Syllabus of lectures

Part 1 Stochastic geometry: a brief introduction: The basic building blocks of stochastic geometry.

Part 2 Poisson line processes and Network Efficiency: Curious results arising from careful investigation of measures of effectiveness of networks.

Part 3 Traffic flow in a Poissonian city:

Using Poisson line processes to model traffic intensity in a random city.

Part 4 Scale-invariant random spatial networks (SIRSN): Novel random metric spaces arising from the methods used to analyze effectiveness of networks.

Part 5 Random flights on the SIRSN.

How can we move about on a SIRSN modelled on Poisson line processes?

Warwick Statistics

Poisson Line Processes and Spatial Transportation Networks

Wilfrid S. Kendall w.s.kendall@warwick.ac.uk

Department of Statistics, University of Warwick

21st-22nd June 2018

Support: Turing, EPSRC K031066, K013939, INI "Random Geometry".

Warwick Statistics

Introductio

Useful references

nology Introdu

ferences

Chronology

Useful references for stochastic geometry

- Kingman (1993): concise and elegant introduction to Poisson processes;
- Stoyan, WSK, and Mecke (1995): now in an extended 3rd edition (Chiu, Stoyan, WSK, and Mecke, 2013);
- Schneider and Weil (2008): magisterial introduction to the links between stochastic and integral geometry;

- WSK and Molchanov (2010): collection of essays on developments in stochastic geometry.
- Last and Penrose (2017): more on Poisson point processes.
- Molchanov (1996b): Boolean models, a way to build random sets from Poisson point processes.

Warwick Statistics

A short chronology of stochastic geometry

(The study of random pattern)

- Georges-Louis Leclerc, Comte de Buffon (7 September, 1707 – 16 April, 1788);
- Władysław Hugo Dionizy Steinhaus (14 January, 1887 - 25 February, 1972);
- Luís Antoni Santaló Sors
 (9 October, 1911 22 November, 2001);
- 4. Rollo Davidson
 - (8 October, 1944 29 July, 1970);
- 5. D.G. Kendall and K. Krickeberg coined the phrase "stochastic geometry" when preparing an Oberwolfach workshop, 1969 (also Frisch and Hammersley, 1963);
- 6. Mathematical morphology (G. Matheron and J. Serra);
- Point processes arising from queueing theory (J. Kerstan, K. Matthes, ...);

Warwick Statistics

Statistics

6. The reduced Palm distribution is obtained by deleting the point x from the Palm distribution.

Warwick Statistics

Palm distribution of a Poisson process

Theorem: Slivnyak

The Palm distribution of a planar Poisson point process Φ at $x \in \mathbb{R}^2$ is the superposition $\delta_x * P(d\phi)$, namely Φ with added point at x.

Proof.

Consider an arbitrary (compact) set $K \subset \mathbb{R}^2$ and a bounded Borel set $B \subset \mathbb{R}^2$.

Let V_K be the set of patterns placing no points in K. Consider $C(B, V_K) = \mathbb{E} \left[\sum_{x \in B} \mathbb{I} \left[\Phi \cap K = \emptyset \right] \right]$. But $C(B \cap K, V_K) = 0$, while $C(B \setminus K, V_K) = \int_{B \setminus K} P(V_K) \nu(dx)$, when P is the original Poisson distribution (independence of Poisson process in disjoint regions).

This agrees with the results obtained by replacing $C(dx, d\xi)$ by $v(dx) \times (\delta_x * P(d\xi))$.

Choquet's capacitability theorem implies measures agree.

000

Examples

Example: Alpha particles

Centres of traces of α -particles on a detector in a 60×60 square (unit of $2\mu m$).

Locations of centres of traces (Stoyan et al., 1995, Figure 2.5ff).

Warwick Statistics

Application: When is a point process Poisson?

Is the randomness of a pattern "unstructured"?

- Use statistical tests for Poisson distribution of point counts;
- Deciding whether a pattern is *completely* random is relatively easy (answer is usually no!). Deciding what sort of pattern can be hard.
- Compare Ripley (1977)

 (a) First-contact distribution *H*(*r*) of distance from fixed location to nearest point,
 (b) Nearest-neighbour distribution *D*(*r*).

Marks

Mephistopheles and the bus company

Examples

000

Classic bus paradox: mean time between Poisson buses is twice the mean length of interval between bus arrivals. This follows immediately from Slivnyak's theorem! For renewal point processes the picture can be stranger.

- 1. The aspirant devil Mephistopheles is forced to take a job with Hades Regional Bus Company.
- 2. He is responsible for operation of the N°12 bus service between city centre and university campus.
- 3. Contract requires him to deliver mean time between bus arrivals of 10 minutes.
- 4. How bad can he make the service while still (statistically speaking) fulfilling the contract?

In mean-value terms, Mephistopheles can make matters infinitely bad . . .

random set rather than a

of each point in a Poisson

process and take the union.

Simplest approach that might

work: plant a random set on top

random point pattern.

Theory: Hall (1988), Molchanov (1996b).

Theorem: Slivnyak for independent marks

The Palm distribution of a planar marked Poisson point process Ψ at $x \in \mathbb{R}^2$ (independently marked with identically distributed marks of distribution \mathcal{M}) is the superposition $\delta_{[x;M]} * P(d\psi)$, namely Ψ with added point at x furnished with independent random mark M of distribution \mathcal{M} .

Warwick Statistics

MS lesions (white areas) in human brain.

QuizDefinitions00000	Palm 000	Examples Mar	ks Boolean model	Quiz o	Definitions 0000	Palm 000	Examples 000	Marks 000	Boolean model ○○●
 Germs define a Poisson pro Grains are (in random comp placed on eac (control size vacant region the Boolean r 	Boolean mo ed by points of ocess; independent pact) sets ch grain to ensure is exist); model is the	odel notation			A result wh Suppose we had disks for grain behaviour of t At high intens limit, boundar look approxim	ich bric ave a high is. What is he vacant ity, vacan ies are lo nately like	n-intensity Boc s the approxin regions? cies are small cally straight: a cell formed	next lect plean model nate statisti and rare. Ir the vacancy I by dividing	using cal h the y will j up
union of all g Boolean mod used to defin point process and van Liesk WSK, van Lies Baddeley, 19 1997).	rains. els can also be e interacting ses (Baddeley nout, 1995; shout, and 99; WSK,	Simulated Boolear image of potassiu are disks of rando	n model matched to m deposit (grains om radius).	22	space by many Similar results higher dimens But what do w	y random under m ions too e <i>mean</i> b	lines (Hall, 19 uch weaker co (Hall, 1988; M y a random co	988). onditions, ar olchanov, 1 ollection of I	nd in 996a). lines?
History Lines 00000 00000000	dealization	Hierarchy Complem	ent Further questions	History •oooo	Lines 0000000000	Idealization	Hierarchy 000	Complement	Further questions
	Lect	ure ll			Georges-Lo	Duis Leo	clerc, Comt 707 - 16 April,	: e de Buff 1788)	on
P	oisson Lin	e Processes				•	French encyc	lopædist,	- 1
a	nd Netwoi	rk Efficiency	,			•	Bernoulli; Published "Es	ssai d'Arithr	nétique
History							Morale" (Corr	ite de Buffo	n, 1829)
Poisson line pro	ocesses and Ne	twork Efficiency			7.20		Neugebauer,	and Pasca,	2010);
A Mathematical	Idealization				1 ST 1	•	Measured an	d valued un	certainty;
A Transportatio	n Hierarchy			1		•	and rationalis	ure of empi sm;	ricism
A Complementa	ary Result					•	"Calculate π :	: drop need!	le

 "Calculate π: drop needle randomly on ruled plane, count mean proportion of hits."

Warwick Statistics

Warwick Statistics

Some further questions

13W

HistoryLinesIdealizationHierarchyComplementFurther questions0000000000000000000000000000000	HistoryLinesIdealizationHierarchyComplementFurther questions000000000000000000000000000000
 How to build random patterns of lines? 1. We could use the theory of Random Closed Sets: characterize a random closed set Ξ by void-probabilities P[Ξ # A] = P[Ξ ∩ A = Ø]. 2. More constructively, we could try the Boolean model: take union of (possibly random) sets placed on Poisson points. 3. However, the Boolean model does not adapt well to random lines, since random lines are not localized. 4. Simple solution: parametrize lines ℓ by signed perpendicular distance r and angle θ: 4.1 each line ℓ corresponds to a point (r, θ) in representation space; 4.2 view Poisson line process as Poisson point process in representation space, μ being invariant line measure. 5. The representation space is a cylinder with twist: in fact an infinite Möbius strip, or punctured projective plane. 6. Calculations: often reduce to probabilities that there are no lines of particular forms. 	Illustration of invariant line measure The key to understanding invariant line measure: use a good parametrization of (undirected) lines in the plane. $ \ \ \ \ \ \ \ \ \ \ $
History Lines Idealization Hierarchy Complement Further questions	History Lines Idealization Hierarchy Complement Further questions
Poisson Line Process	Tools for line processes
Definition: Poisson line process A (stationary) Poisson (undirected) line process of intensity $\lambda > 0$ is obtained from a Poisson point process on $\mathbb{R} \times [0, \pi)$ with intensity $\frac{1}{2}\lambda dr d\theta$ as follows: for each point (r, θ) in the point process, a line is generated at signed distance r from the origin and making an angle θ with the x -axis. Stationary) Poisson <i>directed</i> line processes can be obtained from undirected Poisson line processes by assigning a direction to each line. A natural parameter space would then be $\mathbb{R} \times [0, 2\pi)$.	 Buffon The length of a curve equals the mean number of hits by a unit-intensity Poisson line process (intensity 1/2 dr dθ); Slivnyak Suppose we condition a Poisson process on placing a "point" z at a specified location. The conditioned process is again a Poisson process with added z; Angles Generate a planar line process from a unit-intensity Poisson point process on a reference line ℓ, by constructing lines through the points p whose angles θ ∈ [0, π) to ℓ are independent with density 1/2 sin θ. The result is a unit-intensity Poisson line process. Intensity measure in these coordinates: 1/2 sin θ dp dθ.
	• Warvick

- 1. The Steinhaus method of determining length by the line measure of intercepts can be viewed as lying at the heart of modern stereology: take a random slice (line or plane), count geometrical features along the slice, deduce estimates of 3d geometric structure. The resulting geometric calculations can be complicated!
- 2. D.G. Kendall conjecture. Consider a plane tessellated by an invariant Poisson line process. Consider the cell containing the origin. Suppose that we condition on this cell having large area. What is its limiting shape? Answer: Circular (Miles, Kovalenko, Schneider and others ...).
- Rollo Davidson's conjecture. Consider an invariant line process with finite mean-square counts on compact sets, and with no parallel lines. Must it be a Cox process? (Poisson process with randomized intensity measure.) Answer: No. Kallenberg and Kingman describe a beautiful construction based on a random lattice.

Mastiles Lane, Yorkshire Dales

$$\frac{1}{N(N-1)} \sum_{i \neq j} \frac{\operatorname{dist}_G(x_i, x_j)}{\|x_i - x_j\|}$$

Statistics

might achieve average network distance no more than

order N^{β} longer than average Euclidean distance?

(equidistribution),

so a random perpendicular to the Euclidean path is almost a uniformly random line.

Statistics

Warwick Statistics

Variance and growth process (II)

Sketch of argument:

- 1. $X_t \approx X_0 + 2\Theta_0^{-2} \int_0^t \frac{\Theta_0^2}{\Theta_s^2} \, \mathrm{d} s;$
- 2. $\log (\Theta_0 / \Theta_t) \approx \xi_t$ a non-decreasing Lévy process;
- 3. $M_t = \xi_t \frac{3}{4}t$ is an L^2 martingale.
- 4. Define a stopping time by $\sigma(n)$ by $X_{\sigma(n)} = n$. So $n = X_{\sigma(n)} \approx X_0 + 2\Theta_0^{-2} \int_0^{\sigma(n)} \Theta_0^2 / \Theta_s^2 \, \mathrm{d}s$.
- 5. Now $\exp(2\xi_{\sigma(n)})$ is (approximately) a self-similar process, about which much information is available;
- 6. Analyze the tautology $\sigma(n) \approx \frac{2}{3} \left(\log n 2M_{\sigma(n)} + \log \left(\exp(2\xi_{\sigma(n)})/n \right) \right).$
- 7. Control $\log (\exp(2\xi_{\sigma(n)})/n)$ using work of Bertoin and Yor (2005);
- 8. Deduce $\sigma(n) \approx \frac{2}{3}(\log n + O(1) 2M_{\sigma(n)});$ now $M_{\sigma(n)})$ can be shown to be L^2 .

Warwick Statistics

Statistics

Further questions

Further questions

Idealization Hierarchy Complement

What about true geodesics?

- The above can be used to show true geodesics typically have smaller excess than our paths, nevertheless
- the number of "top-to-bottom" crossings of a true geodesic is stochastically bounded in any region $[na, nb] \subseteq (0, n)$, so all but a stochastically bounded number of "short-cuts" must be within $O(n/\log n)$ of start or end, affecting coefficient of $\log(n)$ but no more; indeed

Theorem: Lower bound on mean excess

Any path of length \boldsymbol{n} built using the Poisson lines must have mean excess at least

$$\left(\log 4 - \frac{5}{4}\right)\log n + o\left(\log n\right).$$

$$\mathbb{E}[\sigma(n)] = \frac{2}{3}\log n + O(1)$$

Var $[\sigma(n)] = \frac{20}{27}\log n + O\left(\sqrt{\log n}\right).$

Hence perimeter length fluctuations are $O(\sqrt{\log n})$.

Check: Earlier today, we calculated mean semi-perimeter-length as $n + \frac{4}{3} \log n + \dots$ Each semi-perimeter excess contains contributions from two of these paths (growth from left, growth from right), so this stochastic calculus approach is in agreement with the stochastic geometry calculations.

$$\frac{2}{\sqrt{p^2 + 4} + p} \leq e^{p^2/2} \int_p^\infty e^{-s^2/2} \, \mathrm{d} \, s \leq \frac{4}{\sqrt{p^2 + 8} + 3p}$$

Birnbaum (1942)

Sampford (1953), Warwick

Palm distributions The Poissonian City (II) Aldous idea: Every point-pair (x, y) contributes • Recall Slivynak's theorem: if we condition on a Poisson infinitesimal dx dy split between two near-geodesics. process placing a point at the origin ... Compute 4-volume of random polytope! • ... then the *reduced Palm distribution*, the residual point pattern (*minus* the conditioned point), is again Poisson with the same intensity. • Best understood in the same way as we understand abstract conditional expectation: plugging in the Palm distribution in certain formulae gives the correct answer. (Reductionist point of view: just "integration by parts".) • Similarly for Poisson line processes: If we condition on a line through the centre, then the remainder of the line process is again Poisson. • So what could we then say about traffic at the centre? Statistics Statistics City City 0 00000000000 0 000000000000 More sophisticated approaches (I)

City

Options:

City

Up to constant factors (readily computable using Slivnyak's theorem) we get essentially the same mean value behaviour if instead traffic is generated

- uniformly between pairs of points lying on the lines only;
- between points of a point pattern that is Poisson along the lines (using Lebesgue length measure);
- between the points of intersections of lines;
- the process used to generate traffic along fibres or at intersections can be random if it is of finite mean and does not depend on location.

More sophisticated approaches (II):

Poisson locations scattered along Π

We consider a Poissonian city formed by unit intensity Poisson line process Π . Independently, source / destination points form a Poisson point process whose intensity is Lebesgue linear measure along Π .

Statistics

Let $2f_{x_0,x_1,x_2}(\Pi)$ indicate whether x_1 lies on near-geodesic $x_1 \rightarrow x_2$, with $x_0 \in \text{ball}(z_0, \epsilon)$, $x_1 \in \text{ball}(z_1, \rho_1)$. Our task is to compute

 $\sum_{x_0\in\Psi}\sum_{x_1\in\Psi}\sum_{x_2\in\Psi}f_{x_0,x_1,x_2}(\Pi)$

More sophisticated approaches (III): Palm theory for lines of II

0000000000000

We consider a Poissonian city formed by unit intensity Poisson line process Π . Independently, source / destination points form a Poisson point process whose intensity is Lebesgue linear measure along Π .

Palm theory for ℓ_2 , change coordinates, cutoff for x_2 :

 $\left(\frac{\pi}{2}\right)^{3} \int_{\text{ball}(z_{0},\varepsilon)} \int_{\text{ball}(z_{1},\rho_{1})} \int_{\text{ball}(z_{2},\rho_{2})} \mathbb{E}\left[f_{x_{0},x_{1},x_{2}}(\Pi \cup \{\ell_{*}\})\right]$

 $d x_2 d x_1 d x_0$ asymptotically as $n \to \infty$

Warwick Statistics

Statistics

Results for more sophisticated approaches (II)

City

Consider again a Poissonian city formed by unit intensity Poisson line process Π . Source / destination points are formed

by the line intersections of $\boldsymbol{\Pi}.$

Theorem: Mean traffic between intersections

If source / destination points are formed by the intersections of the lines of Π then mean traffic through a "typical" point x_0 is given by integrating $2\left(\frac{\pi}{4}\right)^3 \mathbb{E}\left[f_{x_0,x_1,x_2}(\Pi \cup \{\ell_*\})\right]$ against x_1 and x_2 , conditional on x_0 belonging to Π via a randomly oriented line ℓ_* .

Results for more sophisticated approaches (I)

City

0 00000000000000

We consider a Poissonian city formed by unit intensity Poisson line process Π . Independently, source / destination points form a Poisson point process whose intensity is Lebesgue linear measure along Π .

Theorem: Mean traffic between Poisson points

If source / destination points are scattered by a (conditionally independent) Poisson process along Π then mean traffic through a "typical" point x_0 is given by integrating $\left(\frac{\pi}{2}\right)^3 \mathbb{E}\left[f_{x_0,x_1,x_2}(\Pi \cup \{\ell_*\})\right]$ against x_1 and x_2 , conditional on x_0 belonging to Π via a randomly oriented line ℓ_* .

Illustration of traffic routes between intersection points

Warwick Statistics

oratistics

CityCalculationsImproprietySimulationEmpirical comparisonsConclusion0000000000000000000000000000000000	City Calculations Impropriety Simulation Empirical comparisons Conclusion 0 00000000000 000 000000 00 00 0 0						
Measure congestion?	Questions:						
	 What is the mean traffic flow through the centre? Is there a limiting scaled distribution? Is the limiting distribution accessible to computation? 						
73	74						
City Calculations Impropriety Simulation Empirical comparisons Conclusion o oooooooo ooo oo oo oo o	City Calculations Impropriety Simulation Empirical comparisons Conclusion						
Mean traffic computation	Where does most of the traffic come from?						
Mean traffic flow through centre can be obtained by direct arguments from stochastic geometry:							
Theorem: Mean traffic flow through centre							
For $\rho = \sqrt{r^2 + s^2 - 2rs \cos \theta}$, the traffic flow T_n through the centre of a Poissonian city built on a disk of radius n has mean value $\mathbb{E}[T_n] = \int_0^{\pi} \int_0^n \int_0^n \exp\left(-\frac{1}{2}(r+s-\rho)\right) r \mathrm{d}r s \mathrm{d}s \theta \mathrm{d}\theta.$ Asymptotically for large city radius $(n \to \infty)$, $\mathbb{E}[T_n] = 2n^3 + O\left(n^2\sqrt{n}\right).$							
75	76						
J							

Theorem: Mean traffic flow

Consider a general convex body *C*, and traffic derived from a Poissonian city based on a Poisson line process of intensity *n*. Consider a point *x* in the region, and Palm condition on a line ℓ passing through this point with further conditioning on the direction of the line. Suppose that the two intervals $(\ell(\theta) \cap C) \setminus \{x\}$ have lengths $w_{-}(\theta)$ and $w_{+}(\theta)$. The traffic flow T_n through *x* under this conditioning has mean value asymptotic to

 $\mathbb{E}[T_n] \sim w_-(\theta)w_+(\theta)(w_-(\theta)+w_+(\theta))n^3.$

Theorem: Mean traffic flow (case of disk)

Consider traffic derived from a Poissonian city based on a Poisson line process of intensity n in a unit disk. Consider a point x in the region, and Palm condition on a line ℓ passing through this point *without* further conditioning on the direction of the line. The traffic flow T_n through x under this conditioning has mean value asymptotic to

$$\mathbb{E}[T_n] \sim \frac{2}{\pi} (1-r^2) \int_0^{\pi} \sqrt{1-r^2 \sin^2 \theta} \, \mathrm{d}\theta = \frac{4}{\pi} (1-r^2) E(r) \, .$$

Statistics

where $r \in [0, 1]$ is the distance of x from the disk centre.

- 1. Fill plane with dense speed-marked Poisson line process. (Parametrize each line by signed perpendicular distance from origin r, angle $\theta \in [0, \pi)$, and positive speed v: use intensity measure $\frac{1}{2}(\gamma - 1)v^{-\gamma} dv dr d\theta$.)
- 2. "Π-paths": Lipschitz paths integrating resulting measurable orientation field, (almost always) obeying speed-limit.
- 3. Connect pairs of points by fastest routes (" Π -geodesics") travelling entirely on line pattern at maximum speed.
- 4. For $\gamma > 2$, almost surely, all pairs are connected. Almost surely, fastest connection for a specified pair is unique.
- 5. Strong SIRSN axioms hold (WSK, 2017; Kahn, 2016).

- processes which are dense!
- There are strange measure-theoretic issues: (Aldous and Barlow, 1981; WSK, 2000).
- Such processes are often described as "improper": the intensity measure v is not locally finite.
- Typical way to resolve the problem: add marks, for example lines with speed-limits:
 - We want to define a Poisson line process that is "dense everywhere".
 - Introduce a notion of speed v, a random speed-limit mark for each line ℓ .
 - View the process as a point process in an extended representation space, typical point (v, r, θ) .
 - For intensity measure use $f(v) dv dr d\theta$, locally finite on v-r- θ space even if it does not project down to local finite measure on $r \cdot \theta$ space. Statistics

Statistics

Geodesics oSIRSN occoolII-paths occoolII-geodesics occoolSIRSNs occoolRandom Metrics occoolOOOOOO	Geodesics oSIRSN occocoII-paths occocoII-geodesics occocoSIRSNs occocoRandom Metrics occoco
Construction to connect two points	Lower bound on measure of set of lines hitting 2 balls
	$ \begin{array}{c} z \\ z $
First find the fastest line passing reasonably close to both source and destination.	Reduction of hitting set $[ball(x_1, \alpha^{-1}r)] \cap [ball(x_2, \alpha^{-1}r)]$ to a smaller hitting set for which the line measure is more easily
Then recurse.	computable yet which still provides a useful lower bound.
105	106
Geodesics oSIRSN oП-paths oП-geodesics oSIRSNs oRandom Metrics o	Geodesics oSIRSN occococoII-paths occococoII-geodesics occocSIRSNs occocRandom Metrics occoc
Now use resulting lower bound	About П-paths (III)
$\mu_d\left([\operatorname{ball}(\xi_1, \alpha^{-1}r)] \cap [\operatorname{ball}(\xi_2, \alpha^{-1}r)]\right) \geq \kappa_{d-1} \left(\frac{r}{4\alpha^2}\right)^{d-1}$ and a Borel-Cantelli argument to control the amount of time spent traversing recursively defined paths between any pair of points.	 Exponential moments for powers of П-diameters Kahn (2016), improving on WSK (2017, Theorem 3.6) has proved results of which the following is a simple example: Consider ball(o, R), a ball of Euclidean radius R. Let T_R be the supremum of the minimum times for a П-path to pass from one point of ball(o, R) to another;
Lemma: Existence of Π -paths Suppose Π is a speed marked Boisson line process in \mathbb{D}^d with	$T_R = \sup_{x,y \in \text{ball}(\mathbf{o},R)} \inf\{T:$
intensity measure $\frac{1}{2}(\gamma - 1)v^{-\gamma} dv dr d\theta$. If $\gamma > d$ then Π -	some Π -path $\xi : [0, T] \to B$ satisfies $\xi(0) = x, \xi(T) = y$.
paths exist between all point pairs ξ_1 and ξ_2 in \mathbb{R}^d and no Π -paths of finite length can reach infinity.	We call T_R the Π -diameter of ball(o , R). • For explicit $\delta_R > 0$, $K_R < \infty$,
Remark: Random metrics for Euclidean space	$\mathbb{E}\left[\exp\left(\delta_R T_R^{\gamma-1}\right)\right] \leq K_R < \infty.$
So if $\gamma > d$ then Π determines a random metric on \mathbb{R}^d .	108

use the same finite collection of non-overlapping

collections of intervals of each line ℓ in Π .

• But we can reconstruct the Π -geodesic uniquely from the

intervals from each ℓ of Π .

Theorem: Poisson line process SIRSN

Suppose Π is a speed-marked Poisson line process in \mathbb{R}^d with intensity measure $\frac{1}{2}(\gamma - 1)v^{-\gamma} dv dr d\theta$. If $\gamma > d$ then Π is a (strong) SIRSN.

This can be used to show that Π -geodesics must make substantial re-use of shared lines: for all Π -geodesics bridging a suitable annulus, the exponential inequality forces each Π -geodesic to make substantial use of a limited number of "fast" lines. SIRSN follows by using a measure-theoretic version of the pigeonhole principle.

 $\mathbb{E}\left[\exp\left(\delta_{R}T_{R}^{\gamma-1}\right)\right] \leq K_{R} < \infty.$

Kahn (2016) deploys further ingenious arguments to obtain uniqueness (essential if above argument is to work) and finite mean-length of Π -geodesics in case d > 2.

Statistics

- 2. (Consider a matrix (ω_{ab}) : if row-vectors $(\omega_{a.})$ all lie in ℓ^1 then the Hahn-Banach theorem can be used to characterize whether (ω_{ab}) is transmission matrix.)
- 3. Require dynamically reversibility for measure π : Involution $a \leftrightarrow \tilde{a}$ preserving measure π , with $\pi_a p_{a,\tilde{b}} = \pi_b p_{b,\tilde{a}}$.
- 4. Relate $\pi_a/s_{\tilde{a}}$ to scatter-equivalence classes ("lines"): if there is a chain $a = b_0, b_1, \ldots, b_n = c$ with $\omega_{b_{m-1},\tilde{b}_m} > 0$, then $\pi_a/s_{\tilde{a}} = \pi_c/s_{\tilde{c}}$.

 $p_{a,\widetilde{b}} = \omega_{a,\widetilde{b}} s_{\widetilde{b}} = \omega_{a,+} \left(\prod_{a \prec c \prec b} (1 - s_{\widetilde{c}}) \right) s_{\widetilde{b}},$

transmission probabilities are functions of scattering

For each $a \prec b$, there are $\omega_{a,\pm}$ summing to 1 with

and similar for $p_{b,\tilde{a}}$ using $\omega_{b,-}$.

probabilities.

All follows from choice of the class constants κ (and say equiprobable choice of direction $\omega_{a,\pm} = \frac{1}{2}$).

 V_1, \ldots, V_n, \ldots which form a stationary sequence.

- If the mean log-relative-speed-change $\mu = \mathbb{E}[V_1]$ is non-zero then $X_n/n = (V_1 + \ldots + V_n)/n$ will converge to a non-identically-zero limit random variable ("non-ergodic" part of Birkhoff's ergodic theorem); therefore for any $\varepsilon > 0$ there is at least a positive chance of X_n eventually never re-visiting $(-\varepsilon, \varepsilon)$.
- If we could show V_1, \ldots, V_n, \ldots to be ergodic, then the limit equals μ . In this case transience is sure if $\mu \neq 0$.
- Remarkably, the converse also holds! (Zero-mean forces neighborhood recurrence.) This is a consequence of the ideas of the Kesten-Spitzer-Whitman range theorem. Statistics

the case that

 $\mathbb{P}[|X_n - X_0| \le \varepsilon \text{ infinitely often in } n] = 1.$

Proof.

 $X_n/n \to 0$ a.s. so $n^{-1} \sup\{|X_1|, \dots, |X_n|\} \to 0$ a.s. Set $A_n = [|X_m - X_n| > \varepsilon$ for all m > n]. Birkhoff's ergodic theorem: $n^{-1}(\mathbb{I}[A_1] + \ldots + \mathbb{I}[A_n]) \rightarrow p = \mathbb{P}[A_1].$ Packing argument: $|X_m - X_n| > \varepsilon$ on $A_n \cap A_m$ if $m \neq n$. Deduce $n^{-1}([[A_1] + \ldots + [[A_n]]) \le (n\varepsilon)^{-1} \sup\{|X_1|, \ldots, |X_n|\}.$ Let $n \to \infty$ and deduce p = 0. Complete argument by sub-sampling Warwick Statistics

An argument of Kozlov type

Application

0000000

Wandering

Wandering

RRF

RRF

Consider the process Ψ of the (re-scaled, shifted, rotated) environment viewed from the RRF particle. Let \tilde{h} be a bounded harmonic function on the (re-scaled, shifted, rotated) environment state-space (harmonic with respect to the process Ψ). Then $\tilde{h}(\Psi_n)$ is almost surely constant in (discrete) time n. For consider

$$\mathbb{E}\left[(\widetilde{h}(\Psi_0) - \widetilde{h}(\Psi_1))^2\right] = 2 \mathbb{E}\left[\widetilde{h}(\Psi_0)^2\right] - 2 \mathbb{E}\left[\widetilde{h}(\Psi_0)h(\Psi_1)\right] = 0,$$

where the first step follows from stationarity and the second because $\tilde{h}(\Psi)$ is a martingale. Thus $\mathbb{P}\left[\tilde{h}(\Psi_1) = \tilde{h}(\Psi_0)\right] = 1$.

Thus if *E* is a shift-invariant event then $T^{-1}E = E$ (up to null-sets) for *T* a composition of any finite sequence of transformations induced by possible moves of the RRF.

Application

0000000

Concluding Theorem

Theorem: Transience and neighborhood-recurrence

1. Critical case ($\alpha = 2(\gamma - 1)$): SIRSN-RRF speed is

neighbourhood-recurrent.

tessellation of high-speed lines).

References

Wandering

References

Wandering

Proving ergodicity

Application

We only need to show ergodicity of the environment viewed from the particle.

1. Given $\delta > 0$, approximate *E* by E_{δ} depending only on lines of Π in a finite speed-range [-W, W] (and coming within a bounded distance *R* of **o**):

$$\mathbb{P}\left[E\Delta E_{\delta}\right] \leq \delta$$

- 2. Find a composition of transformations T such that T moves lines in speed-range [-W, W] to a disjoint speed-range, so that E_{δ} and $T^{-1}E_{\delta}$ are independent.
- 3. Deduce that $|\mathbb{P}[E] \mathbb{P}[E]^2| = |\mathbb{P}[E \cap E] \mathbb{P}[E]^2| \le |\mathbb{P}[E_{\delta} \cap T^{-1}E_{\delta}] \mathbb{P}[E_{\delta}]\mathbb{P}[T^{-1}E_{\delta}]| + 4\delta = 4\delta.$
- 4. Since δ > 0 is arbitrary, it follows P [E] must be zero or one. It follows that Ψ, and hence the log-speed-change process, is ergodic. QED

Conclusion: always more questions!

Application

Conclusion

- 1. So a critical "randomly-broken Π -geodesic" does not halt *en route.* What about Π -geodesics themselves?
- Is critical case space-(neighbourhood)-recurrent? speed-point-recurrent? (working on proof ...)
- 3. Above argument should work for critical (non-SIRSN) Π for which $\gamma = 2$ and $\alpha = 2$ (not yet checked).
- "Brownian-like" variations should follow from WSK and Westcott (1987): scale-invariant "Liouville diffusion" (Berestycki, 2015; Garban, Rhodes, and Vargas, 2013).
- 5. Can anything be done for the high-dimensional SIRSN supplied by case $\gamma > d > 2$?
- 6. Replace lines by long segments? nearly straight fibres?

3. Super-critical case ($\alpha > 2(\gamma - 1)$): SIRSN-RRF disappears off to infinity (consider high-speed tessellation).

2. Sub-critical case ($\alpha < 2(\gamma - 1)$): SIRSN-RRF converges to

a random limiting point in the plane (trapped by cells of

Warwick Statistics

References

References

Wandering O	RRF o	Scattering 0000	Application	Conclusion o	References o	Wandering 0	RRF o	Scattering 0000	Application	Conclusion o	References o
Refer Aldous Netwo	r <mark>ences</mark> : s, D. J. (20 works. <i>Elec</i>	14, April). So Stronic Journ	cale-Invariant al of Probabil	Random Spati <i>ity 19</i> , no. 15	ial 5,	Ambar <i>Geor</i> New	tzumian, <i>netry (wit</i> York: Wild	R. V. (1982). <i>h an append</i> ey & Sons.	. Combinatori lix by A J Bada	ial Integral deley). Chiches	ster /
1-4 Aldous ranc	1. s, D. J. and dom sets. <i>I</i>	M. T. Barlov Lecture Note	v (1981). On o s in Mathema	countable der <i>tics 850</i> , 311	ise -327.	Ambar <i>Geor</i> Pres	tzumian, <i>netric Pro</i> s.	R. V. (1990). <i>bability</i> . Cai	. <i>Factorization</i> mbridge: Cam	n <i>Calculus and</i> Ibridge Univers	sity
Aldous scal the Ame	s, D. J. and e-invariant <i>National A</i> erica 110(2	K. Ganesan random spa <i>cademy of S</i> 22), 8782-87	(2013, Decen Itial networks. <i>Ciences of the</i> 785.	nber). True Proceedings United States	of s of	Baccell path rout <i>Prob</i>	i, F., K. To s on the P ing in mol pability 32	choumatchei Poisson-Dela pile network P(1), 1–18.	nko, and S. Zu unay graph w s. <i>Advances i</i>	iyev (2000). M ith application n Applied	arkov s to
Aldous over	s, D. J. and r random p	J. Shun (201 points and a	l 0). Connecte route-length s	d spatial netv statistic. <i>Stati</i>	vorks s <i>tical</i>	Baddel <i>Stati</i>	ey, A. J. ai isticians. (nd E. B. V. Je CRC Press.	ensen (2005).	Stereology For	•
<i>Scie</i> Aldous Iow-	<i>nce 25</i> (3), s, D. J. and cost netwo	1–28. WSK (2008, orks via Poiss	March). Shor son line patter	t-length route rns. <i>Advance</i> s	es in s in	Baddel Area <i>Stati</i>	ey, A. J. a -interactic <i>istical Mat</i>	nd M. N. M. on point pro <i>hematics 47</i>	van Lieshout cesses. <i>Annal</i> 7(4), 601-619	(1995). Is of the Institu	ite of
Арр	lied Proba	<i>bility 40</i> (1),	1-21.		Warwick Statistics						Statistics
Wandering 0	RRF o	Scattering 0000	Application 0000000	Conclusion o	References o	Wandering 0	RRF o	Scattering 0000	Application 0000000	Conclusion o	References o
Bast, H Fast (Nev	H., S. Funko routing in <i>w York, N.</i>)	e, P. Sanders road netwo (.) <i>316</i> (5824	, and D. Schu rks with trans), 566.	ltes (2007, Ap it nodes. <i>Scie</i>	oril). ence	Chartie Chiu, S Stoc	er, T. (201 5. N., D. St hastic Cec	7). Data for oyan, WSK,	Good. <i>Math</i> and J. Mecke (Horizons, 18–2 (2013, June). us (3 ed)	1.
Beechi Nun Maje	ing, R. (190 nber 1 in T esty's Stati	63). <i>The rest</i> he Reshapin onery Office	h <i>aping of Brit</i> i g of British Ra	<i>ish railways</i> . ailways. Her		Chic Comte Mora	hester / N de Buffor ale. <i>Oeuvr</i>	lew York: Jol n, G. L. L. (18 res Complète	hn Wiley & So 329). Essais d 2s <i>de Buffon, t</i>	ns Ltd. 'Arithmétique <i>come III Nouvec</i>	ĩu
Berest qua Prol	ycki, N. (20 ntum gravi babilités et	015, August) ty. <i>Annales</i> Statistiques). Diffusion in <i>de l'Institut H</i> 51(3), 947–9	planar Liouvi <i>enri Poincaré</i> 64.	lle ,	<i>Editi</i> Davids E. F.	<i>on</i> , 338-4 on, R. (19 Harding a	05. 74). Line-pr and D. G. Ke	ocesses, road ndall (Eds.), <i>S</i>	s, and fibres. I tochastic geon	n 1etry
Bertoii proc	n, J. and M cesses. <i>Pro</i>	. Yor (2005). Dobability Sur	Exponential <i>veys 2</i> , 191-2	functionals of 12 (electronic	f Lévy :).	<i>(a tr</i> Lonc	<i>ibute to tl</i> lon: John	<i>he memory d</i> Wiley & Sons	of Rollo David. s Ltd.	s <i>on)</i> , pp. 248-2	251.
Birnba <i>of M</i>	lum, Z. W. Iathematic	(1942). An in al Statistics	nequality for 1 13, 245-246.	Mill's ratio. A	nnals	Frisch, proc Mati	H. L. and esses and 1 1 894	J. M. Hamm related top -918	ersley (1963) ics. <i>J. Soc. Ind</i>	Percolation	
Borocz circu Bull	zky, K. J. ai umscribed <i>etin 53</i> , 61	random poly 4-628.	der (2010). Th ytopes. <i>Canad</i>	ie mean widtl dian Mathema	n of atical	Gamer Netw	os Leal, R vorks. Mse	. M. (2014). c dissertatio	<i>Traffic in Poi</i> s n, University o	s <i>sonian Line</i> of Warwick.	Warwick

WanderingRRFScatteringApplicationConclusionReferencesooooooooooooooooo	WanderingRRFScatteringApplicationConclusionReferencesooooooooooooooooooooooooooooooooooooooo
 Gameros Leal, R. M. (2017). Mean traffic behaviour in Poissonian cities. Phd thesis, University of Warwick. Garban, C., R. Rhodes, and V. Vargas (2013). Liouville Brownian motion. arXiv 1301.2876. Gnedenko, B. V. (1998, May). Theory of Probability. CRC Press. Hall, P. (1988). Introduction to the theory of coverage processes. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics: Probability and Mathematical Statistics. New York: John Wiley & Sons. Hey, J. D., T. M. Neugebauer, and C. M. Pasca (2010). Georges-Louis Leclerc de Buffon's 'Essays on Moral Arithmetic' (1777). Kahn, J. (2016, July). Improper Poisson line process as SIRSN in any dimension. Annals of Probability 44(4), 2694–2725. 	 Kingman, J. F. C. (1993). Poisson processes, Volume 3 of Oxford Studies in Probability. New York: The Clarendon Press Oxford University Press. Kozen, D. (1992). The design and analysis of algorithms. Springer. Last, G. and M. Penrose (2017). Lectures on the Poisson Process. Lazzarini, M. (1901). Un'applicazione del calcolo della probabilita alla ricerca esperimentale di un valore approssimato di π. Periodico di Matematica 4, 49-68. Le Gall, JF. (2010). Geodesics in large planar maps and in the Brownian map. Acta mathematica 205(2), 287-360. Molchanov, I. S. (1996a, September). A limit theorem for scaled vacancies of the Boolean model. Stochastics An International Journal of Probability and Stochastic Processes 58(1-2), 45-65.
37 Wandering RRF Scattering Application Conclusion References o oooo o o o	138WanderingRRFScatteringApplicationConclusionReferencesoooooooooo
 Molchanov, I. S. (1996b). Statistics of the Boolean Models for Practitioners and Mathematicians. Chichester: John Wiley & Sons. Ostoja-Starzewski, M. and D. C. Stahl (2000). Random fiber networks and special elastic orthotropy of paper. Journal of Elasticity 60(2), 131-149. 	Santaló, L. A. (1976). <i>Integral geometry and geometric probability</i> . Addison-Wesley Publishing Co., Reading, MassLondon-Amsterdam. Schneider, R. and W. Weil (2008). <i>Stochastic and Integral Geometry</i> . Springer.
Ripley, B. D. (1977). Modelling spatial patterns (with discussion). <i>Journal of the Royal Statistical Society (Series B: Methodological) 39</i> , 172–212. Roy, R. (1991). Percolation of poisson sticks on the plane	Steele, J. M. (1997). <i>Probability theory and combinatorial optimization</i> , Volume 69 of <i>CBMS-NSF Regional Conference Series in Applied Mathematics</i> . Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM).
Probability Theory and Related Fields 89(4), 503–517. Russell, B. (1919). Introduction to Mathematical Philosophy. New York, London: George Allen and Unwin.	Steinhaus, H. (1930). Zur Praxis der Rektifikation und zum Längenbegriff. <i>Sächsischen Akad. Wiss. Leipzig 82</i> , 120–130.
Sampford, M. R. (1953). Some inequalities on Mill's ratio and related functions. <i>Annals of Mathematical Statistics 24</i> .	Stigler, S. M. (1991). Stochastic simulation in the nineteenth century. <i>Statistical Science 6</i> (1), 89–97.

140

Warwick Statistics

130-132.

139

Wanderi o	ng l	RRF o	Scattering	Application	Conclusion o	References o	Wandering o	RRF o	Scattering	Application	Conclusion o	References o
 Stoyan, D., WSK, and J. Mecke (1995). Stochastic Geometry and its Applications (Second ed.). Chichester: John Wiley & Sons. Thorisson, H. (2000). Coupling, stationarity, and regeneration. New York: Springer-Verlag. Tsukayama, H. (2013). Google asks: How much is mapping worth? Vershik, A. M. (2004). Random and universality. In Dynamics and randomness II, Volume 10 of Nonlinear Phenom. Complex Systems, pp. 199-228. Dordrecht: Kluwer Acad. Publ. WSK (1997). On some weighted Boolean models. In D. Jeulin (Ed.), Advances in Theory and Applications of Random Sets, Singapore, pp. 105-120. World Scientific. WSK (2000, March). Stationary countable dense random sets. Advances in Applied Probability 32(1), 86-100. 						 WSK (2011, October). Geodesics and flows in a Poissonian city. Annals of Applied Probability 21(3), 801-842. WSK (2014). Return to the Poissonian city. Journal of Applied Probability 51(A), 297-309. WSK (2017, March). From Random Lines to Metric Spaces. Annals of Probability 45(1), 469-517. WSK and I. S. Molchanov (2010, January). New perspectives in stochastic geometry. Oxford: Clarendon Press. WSK, M. N. M. van Lieshout, and A. J. Baddeley (1999). Quermass-interaction processes: conditions for stability. Advances in Applied Probability 31(2), 315-342. WSK and M. Westcott (1987). Scattering processes and convergence to Brownian motion. Advances in Applied Probability 19, 81-105. 						
Wanderi o	SK (2000 Advance), Marc es in A _l ^{RRF}	ch). Stationa pplied Prob	ary countable ability 32(1), 8	dense randon 86-100. Conclusion	n sets. Warwick Statistics References	142					Statistics
/ersion ====== commit Author: Cor	1.55 365e7a00 Wilfrid crected y	(Fri ===== 0dc3a3 d Kend versio	Jun 22 12 ====== 19bf5b3b60 all <w.s.k n after co</w.s.k 	2:51:39 2018 	+0100) ===== dd3fa ck.ac.uk> Edinburgh Ju	ne 2018 lec						
						Warwick						