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Introduction Useful references Chronology

Syllabus of lectures

Part 1 Stochastic geometry: a brief introduction:
The basic building blocks of stochastic geometry.

Part 2 Poisson line processes and Network Efficiency:
Curious results arising from careful investigation of
measures of effectiveness of networks.

Part 3 Traffic flow in a Poissonian city:
Using Poisson line processes to model traffic intensity in
a random city.

Part 4 Scale-invariant random spatial networks (SIRSN):
Novel random metric spaces arising from the methods
used to analyze effectiveness of networks.

Part 5 Random flights on the SIRSN.
How can we move about on a SIRSN modelled on Poisson
line processes?
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Useful references for stochastic geometry

Kingman (1993): concise and elegant
introduction to Poisson processes;

Stoyan, WSK, and Mecke (1995): now in an
extended 3rd edition (Chiu, Stoyan, WSK, and
Mecke, 2013);

Schneider and Weil (2008): magisterial
introduction to the links between stochastic and
integral geometry;

WSK and Molchanov (2010): collection of essays
on developments in stochastic geometry.

Last and Penrose (2017): more on Poisson point
processes.

Molchanov (1996b): Boolean models, a way to
build random sets from Poisson point processes.
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A short chronology of stochastic geometry
(The study of random pattern)

1. Georges-Louis Leclerc, Comte de Buffon
(7 September, 1707 – 16 April, 1788);

2. Władysław Hugo Dionizy Steinhaus
(14 January, 1887 – 25 February, 1972);

3. Luís Antoni Santaló Sors
(9 October, 1911 – 22 November, 2001);

4. Rollo Davidson
(8 October, 1944 – 29 July, 1970);

5. D.G. Kendall and K. Krickeberg coined the phrase
“stochastic geometry” when preparing an Oberwolfach
workshop, 1969 (also Frisch and Hammersley, 1963);

6. Mathematical morphology (G. Matheron and J. Serra);
7. Point processes arising from queueing theory

(J. Kerstan, K. Matthes, . . . );
8. Combinatorial geometry (R.V. Ambartzumian).
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Quiz Definitions Palm Examples Marks Boolean model

Lecture I

Poisson Point Processes and Friends

A quiz about random pattern

Definitions of Poisson point processes

Palm theory for Poisson point processes

Examples of Poisson point processes

Marked Poisson point processes

The Boolean model
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Poisson point processes
Humans have evolved to recognize patterns . . .

. . . we are less good at recognizing complete randomness.
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Puzzle
Using 106 years of accumulated evolutionary programming . . .

. . . which of these patterns fail to be completely random?
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Constructive definition of Poisson point process
Definition: unit intensity Poisson point pattern in a unit square

1. Draw a Poisson(1) random variable N;

2. Conditional on N = n, plant n independent random
points uniformly in [0,1]2.

This can be viewed as a binomial point process of N points,
with total number of points N being Poisson-randomized.

Replace unit square [0,1]2 by region R, and Poisson(1) by
Poisson(area(R)), to produce a unit intensity Poisson point
pattern in a more general planar region R.

If R is of infinite area, break it up into disjoint sub-regions of
finite area and work independently in each sub-region.

Replace Poisson(area(R)) by Poisson(λ× area(R)) to produce
a Poisson point pattern of intensity λ in general region R.
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Axiomatic definition of Poisson point process
Definition: Poisson point (alternative abstract definition)

A (stationary) point pattern is Poisson (“truly random”) if:

1. number of points in any prescribed region has a Poisson
distribution with mean defined by intensity measure ν
(NB: ν is diffuse). EG: ν(region) = λ× (area of region);

2. numbers of points in disjoint regions are independent.

Basic construction: each very small region independently has
a very small chance of holding a point.

Remark: Powerful theoretical result

Properties 1 and 2 are both automatically implied if the void
probability of a measurable region failing to hold any points
at all is exp(−ν(region)) (consequence of result of Choquet).

Computations: P [N(A) = k] = (ν(A))ke−ν(A)
k! , E [N(A)] = ν(A).

Much more theory: Kingman (1993), Chiu et al. (2013).
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General point processes

1. We can think of a point process Φ as a random measure
taking non-negative integer values (attention focussed
on Φ(A) the number of points in a Borel set A);

2. or (equivalently) as a random closed set which is locally
finite (attention focussed on whether the set hits
compact test sets K, so whether Φ(K) > 0.

3. The variety of general point processes is huge.
Nevertheless, the distribution of a point process is
determined by its system of void probabilities
P [Φ(K) = 0] for all compact K.

4. Indeed this holds more generally for random closed sets
Ξ: the distribution of Ξ is determined by the system of
void probabilities P [Ξ∩K = ∅] for all compact K.
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Palm distributions (I)
Consider a general point process Φ on R2 with (σ -finite)
intensity measure ν. How to condition on specified x ∈ Φ?

1. Intensity measure
ν(B) = E [#{x ∈ B ∩ Φ}] = E [∑x∈Φ I [x ∈ B]

] =
E
[∑

x∈B∩Φ 1
]
;

2. Let Y be some (measurable) set of possible point
patterns φ
(EG: Y = YK = {φ : φ(K) = ∅} for given compact K).
Campbell measure C(B ×Y) = E [∑x∈B∩Φ I [Φ ∈ Y]

]
;

3. Radon-Nikodym theorem: C(B ×Y) = ∫B Px(Y)ν(dx);
4. Use theory of regular conditional probabilities:
Px(·) can be made into a probability measure;

5. We interpret Px(·) as the Palm distribution at x.

6. The reduced Palm distribution is obtained by deleting
the point x from the Palm distribution.
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Palm distributions (II)

Definition: Palm distribution of a general point process

If Φ is a general point process on R2 with σ -finite intensity
measure ν, then its Palm distribution Px at x ∈ R2 satisfies

E


 ∑

x∈Φ
h(x,Φ)


 =

∫

R2

∫
h(x,φ)Px(dφ)ν(dx) ,

for all bounded measurable h(x,φ), for x ∈ R2 and φ a loc-
ally finite point pattern on R2.
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Palm distribution of a Poisson process
Theorem: Slivnyak

The Palm distribution of a planar Poisson point process Φ at
x ∈ R2 is the superposition δx∗P(dφ), namely Φ with added
point at x.

Proof.
Consider an arbitrary (compact) set K ⊂ R2 and a bounded
Borel set B ⊂ R2.
Let VK be the set of patterns placing no points in K.
Consider C(B, VK) = E

[∑
x∈B I [Φ ∩K = ∅]

]
.

But C(B ∩K,VK) = 0, while C(B \K,VK) =
∫
B\K P(VK)ν(dx),

when P is the original Poisson distribution (independence of
Poisson process in disjoint regions).
This agrees with the results obtained by replacing
C(dx, dξ) by ν(dx)× (δx ∗ P(dξ)).
Choquet’s capacitability theorem implies measures agree.
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Application: When is a point process Poisson?
Is the randomness of a pattern “unstructured”?

Earthquake locations
in Western Australia.

Use statistical tests for
Poisson distribution of
point counts;

Deciding whether a pattern
is completely random is
relatively easy (answer is
usually no!). Deciding what
sort of pattern can be hard.

Compare Ripley (1977)
(a) First-contact distribution
H(r) of distance from fixed
location to nearest point,
(b) Nearest-neighbour
distribution D(r).
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Example: Alpha particles
Centres of traces of α-particles on a detector in a 60× 60
square (unit of 2µm).

Locations of centres of traces (Stoyan et al., 1995, Figure 2.5ff).
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Mephistopheles and the bus company

Classic bus paradox: mean time between Poisson buses is
twice the mean length of interval between bus arrivals.
This follows immediately from Slivnyak’s theorem!
For renewal point processes the picture can be stranger.

1. The aspirant devil Mephistopheles is forced to take a job
with Hades Regional Bus Company.

2. He is responsible for operation of the No12 bus service
between city centre and university campus.

3. Contract requires him to deliver mean time between bus
arrivals of 10 minutes.

4. How bad can he make the service while still (statistically
speaking) fulfilling the contract?

In mean-value terms, Mephistopheles can make matters
infinitely bad . . .
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Marked point processes

Many constructions and applications use the notion that
points of the pattern carry “marks”.

1. In applications the points of a pattern are often
accompanied by extra measurements (diameters of
trees, yields of ore deposits, . . . ).

2. A marked point process on R2 can be viewed as a point
process on R2 ×M, where M is mark space.

3. Under stationarity we can factorize intensity measure as
ν(A× B) = λLeb(A)×M(B), where M is the mark
distribution.

4. If additionally marks are independent then factorization
carries through to distribution of process.

5. An independently marked Poisson process is a Poisson
process on R2 ×M.
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Palm distribution for marks (sketch)
Independently marked Poisson point process Ψ , typical
marked point [x,m], independent mark distribution
Uniform[0,1].
We want to impose (Palm) conditioning by requiring a
point to lie at x, but without conditioning the
corresponding mark m.
Distribution of Ψ can be obtained by

1. Constructing un-marked point process Φ from Ψ ;
2. Ordering points of Φ (eg: lexicographical);
3. Assigning marks from an i.i.d. sequence.

Campbell equation for marked process:
E
[∑

x∈B∩Φ I [Ψ ∈ Y]
] = ∫B Px(Y)ν(dx).

Integrate out the marks and apply Slivnyak to

E
[∑

x∈Φ h̃(x,Ψ)
]
= ∫ ∫ h̃(x,ψ)Px(dψ)ν(dx).

Recognize Palm distribution as superposition of (a) Ψ ,
and (b) point x with independent random mark m.
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Palm distribution for marked Poisson point process

Theorem: Slivnyak for independent marks

The Palm distribution of a planar marked Poisson point pro-
cess Ψ at x ∈ R2 (independently marked with identically
distributed marks of distribution M) is the superposition
δ[x;M] ∗ P(dψ), namely Ψ with added point at x furnished
with independent random mark M of distribution M.
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The Boolean model

Suppose we need a model for a
random set rather than a
random point pattern.

Simplest approach that might
work: plant a random set on top
of each point in a Poisson
process and take the union.

Theory: Hall (1988),
Molchanov (1996b).

MS lesions (white areas)
in human brain.
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Boolean model notation
Germs defined by points of
a Poisson process;

Grains are (independent
random compact) sets
placed on each grain
(control size to ensure
vacant regions exist);

the Boolean model is the
union of all grains.

Boolean models can also be
used to define interacting
point processes (Baddeley
and van Lieshout, 1995;
WSK, van Lieshout, and
Baddeley, 1999; WSK,
1997).

Simulated Boolean model matched to

image of potassium deposit (grains

are disks of random radius).
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A result which bridges to the next lecture

Suppose we have a high-intensity Boolean model using
disks for grains. What is the approximate statistical
behaviour of the vacant regions?

At high intensity, vacancies are small and rare. In the
limit, boundaries are locally straight: the vacancy will
look approximately like a cell formed by dividing up
space by many random lines (Hall, 1988).

Similar results under much weaker conditions, and in
higher dimensions too (Hall, 1988; Molchanov, 1996a).

But what do we mean by a random collection of lines?
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Lecture II

Poisson Line Processes
and Network Efficiency

History

Poisson line processes and Network Efficiency

A Mathematical Idealization

A Transportation Hierarchy

A Complementary Result

Some further questions
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Georges-Louis Leclerc, Comte de Buffon
(7 September, 1707 – 16 April, 1788)

French encyclopædist,
corresponded with Daniel
Bernoulli;

Published “Essai d’Arithmétique
Morale” (Comte de Buffon, 1829)

(web translation by Hey,
Neugebauer, and Pasca, 2010);

Measured and valued uncertainty;

Striking mixture of empiricism
and rationalism;

“Calculate π : drop needle
randomly on ruled plane, count
mean proportion of hits.”
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A statistical puzzle

Since de Buffon, several people have published
(recreational!) attempts to estimate π this way.
Stigler (1991) gives a list, eg citing Lazzarini (1901).

Suppose you have to design such an experiment.

Unit-length needle, unit-ruled floor.
Say you must choose the number of trials n.

The number of successes X is Binomial(n, 2/π ).

Measure success by 1/
√|2/π −X/n|.

Choose n ∈ [300,400], say.

Which choice would you make?
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Estimating π with Buffon

Log of mean of 1/
√|2/π −X/n|

for X with distribution Binomial(n, 2/π ).
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Continued fraction for π

π = 3+ 1

7+ 1
15+ 1

1+ 1

292+ 1

1+ 1
...

≈ 3+ 1

7+ 1
15+1

= 355
113

.

So consider
2
π
− X

355
. . .
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Dualizing Buffon, with Steinhaus

Hugo Steinhaus (1887-1972)
observed something which we can view as the
dual of the Buffon phenomenon;

Replace needle by convex polygon, or convex curve,
perimeter 2`, diameter less than 1. Randomize lines not
polygon! Probability of hitting ruled line is 2`/π (see,
eg, Gnedenko, 1998, Ch. 2.4, Example 5).

There is a notion of invariant measure on the space of
lines in the plane;

Invariant measure of set of lines hitting a regularizable
curve is proportional to the length of the curve
(Steinhaus, 1930).

Mean number of random lines hitting curve?
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Random lines
How to build random patterns of lines?

1. We could use the theory of Random Closed Sets:
characterize a random closed set Ξ by void-probabilities
P [Ξ 6⇑ A] = P [Ξ∩A = ∅].

2. More constructively, we could try the Boolean model:
take union of (possibly random) sets placed on Poisson
points.

3. However, the Boolean model does not adapt well to
random lines, since random lines are not localized.

4. Simple solution: parametrize lines ` by signed
perpendicular distance r and angle θ:
4.1 each line ` corresponds to a point (r , θ) in

representation space;
4.2 view Poisson line process as Poisson point process in

representation space, µ being invariant line measure.

5. The representation space is a cylinder with twist: in fact
an infinite Möbius strip, or punctured projective plane.

6. Calculations: often reduce to probabilities that there are
no lines of particular forms.
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Illustration of invariant line measure
The key to understanding invariant line measure:
use a good parametrization of (undirected) lines in the plane.

Parametrize the line ` by fixing a reference point o and a
reference line through the point. Define:
(a) (signed) perpendicular distance r of ` from o;
(b) angle θ ∈ (0, π] between ` and reference line.
Invariant line measure is then given by

1
2

d r dθ ,

(Normalization by 1
2 :

unit measure for set of lines hitting unit segment).
30
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Poisson Line Process

Definition: Poisson line process

A (stationary) Poisson (undirected) line process of intensity
λ > 0 is obtained from a Poisson point process on R × [0, π)
with intensity 1

2λdr dθ as follows: for each point (r , θ) in the
point process, a line is generated at signed distance r from
the origin and making an angle θ with the x-axis.

(Stationary) Poisson directed line processes can be obtained
from undirected Poisson line processes by assigning a
direction to each line. A natural parameter space would then
be R× [0,2π).
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Tools for line processes

Buffon The length of a curve equals the mean number of hits by
a unit-intensity Poisson line process (intensity 1

2 d r dθ);

Slivnyak Suppose we condition a Poisson process on placing a
“point” z at a specified location. The conditioned process
is again a Poisson process with added z;

Angles Generate a planar line process from a unit-
intensity Poisson point process on a refer-
ence line `, by constructing lines through
the points p whose angles θ ∈ [0, π) to `
are independent with density 1

2 sinθ. The
result is a unit-intensity Poisson line pro-
cess. Intensity measure in these coordin-
ates: 1

2 sinθ dp dθ.
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To 3-space and beyond

The notion of line processes in higher dimensions is
important in generalizations.

Poisson line processes in Rd:

Parametrize by $ “direction” of (undirected) line (point
on hemisphere: more properly RPd−1),

and x location on perpendicular hyperplane.

Invariant measure now cd dx × νd(d$).
Coordinate x is “twisted” by $: measure theory doesn’t
see this.

Variant parametrization replaces x by p, intersection of
` with reference hyperplane.

Invariant measure now cd sinθ dp × νd−1(d$).
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A Useful Exercise for planar lines:
Compute probability that point A is separated from line
segment BC by a unit intensity Poisson line process.

Let T be triangle ABC. Let [T] be
the set of lines intersecting T . Let
each line ` ∈ [T] score +1 for each
intersection with AB or AC, −1 for
intersection with BC.

Integrating score against invariant line measure µ, count
contributions from intersections with AB, AC and BC:
µ([AB]) = |AB|, µ([AC]) = |AC|, −µ([BC]) = −|BC|.
Lines intersecting AB and BC, or AC and BC, score zero.
Lines intersecting AB and AC score 2. (Ignore
measure-zero cases of vertex intersections.)
Deduce invariant line measure of lines intersecting AB
and AC is 1

2(|AB| + |AC| − |BC|).
Accordingly required probability is

1− exp
(
−1

2(|AB| + |AC| − |BC|)
)
.
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Some challenging facts about line processes
1. The Steinhaus method of determining length by the line

measure of intercepts can be viewed as lying at the heart
of modern stereology: take a random slice (line or
plane), count geometrical features along the slice,
deduce estimates of 3d geometric structure.
The resulting geometric calculations can be complicated!

2. D.G. Kendall conjecture. Consider a plane tessellated by
an invariant Poisson line process. Consider the cell
containing the origin. Suppose that we condition on this
cell having large area. What is its limiting shape?
Answer: Circular (Miles, Kovalenko, Schneider and others . . . ).

3. Rollo Davidson’s conjecture. Consider an invariant line
process with finite mean-square counts on compact sets,
and with no parallel lines. Must it be a Cox process?
(Poisson process with randomized intensity measure.)
Answer: No. Kallenberg and Kingman describe a beautiful construction
based on a random lattice.
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Transportation Network Questions

Mastiles Lane, Yorkshire Dales
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An ancient optimization problem

A Roman
Emperor’s
dilemma:

PRO: Roads are needed to
move legions quickly
around the country;

CON: Roads are expensive
to build and maintain;
Pro optimo
quod faciendum est?
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Modern variants

British Railway
network
before Beeching

British Railway
network
after Beeching

UK Motorways:
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A Mathematical Idealization
(a problem in frustrated optimization)

Consider N cities x(N) = {x1, . . . , xN} in square side
√
N.

Assess road network G = G(x(N)) connecting cities by:
network total road length len(G)
(minimized by Steiner minimum tree ST(x(N)));
versus
average network distance between two random cities,

average(G) = 1
N(N − 1)

∑∑

i≠j
distG(xi, xj) ,

(minimized by laying tarmac for complete graph).
Perhaps the average ratio would be a good measure of
performance?

1
N(N − 1)

∑∑

i≠j

distG(xi, xj)
‖xi − xj‖
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Main Question
Aldous and WSK (2008) provide answers for the

Question

Consider a configuration x(N) of N cities in [0,
√
N]2 as above,

and a well-chosen connecting network G = G(x(N)). How
does large-N trade-off between len(G) and average(G) be-
have?

(And how clever do we have to be to get a good trade-off?)

Note:

len(ST(x(N))) ≤ O(N) (eg, Steele, 1997, §2.2);

Average Euclidean distance between two randomly
chosen cities is at most

√
2N;

Perhaps increasing total network length by const×Nα
might achieve average network distance no more than
order Nβ longer than average Euclidean distance?
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Answer to main question (I)

Augment Steiner tree by a low-intensity invariant Poisson
line process Π1.

Unit intensity is 1
2 d r dθ: we will use this and scale.

Pick two cities x and y at distance n = √N units apart.

Remove lines separating the two cities;

focus on cell Cx,y containing the two cities.
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Answer to main question (II)

Upper-bound “network distance” between two cities by
mean semi-perimeter of cell,

1
2
E
[
len ∂Cx,y

]

Aldous and WSK (2008) answer Main Question using this,
and use other methods from stochastic geometry to
show that the resolution is nearly optimal.
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The key construction

(Remember, line process renormalized to unit intensity.)

Compute mean length of ∂Cx,y by use of independent
unit-intensity invariant Poisson line process Π2, and
determine the mean number of hits.

It is convenient to form Π∗2 by deleting from Π2 those
lines separating x from y. (Mean number of hits
contributed by these lines: 2|x −y| = 2n.)
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Some stochastic geometry (I)

We have

E
[
len ∂Cx,y

]
− 2|x −y| = E

[
#
(
Π∗2 ∩ ∂Cx,y

)]
.

This is the total intensity of the intersection point
process Π∗1 ∩Π∗2 thinned by removing z ∈ Π∗1 ∩Π∗2 when
z is separated from both x and y by Π∗1 .

We can appeal to a variant of Slivnyak’s theorem: the
retention probability for z is the probability that no line
of Π∗1 hits both of segments xz and yz, namely

exp
(
−1

2

(|x − z| + |y − z| − |x −y|)
)
= exp

(
−1

2 (η−n)
)
,

where η = |x − z| + |y − z|.
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Some stochastic geometry (II)

The intensity of the completely unthinned intersection
process Π1 ∩Π2 is π

2 .

The intensity of Π∗1 ∩Π∗2 is obtained by careful
computation of the probability that the intersection lines
of a point of Π1 ∩Π2 do not hit xy, using the “Angle”
construction from given above. The resulting intensity is:

π
2
× α− sinα

π
= α− sinα

2
,

where α is the exterior angle of the triangle ∆xyz at z.
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Mean perimeter length as a double integral

Theorem: Mean perimeter length

E
[
len ∂Cx,y

]
− 2|x −y| =

1
2

∫∫

R2
(α− sinα) exp

(
−1

2 (η−n)
)

dz

Note that α = α(z) and η = η(z) both depend on z.

Fixed α: locus of z is
circle.

Fixed η: locus of z is
ellipse.

46

History Lines Idealization Hierarchy Complement Further questions

Asymptotics

Theorem: Asymptotic cell perimeter

Careful asymptotics for n→∞ show that

E
[

1
2 len ∂Cx,y

]
=

n+ 1
4

∫∫

R2
(α− sinα) exp

(
−1

2 (η−n)
)

dz ≈

n+ 4
3

(
logn+ γ + 5

3

)

where γ = 0.57721 . . . is the Euler-Mascheroni constant.

Thus a unit-intensity invariant Poisson line process is within
O(logn) of providing connections which are as efficient as
Euclidean connections.
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A Transportation Hierarchy

Use a hierarchy of:

1. a (sparse) Poisson line process;

2. a rectangular grid at a moderately large length scale;

3. the Steiner minimum tree ST(x(N)));
4. a few boxes from a grid at a small length scale, to avoid

potential “hot-spots” where cities are close (boxes are
connected to the cities).
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Answering the main question

Theorem: Main efficiency result

For any configuration x(N) in square side
√
N and for any se-

quence wN →∞ there are connecting networks GN such that:

len(GN) = len(ST(x(N)))+ o(N)
average(GN) = 1

N(N − 1)

∑∑

i≠j
‖xi − xj‖ + o(wN logN)

The sequence {wN} can tend to infinity arbitrarily slowly.
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Simulations (example)

1000 simulations
at n = 1000000:
average 21.22,
s.e. 0.23,
asymptotic 21.413.

Vertical exaggeration:√
n
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A Complementary Result

Theorem: Complementary Efficiency Result

Given a configuration of N cities in [0,
√
N]2 which is LN =

o(
√

logN)-equidistributed: random choice XN of city can be
coupled to uniformly random point YN so that

E
[

min
{

1,
|XN − YN|
LN

}]
-→ 0 ;

then any connecting network GN with length bounded above
by a multiple of N connects the cities with average connection
length exceeding average Euclidean connection length by at
least Ω(

√
logN) .
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Main ideas of proof

Use tension between two facts:

(a) efficient connection of a random pair of cities forces a
path which is almost parallel to the Euclidean path, and

(b) the coupling means such a random pair is almost an
independent uniform draw from [0,

√
N]2

(equidistribution),

so a random perpendicular to the Euclidean path is
almost a uniformly random line.
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Further Questions

Question

Fluctuations: Given a good compromise between average(G)
and len(G), how might the variance behave?

Question

True geodesics: The upper bound is obtained by controlling
non-geodesic paths. How might true geodesics behave?

Question

Flows: Consider a network which exhibits good trade-offs.
What can be said about flows of traffic in this network?

Question

Scale-invariance: Can we generate scale-invariant random
structures resembling suitable compromise networks?
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Location of maximal lateral deviation (I)

Red dots indicate maximum lateral deviation.
(NB: vertical exaggeration!)
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Location of maximal lateral deviation (II)

Remark: Density / intensity

Using u = 2
nx ∈ (−1,1) and v = y√

n > 0,

1
4
(sinβ+ sinγ − sin(β+ γ)) exp

(
−1

2 (η−n)
)

dx dy

≈ v3

(
1−u2

)2 exp

(
− v2

1−u2

)
du dv

ASYMPTOTICALLY

Location of maximum is
uniformly distributed;

Conditional height of
maximum is length of
Gaussian 4-vector.
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Variance and growth process (I)

Consider cell boundary as path with x-coordinate Xτ ,
parametrized by τ (excess over geodesic distance).
Let Θ be angle with positive x-axis;
Θ jumps at Poisson point process intensity 1

2 ;
A jump −∆Θ = Θ−Θ− obeys

P [Θ− −Θ ≤ θ | Θ−] = 1− cosθ
1− cosΘ−

.
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Variance and growth process (II)
Sketch of argument:

1. Xt ≈ X0 + 2Θ−2
0

∫ t
0
Θ2

0

Θ2
s

d s;

2. log (Θ0/Θt) ≈ ξt a non-decreasing Lévy process;

3. Mt = ξt − 3
4t is an L2 martingale.

4. Define a stopping time by σ(n) by Xσ(n) = n. So

n = Xσ(n) ≈ X0 + 2Θ−2
0

∫σ(n)
0 Θ2

0/Θ2
s d s.

5. Now exp(2ξσ(n)) is (approximately) a self-similar
process, about which much information is available;

6. Analyze the tautology
σ(n) ≈ 2

3

(
logn− 2Mσ(n) + log

(
exp(2ξσ(n))/n

))
.

7. Control log
(
exp(2ξσ(n))/n

)
using work of Bertoin and

Yor (2005);

8. Deduce σ(n) ≈ 2
3(logn+O(1)− 2Mσ(n));

now Mσ(n)) can be shown to be L2.
57

History Lines Idealization Hierarchy Complement Further questions

Theorem: Near-geodesic fluctuations

Let σ(n) be the geodesic distance between the half-x-axis
(−∞,0] and x = n. Then

E [σ(n)] = 2
3

logn+O(1)

Var [σ(n)] = 20
27

logn+O
(√

logn
)
.

Hence perimeter length fluctuations are O
(√

logn
)
.

Check: Earlier today, we calculated mean
semi-perimeter-length as n+ 4

3 logn+ . . .. Each
semi-perimeter excess contains contributions from two of
these paths (growth from left, growth from right), so this
stochastic calculus approach is in agreement with the
stochastic geometry calculations.
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What about true geodesics?
The above can be used to show true geodesics typically
have smaller excess than our paths,
nevertheless
the number of “top-to-bottom” crossings of a true
geodesic is stochastically bounded in any region
[na,nb] ⊆ (0, n), so all but a stochastically bounded
number of “short-cuts” must be within O(n/ logn) of
start or end, affecting coefficient of log(n) but no more;
indeed

Theorem: Lower bound on mean excess

Any path of length n built using the Poisson lines must have
mean excess at least

(
log 4− 5

4

)
logn+ o(logn) .
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How much better can a true geodesic be?

Key tools:
Measure excess with

E
[∫ n

1
(secθx − 1) dx

]
≥ 1

2

∫ n
1
E
[
θ2
x

]
dx

P [|θx| ≥ u] ≥ (
E
[
exp(−uL+x)

])2

Approximate by integrals involving Gaussian kernels . . .

2√
p2 + 4+ p

≤ ep
2/2

∫∞
p
e−s

2/2 d s ≤ 4√
p2 + 8+ 3p

Birnbaum (1942) Sampford (1953)
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Lecture III

Traffic Flow in a Poissonian City

Traffic in the City

Calculations for traffic distribution

Improper line processes

Effective simulation of limiting distribution

Empirical comparisons

Conclusion
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Traffic in a random city
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The Poissonian City (I)
Design an idealized city!
Complete the 2 routes using off-road sections.
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Real city plan
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Palm distributions

Recall Slivynak’s theorem: if we condition on a Poisson
process placing a point at the origin . . .

. . . then the reduced Palm distribution, the residual point
pattern (minus the conditioned point), is again Poisson
with the same intensity.

Best understood in the same way as we understand
abstract conditional expectation: plugging in the Palm
distribution in certain formulae gives the correct answer.
(Reductionist point of view: just “integration by parts”.)

Similarly for Poisson line processes:

If we condition on a line through the centre, then the
remainder of the line process is again Poisson.

So what could we then say about traffic at the centre?
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The Poissonian City (II)

Aldous idea: Every point-pair (x,y) contributes
infinitesimal dx dy split between two near-geodesics.

Compute 4-volume of random polytope!
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More sophisticated approaches (I)

Options:

Up to constant factors (readily computable using
Slivnyak’s theorem) we get essentially the same mean
value behaviour if instead traffic is generated

uniformly between pairs of points lying on the lines only;

between points of a point pattern that is Poisson along
the lines (using Lebesgue length measure);

between the points of intersections of lines;

the process used to generate traffic along fibres or at
intersections can be random if it is of finite mean and
does not depend on location.
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More sophisticated approaches (II):
Poisson locations scattered along Π

We consider a Poissonian city formed
by unit intensity Poisson line process Π.
Independently, source / destination
points form a Poisson point process
whose intensity is Lebesgue linear
measure along Π.

Let 2fx0,x1,x2(Π) indicate whether x1 lies on near-geodesic
x1 → x2, with x0 ∈ ball(z0, ε), x1 ∈ ball(z1, ρ1).
Our task is to compute

E


 ∑

x0∈Ψ

∑

x1∈Ψ

∑

x2∈Ψ
fx0,x1,x2(Π)
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More sophisticated approaches (III):
Palm theory for lines of Π

We consider a Poissonian city formed
by unit intensity Poisson line process Π.
Independently, source / destination
points form a Poisson point process
whose intensity is Lebesgue linear
measure along Π.

Palm theory for `2, change coordinates, cutoff for x2:

(
π
2

)3 ∫

ball(z0,ε)

∫

ball(z1,ρ1)

∫

ball(z2,ρ2)
E
[
fx0,x1,x2(Π∪ {`∗})

]

dx2 dx1 dx0 asymptotically as n→∞
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Results for more sophisticated approaches (I)

We consider a Poissonian city formed
by unit intensity Poisson line process Π.
Independently, source / destination
points form a Poisson point process
whose intensity is Lebesgue linear
measure along Π.

Theorem: Mean traffic between Poisson points

If source / destination points are scattered by a (condi-
tionally independent) Poisson process along Π then mean
traffic through a “typical” point x0 is given by integrating(
π
2

)3
E
[
fx0,x1,x2(Π∪ {`∗})

]
against x1 and x2, conditional on

x0 belonging to Π via a randomly oriented line `∗.
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Results for more sophisticated approaches (II)

Consider again a Poissonian city
formed by unit intensity Poisson line
process Π.
Source / destination points are formed
by the line intersections of Π.

Theorem: Mean traffic between intersections

If source / destination points are formed by the intersections
of the lines of Π then mean traffic through a “typical” point x0

is given by integrating 2
(
π
4

)3
E
[
fx0,x1,x2(Π∪ {`∗})

]
against

x1 and x2, conditional on x0 belonging to Π via a randomly
oriented line `∗.
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Illustration of traffic routes
between intersection points
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Measure congestion?
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Questions:

1. What is the mean
traffic flow through
the centre?

2. Is there a limiting
scaled distribution?

3. Is the limiting
distribution
accessible to
computation?
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Mean traffic computation

Mean traffic flow through centre can be obtained by
direct arguments from stochastic geometry:

Theorem: Mean traffic flow through centre

For ρ = √r2 + s2 − 2rs cosθ, the traffic flow Tn through the
centre of a Poissonian city built on a disk of radius n has mean
value

E [Tn] =
∫ π

0

∫ n
0

∫ n
0

exp
(
−1

2 (r + s − ρ)
)
r d r s d s θ dθ .

Asymptotically for large city radius (n→∞),

E [Tn] = 2n3 +O
(
n2√n

)
.
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Where does most of the traffic come from?
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Existence of limiting distribution?

Is there a limiting
distribution for Tn/n3 as
n→∞?
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Improper line processes to the rescue (I)

Consider stretching
the city.

Vertically, rescale by
1/
√
n.

Horizontally, rescale
by 1/n.
(Affine
transformation.)

New coordinates y−
and y+.

New (improper)
intensity (as n→∞)
is 1

4 dy− dy+,
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Improper line processes to the rescue (II)
Infinitely many nearly vertical lines running near any point.

Centre sees no traffic when separated off by lines.
Coupling argument: limiting distribution non-degenerate.
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Computing mean traffic (I)

Change coordinates to heights z− and z+ of
intercepts on x = −u and x = v.
z− = 1

2((1+u)y− + (1−u)y+);
z+ = 1

2((1− v)y− + (1+ v)y+).

Compute dz− ∧ dz+ using formalism of differential forms:

dz−∧dz+ = 1+u
2

1+ v
2

dy−∧dy++1−u
2

1− v
2

dy+∧dy−

= u+ v
2

dy− ∧ dy+ ,

hence
1
4

dy− dy+ = 1
2(u+ v) dz− dz+ .
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Computing mean traffic (II)

Measure of lines separating AB from O:

Area of a rectangle
h−h+/(2(u+ v));
plus area of a triangle
1
2(u/v)h+ × h+/(2(u+ v));
plus area of another triangle
1
2(v/u)h− × h−/(2(u+ v)).

h−h+
2(u+ v) +

u
v

h+h+
4(u+ v) +

v
u

h−h−
4(u+ v)

= 1
4(u+ v)

(√
u
v
h+ +

√
v
u
h−
)2

.
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Computing mean traffic (III)

We now compute the mean 4-volume of (A, B) above (−u,v)
such that AB is separated from O:

∫∞
0

∫∞
0

exp

(
− 1

4(u+ v)
(√
u
v
h+ +

√
v
u
h−
)2
)

dh− dh+

= 2(u+ v) .

Now we can integrate out u > 0 and v > 0. Suppose (−u,v)
is contained in the region (−u0, v0) ⊆ (−1,1): total mean
traffic through the origin is given by

1
2
× 2×

∫ u0

0

∫ v0

0
2(u+ v)du dv = u0v0(u0 + v0) .
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Mean traffic flow in regular region

Theorem: Mean traffic flow

Consider a general convex body C, and traffic derived from
a Poissonian city based on a Poisson line process of intensity
n. Consider a point x in the region, and Palm condition on
a line ` passing through this point with further conditioning
on the direction of the line. Suppose that the two intervals
(`(θ) ∩ C) \ {x} have lengths w−(θ) and w+(θ). The traffic
flow Tn through x under this conditioning has mean value
asymptotic to

E [Tn] ∼ w−(θ)w+(θ)(w−(θ)+w+(θ))n3 .
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Mean traffic flow over the disk

Theorem: Mean traffic flow (case of disk)

Consider traffic derived from a Poissonian city based on a
Poisson line process of intensity n in a unit disk. Consider a
point x in the region, and Palm condition on a line ` passing
through this point without further conditioning on the direc-
tion of the line. The traffic flow Tn through x under this con-
ditioning has mean value asymptotic to

E [Tn] ∼ 2
π
(1− r2)

∫ π
0

√
1− r2 sin2 θ dθ = 4

π
(1− r2)E(r) .

where r ∈ [0,1] is the distance of x from the disk centre.
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There is a limiting distribution, but how to access it?

Can’t find analytic
expression for the
limiting distribution
limn→∞L

(
Tn/n3

)
.

We now can
recognize Tn as
4-dimensional
volume of random
polytope (use
1
4 dy− dy+).

Can we produce
achievable
approximating
simulations?
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Seminal curves
WSK (2014):

Focus on upper half-plane (quadrants Q±) and subset of
source/destinations in Q− ×Q+ not separated from o.
Identify two sub-families of improper line process Π∞:

Π∞,± = {` ∈ Π∞ : slope(`) = ±, ` intercepts ∓x-axis } .
Define seminal curves Γ± as the concave lower envelopes
of the unions of lines in Π∞,±.
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A series expression (I)
WSK (2014):

Use regions in figure to bound 4-volume . . .
(∫ 1

0
Γ−(−s) d s

)
×
(∫ 1

0
Γ+(s) d s

)

+
∞∑

n=0

Leb2(C+n )Leb2(∆+n)+
∞∑

n=0

Leb2(C−n )Leb2(∆−n)
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Recursive representation of Γ±
Theorem: Representing the seminal curves

Consider times of slope-change of Γ = Γ+ in reversed time:
1 = S0 > S1 > S2 > . . . > 0.
Successive tangents `0, `1, `2, . . . , `n: slopes Γ ′(s) for Sn ≥
s > Sn+1.
Let Yn = Γ(Sn)− SnΓ ′(Sn) be intercept of `n on y axis,

1
Sn+1

= 1
Sn
+ 4

Y 2
n
En+1 ,

Γ ′(Sn+1) = Γ ′(Sn)+ Yn
Sn+1

√
Un+1 .

for En ∼ Exponential(1), Un ∼ Uniform[0,1], independent of
each other and Γ(S0) = Γ(1), Γ ′(S0) = Γ ′(1).
(Γ(1), Γ ′(1) joint distribution is computable.)
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Simulation Error Estimation

Theorem: L1 simulation error

The L1 error of the 4-volume approximation

∫

Q+

∫

Q−
I[o∈∂C(x,y)] d x d y ≈

(∫ 1

0
Γ−(−s) d s

)
×
(∫ 1

0
Γ+(s) d s

)

+
N∑

n=0

Leb2(C+n )Leb2(∆+n)+
N∑

n=0

Leb2(C−n )Leb2(∆−n)

is bounded above by

20
7
× 3−N + 20

27
× 6−N .
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Empirical comparisons

We can now compare traffic distribution to traffic on the
UK railway system before Beeching (1963) (approximate
UK by ellipse . . . ).

density computable using elliptic integrals, or
numerically.

Remarkably, mean traffic distribution appears to have an
unexpected approximate affine invariance!
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UK railway traffic and Poissonian cities

Data from Beeching (1963);
annotation by Gameros Leal (2017).

Pre-Beeching rail traffic is
more highly
concentrated than
Poissonian city traffic.
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Conclusion

Traffic at the centre of the Poissonian city:

There is a limiting distribution under scaling.

There is a theoretical basis for developing an effective
simulation algorithm.

How to build an actual implementation?

Analytical representation?

Perfect simulation?

Links to Gamma distributions?

“Grid”-based cities.

Replacing lines by fibre fragments?

Is there a scale-invariant approach?
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Lecture IV

Scale-Invariant Spatial
Transportation Networks

Googling for cats

Scale-invariant Random Spatial Networks

About Π-paths

Properties of Π-geodesics

Pre-SIRSNs and SIRSNs

Random Metric Spaces
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Google holidays
for cats

94

Geodesics SIRSN Π-paths Π-geodesics SIRSNs Random Metrics

SIRSN axioms
What would a scale-invariant (random) network look like?
(Aldous, 2014; Aldous and Ganesan, 2013)
Input: set of nodes x1, . . . , xn;
Output:
random network N(x1, . . . , xn) connecting nodes.

(1) Scale-invariance: for each Euclidean similarity λ,
L (N(λx1, . . . , λxn)) = L (λN(x1, . . . , xn)).

(2) If D1 is length of fastest route between two points at unit
distance apart then E [D1] <∞.

(3) Weak SIRSN property: the network connecting points of
(independent) unit intensity Poisson point process has
finite average length per unit area.
(Strong) SIRSN property: the network connecting points
of dense Poisson point process has finite average length
per unit area of “long-range” part of network
(more than distance 1 from source or destination).
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Formal definition

Definition: (Strong) SIRSN

A SIRSN is a random mechanism for generating routes
Route(x,y) between locations x,y ∈ R2, such that

1. Given x,y the route Route(x,y) is almost surely
uniquely defined;

2. Let N(x1, . . . , xn) be the union of routes between various
locations xi. For each Euclidean similarity λ,
L (N(λx1, . . . , λxn)) = L (λN(x1, . . . , xn));

3. D(x,y) = E [len Route(x,y)
]
<∞.

4. (Strong form of SIRSN property) re-use of routes means
that the “fibre process”⋃
x≠y∈Φ(Route(x,y) \ (ball(x,1)∪ ball(y,1)) of

long-range routes has finite mean length per unit area
for a “dense Poisson process” Φ.
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Model for these axioms: Aldous’ dyadic SIRSN

Aldous (2014):

1. Consider integer lattice Z2. Verticals at x = (2k+ 1)2h,
horizontals at y = (2k+ 1)2h, have height h.

2. Fix γ ∈ (1
2 ,1). A path along the lattice travels at speed

γh when on a segment of height h.

3. Mark segments randomly to help choose between
non-unique geodesics.

4. Extend to dyadic lattice
⋃
r 2−rZ2.

5. Force stationarity by taking weak limit of random
translations.

6. Force isotropy by taking random rotation.

7. Force scaling symmetry by taking scaling by random
factor c ∈ (1,2).
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Aldous’ dyadic SIRSN
SIRSN by randomization
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The Poisson line process SIRSN candidate

Proposed by Aldous (2014).

1. Fill plane with dense speed-marked Poisson line process.

(Parametrize each line by signed perpendicular distance
from origin r , angle θ ∈ [0, π), and positive speed v:
use intensity measure 1

2(γ − 1)v−γ dv d r dθ.)

2. “Π-paths”: Lipschitz paths integrating resulting
measurable orientation field, (almost always) obeying
speed-limit.

3. Connect pairs of points by fastest routes (“Π-geodesics”)
travelling entirely on line pattern at maximum speed.

4. For γ > 2, almost surely, all pairs are connected. Almost
surely, fastest connection for a specified pair is unique.

5. Strong SIRSN axioms hold (WSK, 2017; Kahn, 2016).
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Impropriety and marks
Need to take care when defining random point or line
processes which are dense!
There are strange measure-theoretic issues: (Aldous and
Barlow, 1981; WSK, 2000).
Such processes are often described as “improper”: the
intensity measure ν is not locally finite.
Typical way to resolve the problem: add marks, for
example lines with speed-limits:

We want to define a Poisson line process that is “dense
everywhere”.
Introduce a notion of speed v, a random speed-limit
mark for each line `.
View the process as a point process in an extended
representation space, typical point (v, r , θ).
For intensity measure use f(v) dv d r dθ, locally finite
on v-r -θ space even if it does not project down to local
finite measure on r -θ space.
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About Π-paths (I)

Seek shortest-time paths (“temporal geodesics” or
Π-geodesics) built using line process Π.
Require γ > 1, or fast lines will go everywhere.

Introduce maximum speed limit, upper-semi-continuous
V : Rd → [0,∞).
A Π-path is locally Lipschitz, integrates measurable
orientation field determined by Π, obeys speed limit.

If γ > d then:
there is an a priori random bound on distance travelled
by Π-path in fixed time;
space of paths up to time T is closed, weakly closed in
Sobolev space L1,2([0, T )→ Rd),
paths up to time T , beginning in a compact set, together
form a weakly compact set.
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When infinity is infinitely far away

Theorem: An a priori upper bound for path space

Suppose γ ≥ d ≥ 2. Fix T < ∞, consider Π-path ξ begun in
unit ball. There is C < ∞ depending on realization of Π such
that almost surely |ξ(t)| ≤ C for all t ≤ T .

Proof.
Set V(r) to be speed of fastest line within r of origin.
Map line (`, v), (|r |d−1, v−(γ−1)) to a point in [0,∞)2: this
maps Π to a planar Poisson process!
S = (V(r))−(γ−1) changes at |r |d−1 = P0 < P1 < P2 < . . ..

Pn − Pn−1 = 1/(Sn−1Tn) for Exponential Tn;
Sn = UnSn−1 for Uniform(0,1) Un.

Xn = SnPn is a perpetuity.
Compute P

[
infinite time to get to infinity |Π] = 1.
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We can now apply standard compactness arguments for the
Sobolev space L1,2([0, T )→ Rd):

Lemma: Π-geodesics exist if Π-paths exist

Suppose Π is a speed-marked Poisson line process in Rd with
intensity measure 1

2(γ − 1)v−γ dv d r dθ. If γ > 1 then al-
most surely Π-geodesics exist between all point pairs ξ1 and
ξ2 in Rd if Π-paths exist.
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About Π-paths (II)
Suppose one wishes to connect two points ξ1 and ξ2 in Rd by
a Π-path. Suppose γ > d (turns out to be essential).

Construct small balls around ξ1 and ξ2;

Connect balls by fastest line ` intersecting both balls;

Construct daughter nodes on ` closest to ξ1 and ξ2;

Recurse.

Borel-Cantelli, et cetera: establish almost sure existence
of resulting path.

This yields a binary tree representation of the path. Note
that this is unavoidable if d > 2!

A similar but more complicated argument almost surely
allows simultaneous construction of paths between all
possible pairs ξ1 and ξ2 in Rd.

Exercise: Figure out a way to visualize Π-paths in case
d = 3.
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Construction to connect two points

First find the fastest line passing reasonably close to both
source and destination.

Then recurse.
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Lower bound on measure of set of lines hitting 2 balls

Reduction of hitting set [ball(x1, α−1r)]∩ [ball(x2, α−1r)] to
a smaller hitting set for which the line measure is more easily
computable yet which still provides a useful lower bound.
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Now use resulting lower bound

µd
(
[ball(ξ1, α−1r)]∩ [ball(ξ2, α−1r)]

)
≥ κd−1

(
r

4α2

)d−1

and a Borel-Cantelli argument to control the amount of time
spent traversing recursively defined paths between any pair
of points.

Lemma: Existence of Π-paths

Suppose Π is a speed-marked Poisson line process in Rd with
intensity measure 1

2(γ − 1)v−γ dv d r dθ. If γ > d then Π-
paths exist between all point pairs ξ1 and ξ2 in Rd and no
Π-paths of finite length can reach infinity.

Remark: Random metrics for Euclidean space

So if γ > d then Π determines a random metric on Rd.
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About Π-paths (III)
Exponential moments for powers of Π-diameters

Kahn (2016), improving on WSK (2017, Theorem 3.6) has
proved results of which the following is a simple example:

Consider ball(o, R), a ball of Euclidean radius R.

Let TR be the supremum of the minimum times for a
Π-path to pass from one point of ball(o, R) to another;

TR = sup
x,y∈ball(o,R)

inf{T :

some Π-path ξ : [0, T ]→ B satisfies ξ(0) = x, ξ(T) = y} .

We call TR the Π-diameter of ball(o, R).
For explicit δR > 0, KR <∞,

E
[
exp

(
δRT

γ−1
R

)]
≤ KR < ∞ .
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Simulations (approximate!) of a typical set of routes

Case γ = 16
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Are Π-geodesics unique? (I)
Suppose now d = 2 and γ > 2, and we fix ξ1 and ξ2 ∈ R2. If
Π is to generate a network between a finite set of points,
then we need to know the Π-geodesic between ξ1 and ξ2 is
almost surely unique.

Theorem: “line meets line”

All non-singleton intersections of a Π-geodesic with lines ` of
Π are of the form “line meets line”.

First, reduce to case of ` being fastest line in region,
with speed w.
Now change focus from high speed v to low “cost”,
where

“cost” = cscθ
v

− cotθ
w

.

where θ is angle of line with `.
Argue that Π-geodesic hits ` using line of finite cost.
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Are Π-geodesics unique? (II)

So Π-geodesics between ξ1 and ξ2 are made up of countable
collection of intervals of lines of Π.

Fix a given ` from Π, and consider the set S of such
intervals lying in `.

Consider two different finite collections S1 ⊂ S and
S2 ⊂ S, each composed of non-overlapping intervals.
Probability density argument: the total lengths of S1 and
S2 have a joint density, unless one is empty.
Conditioning on time spent off `, almost surely two
Π-paths using S1 and S2 respectively must have different
total travel times.
Almost surely two Π-geodesics between ξ1 and ξ2 must
use the same finite collection of non-overlapping
intervals from each ` of Π.
But we can reconstruct the Π-geodesic uniquely from the
collections of intervals of each line ` in Π.
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Theorem: Uniqueness of Π-geodesics in planar case

Suppose Π is a speed-marked Poisson line process in R2 with
intensity measure 1

2(γ − 1)v−γ dv d r dθ. If γ > 2 then for
any point pair ξ1 and ξ2 in R2 it is almost surely the case that
there is just one Π-geodesic between ξ1 and ξ2.

Almost surely there will exist non-unique Π-geodesics!
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Do Π-geodesics have finite mean length?

Suppose again that d = 2 and γ > 2.

Techniques for showing existence of Π-paths show finite
mean of length of Π-geodesic if lying in a fixed ball.

Could fast geodesics generate long lengths outside
balls? (Oxford → Cambridge by motorway via London?
or Edinburgh? . . . )

Time spent by Π-geodesic can be bounded above by
time spent on a circuit of a “racetrack” construction
around ξ1 and ξ2 using fastest lines.

We can upper-bound distance travelled outside a ball by
using the “idealized path” construction employed above.

The resulting perpetuity can be combined with the
“racetrack” bound to establish finite mean length.
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Diagram to prove Pre-SIRSN property
A careful construction, together with a Borel-Cantelli
argument, shows that re-scaled small perturbations of
the following diagram (for suitable re-scaled speeds
1 < a < b < c) can be found at all length scales:

If c > 10b > 59a/3 > 354/3, red segment is only exit.
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Kahn (2016) has now produced a proof of the strong SIRSN
property for all dimensions d and all γ > d, using the
exponential inequality mentioned above for powers of
Π-diameters

E
[
exp

(
δRT

γ−1
R

)]
≤ KR < ∞ .

This can be used to show that Π-geodesics must make
substantial re-use of shared lines: for all Π-geodesics
bridging a suitable annulus, the exponential inequality forces
each Π-geodesic to make substantial use of a limited number
of “fast” lines. SIRSN follows by using a measure-theoretic
version of the pigeonhole principle.
Kahn (2016) deploys further ingenious arguments to obtain
uniqueness (essential if above argument is to work) and finite
mean-length of Π-geodesics in case d > 2.
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Theorem: Poisson line process SIRSN

Suppose Π is a speed-marked Poisson line process in Rd with
intensity measure 1

2(γ − 1)v−γ dv d r dθ. If γ > d then Π is
a (strong) SIRSN.
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Random Metric Spaces

Study of metric spaces generated by line processes should
form a chapter in the theory of random metric spaces:

1. Vershik (2004) builds random metric spaces out of
random distance matrices (compare MDS in statistics);
almost all are isometric to Urysohn’s celebrated
universal metric space. Not finite-dimensional.

2. Brownian map: limit of random quadrangulations of
2-sphere (eg, Le Gall, 2010). Far from flat.

3. Baccelli, Tchoumatchenko, and Zuyev (2000) link to
geometric spanners; they exhibit 4

π -spanner paths in
Poisson-Delaunay triangulations.
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Lecture V

Random Flights on the SIRSN

Wandering about Yorkshire and Durham

Random wandering on a SIRSN

Scattering – an abstract approach

Application to RRF on SIRSN – a quick sketch

Conclusion
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Wandering about Yorkshire and Durham

https://www.openstreetmap.org/

Tsukayama, Washington Post, 30th January 2013:
Estimated annual impact of online maps: $1.6tn.
Estimated growth 30% per year (smartphones!).
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Random wandering on a SIRSN

Options:
(thanks to Banerjee, Croydon for helpful conversations!)

1. Random walk, connect successive jumps by Π-geodesics.

(Con: Always stopping and starting!)

2. Brownian motion on the line pattern.

(Con: Relationship with speed limits is not explicit.)

3. Rayleigh random flight:
Proceed at top speed along current line;
Switch to intersecting lines depending on relative
speeds;
Choose new direction equi-probably.

4. This is SIRSN-RRF: a “randomly broken Π-geodesic”.

Can it be speed-neighbourhood-recurrent?
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Scattering – an abstract approach (I)

How to define a SIRSN-RRF?
Proceed at top speed along current line;
Switch to intersecting lines depending on relative
speeds;
Choose new direction equi-probably.

Suffices to sample process when it changes speed.

Since Π is improper line process, opportunities to
change speed are dense along each line!

Convenient to take an abstract view:

Advantages of axiomatic method
“same as the advantages of theft over honest toil”
(Russell, 1919, p.71).
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Scattering – an abstract approach (sketch)
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Scattering – an abstract approach (II)

Generalization (possibly of wider interest?):

1. A discrete-time Markov chain on countable state-space is
an abstract scattering process if pab =ωabsb for
(symmetric) transmission probabilities ωab and
scattering probabilities sb (set ωa,ã = 0, sa > 0 for all a).

2. (Consider a matrix (ωab): if row-vectors (ωa·) all lie in
`1 then the Hahn-Banach theorem can be used to
characterize whether (ωab) is transmission matrix.)

3. Require dynamically reversibility for measure π :
Involution a↔ ã preserving measure π ,
with πapa,b̃ = πbpb,ã.

4. Relate πa/sã to scatter-equivalence classes (“lines”):
if there is a chain a = b0, b1, . . . , bn = c with
ωbm−1,b̃m

> 0, then πa/sã = πc/sc̃.
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Scattering – an abstract approach (III)
5 Adopt “Metropolis-Hastings recipe”: divide state-space

into equivalence classes using ω,
set πa =min{κ, κ′} where we choose κ, κ′ as positive
constants belonging to classes of a and ã,
set scattering probability sa =min{1, κ/κ′}
(dynamic reversibility is then automatic!).

6 In case of a suitable total ordering ≺ for each “line”,
transmission probabilities are functions of scattering
probabilities.
For each a ≺ b, there are ωa,± summing to 1 with

pa,b̃ = ωa,b̃sb̃ = ωa,+


 ∏

a≺c≺b
(1− sc̃)


 sb̃ ,

and similar for pb,ã using ωb,−.
All follows from choice of the class constants κ
(and say equiprobable choice of direction ωa,± = 1

2 ).
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Application

Define the SIRSN-RRF, sampled at changes in direction, by
specifying equilibrium probabilities at intersections of lines.

1. Scaling invariance: π(`1,`2) =min{vα1 , vα2 }, parameter α.

2. Scattering probability: s(`1,`2) =min{1, (v2/v1)α}.
3. Dynamical reversibility: non-symmetric Dirichlet form.

4. Apply Campbell-Slivnyak-Mecke theorem (twice!) to
identify (translated, rotated, scaled) “environment viewed
from particle” via reduced non-symmetric Dirichlet form.

5. Resulting log-relative-speed-changes V1, V2, . . . form a
stationary process.

6. Analyze using RWRE theory (but state-space is not a
lattice!).
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Dynamical reversibility
Let f(x,Π) be bounded, measurable, x an intersection of lines L1, L2 in Π.

Set f̃ (L1,L2;Π) = f(L2,L1;Π). Consider the non-symmetric form

B(f , g) =

E


E


 ∑∑

L1≠L2∈Π
E
[
f̃ (Z̃0;Π)× g(Z1;Π)×πx

∣∣∣ Z0 = x = (L1,L2)
] ∣∣∣ Π




 .

Using Campbell-Mecke-Slivnyak theory twice, this can be reduced (taking out
translations, rotations, scale-changes) to the study of

E

[ ∑

L3∈Π
f (2)(L∗1 ;Π∪ {L∗1 })s(L̃0,L∗1 )




∏

L∈Π: L separates

origin from L̃0∩L3

(1− s(L̃0,L))




× s(L̃0,L3)g
(2)(L3;Π∪ {L∗1 })

]

Read off equilibrium distribution from reduced non-symmetric form:
at critical α = 2(γ − 1), the typical log-relative-speed-change X has
stationary symmetric Laplace distribution.
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Ergodicity (I)
Rayleigh random flight (RRF) on Π, unit initial speed.

The cumulative log-speed-change Xn = V1 + . . .+ Vn can
be expressed using a sum of log-relative-speed-changes
V1, . . . , Vn, . . . which form a stationary sequence.

If the mean log-relative-speed-change µ = E [V1] is
non-zero then Xn/n = (V1 + . . .+ Vn)/n will converge to
a non-identically-zero limit random variable
(“non-ergodic” part of Birkhoff’s ergodic theorem);
therefore for any ε > 0 there is at least a positive chance
of Xn eventually never re-visiting (−ε, ε).
If we could show V1, . . . , Vn, . . . to be ergodic, then the
limit equals µ. In this case transience is sure if µ ≠ 0.

Remarkably, the converse also holds! (Zero-mean forces
neighborhood recurrence.) This is a consequence of the
ideas of the Kesten-Spitzer-Whitman range theorem.
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Ergodicity (II)
Theorem: Neighborhood-recurrence and ergodicity

Suppose V1, . . . , Vn, . . . form a stationary ergodic sequence,
with E [V1] = 0. Set Xn = V1 + . . .+ Vn. Then for all ε > 0 it is
the case that

P [|Xn −X0| ≤ ε infinitely often in n] = 1 .

Proof.
Xn/n→ 0 a.s. so n−1 sup{|X1|, . . . , |Xn|} → 0 a.s.
Set An = [|Xm −Xn| > ε for all m > n]. Birkhoff’s ergodic
theorem: n−1(I [A1]+ . . .+ I [An])→ p = P [A1].
Packing argument: |Xm −Xn| > ε on An ∩Am if m ≠ n.
Deduce
n−1(I [A1]+ . . .+ I [An]) ≤ (nε)−1 sup{|X1|, . . . , |Xn|}.
Let n→∞ and deduce p = 0.
Complete argument by sub-sampling . . . .
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An argument of Kozlov type

Consider the process Ψ of the (re-scaled, shifted, rotated)
environment viewed from the RRF particle. Let h̃ be a
bounded harmonic function on the (re-scaled, shifted,
rotated) environment state-space (harmonic with respect to
the process Ψ ). Then h̃(Ψn) is almost surely constant in
(discrete) time n. For consider

E
[
(h̃(Ψ0)− h̃(Ψ1))2

]
= 2 E

[
h̃(Ψ0)2

]
− 2 E

[
h̃(Ψ0)h(Ψ1)

]
= 0 ,

where the first step follows from stationarity and the second
because h̃(Ψ) is a martingale. Thus P

[
h̃(Ψ1) = h̃(Ψ0)

]
= 1.

Thus if E is a shift-invariant event then T−1E = E (up to
null-sets) for T a composition of any finite sequence of
transformations induced by possible moves of the RRF.
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Proving ergodicity
We only need to show ergodicity of the environment viewed
from the particle.

1. Given δ > 0, approximate E by Eδ depending only on
lines of Π in a finite speed-range [−W,W] (and coming
within a bounded distance R of o):

P [E∆Eδ] ≤ δ .

2. Find a composition of transformations T such that T
moves lines in speed-range [−W,W] to a disjoint
speed-range, so that Eδ and T−1Eδ are independent.

3. Deduce that |P [E]− P [E]2 | = |P [E ∩ E]− P [E]2 | ≤
|P [Eδ ∩ T−1Eδ

]− P [Eδ]P
[
T−1Eδ

] | + 4δ = 4δ.

4. Since δ > 0 is arbitrary, it follows P [E] must be zero or
one. It follows that Ψ , and hence the log-speed-change
process, is ergodic. QED
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Concluding Theorem

Theorem: Transience and neighborhood-recurrence

1. Critical case (α = 2(γ − 1)): SIRSN-RRF speed is
neighbourhood-recurrent.

2. Sub-critical case (α < 2(γ − 1)): SIRSN-RRF converges to
a random limiting point in the plane (trapped by cells of
tessellation of high-speed lines).

3. Super-critical case (α > 2(γ − 1)): SIRSN-RRF disappears
off to infinity (consider high-speed tessellation).
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Conclusion: always more questions!

1. So a critical “randomly-broken Π-geodesic” does not halt
en route. What about Π-geodesics themselves?

2. Is critical case space-(neighbourhood)-recurrent?
speed-point-recurrent? (working on proof . . . )

3. Above argument should work for critical (non-SIRSN) Π
for which γ = 2 and α = 2 (not yet checked).

4. “Brownian-like” variations should follow from WSK and
Westcott (1987): scale-invariant “Liouville diffusion”
(Berestycki, 2015; Garban, Rhodes, and Vargas, 2013).

5. Can anything be done for the high-dimensional SIRSN
supplied by case γ > d > 2?

6. Replace lines by long segments? nearly straight fibres?
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