both of which are finite and positive. Suppose that there exists
a coupling of W ? to W such that 0 ≤ W ? −W ≤ C almost surely for some C > 0. Then

P
(
W − λ
σ

≤ −t
)
≤ exp

{
− t2

2A

}
,

for all t > 0, where A = Cλ/σ2.

Proof. The elementary inequality

ey − ex

y − x
≤ ey + ex

2
,

for all x 6= y, gives us that

|eθW ? − eθW | ≤ 1

2
|θ(W ? −W )||eθW ?

+ eθW | ≤ C|θ|
2

(
eθW

?

+ eθW
)
, (36)

almost surely, for any θ ∈ R.

Letting m(θ) = E[eθW ] be the MGF of W (which exists for all θ < 0), note that

m′(θ) = E[WeθW ] = λE[eθW
?

] . (37)

Letting θ < 0 and using the fact that eθW ? ≤ eθW almost surely, (36) gives eθW − eθW
? ≤

C|θ|eθW . Hence,

E[eθW
?

] ≥ (1− C|θ|)E[eθW ] = (1 + Cθ)E[eθW ] ,

so that
m′(θ) ≥ λ(1 + Cθ)m(θ) , (38)

for all θ < 0.

Now let M(θ) be the MGF of (W − λ)/σ and note that M(θ) = e−λθ/σm(θ/σ). Hence,
writing (38) in terms of this standardised random variable gives

M ′(θ) ≥ Cλθ

σ2
M(θ) ,

from which (since M(0) = 1) it follows that

− logM(θ) =

∫ 0

θ

M ′(s)

M(s)
ds ≥

∫ 0

θ

Cλs

σ2
ds = −Cλθ

2

2σ2
.
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Hence,

M(θ) ≤ exp

{
Cλθ2

2σ2

}
,

and

P
(
W − λ
σ

≤ −t
)

= P
(
θ

(
W − λ
σ

)
≥ −θt

)
= P

(
eθ(

W−λ
σ

) ≥ e−θt
)

≤ eθtM(θ) ≤ exp

{
θt+

Cλθ2

2σ2

}
,

where the first inequality follows from Markov’s inequality. We let θ = − tσ2

Cλ
to complete the

proof.

Note that since W ≤st W ?, there always exists a coupling such that W ≤ W ? almost surely.
There is, however, no guarantee in general that this coupling is bounded.

Exercise: Use Lemma 4.13 to check that Theorem 4.20 may be applied to a sum of indepen-
dent Bernoulli random variables with the choice C = 1.

Example: runs

This application is taken from [39], where many further applications are also given. Consider
a sequence ξ1, . . . , ξn of IID Bernoulli random variables with Eξ1 = p ∈ (0, 1). Let W
count the number of runs of m consecutive 1s in these Bernoulli trials, where we assume that
n ≥ 2m. That is, W = X1 + · · · + Xn, where Xi = ξi · · · ξi+m−1 and we use the convention
that ξn−k = ξk.

Clearly λ = npm, and Goldstein and Ghosh [39] show by direct calculation that

σ2 = npm
(

1 + 2
p− pm

1− p
− (2m− 1)pm

)
.

It is clear that the random variablesX1, . . . , Xn are (m−1)-dependent. That is, if |i−j| ≥ m,
thenXi andXj are independent (where, as always here, we treat all indices modulo n). Hence,
for each i there are 2m−1 random variablesXj which depend onXi. An argument analogous
to that used in the exercise above for independent Bernoulli random variables then gives us
that we may take C = 2m− 1 in Theorem 4.20, so that

A =
2m− 1

1 + 2p−p
m

1−p − (2m− 1)pm
.

4.6 Extensions and generalisations of Poisson approximation
results

In this section we give some brief remarks on generalisations and extensions of the Poisson
approximation results using the Stein–Chen method that we have discussed.
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1. Generalising and relaxing monotonicity assumptions: Results on monotone cou-
plings may be generalised in a number of directions: Daly, Lefèvre and Utev [31] con-
sider the somewhat more general setting of approximation by the equilibrium distribu-
tion of a birth-death process, and Daly and Johnson [30] allow for some relaxation of
the rather strict monotonicity we have assumed here.

2. Translated Poisson approximation: One disadvantage of Poisson approximation com-
pared to, for example, Gaussian approximation is that the Poisson distribution has only
one parameter we are able to choose. Röllin [53, 54] has explored a two-parameter
translated Poisson approximation, allowing one to (almost) match the first two moments
of W with those of the approximating random variable. The techniques employed here
include taking advantage of conditional independence or using an exchangeable pairs
coupling.

3. Compound Poisson approximation: A natural generalisation of Poisson approxima-
tion is to consider compound Poisson approximation, where the approximating random
variable has the form Y1 + · · · + YN , where the Yi are IID positive random variables
and N has a Poisson distribution. This would allow a much greater range of regimes
in which limiting results could be obtained: it allows for situations in which rare events
can happen in ‘clumps’. Consider, for example, the number of observed runs of r Heads
in a sequence of independent coin tosses, each coin showing Heads with probability
p. The probability of seeing such a run of Heads at a given time is pr, but having just
observed one, we observe another at the next time point with the (relatively large) prob-
ability p. Thus, the usefulness of a Poisson approximation may be limited; instead we
may want to use a compound Poisson approximation, where we are assuming that the
occurrence of‘clumps’ is rare (i.e., approximately Poisson), and the random variables Yi
take account of the number of events we see in each clump. For more background on
this idea, see the book by Aldous [1].

Stein’s method for compound Poisson approximation was first studied by Barbour, Chen
and Loh [7], using the Stein equation

h(j)− Eh(Z) =
∞∑
k=1

kλkf(j + k)− jf(j) ,

where λ = EN , µj = P(Yi = j) and λj = λµj , which is a natural generalisation of
the Poisson Stein equation. Unfortunately, the solution of this Stein equation is not as
well-behaved as we might hope, with the solution f being bounded only exponentially
in λ in the general case. This limits how useful the resulting approximation bounds
will be. There are, however, some cases in which bounds of an order comparable to
those in the Poisson case (as in Lemma 4.6) are available. This includes when kλk ≥
(k + 1)λk+1 for all k [7], or when

∑
j j(j − 1)λj <

1
2

∑
j jλj [11]. These conditions

each quantify the idea of the approximating compound Poisson distribution being ‘not
too far from Poisson’. In these cases, useful compound Poisson approximation theorems
may be derived in a wide range of applications. Again, the proofs of such results may
be approached by either a ‘local approach’ or a ‘coupling approach’.
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There has been some work on using monotonicity of the couplings associated with com-
pound Poisson approximation using the Stein–Chen method; see [24].

4. Poisson process approximation: Many of the techniques we have considered here can
be extended to the setting of approximation by a Poisson process. Recall that a point
process Ξ on a space Γ (which we assume to be a locally compact complete separable
metric space) with locally finite mean measure λ is a Poisson process if (i) for any
B ⊆ Γ, Ξ(B) has a Poisson distribution with mean λ(B), and (ii) for disjoint sets
B1, . . . , Bk ⊆ Γ, the random variables Ξ(B1), . . . ,Ξ(Bk) are independent.

In this setting, the role of size biasing is played by the Palm distributions {Pα : α ∈ Γ}
defined by

Pα(B) =
E[I{Ξ∈B}Ξ(dα)]

λ(dα)
,

or, letting Ξα be a process with the Palm distribution Pα of Ξ,

E
∫
B

f(α,Ξ)Ξ(dα) = E
∫
B

f(α,Ξα)λ(dα) .

for any measurable function f . We can characterize a Poisson process based on the fact
that Ξ is a Poisson process if and only if Ξ and Ξα−δα have the same distribution, where
Ξα− δα is the reduced Palm process. This can be used to define a Stein equation for the
Poisson process, which may then be used to yield explicit error bounds in approximation
of a point process by a Poisson process in appropriate metrics. See [21] for a a discussion
of this approach to Poisson process approximation via Stein’s method.

5 Approximation by geometric sums

In this section we will consider some settings in which we wish to approximate a (non-
negative, integer-valued) random variable W of interest by a geometric sum Z which may be
written as Y1 + · · ·+YN , where Y, Y1, Y2, . . . are IID positive integer-valued random variables,
and N ∼ Geom(p) has a geometric distribution with mass function P(N = k) = p(1 − p)k
for k = 0, 1, . . .. Unless stated otherwise, we will choose this parameter p to be such that

p = P(N = 0) = P(Z = 0) = P(W = 0) ,

and consider the approximation of W by Z in total variation distance.

Geometric sums such as these appear in various areas of probability, including risk theory
(since the infinite-horizon ruin probability in various risk models may be expressed as a tail
probability of such a geometric sum), random walks and records processes. See the book by
Kalashnikov [43].

We will begin by giving a Stein equation which may be used in this setting, together with
bounds on its solution. We will then consider two applications: the approximation of passage
times for stationary Markov chains and the approximation of random variables having an
increasing failure rate. The material in this section is based on the papers [23], [26] and [27].
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5.1 The Stein equation and its solution

In approximating by the geometric sum Z defined above, we may use the Stein equation given
by

h(j)− Eh(Z) = (1− p)Ef(j + Y )− f(j) .

Exercise: Check that if Z is the geometric sum defined above, then for all abounded functions
f we have that (1− p)Ef(Z + Y ) = Ef(Z) (recall that Y is independent of Y1, Y2, . . .).

Exercise: Check that we may represent the solution f of this Stein equation in the following
way: let f(0) = 0 and

f(j) = −E
∞∑
r=0

(1− p)rĥ(j + Sr) , (39)

for j ≥ 1, where ĥ(j) = h(j) = Eh(Z) and Sr = Y1 + · · ·+ Yr.

We will now give the bounds on this function f that we will need in what follows.

Lemma 5.1. For h ∈ HTV ,

‖∆f‖∞ ≤ 1 + (1− p)P(Y > 1) , (40)

|f(j)− f(k)| ≤ 1

p
, (41)

for any j, k ∈ Z+.

Proof. For (40), we may assume without loss of generality that h = IA, the indicator function
for some A ⊆ Z+. We may then write

f(j) = −
∞∑
i=0

(1− p)i [P(j + Y1 + · · ·+ Yi ∈ A)− P(Z + Y1 + · · ·+ Yi ∈ A)] ,

from which it follows that |∆f(j)| may be bounded by

∞∑
i=0

(1− p)i |P(j + 1 + Y1 + · · ·+ Yi ∈ A)− P(j + Y1 + · · ·+ Yi ∈ A)| .

To complete the proof of the first inequality, we let N ∼ Geom(p) and write this as

1

p
|P(j + 1 + Y1 + · · ·+ YN ∈ A)− P(j + Y1 + · · ·+ YN ∈ A)|

≤ 1

p
dTV (L(Z),L(Z + 1)) ≤ 1 +

(1− p)
p

P(Y > 1) ,

where the final inequality uses Theorem 3.1 of [62].
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For (41), note that for any j, k ≥ 0, we have

|f(j)− f(k)| =

∣∣∣∣∣E
[
∞∑
r=0

(1− p)r
[
ĥ(Sr + j)− ĥ(Sr + k)

]]∣∣∣∣∣
=

∣∣∣∣∣E
[
∞∑
r=0

(1− p)r [h(Sr + j)− h(Sr + k)]

]∣∣∣∣∣
≤

∞∑
r=0

(1− p)r =
1

p
,

as required.

Given a random variable W which we wish to approximate, we define the random variable V
such that

V + Y
d
= W |W > 0 ,

where W and Y are independent. We may then write

Eh(W )− Eh(Z) = (1− p)E[f(W + Y )]− (1− p)E[f(W )|W > 0]

= (1− p)E[f(W + Y )− f(V + Y )] , (42)

since f(0) = 0.

In [23], the following general bound is established.

Proposition 5.2. Let the random variables V , W and Z be as above.

dTV (W,Z) ≤ 1− p
p

dTV (W,V ) .

Proof. From (42) we have that, for any h ∈ HTV ,

|Eh(W )− Eh(Z)| ≤ (1− p)P(W 6= V ) sup
j,k∈Z+

|f(j)− f(k)| ,

from which the result follows on applying (41) and taking the maximal coupling of (V,W ).

In the following section we will use this to consider the approximation of passage times of
stationary Markov chains.

5.2 Markov chain hitting times

Let {ξt : t ≥ 0} be an irreducible, ergodic, discrete time Markov chain with finite state space
S, transition matrix P , and stationary distribution π. We suppose throughout that this Markov
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chain is started according to its stationary distribution. We will consider the approximation
of W = inf{t ≥ 0 : ξt = x}, the first time this Markov chain reaches a given state x.
Fill and Lyzinski [35] have shown in their Theorem 4.2 that such a hitting time may, under
certain conditions, be expressed exactly as a geometric sum. In particular, this holds if the
underlying Markov chain is reversible and P t(x, x), the t-step transition probability from x
to x, is decreasing in t. In this case, the summands Y are strong stationary times for this
Markov chain with initial distribution πx, the stationary distribution restricted to states other
than x. See [2] and [32] for background on strong stationary times. We recall some relevant
definitions and background below.

Definition 5.3. A strong stationary time, T , for {ξt : t ≥ 0} is a randomized stopping time
such that ξT ∼ π and XT is independent of T . Note that the distribution of T depends on
the initial distribution of the Markov chain, but this dependence is often suppressed in the
notation.

The tails of strong stationary times are closely related to separation, which may be used to
estimate how far ξt is from stationarity. The separation at time t is defined by

s(t) = 1−min
y∈S

{
P(ξt = y)

π(y)

}
.

A strong stationary time T is called ‘fastest’ if it is stochastically smaller than any other
strong stationary time. Proposition 3.2 of [2] guarantees the existence of such a fastest strong
stationary time for any Markov chain X of the type we consider here.

Lemma 5.4. There exists a strong stationary time T for {ξt : t ≥ 0} such that P(T > t) = s(t)
for all t ≥ 0.

We collect some well-known properties of strong stationary times in the following lemma.

Lemma 5.5. Let x ∈ S be such that π(y)P(ξt = x) ≤ π(x)P(ξt = y), for all t ≥ 0 and
y ∈ S, when ξ0 ∼ πx. Then P t(x, x) is decreasing in t and, letting the random variable Y be
defined by

P(Y > t) =
P t(x, x)− π(x)

1− π(x)
, t = 0, 1, . . . ,

Y has the distribution of a fastest strong stationary time for our Markov chain with initial
distribution ξ0 ∼ πx. Furthermore, P(Y > t, ξt = x) = 0 for all t ≥ 0.

Proof. Under the given condition on state x, when ξ0 ∼ πx,

s(t) = 1− P(ξt = x)

π(x)
= 1−

∑
s 6=x P

t(s, x)π(s)

π(x)(1− π(x))

= 1− π(x)− P t(x, x)π(x)

π(x)(1− π(x))
=
P t(x, x)− π(x)

1− π(x)
.
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Since s(t) is known to be decreasing in t (see Chapter 9 of [3]), we have that P t(x, x) is
decreasing. By Lemma 5.4, Y as defined has the distribution of a fastest strong stationary
time. Finally,

P(Y > t, ξt = x) = P(ξt = x)− P(Y ≤ t, ξt = x)

= P(ξt = x)− P(Y ≤ t)π(x) = π(x) (1− s(t)− P(Y ≤ t)) = 0 ,

where the second equality follows from Lemma 6.9 of [45], the third by the assumption made
on the state x, and the final equality follows from Lemma 5.4.

We are now in a position to state our main result of this section.

Theorem 5.6. Let W = inf{t ≥ 0 : ξt = x}, where we assume that ξ0 ∼ π. Let Y be a
strong stationary time (independent of W ) for this Markov chain with initial distribution πx.
Let N ∼ Geom(π(x)). Then

dTV (W,Z) ≤ (1− π(x))EY − π(x)EW ,

where Z = Y1 + · · ·+ YN and Y, Y1, Y2, . . . are IID.

Proof. Write W̃ = (W |W > 0). We construct W̃ as the time of the first visit of our Markov
chain to the state x when initialized with distribution πx. This hitting time may come either
before the strong stationary time Y for this chain, or not. On the event that W̃ < Y , we set
V = W̃ − Y ; otherwise we have achieved stationarity at time Y , and the remaining time until
we reach state x is distributed as W , and we may set V = W . Here we construct W using a
Bernoulli random variable η ∼ Be(π(x)) (independent of all else) with P(η = 1) = 1−P(η =

0) = π(x), and set W = 0 if η = 1; otherwise we set W = W̃ .

Letting {ξ̃t : t ≥ 0} denote a copy of our Markov chain started according to πx, we therefore
have that

dTV (W,V ) ≤ P(W̃ < Y ) ≤
∞∑
t=1

P(ξ̃t = x, Y > t) ,

and hence

dTV (W,V ) ≤
∞∑
t=1

[
P(ξ̃t = x)− P(Y ≤ t, ξ̃t = x)

]
.

Now, Lemma 6.9 of [45] gives us that P(Y ≤ t, ξ̃t = x) = π(x)P(Y ≤ t). Further,

P(ξ̃t = x) =
∑
s 6=x

P t(s, x)
π(s)

1− π(x)
=

π(x)

1− π(x)

[
1− P t(x, x)

]
,
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since
∑

s∈S π(s)P t(s, x) = π(x). Hence,

dTV (W,V ) ≤ π(x)
∞∑
t=1

[
1− P t(x, x)

1− π(x)
− P(Y ≤ t)

]
= π(x)

∞∑
t=1

[
P(Y > t)− P t(x, x)− π(x)

1− π(x)

]
= π(x)EY − π(x)2

1− π(x)
EW .

The final equality follows from the identity π(x)EW =
∑∞

t=0 [P t(x, x)− π(x)] given in
Proposition 10.19 of [45]. The result now follows from Proposition 5.2.

We may use this result, for example, to give conditions in the spirit of [35] under which W is
distributed exactly as a geometric sum. If x is such that π(y)P(ξt = x) ≤ π(x)P(ξt = y) for
all t ≥ 0 and y ∈ S, then Lemma 5.5 gives us that we may take the strong stationary time Y
to have distribution

P(Y > t) =
P t(x, x)− π(x)

1− π(x)
, t = 0, 1, . . . ,

and so the right-hand side of (5.6) is zero (again using Proposition 10.19 of [45]).

Finally in this section, we note that W is stochastically smaller than the approximating geo-
metric sum we have constructed.

Theorem 5.7. Let W = inf{t ≥ 0 : ξt = x}, where we assume that ξ0 ∼ π. Let Y be a strong
stationary time (independent of W ) for this Markov chain with initial distribution ξ0 ∼ πx.
Let Z = Y1 + · · ·+ YN , where Y, Y1, Y2, . . . are IID and N ∼ Geom(π(x)). Then W ≤st Z.

Proof. Following (42), we write

Eh(W )− Eh(Z) = (1− π(x))E [f(W + Y )− f(V + Y )] , (43)

where V is the random variable constructed in the proof of Theorem 5.6, f(0) = 0, and

f(x) = −E

[
∞∑
r=0

(1− π(x))r{h(x+ Sr)− Eh(Z)}

]
, (44)

for x > 0, where Sr = Y1 + · · ·+ Yr; see (39).

Exercise: Check that if h is increasing, then f is decreasing.

Now, since we have constructed V in the proof of Theorem 5.6 in such a way that V ≤ W
almost surely, using (43) gives us the desired inequality.
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5.3 Geometric approximation for IFR random variables

In this section we explore one particular monotonicity condition in the setting of geometric
approximation: the case where W has an increasing failure rate (IFR). The failure (or hazard)
rate of a non-negative, integer-valued random variable W is defined to be

rW (j) =
P(W = j)

P(W > j)
, j ∈ Z+ .

We may define the failure rate for a continuous random variable analogously, with a density
function replacing the mass function. W is said to be IFR if rW (j) is a non-decreasing function
of j. Note that if P(W = 0) = p, then rW (0) = p(1− p)−1.

We will limit ourselves to considering only geometric approximation here (i.e., the case where
Y = 1 almost surely) using the following result. This is a special case of a result in approx-
imation by a geometric sum for random variables whose failure rate may be bounded from
below established by [26].

Theorem 5.8. LetW be a non-negative, integer-valued random variable with P(W = 0) = p.
If rW (j) ≥ p(1− p)−1 (e.g., if W is IFR) then

dTV (W,Z) ≤ 1− p(1 + EW ) ,

where Z ∼ Geom(p).

The proof of this result will need the following lemma. Note that the random variable V we
have employed previously is here defined by V + 1

d
= (W |W > 0).

Lemma 5.9. Let W be a nonnegative, integer-valued random variable with P(W = 0) = p
and rW (j) ≥ p(1− p)−1 for all j ∈ Z+. Let V be as above. Then V ≤st W .

Proof. We have that

P(V > j) = P(W > j + 1|W > 0) =
P(W > j + 1)

1− p
.

Hence, writing P(W > j) = P(W > j+ 1) +P(W = j+ 1), the required conclusion holds if

P(W > j + 1) ≤ (1− p)[P(W > j + 1) + P(W = j + 1)] ,

that is, if
pP(W > j + 1) ≤ (1− p)P(W = j + 1) ,

which holds by assumption.
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We complete the proof of Theorem 5.8 in a similar way to the proof of Theorem 4.12. For
h ∈ HTV , we write

Eh(W )− Eh(Z) = (1− p)E [f(W + 1)− f(V + 1)]

= (1− p)
∞∑
j=0

∆f(j) [P(W + 1 > j)− P(V + 1 > j)] .

Now, taking absolute values and using the stochastic ordering of Lemma 5.9 gives us that

dTV (W,Z) ≤ (1− p) sup
h∈HTV

‖∆f‖∞E[W − V ] ≤ (1− p)E[W − V ]

= pE[Z −W ] = (1− p)− pEW ,

where the second inequality uses (40), and the first equality uses the definition of V . This
completes the proof of Theorem 5.8.

We conclude this section with two short applications of Theorem 5.8.

1. The Pólya distribution: Suppose that m balls are distributed randomly among d ≥ 2
urns, so that all assignments are equally likely. Let W count the number of balls in the
first urn. Then W ∼ Pya(m, d) has a Pólya distribution, with

P(W = k) =

(
d+m−k−2
m−k

)(
d+m−1
m

) , 0 ≤ k ≤ m.

It is known that W is IFR, and we may apply Theorem 5.8 to obtain

dTV (W,Z) ≤ m

d(d+m− 1)
,

where Z ∼ Geom
(

d−1
d+m−1

)
.

A simple corresponding lower bound is given by

dTV (W,Z) ≥ |P(W = 1)− P(Z = 1)| = m(d− 1)

(d+m− 2)(d+m− 1)2
.

In the case where d is of order O(m), this lower bound is of the same order as our upper
bound.

2. Stopped Poisson process: Let {N(t) : t ≥ 0} be a homogeneous Poisson process of
rate λ and let T be an IFR random variable independent of {N(t) : t ≥ 0}. By Corollary
5.2 of [57], N(T ) is also IFR. Since P(N(T ) = 0) = Ee−λT and EN(T ) = λET ,
Theorem 5.8 gives

dTV (N(T ), Z) ≤ 1− (Ee−λT ) (1 + λET ) ,

where Z ∼ Geom
(
Ee−λT

)
.
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6 Infinitely divisible distributions

6.1 Introduction

As (perhaps) suggested by the structure of these notes, it is typically the case that Stein’s
method is developed and introduced for a single limiting law at a time. There have been,
however, several works which present a more unified approach to treating families of random
variables simultaneously. For example, Brown and Xia [13] consider the general setting of
approximation by the equilibrium distribution of a birth-death process, and Eichelsbacher and
Reinert [33] study approximation by discrete Gibbs measures.

In this section we will give a brief account of (a small part of) recent work by Arras and
Houdré [4] on approximation by infinitely divisible distributions with finite first moment. We
will firstly present some background on infinitely divisible distributions and the important
subclass of self-decomposable distributions. Following this, we state the necessary ingredients
to apply Stein’s method: a characterisation, a Stein equation, and bounds on its solution. These
we will state without proof: see [4] for proofs of all results we give here.

Finally, in the next section we will present a concrete application of Stein’s method in this
setting; approximation of the maximum of a sample of IID exponential data by a Gumbel
distribution.

Definition 6.1. A random variable Z is infinitely divisible if, for each n ≥ 1, there are IID
random variables Z1,n, . . . , Zn,n such that Z d

= Z1,n + · · ·+ Zn,n.

Examples of infinitely divisible distributions include the Gaussian, compound Poisson, neg-
ative binomial and gamma random variables, so this is a rather wide class, and the work of
Arras and Houdré [4] in this setting has potentially many applications. Note, however, that
there are random variables (such as the binomial) for which the tools of Stein’s method have
been developed [34], but which do not fit into this framework.

Exercise: Use properties of the gamma distribution to conclude that it is infinitely divisible
(and in particular, so is the exponential distribution).

The famous Lévy–Khintchine representation states that Z is infinitely divisible if and only if
its characteristic function ϕ(t) = E[eitZ ] has the form

ϕ(t) = exp

{
itb− σ2t2

2
+

∫ ∞
−∞

(
eitu − 1− ituI{|u|≤1}

)
ν(du)

}
,

for all t ∈ R, where b ∈ R, σ ≥ 0 and ν is a Borel measure (called the Lévy measure of Z) on
R such that ν(0) = 0 and

∫∞
−∞(1∧u2)ν(du) <∞. In this case, we write that Z ∼ ID(b, σ2, ν).

This representation is the starting point for a Stein-type characterisation of infinitely divisible
distributions: see Theorem 3.1 of [4] for a proof of the following.
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Lemma 6.2. Let X be a random variable with E|X| < ∞. Let b ∈ R, σ ≥ 0 and ν a Borel
measure on R such that ν(0) = 0,

∫∞
−∞(1 ∧ u2)ν(du) <∞ and

∫
|u|>1
|u| ν(du) <∞. Then

E
[
Xf(X)− bf(X)− σ2f ′(X)−

∫ ∞
−∞

[
f(X + u)− f(X)I{|u|≤1}

]
u ν(du)

]
= 0

for all bounded Lipschitz functions f : R 7→ R, if and only if X ∼ ID(b, σ2, ν).

There are other, equivalent forms of this characterisation that also prove useful. For example,
in the setting where σ = 0, we have that if X is infinitely divisible with Lévy measure ν, then

E[Xf(X)]−
(
EX −

∫ ∞
−∞

u ν(dv)

)
Ef(X) = E

∫ ∞
−∞

f(X + u)u ν(du) . (45)

Exercise: Let X have a Gamma distribution with shape parameter α > 0 and rate parameter
β > 0, which has Lévy measure ν(du) = αu−1I{u>0} exp(−βu) du. Use (45) to show that for
any function f as in Lemma 6.2,

E[Xf(X)] = EXEf(X + Y ) , (46)

where Y ∼ Exp(β) and is independent of X .

Special attention is paid by [4] to the setting where σ = 0 (i.e., Z has no Gaussian part) and
Z is self decomposable:

Definition 6.3. Z is self-decomposable if, for any 0 < c < 1, there exists a random variable
Zc, independent of Z, such that Z d

= cZ + Zc.

Note that non-degenerate self-decomposable random variables are infinitely divisible and ab-
solutely continuous, and that the class of self-decomposable random variables is closed un-
der convolution. Self decomposable distributions include stable laws, gamma distributions,
log-normal distributions, the Laplace distributions and the logisitc distributions, among many
other well-known examples.

In the case where Z ∼ ID(b, 0, ν) is self-decomposable, the corresponding Stein equation
employed by Arras and Houdré [4] is given by

h(x)− Eh(Z) = (EZ − x) f ′(x) +

∫ ∞
−∞

[f ′(x+ u)− f ′(x)]u ν(du) . (47)

The solution f = fh of this Stein equation is shown to satisfy the following properties (see
Chapter 5 of [4]):

• If h is a continuously differentiable function with ‖h‖∞ ≤ 1 and ‖h′‖∞ ≤ 1, then f is
differentiable on R and ‖f ′‖∞ ≤ 1.

• If h is a twice continuously differentiable function with ‖h‖∞ ≤ 1, ‖h′‖∞ ≤ 1 and
‖h′′‖∞ ≤ 1, then f is twice differentiable on R and ‖f ′′‖∞ ≤ 1

2
.
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6.2 Application: Gumbel approximation for the maximum of
exponential data

Let Y1, Y2, . . . be a sequence of IID exponentially distributed random variables with rate 1,
and let

W =
n∑
k=1

Yk
k
− log(n) ,

where log is the natural logarithm.

Well-known properties of the exponential distribution guarantee that we have max1≤k≤n Yk
d
=∑n

k=1
Yk
k

.

Exercise: Check this!

Hence, W converges in distribution to a (standard) Gumbel random variable Z with distribu-
tion function F (z) = exp {− exp(z)} for z ∈ R and mean EZ = γ = 0.5772 . . . given by
Euler’s constant.

The Gumbel random variable Z is well-known to be self-decomposable, with Z ∼ ID(γ, 0, ν),
where

ν(du) = I{u>0}
e−u

u(1− e−u)
du ,

so that ∫ 1

0

u ν(du) =∞ , and
∫ ∞

0

u2 ν(du) =
π2

6
.

See Example 11.10 of [61]. Hence, the framework of the preceding section applies.

We give the proof of [4] of an explicit rate of convergence ofW toZ in the smooth Wasserstein
distance dW2 defined by

dW2(W,Z) = sup
h∈H2

|Eh(W )− Eh(Z)| ,

whereH2 is the set of twice continuously differentiable functions h : R 7→ R with ‖h‖∞ ≤ 1,
‖h′‖∞ ≤ 1 and ‖h′′‖∞ ≤ 1.

Theorem 6.4. Let W be as defined above and Z have the standard Gumbel distribution. Then

dW2(W,Z) ≤ C

n
,

for some C > 0 which does not depend on n.

Proof. In line with the discussion of the previous section, we let h ∈ H2 and bound∣∣∣∣E [(γ −W ) f ′(W ) +

∫ ∞
0

[f ′(W + u)− f ′(W )]
e−u

1− e−u
du

]∣∣∣∣
≤ |γ − EW |+

∣∣∣∣E [(EW −W ) f ′(W ) +

∫ ∞
0

[f ′(W + u)− f ′(W )]
e−u

1− e−u
du

]∣∣∣∣ (48)
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where f is the solution to the Stein equation (47), which satisfies ‖f ′‖∞ ≤ 1 for h ∈ H2. We
may bound dW2(W,Z) by taking the supremum of (48) over h ∈ H2.

Now,

|γ − EW | =

∣∣∣∣∣γ + log(n)−
n∑
k=1

1

k

∣∣∣∣∣ ≤ C1

n
,

for some constant C1 independent of n. It remains only to deal with the final term in (48).

Let Wk = W − Yk
k

. From the definition of W we have

E [Wf ′(W )] =
n∑
k=1

1

k
E
[
Ykf

′
(
Wk +

Yk
k

)]
− log(n)Ef ′(W )

=
n∑
k=1

1

k

∫ ∞
0

e−uE
[
f ′
(
W +

u

k

)]
du− log(n)Ef ′(W ) ,

where the second equality applies (46), using independence of Wk and Yk.

Hence, and again using independence of Wk and Yk, we have

E
[
(EW −W ) f ′(W ) +

∫ ∞
0

[f ′(W + u)− f ′(W )]
e−u

1− e−u
du

]
= E

[
n∑
k=1

1

k

∫ ∞
0

[
f ′(W )− f ′

(
W +

u

k

)]
e−u du+

∫ ∞
0

[f ′(W + u)− f ′(W )]
e−u

1− e−u
du

]
,

which in turn is equal to

E
[∫ ∞

0

[f ′(W )− f ′(W + u)]
1− e−nu

eu − 1
du+

∫ ∞
0

[f ′(W + u)− f ′(W )]
1

eu − 1
du

]
= E

∫ ∞
0

[f ′(W + u)− f ′(W )]
e−nu

eu − 1
du .

The absolute value of this may be bounded by

1

2

∫ ∞
0

ue−nu

eu − 1
du =

∞∑
k=0

1

(k + n+ 1)2
,

using properties of f (since h ∈ H2), and where the proof is completed on using an asymptotic
expansion of this final expression.
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[31] F. Daly, C. Lefèvre and S. Utev (2012). Stein’s method and stochastic orderings. Adv.
Appl. Prob. 44: 343–372.

[32] P. Diaconis and J. A. Fill (1990). Strong stationary times via a new form of duality. Ann.
Probab. 18: 1483–1522.

[33] P. Eichelsbacher and G. Reinert (2008). Stein’s method for discrete Gibbs measures. Ann.
Appl. Probab. 18(4): 1588-1618.

[34] W. Ehm (1991). Binomial approximation to the Poisson binomial distribution. Statist.

53



Prob. Lett. 11: 7–16.

[35] J. A. Fill and V. Lyzinski (2014). Hitting times and interlacing eigenvalues: a stochastic
approach using intertwinings. J. Theoret. Probab. 27: 954–981.

[36] J. Fulman and N. Ross (2013). Exponential approximation and Stein’s method of ex-
changeable pairs. ALEA, Lat. Am. J. Probab. Math. Stat. 10(1): 1–13.

[37] R. Gaunt (2014). Variance-Gamma approximation via Stein’s method. Electron. J.
Probab. 19(38): 1–33.

[38] R. Gaunt, A. Pickett and G. Reinert (2017). Chi-square approximation by Stein’s method
with application to Pearson’s statistic. Ann. Appl. Probab. 27: 720–756.

[39] S. Ghosh and L. Goldstein (2011). Concentration of measures via size biased couplings.
Probab. Th. Relat. Fields 149: 271–278.

[40] L. Goldstein and G. Reinert (1997). Stein’s method and the zero bias transformation with
application to simple random sampling. Ann. Appl. Probab 7: 935–952.

[41] L. Goldstein and G. Reinert (2013). Stein’s method for the Beta distribution and the
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