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integers that has (i, j), i < j, as an edge, with probability p, independently
from edge to edge. A question of interest is an estimate of the length Ln of
a longest path between two vertices at distance n. We give sharp bounds on
C = limn→∞(Ln/n). This is done by first constructing the unique stationary
version of the infinite bin model, using extended renovation theory. We also
prove a functional law of large numbers and a functional central limit theorem
for the infinite bin model. Finally, we discuss perfect simulation, in connection
to extended renovation theory, and as a means for simulating the particular
stochastic models considered in this paper.
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1. Introduction

A large fraction of the applied probability literature is devoted to the study
of existence and uniqueness of a stationary solution to a stochastic dynamical
system, as well as convergence toward such a stationary solution. Examples
abound in several application areas, such as queueing theory, stochastic control,
simulation algorithms, etc. Often, the model studied possesses a Markovian
property, in which case several classical tools are available. In the absence of
Markovian property, one has few tools to rely on, in general. The concept of ren-
ovating event was introduced by Borovkov [6] in an attempt to produce general
conditions for a strong type of convergence of a stochastic process, satisfying a
stochastic recursion, to a stationary process. Other general conditions for exis-
tence/uniqueness questions can be found, e.g., in [1, 2] and [15]. The so-called
renovation theory or method of renovating events has a flavor different from the
aforementioned papers, in that it leaves quite a bit of freedom in the choice of a
renovating event, which is what makes it often hard to apply: some ingenuity is
required in constructing renovating events. Nevertheless, renovation theory has
found several applications, especially in queueing-type problems (see, e.g., [11]
and [3] for a variety of models and techniques in this area).
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Renovation theory is stated for “stochastic recursive processes”, i.e., random
sequences {Xn} defined by recursive relations of the form

Xn+1 = f(Xn, ξn+1),

where f is appropriately measurable function, and {ξn} a stationary random
sequence. In this paper, we take a fresh look at renovation theory and formu-
late it for processes that do not necessarily obey stochastic recursions. We use
the terminology extended renovation theory. Our objective here is threefold:
first, we give a self-consistent overview of (extended) renovation theory, and
strong coupling notions; second, we present simple proofs of renovating criteria
(Theorem 3.1); third, we shed some light into the so-called coupling from the
past property, which has drawn quite a bit of attention recently, especially in
connection to the Propp – Wilson algorithm (see [22]) for perfect simulation (al-
ternative terminology: exact sampling). We do this, by defining strong forward
and backward coupling times. We also pay particular attention to a special
type of backward coupling times, those that we call verifiable times: they form
precisely the class of those times that can be simulated. Verifiable backward
times exist, e.g., for irreducible Markov chains with finite state space (and hence
exact sampling from the stationary distribution is possible), but they also exist
in other models, such as the ones presented in the second part of the paper.

A useful model is what we call infinite bin model. It is presented as an
abstraction of a stochastic ordered graph. The latter model appears in mathe-
matical ecology (it models community food webs; see, e.g., [21] and [13]), and
in performance evaluation of computer systems (it models task graphs; see,
e.g., [18]). The model, in its simplest form, is a graph on the integers Z, where
edges (always directed to the right) appear independently at random with prob-
ability p. A question of interest is to estimate the length Ln of the longest path
between two vertices at distance n. Other questions are to estimate the number
of paths with longest length. To answer these questions, we turn the graph into
an infinite bin model, by considering the order statistics of the paths of various
lengths. The infinite bin model (which is a system of interest in its own) consists
of infinite number of bins arranged on the line and indexed, by the non-positive
integers Z− := {0,−1,−2, . . .}. The bin in position −k ∈ Z− contains, at time
n, a finite number of particles, denoted by Xn(−k). The state of the system is
Xn = [. . . , Xn(−k), . . . , Xn(0)], an element of NZ− . We refer to the set NZ− as
the state space, or the space of configurations. To create Xn+1, precisely one
particle of the current configuration Xn is chosen in some random manner. If
the particle is in bin −k ≤ 1, then a new particle is created and placed in bin
−k +1. Otherwise, if the chosen particle is in bin 0 then a new bin is created to
hold the child particle and a relabeling of the bins occurs: the existing ones are
shifted by one place to the left (and are re-indexed) and the new bin is given
the label 0. Despite the fact that Xn is a stochastic recursive sequence, we can-
not apply the usual renovation theory directly to obtain a stationary version.
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Rather, the extended version of the theory (developed in the first part of the
paper) should be applied.

We thus achieve the following, by applying extended renovation theory to
the infinite bin model: each finite-dimensional projection of the state of the
system strongly couples with a stationary version. However, the state itself
does not. We thus obtain Theorem 7.1 which states that the infinite bin model
has a unique stationary solution {X̃n}, and, as n →∞, the law of Xn converges
to the law of X̃0, weakly (but without strong coupling). Whereas the meaning
of Xn is clear in terms of the stochastic ordered graph, the meaning of X̃n is
not. It is a useful abstract stochastic process which we use in order to obtain
meaningful estimates for the longest length sequence Ln: there is a deterministic
constant C, such that, as n →∞,

Ln/n → C, a.s.,

where C depends on the connectivity probability p (or the non-connectivity
probability q = 1 − p). In Theorem 10.1, we give explicit upper and lower
bounds on C(q) for all q, and, as a corollary, we obtain good asymptotics for
C(q) when q is small, and when q is large. More precisely, we find that

C =

{
1− q + q2 − 3q3 + 7q4 + O(q5), as q → 0 (heavy graph),
O((1− q) log(1− q)), as q → 1 (sparse graph).

In addition, we present a functional law of large numbers for the infinite bin
model (Theorem 8.1) which states that

1
n

[nCt]∑
k=0

Xn(−k) → t, as n →∞ , uniformly in t ∈ [0, 1], a.s.

We complement this result by a corresponding central limit theorem (Theo-
rem 9.1), stating that{√

n

(
1
n

[nCt]∑
k=0

Xn(−k)− t

)}
t≥0

⇒ Brownian Motion, as n →∞ ,

where ⇒ denotes weak convergence in D[0,∞), with the topology of uniform
convergence on compacta, provided that we introduce some independence as-
sumptions on the stochastic recursion for the infinite bin model. If the scaling
is slightly changed, namely if, instead of [nCt] at the upper limit of the sum-
mation, we consider [Lnt] (a change which, in a sense, is small due to the fact
that Ln = nC + o(n), a.s.), we obtain a different result{√

n

(
1
n

[Lnt]∑
k=0

Xn(−k)− t

)}
0≤t≤1

⇒ Brownian Bridge, as n →∞ .
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The two functional central limit theorems hold both for the stationary version
of the infinite bin model as well as the infinite bin model that starts from a
trivial initial state (transient infinite bin model). From a physical point of view,
the latter scaling is more natural for the transient infinite bin model.

The paper is organized as follows: Section 2 is an overview of the coupling
notions and contains, in particular, a proof of the equivalence between forward
and backward coupling (Theorem 2.1). Section 3 gives a short account of the
extended renovation theory and its main criterion (Theorem 3.1). Section 4
defines verifiable times and gives a criterion for verifiability (Theorem 4.1). In
addition, we present a so-called perfect simulation algorithm that works in a
rather general setup, provided that renovation events of special type exist. The
next two Sections, 5 and 6, deal with specializing the extended renovation theory
to stochastic recursive sequences and to functionals of them (thus justifying the
terminology “extended”). The infinite bin model is introduced in Section 7. Its
stationarity and convergence properties are dealt with in the same section, by
an application of the extended renovation theory. Sections 8 and 9 describe the
functional law of large numbers and central limit theorem, respectively, for the
infinite bin model. Section 10 presents the application of the above to stochastic
ordered graphs, describes their relation to infinite bin models, and gives bounds
and asymptotics on the constant C. Finally, Section 11 presents an application
in queueing theory and open problems.

Before closing this section, a word of caution is due. In this paper, we
differentiate a stationary version from a stationary solution. When a stochastic
process X couples with a stationary process X̃ (see Definition 2.1), we refer
to X̃ as the stationary version of X. Immediately, we have that there can be
only one such X̃. On the other hand, when we deal with a stochastic recursion
(with stationary driver), we talk about a stationary solution of the stochastic
recursion whenever we have a process X̃ that is simultaneously stationary and
satisfies the stochastic recursion. Such stationary solutions may be many, which
may or may not be stationary versions of particular solutions of the stochastic
recursion.

2. Strong coupling notions

To prepare for the extended renovation theory, we start by defining the no-
tions of coupling (and coupling convergence) that we need. For general notions
of coupling we refer to the monographs of Lindvall [19] and Thorisson [23]. For
the strong coupling notions of this paper, we refer to [9].

Consider a sequence of random variables {Xn, n ∈ Z} defined on a proba-
bility space (Ω,F ,P) and taking values in another measurable space (X ,BX ).
We study various ways according to which X couples with another stationary
process {X̃n, n ∈ Z}. We push the stationarity structure into the probability
space itself, by assuming the existence of a flow (i.e., a measurable bijection)



418 S. Foss and T. Konstantopoulos

θ : Ω → Ω that leaves the probability measure P invariant, i.e., P(θkA) = P(A),
for all A ∈ F , and all k ∈ Z. In this setup, a stationary process {X̃n} is, by
definition, a θ-compatible process in the sense that X̃n+1 = X̃n◦ θ for all n ∈ Z.
Likewise, a sequence of events {An} is stationary iff their indicator functions
{1An

} are stationary. Note that, in this case, 1An
◦ θ = 1θ−1An

= 1An+1 for
all n ∈ Z. In order to avoid technicalities, we assume that the σ-algebra BX
is countably generated. The same assumption, without special notice, will be
made for all σ-algebras below.

We next present three notions of coupling: simple coupling, strong (forward)
coupling and backward coupling. To each of these three notions there corre-
sponds a type of convergence. These are called c-convergence, sc-convergence,
and bc-convergence, respectively. The definitions below are somewhat formal
by choice: there is often a danger of confusion between these notions. To guide
the reader, we first present an informal discussion. Simple coupling between
two processes (one of which is usually stationary) refers to the fact that the
two processes are a.s. identical, eventually. To define strong (forward) coupling,
consider the family of processes that are derived from X “started from all pos-
sible initial states at time 0”. To explain what the phrase in quotes means in
a non-Markovian setup, place the origin of time at the negative index −m, and
run the process forward till a random state at time 0 is reached: this is the
process X−m formally defined in (2.2). Strong coupling requires the existence
of a finite random time σ ≥ 0 such that all these processes are identical after
σ. Backward coupling is — in a sense — the dual of strong coupling: instead of
fixing the starting time (time 0) and waiting till the random time σ, we play a
similar game with a random starting time (time −τ ≤ 0) and wait till coupling
takes place at a fixed time (time 0). That is, backward coupling takes place if
there is a finite random time −τ ≤ 0 such that all the processes started at times
prior to −τ are coupled forever after time 0. The main theorem of this section
(Theorem 2.1) says that strong (forward) coupling and backward coupling are
equivalent, whereas an example (Example 2.1) shows that they are both strictly
stronger than simple coupling.

We first consider simple coupling. Note that our definitions are more general
than usual because we do not necessarily assume that the processes are solutions
of stochastic recursions.

Definition 2.1 (simple coupling).
1) The minimal coupling time between X and X̃ is defined by

ν = inf{n ≥ 0 : ∀ k ≥ n Xk = X̃k}.

2) More generally, a random variable ν′ is said to be a coupling time between
X and X̃ iff1

Xn = X̃n, a.s. on {n ≥ ν′}.
1“B a.s. on A” means P(A−B) = 0.
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3) We say that X coupling-converges (or c-converges) to X̃ iff ν < ∞, a.s.,
or, equivalently, if ν′ < ∞, a.s., for some coupling time ν′.

Notice that the reason we call ν “minimal” is because (i) it is a coupling time,
and (ii) any random variable ν′ such that ν′ ≥ ν, a.s., is also a coupling time.

Proposition 2.1 (c-convergence criterion). X c-converges to X̃ iff

P(lim inf
n→∞

{Xn = X̃n}) = 1.

Proof. It follows from the equality

{ν < ∞} =
⋃
n≥0

⋂
k≥n

{Xk = X̃k},

the right-hand side of which is the event lim infn→∞{Xn = X̃n}. 2

It is clear that c-convergence implies convergence in total variation, i.e.,

lim
n→∞

sup
B∈B∞X

∣∣P(
(Xn, Xn+1, . . .) ∈ B

)
− P

(
(X̃n, X̃n+1, . . .) ∈ B

)∣∣ = 0, (2.1)

simply because the left-hand side is dominated by P(ν ≥ n) for all n. In fact, the
converse is also true, viz., (2.1) implies c-convergence (see [23], Theorem 9.4).
Thus, c-convergence is a very strong notion of convergence, but not the strongest
one that we are going to deal with in this paper.

The process X̃ in (2.1) will be referred to as the stationary version of X.
Note that the terminology is slightly non-standard because, directly from the
definition, if such a X̃ exists, it is automatically unique (due to coupling). The
term is usually defined for stochastic recursive sequences (SRS). To avoid con-
fusion, we talk about a stationary solution of an SRS, which may not be unique.
See Section 5 for further discussion.

A comprehensive treatment of the notions of coupling, as well as the basic
theorems and applications can be found in [9], for the special case of processes
which form stochastic recursive sequences. For the purposes of our paper, we
need to formulate some of these results beyond the SRS realm, and this is done
below.

It is implicitly assumed above (see the definition of ν) that 0 is the “origin
of time”. This is, of course, totally arbitrary. We now introduce the notation

X−m
n := Xm+n◦ θ−m, m ≥ 0, n ≥ −m,

and consider the family of processes

X−m := (X−m
0 , X−m

1 , . . .), m = 0, 1, . . . , (2.2)

and the minimal coupling time σ(m) of X−m with X̃. The definition becomes
clearer when X itself is a SRS (see Section 5).
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Definition 2.2 (strong coupling).
1) The minimal strong coupling time between X and X̃ is defined by

σ = sup
m≥0

σ(m), where

σ(m) = inf{n ≥ 0 : ∀ k ≥ n, X−m
k = X̃k}.

2) More generally, a random variable σ′ is said to be a strong coupling time
(or sc-time) between X and X̃ iff

X̃n = X0
n = X−1

n = X−2
n = · · · , a.s. on {n ≥ σ′}.

3) We say that {Xn} strong-coupling-converges (or sc-converges) to {X̃n}
iff σ < ∞, a.s.

Again, it is clear that the minimal strong coupling time σ is a strong coupling
time, and that any σ′ such that σ′ ≥ σ, a.s., is also a strong coupling time.

Even though strong coupling is formulated by means of two processes, X
and a stationary X̃, we will see that the latter is not needed in the definition.

Example 2.1 (see [9]). We now give an example to show the difference be-
tween coupling and strong coupling. Let {ξn, n ∈ Z} be an i.i.d. sequence of
random variables with values in Z+ such that Eξ0 = ∞. Let

Xn = (ξ0 − n)+, X̃n = 0, n ∈ Z.

The minimal coupling time between (Xn, n ≥ 0) and (X̃n, n ≥ 0) is ν = ξ0 < ∞,
a.s. Hence X̃ is the stationary version of X. Since

X−m
n = Xm+n◦ θ−m = (ξ−m − (m + n))+,

the minimal coupling time between (X−m
n , n ≥ 0) and (X̃n, n ≥ 0) is σ(m) =

(ξ−m − m)+. Hence the minimal strong coupling time between X and X̃ is
σ = supm≥0 σ(m). But P(σ ≤ n) = P(∀m ≥ 0, ξm −m ≤ n) =

∏
m≥0 P(ξ0 ≤

m+n), and, since
∑

j≥0 P(ξ0 > j) = ∞, we have that the latter infinite product
is zero, i.e., σ = +∞, a.s. So, even though X couples with X̃, it does not couple
strongly.

Proposition 2.2 (sc-convergence criterion). X sc-converges to X̃ iff

P
(

lim inf
n→∞

⋂
m≥0

{X̃n = X−m
n }

)
= 1.
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Proof. It follows from the definition of σ that

{σ < ∞} =
⋃
n≥0

{σ ≤ n} =
⋃
n≥0

⋂
m≥0

{σ(m) ≤ n}

=
⋃
n≥0

⋂
m≥0

⋂
k≥n

{X̃k = X−m
k }

=
⋃
n≥0

⋂
k≥n

⋂
m≥0

{X̃k = X−m
k }

= lim inf
n→∞

⋂
m≥0

{X̃n = X−m
n },

and this proves the claim. 2

The so-called backward coupling (see [9,16] for this notion in the case of SRS)
is introduced next. This does not require the stationary process X̃ for its defini-
tion. Rather, the stationary process is constructed once backward coupling takes
place. Even though the notion appears to be quite strong, it is not infrequent
in applications.

Definition 2.3 (backward coupling).
1) The minimal backward coupling time for the random sequence {Xn, n ∈

Z} is defined by τ = supm≥0 τ(m), where

τ(m) = inf
{
n ≥ 0 : ∀k ≥ 0, X−n

m = X−(n+k)
m

}
.

2) More generally, we say that τ ′ is a backward coupling time (or bc-time)
for X iff

∀m ≥ 0, X−t
m = X−(t+1)

m = X−(t+2)
m = · · · , a.s. on {t ≥ τ ′}.

3) We say that {Xn} backward-coupling converges (or bc-converges) iff τ <∞,
a.s.

Note that τ is a backward coupling time and that any τ ′ such that τ ′ ≥ τ ,
a.s., is a backward coupling time. We next present the equivalence theorem
between backward and forward coupling.

Theorem 2.1 (coupling equivalence). Let τ be the minimal backward cou-
pling time for X. There is a stationary process X̃ such that the strong coupling
time σ between X and X̃ has the same distribution as τ on Z+ ∪ {+∞}. Fur-
thermore, if τ < ∞ a.s., then X̃ is the stationary version of X.
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Proof. Using the definition of τ , we write

{τ < ∞} =
⋃
n≥0

{τ ≤ n} =
⋃
n≥0

⋂
m≥0

{τ(m) ≤ n}

=
⋃
n≥0

⋂
m≥0

⋂
`≥n

{X−n
m = X−`

m } =
⋃
n≥0

⋂
`≥n

⋂
m≥0

{X−n
m = X−`

m }. (2.3)

Consider, as in (2.2), the process X−n = (X−n
0 , X−n

1 , X−n
2 , . . .), with values in

X Z+ . Using this notation, (2.3) can be written as

{τ < ∞} =
⋃
n≥0

⋂
`≥n

{X−n = X−`}

= {∃n ≥ 0, X−n = X−(n+1) = X−(n+2) = · · · }.

Thus, on the event {τ < ∞}, the random sequence X−n is equal to some fixed
random element of X Z+ for all large n (it is eventually a constant sequence).
Let X̃ = (X̃0, X̃1, . . .) be this random element; it is defined on {τ < ∞}. Let
∂ be an arbitrary fixed member of X Z+ and define X̃ ≡ ∂ outside {τ < ∞}.
Since the event {τ < ∞} is a.s. invariant under θn, for all n ∈ Z, we obtain that
X̃ is a stationary process. Let σ be the strong coupling time between X and
X̃. It is easy to see that, for all n ≥ 0,

{σ◦ θ−n ≤ n} =
⋂
`≥n

{X̃ = X−`} = {τ ≤ n}. (2.4)

Indeed, on one hand, from the definition of τ , we have

{τ ≤ n} =
⋂
`≥n

{X−n = X−`}.

Now, using the X̃ we just defined we can write this as

{τ ≤ n} =
⋂
`≥n

{X̃ = X−`}. (2.5)

On the other hand, from the definition of σ (that is, the strong coupling time
between X and X̃), we have

{σ ≤ n} =
⋂
k≥0

{X̃n+k = X0
n+k = X−1

n+k = X−2
n+k = · · · }.

Applying a shifting operation on both sides,

{σ◦ θ−n ≤ n} =
⋂
k≥0

{X̃k = Xn
k = Xn−1

k = Xn−2
k = · · · }. (2.6)
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The events on the right-hand sides of (2.5) and (2.6) are identical. Hence (2.4)
holds for all n, and thus P(τ ≤ n) = P(σ◦ θn ≤ n) = P(σ ≤ n), for all n. Finally,
if P(τ < ∞) = 1 then P(σ < ∞) = 1, and this means that X sc-converges to X̃.
In particular, we have convergence in total variation, and so X̃ is the stationary
version of X. 2

Corollary 2.1. The following statements are equivalent:

1. X bc-converges;

2. limn→∞ P
(
∀m ≥ 0, X−n

m = X
−(n+1)
m = X

−(n+2)
m = · · ·

)
= 1;

3. X sc-converges;

4. limn→∞ P
(
∀k ≥ 0, X0

n+k = X−1
n+k = X−2

n+k = · · ·
)

= 1.

We can view any of the equivalent statements of Corollary 2.1 as an “intrinsic
criterion” for the existence the stationary version of X.

Corollary 2.2. Suppose that X bc-converges and let τ be the minimal back-
ward coupling time. Let X̃0 = Xτ ◦ θ−τ . Then X̃n = X̃0◦ θn is the stationary
version of X. Furthermore, if τ ′ is any a.s. finite backward coupling time then
Xτ ◦ θ−τ = X ′

τ ◦ θ−τ ′ , a.s.

Proof. Let X̃ be the stationary version of X. It follows, from the construction
of X̃ in the proof of Theorem 2.1, that

(X−t
0 , X−t

1 , X−t
2 , . . .) = (X̃0, X̃1, X̃2, . . .), a.s. on {t ≥ τ}. (2.7)

Thus, in particular, X̃0 = X−t
0 = Xt◦ θ−t, a.s. on {t ≥ τ}. Since P(τ < ∞) = 1,

it follows that X̃0 = Xτ ◦ θ−τ , a.s. Now, if τ ′ is any backward coupling time,
then (2.7) is true with τ ′ in place of τ ; and if τ ′ < ∞, a.s., then, as above, we
conclude that X̃0 = Xτ ′◦ θ−τ ′ . 2

3. Extended renovation theory

In this section we extend the theory of renovating events in a rather general
setup. The method of renovating events for stochastic recursive sequences was
introduced by Borovkov [6,7] and further developed by Foss [16] and Borovkov
and Foss [9, 10]; see also the monographs by Borovkov [7] and [8, Chapter 3].
We present a generalization of this theory, that is applicable to stochastic pro-
cesses that are not necessarily stochastic recursive sequences. In addition to its
generality, the setup below can be formulated quite simply and has applications
to the models we are considering.
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As before, consider an arbitrary process {Xn, n ∈ Z} with values in (X ,BX ).
We seek a sufficient criterion for its bc-convergence. A doubly-indexed station-
ary sequence {Hm,n, − ∞ < m ≤ n < ∞}, with values in the same space,
satisfies, by definition,

Hm,n◦ θj = Hm+j,n+j , ∀j ∈ Z.

We may call such a process “stationary background”. In its most general form,
the “renovating events criterion” is

Theorem 3.1 (extended renovation theorem). Let {Xn, n ∈ Z} be a se-
quence of random variables with values in (X ,BX ), defined on (Ω,F ,P, θ), where
θ is a P-preserving ergodic flow. Suppose there exists stationary sequence of
events {An, n ∈ Z} with P(A0) > 0, a stationary background {Hm,n, −∞ <
m ≤ n < ∞}, and an index n0 ∈ Z, such that

∀n ≥ n0, ∀j ≥ 0, Xn+j = Hn,n+j , a.s. on An. (3.1)

Then {Xn} bc-converges.

N.B. The events An for which (3.1) holds are called renovating events.

Proof of Theorem 3.1. Without loss of generality assume n0 = 0, and write the
condition of the theorem symbolically as

∀n ≥ 0, ∀j ≥ 0, Xn+j1An = Hn,n+j1An , a.s.

Since the above statement holds almost surely, and since θ preserves P, we also
have

∀n, j ≥ 0, ∀m ∈ Z, Xn+j◦ θ−m1An−m
= Hn−m,n−m+j1An−m

, a.s.
(3.2)

Put i = m−n, k = n−m+j. Observe that this change of indices transforms the
set {(n, j, m) ∈ Z3 : n ≥ 0, j ≥ 0} into the set {(k, i,m) ∈ Z3 : m ≥ i ≥ −k}.
So (3.2) is written as

∀m ≥ i ≥ −k, X−m
k 1A−i

= H−i,k1A−i
, a.s.,

where we also used the notation X−m
k = Xm+k◦ θ−m. Define now the random

time
γ := inf{i ≥ 0 : 1A−i

= 1}. (3.3)

Since P(A0) > 0 and θ is ergodic, we have γ < ∞, a.s. Thus,

∀ m ∈ Z, ∀ k ≥ 0, H−γ,k = X−m
k , a.s. on {m ≥ γ}.
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Since, obviously, {m ≥ γ} ⊆ {m + 1 ≥ γ} for all m, we also have the seemingly
stronger statement

∀k ≥ 0, H−γ,k = X−m
k , H−γ,k = X

−(m+1)
k , . . . , a.s. on {m ≥ γ}. (3.4)

This implies that, for all m ≥ 0,

P(m ≥ γ) ≤ P
(
∀ k ≥ 0, H−γ,k = X−m

k = X
−(m+1)
k = · · ·

)
. (3.5)

But the left side tends to 1 as m → ∞, and so we can conclude by applying
Corollary 2.1. 2

Corollary 3.1. Under the conditions of Theorem 3.1, the random variable γ
defined in (3.3) is a (not necessarily minimal) backward coupling time. Further-
more, X has the stationary version X̃ given by

X̃n = Xγ+n◦ θ−γ = H−γ,n.

Proof. That γ is a backward coupling time follows from (3.4). That the station-
ary version of X is given by X̃n = Xγ+n◦ θ−γ follows from Corollary 2.2. That
the stationary version is also given by X̃n = H−γ,n follows from (3.4) and the
way that X̃ was constructed in the proof of Theorem 2.1. 2

It is often useful to consider, instead of single random index γ, as in (3.3),
for which 1A−γ

= 1, a.s., the entire sequence {j ∈ Z : 1Aj
= 1} and enumerate

it as follows
· · · < −γ−1 < −γ0 ≤ 0 < γ1 < γ2 < · · ·

In this notation, γ0 = γ. This sequence is nonterminating on both sides and
it is clear that the stationary version can be constructed by starting from any
term of this sequence. Namely, for any r ≥ 1, we have that Hγr,n = X̃n for all
n ≥ γr, a.s.

4. The concept of verifiability and perfect simulation

One application of the theory is the simulation of stochastic systems. If we
could sample the process at a bc-time, then would actually be simulating its
stationary version. This is particularly useful in Markov Chain Monte Carlo
applications. Recently, Propp and Wilson [22] used the so-called perfect simula-
tion method for the simulation of the invariant measure of a Markov chain. The
method is actually based on sampling at a bc-time. To do so, however, one must
be able to generate a bc-time from a finite history of the process. In general,
this may not be possible because, even in the case when suitable renovation
events can be found, they may depend on the entire history of the process.
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We are thus led to the concept of a verifiable time. Its definition, given
below, requires introducing a family of σ-fields {G−j,m,−j ≤ 0 ≤ m}, such that
G−j,m increases if j or m increases. We call this simply an increasing family
of σ-fields. For fixed m, a backwards stopping time τ ≥ 0 with respect to G·,m
means a stopping time with respect to the first index, i.e., {τ ≤ j} ∈ G−j,m

for all j ≥ 0. In this case, the σ-field G−τ,m contains all events A such that
A ∩ {τ ≤ j} ∈ G−j,m, for all j ≥ 0.

Definition 4.1 (verifiable time). An a.s. finite nonnegative random time β is
said to be verifiable with respect to an increasing family of σ-fields {G−j,m,−j ≤
0 ≤ m}, if there exists a sequence of random times {β(m),m ≥ 0}, with β(m)
being a backwards G·,m-stopping time for all m, such that

(i) β = supm≥0 β(m);

(ii) for all m ≥ 0, X−n
m = X

−(n+i)
m for all i ≥ 0, a.s. on {n ≥ β(m)};

(iii) for all m ≥ 0, the random variable X
−β(m)
m is G−β(m),m-measurable.

Some comments: First, observe that if β is any backwards coupling time, then
it is always possible to find β(m) such that (i) and (ii) above hold. The addi-
tional thing here is that the β(m) are backwards stopping times with respect to
some σ-fields, and condition (iii). Second, observe that any verifiable time is a
backwards coupling time. This follows directly from (i), (ii) and Definition 2.3.
Third, define

βm = max(β(0), . . . , β(m)),

and observe that

(X−t
0 , . . . , X−t

m ) = (X−t−1
0 , . . . , X−t−1

m ) = · · · , a.s. on {t ≥ βm}.

Thus, a.s. on {t ≥ βm}, the sequence (X−t
0 , . . . , X−t

m ) does not change with
t. Since it also converges, in total variation, to (X̃0, . . . , X̃m), where X̃ is the
stationary version of X, it follows that

(X−t
0 , . . . , X−t

m ) = (X̃0, . . . , X̃m), a.s. on {t ≥ βm}.

Therefore,
(X−βm

0 , . . . , X−βm
m ) = (X̃0, . . . , X̃m), a.s.

Since βm ≥ β(i), for each 0 ≤ i ≤ m, we have X−βm

i = X
−β(i)
i , and this

is G−β(i),i-measurable and so, a fortiori, G−βm,m-measurable (the σ-fields are
increasing). Thus, (X̃0, . . . , X̃m) is G−βm,m-measurable. In other words, any
finite-dimensional projection (X̃0, . . . , X̃m) of the stationary distribution can
be “perfectly sampled”. That is, in practice, {G−j,m} contains our basic data
(e.g., it measures the random numbers we are using), βm is a stopping time,
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and (X̃0, . . . , X̃m) is measurable with respect to a stopped σ-field. This is
what perfect sampling means, in an abstract setup, without reference to any
Markovian structure.

Naturally, we would like to have a condition for verifiability. Here we present
a sufficient condition for the case where renovating events of special structure
exist. To prepare for the theorem below, consider a stochastic process {Xn, n ∈
Z} on (Ω,F ,P, θ), the notation being that of Section 2. Let {ζn = ζ0◦ θn, n ∈ Z}
be a family of i.i.d. random variables. For fixed κ ∈ Z, consider the increasing
family of σ-fields

G−j,m := σ(ζ−j−κ, . . . , ζm).

Consider also a family {Bn, n ∈ Z} of Borel sets and introduce the events

A−j,m := {ζ−j−κ ∈ B−κ, . . . , ζm ∈ Bm+j},

A0 :=
⋂

m≥0

A0,m = {ζ−κ ∈ B−κ, . . . , ζ0 ∈ B0, . . .},

An := {ζn−κ ∈ B−κ, . . . , ζn ∈ B0, . . .} = θ−nA0.

Theorem 4.1 (verifiability criterion). With the notation just introduced,
suppose P(A0) > 0. Suppose the An are renovating events for the process X,
in the sense that the assumptions of Theorem 3.1 hold, and that X−i

m 1A−j,m
is

G−j,m-measurable, for all −i ≤ −j ≤ m. Then

β := inf{n ≥ 0 : 1A−n = 1}

is a verifiable time with respect to the {G−j,m}.

Proof. We shall show that β = supm≥0 β(m), for appropriately defined back-
wards G·,m-stopping times β(m) that satisfy the properties (i), (ii) and (iii) of
Definition 4.1. Let

β(m) := inf{j ≥ 0 : 1A−j,m = 1}.

Since A−j,m ∈ G−j,m, we immediately have that β(m) is a backwards G·,m-
stopping time. Then

β(m) := inf{j ≥ 0 : ζ−j−κ ∈ B−κ, . . . , ζm ∈ Bm+j}

is a.s. increasing in m, with

sup
m

β(m) := inf{j ≥ 0 : ζ−j−κ ∈ B−κ, . . .} = inf{j ≥ 0 : 1A−j = 1} = β.

Hence (i) of Definition 4.1 holds. We next use the fact that the An are renovating
events. As in (3.5) of the proof of Theorem 3.1 we have, for all i ≥ j,

X−i
m 1A−j

= X−j
m 1A−j

, a.s.
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Since
A−j = A−j,m ∩ {ζm+1 ∈ Bm+1+j , . . .} =: A−j,m ∩Dj,m,

we have
X−i

m 1A−j,m
1Dj,m

= X−j
m 1A−j,m

1Dj,m
, a.s.

By assumption, X−i
m 1A−j,m

is G−j,m-measurable, for all i ≥ j. By the indepen-
dence between the ζn’s, Dj,m is independent of G−j,m. Hence, by Lemma A.1
of the Appendix, we can cancel the 1Dj,m

terms in the above equation to get

X−i
m 1A−j,m = X−j

m 1A−j,m , a.s.,

for all i ≥ j. Now,
{β(m) = j} ⊆ A−j,m, (4.1)

and so, by multiplying by 1(β(m) = j) both sides, we obtain

X−i
m 1(β(m) = j) = X−j

m 1(β(m) = j), a.s.,

for all i ≥ j. By Theorem 3.1, β(m) < ∞, a.s., and so for all ` ≥ 0,

X−β(m)−`
m = X−β(m)

m , a.s.

Hence Definition 4.1, (ii) holds. Finally, to show that X
−β(m)
m is G−β(m),m-

measurable, we show that X−j
m 1(β(m) = j) is G−j,m-measurable. Using the

inclusion (4.1) again, we write

X−j
m 1(β(m) = j) = X−j

m 1A−j,m
1(β(m) = j).

By assumption, X−j
m 1A−j,m

is G−j,m-measurable, and so is 1(β(m) = j). Hence
Definition 4.1, (iii) also holds. 2

A perfect simulation algorithm

In the remaining of this section, we describe a “perfect simulation algo-
rithm”, i.e., a method for drawing samples from the stationary version of a
process. The setup is as in Theorem 4.1. For simplicity, we take κ = 0. That
is, we assume that

A0 = {ζ0 ∈ B0, ζ1 ∈ B1, . . .}
has positive probability, and that the An = θ−nA0 are renovating events for
the process {Xn}. Recall that the {ζn = ζ0◦ θn} are i.i.d., and that Gm,n =
σ(ζm, . . . , ζn), m ≤ n. It was proved in Theorem 4.1 that the time β = inf{n ≥
0 : 1A−n

= 1} is a bc-time which is verifiable with respect to the {Gm,n}.
This time is written as β = supm≥0 β(m), where β(m) = inf{j ≥ 0 : ζ−j ∈
B0, . . . , ζm ∈ Bm+j}. The algorithm uses β(0) only. It is convenient to let

ν1 := β(0) = inf{j ≥ 0 : ζ−j ∈ B0, . . . , ζ0 ∈ Bj},
νi+1 := νi + β(0)◦ θ−νi , i ≥ 1.
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In addition to the above, we are going to assume that

B0 ⊆ B1 ⊆ B2 ⊆ . . .

It is easy to see that this monotonicity assumption is responsible for the following
(see Figure 1 for an illustration)

ν1◦ θ−j ≤ ν1 − j, a.s. on {ν1 ≥ j}. (4.2)

ν1− ν1 θ −j−−j −j 0− −νν
23

Figure 1. Illustration of the bc-times involved in the perfect simulation algo-
rithm for the stationary process at negative times.

Owing to condition (ii) of Definition 4.1 we have

X−ν1
0 = X̃0 = X−ν1−i

0 , ∀i ≥ 0.

That is, if we “start” the process at time −ν1, we have, at time 0, that X0 is a.s.
equal to the stationary X̃0. Applying θ−j at this equality we have X−ν1

0 ◦ θ−j =
X̃0◦ θ−j = X̃−j . But X−ν1

0 ◦ θ−j = (Xν1◦ θ−ν1)◦ θ−j = X−ν1◦ θ−j ◦ θ−ν1◦ θ−j−j =
X−j−ν1◦ θ−j

−j . That is,

X−j−ν1◦ θ−j

−j = X̃−j = X−j−ν1◦ θ−j−i
−j , ∀i ≥ 0. (4.3)

But from (4.2), we have ν1 ≥ j + ν1◦ θ−j , if ν1 ≥ j, and so, from (4.3),

X−ν1
−j = X̃−j , a.s. on {ν1 ≥ j}.

This means that if we start the process at −ν1, then its values on any window
[−j, 0] contained in [−ν1, 0] match the values of its stationary version on the
same window

(X−ν1
−j , . . . , X−ν1

0 ) = (X̃−j , . . . , X̃0), a.s. on {ν1 ≥ j}. (4.4)

It remains to show a measurability property of the vector (4.4) that we are
simulating. By (iii) of Definition 4.1, we have that X−ν1

0 is G−ν1,0-measurable.
That is, if ν1 = ` then X̃0 is a certain deterministic function of ζ−`, . . . , ζ0.
Thus, the functions h` are defined, for all ` ≥ 0, by the condition

X−`
0 = h`(ζ−`, . . . , ζ0), a.s. on {ν1 = `},
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or,
X−ν1

0 = hν1(ζ−ν1 , . . . , ζ0).

Hence for any i ≥ 0,

X−i−ν1◦ θ−i

−i = X−ν1
0 ◦ θ−i = hν1◦ θ−i(ζ−i−ν1◦ θ−i , . . . , ζ−i).

But if ν1 ≥ j, we have ν1◦ θ−i ≤ ν1− i for all i ∈ [0, j], and so every component
of (X−ν1

0 ◦ θ−i, 0 ≤ i ≤ j) is a deterministic function of ζ0, . . . , ζ−ν1 . Thus the
vector appearing in (4.4) is a deterministic function of ζ0, . . . , ζ−ν1 , if ν1 ≥ j.
This is precisely the measurability property we need.

We now observe that, in (4.4), we can replace ν1 by any νi

(X−νi
−j , . . . , X−νi

0 ) = (X̃−j , . . . , X̃0), a.s. on {νi ≥ j}, i = 1, 2, . . .

Hence if we want to simulate (X̃−j , . . . , X̃0) we search for an i such that νi ≥ j,
and start the process from −νi. It is now clear how to simulate the process on
any window prior to 0.

To proceed forward, i.e., to simulate {X̃n, n > 0}, consider first X̃1. Note
that

X̃1 = X̃0◦ θ = hν1(ζ−ν1 , . . . , ζ0)◦ θ = hν1◦ θ(ζ−ν1◦ θ+1, . . . , ζ1).

Next note that ν1◦ θ is either equal to 0, or to ν1 + 1, or to ν2 + 1 = ν1 +
ν1◦ θ−ν1 + 1, etc. This follows from the definition of ν1 and νi, as well as
the monotonicity between the Bj . If ν1 = 0 (which is to say, ζ1 ∈ B0), then
X̃1 = h0(ζ1). Otherwise, if ζ1 6∈ B0, but ζ1 ∈ Bν1+1, then ν1◦ θ = ν1 + 1, and so
X̃1 = hν1+1(ζ−ν1 , . . . , ζ1). Thus, for some finite (but random) j (defined from
ζ1 ∈ Bνj+1 \ Bνj

), we have X̃1 = hνj+1(ζ−νj
, . . . , ζ1). The algorithm proceeds

similarly for n > 1.
The connection between perfect simulation and backward coupling was first

studied by Foss and Tweedie [17].

Weak verifiability

Suppose now that we drop the condition that P(A0) > 0, but only assume
that

β(0) < ∞, a.s.

Of course, this implies that β(m) < ∞, a.s., for all m. Here we can no longer as-
sert that we have sc-convergence to a stationary version, but we can only assert
existence in the sense described in the sequel. Indeed, simply the a.s. finiteness
of β(0) (and not of β) makes the perfect simulation algorithm described above
realizable. The algorithm is shift-invariant, hence the process defined by it is
stationary. One may call this process a stationary version of X. This becomes
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precise if {Xn} itself is a stochastic recursive sequence, in the sense that the sta-
tionary process defined by the algorithm is also a stochastic recursive sequence
with the same driver. (See Section 5.)

The construction of a stationary version, under the weaker hypothesis β(0) <
∞, a.s., is also studied by Comets et al. [14], for a particular model. In that
paper, it is shown that β(0) < ∞ a.s., iff

∞∑
n=1

n∏
k=0

P(ζ0 ∈ Bk) = ∞.

The latter condition is clearly weaker than P(A0) > 0. In [14] it is shown
that it is equivalent to the non-positive recurrence of a certain Markov chain, a
realization which leads directly to the proof of this condition.

5. Strong coupling for stochastic recursive sequences

As in the previous section, let (Ω,F ,P, θ) be a probability space with a
P-preserving ergodic flow θ. Let (X ,BX ), (Y,BY) be two measurable spaces.
Let {ξn, n ∈ Z} be a stationary sequence of Y-valued random variables. Let
f : X ×Y → X be a measurable function. A stochastic recursive sequence (SRS)
{Xn, n ≥ 0} is defined as an X -valued process that satisfies

Xn+1 = f(Xn, ξn), n ≥ 0. (5.1)

The pair (f, {ξn}) is referred to as the driver of the SRS X. The choice of 0 as
the starting point is arbitrary.

A stationary solution {X̃n} of the stochastic recursion is a stationary se-
quence that satisfies the above recursion. Clearly, it can be assumed that X̃n

is defined for all n ∈ Z. There are examples that show that a stationary so-
lution may exist but may not be unique. The classical such example is that
of a two-server queue, which satisfies the so-called Kiefer – Wolfowitz recursion
(see [11]). In this example, under natural stability conditions, there are infinitely
many stationary solutions, one of which is “minimal” and another “maximal”.
One may define a particular solution, say {X0

n}, to the two-server queue SRS
by starting from the zero initial condition. Then X0 sc-converges (under some
conditions) to the minimal stationary solution. In our terminology, we may say
that the minimal stationary solution is the stationary version of X0.

Stochastic recursive sequences are ubiquitous in applied probability model-
ing. For instance, a Markov chain with values in a countably generated mea-
surable space can be expressed in the form of SRS with i.i.d. drivers.

The previous notions of coupling take a simpler form when stochastic re-
cursive sequences are involved owing to the fact that if two SRS with the same
driver agree at some n, then they agree thereafter. We thus have the following
modifications of the earlier theorems.
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Proposition 5.1. Let X, X̃ be SRS with the same driver (f, {ξn}), and assume
that X̃ is stationary. Then

(i) X c-converges to X̃ iff limn→∞ P(Xn = X̃n) = 1;

(ii) X sc-converges to X̃ iff limn→∞ P(X̃n = Xn = X−1
n = X−2

n = · · ·) = 1;

(iii) X bc-converges iff limn→∞ P(X−n
0 = X

−(n+1)
0 = X

−(n+2)
0 = · · ·) = 1.

The standard renovation theory (see [7,8]) is formulated as follows. Our goal
here is to show that it fits within the general framework of extended renovation
theory, developed in the previous section. First, define renovation events.

Definition 5.1 (renovation event for SRS). Fix n ∈ Z, ` ∈ Z+ and a mea-
surable function g : Y`+1 → X . A set R ∈ F is called (n, `, g)-renovating for
the SRS X iff

Xn+`+1 = g(ξn, . . . , ξn+`), a.s. on R. (5.2)

An alternative terminology is: R is a renovation event on the segment [n, n + `]
(see [8]).

We then have the following theorem, which is a special case of Theorem 3.1.

Theorem 5.1 (renovation theorem for SRS). Fix ` ≥ 0 and g : Y`+1 →
X . Suppose that, for each n ≥ 0, there exists a (n, `, g)-renovating event Rn for
X. Assume that {Rn, n ≥ 0} is stationary and ergodic, with P(R0) > 0. Then
the SRS X bc-converges and its stationary version X̃ is an SRS with the same
driver as X.

Proof. For each n ∈ Z, define X̂n,i, recursively on the index i, by

X̂n,n+`+1 = g(ξn, . . . , ξn+`),

X̂n,n+j+1 = f(X̂n,n+j , ξn+j), j ≥ ` + 1, (5.3)

and observe that (5.2) implies that

∀n ≥ 0, ∀j ≥ ` + 1, Xn+j = X̂n,n+j , a.s. on Rn. (5.4)

For n ∈ Z, set An := Rn−`−1. Consider the stationary background

Hn,p := X̂n−`−1,p, p ≥ n.

Note that Hn,p◦ θk = Hn+k,p+k and rewrite (5.4) as

∀n ≥ ` + 1, ∀i ≥ 0, Xn+i = Hn,n+i, a.s. on An,
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which is precisely condition (3.1) of Theorem 3.1. Since P(A0) = P(R0) > 0,
Theorem 3.1 applies and allows us to conclude that there is a unique stationary
version X̃, constructed by means of the bc-time

γ := inf{i ≥ 0 : 1R−i−`−1 = 1}. (5.5)

We have
X̃n = Xγ+n◦ θ−γ = H−γ,n = X̂−γ−`−1,n.

This X̃n can be defined for all n ∈ Z. From this and (5.3), we have that
X̃n+1 = f(X̃n, ξn), n ∈ Z, i.e., X̃ has the same driver as X. 2

It is useful to observe that, if Rn are (n, `, g) renovating events for X with
P(R0) > 0, then the stationary version X̃ satisfies X̃−γ =g(ξ−γ−`−1, . . . , ξ−γ−1),
a.s., where γ is the bc-time defined in (5.5). More generally, if we consider the
random set {j ∈ Z : 1Rj

= 1} (the set of renovation epochs), we have, for any
α in this set, X̃α = g(ξα−`−1, . . . , ξα−1), a.s.

6. Strong coupling for functionals of stochastic recursive sequences

The formulation above extends easily to functionals of stochastic recursions.
Namely, suppose that, in addition to the SRS X satisfying (5.1), we also have
a process Z with values in a third measurable space (Z,BZ) given by

Zn = ϕ(Xn, ξn), (6.1)

where ϕ : X × Y → Z is a certain measurable function. Given an integer ` ≥ 0
and a measurable function g : Y`+1 → X , define, for each n ∈ Z, the quantities
X̂n,i and Ẑn,i, recursively in the index i, by

X̂n,n+`+1 = g(ξn, . . . , ξn+`),

X̂n,n+j+1 = f(X̂n,n+j , ξn+j), j ≥ ` + 1,

Ẑn,n+j = ϕ(X̂n,n+j , ξn+j), j ≥ ` + 1.

Definition 6.1 (renovation event for functionals of SRS). A set R ∈ F
is said to be (n, `, g)-renovating for Z iff

∀j ≥ ` + 1, Zn+j = Ẑn,n+j , a.s. on R. (6.2)

Theorem 6.1 (renovation theorem for functionals of SRS). Let us sup-
pose that, for each n ≥ 0, there exists a (n, `, g)-renovating event Rn for Z.
Assume that {Rn, n ≥ 0} is stationary and ergodic, with P(R0) > 0. Then Z
bc-converges.
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Proof. Let An := Rn−`−1, and Hn,p := Ẑn−`−1,p, p ≥ n. Observe that
Hn,p◦ θk = Hn+k,p+k. Then (6.2) is written as

∀n ≥ ` + 1, ∀i ≥ 0, Zn+i = Hn,n+i, a.s. on An.

This is again (3.1) and Theorem 3.1 applies. 2

A bc-time is given by the formula γ = inf{i ≥ 0 : 1R−i−`−1 = 1}. The
stationary version Z̃ is given by Z̃n = H−γ,n = Ẑ−γ−`−1,n. In particular, Z̃−γ =
ϕ(g(ξ−γ−`−1, . . . , ξ−γ−1), ξ−γ). Functionals of SRS are particularly important
in applications, as in, e.g., Monte Carlo simulation methods. Although, as
before, for any renovation epoch α, i.e., any element of the random set {j ∈
Z : 1Rj = 1}, we have Z̃α = ϕ(g(ξα−`−1, . . . , ξα−1), ξα), it is not clear that
these epochs are possible to simulate because they may depend on the entire
history of the driver. Thus, the concept of verifiability introduced earlier is
particularly relevant here. It is important to define renovation events so that
they yield verifiable bc-times. This is frequently possible. We give an example.

Example 6.1. Consider a Markov chain {Xn} with values in a finite set S,
having stationary transition probabilities pi,j , i, j ∈ S. Assume that [pi,j ] is
irreducible and aperiodic. Although there is a unique invariant probability
measure, whether X bc-converges to the stationary Markov chain X̃ depends
on the realization of X on a particular probability space. We can achieve bc-
convergence with a verifiable bc-time if we realize X as follows: Consider a
sequence of i.i.d. random maps ξn : S → S, n ∈ Z (and we write ξnξn+1 to
indicate composition). Represent each ξn as a vector ξn = (ξn(i), i ∈ S), with
independent components such that

P(ξn(i) = j) = pi,j , i, j ∈ S.

Then the Markov chain is realized as an SRS by

Xn+1 = ξn(Xn).

It is important to notice that the condition that the components of ξn be inde-
pendent is not necessary for the Markovian property. It is only used as a means
of constructing the process on a particular probability space, so that backwards
coupling takes place. Now define

β = inf{n ≥ 0 : ∀ i, j ∈ S, ξ0 · · · ξ−n(i) = ξ0 · · · ξ−n(j)}.

It can be seen that, under our assumptions, β is a bc-time for X, β < ∞, a.s.,
and β is verifiable. This bc-time is the one used by Propp and Wilson [22]
in their perfect simulation method for Markov chains. Indeed, the verifiability
property of β allows recursive simulation of the random variable ξ0 · · · ξ−β(i)
which (regardless of i) has the stationary distribution.
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Example 6.2. Another interesting example is the process considered in [12]
by Brémaud and Massoulié. This process has a “Markov-like” property with
random memory. Consider a process {Xn, n ∈ Z} with values in a Polish space
S and suppose that its transition kernel, defined by P(Xn ∈ · | Xn−1, Xn−2, . . .)
is time-homogeneous (a similar setup is considered in [14]), i.e. that there exists
a kernel µ : K∞ × B(K) → [0, 1] such that P(Xn ∈ B | Xn−1, Xn−2, . . .) =
µ((Xn−1, Xn−2, . . .);B), B ∈ B(K). This represents the dynamics of the pro-
cess. In addition, assume that the dynamics does not depend on the whole
past, but on a finite but random number of random variables from the past.
It is also required that the random memory is “consistent” and that the mi-
norization condition holds, i.e., µ((Xn−1, Xn−2, . . .), ·) ≥ εν(·), where ε ∈ (0, 1)
and ν is a probability measure on (K,B(K)). See [12] for details. Then it is
shown that renovation events do exist and that the process {Xn} sc-converges
to a stationary process that has the same dynamics µ.

7. The infinite bin model

Consider an infinite number of bins arranged on the line and indexed, say, by
the non-positive integers. Each bin can contain an unlimited but finite number
of particles. A configuration is a finite-dimensional vector

x = [x(−`), . . . , x(−1), x(0)], (7.1)

if there are only finitely many particles in the system, or an infinite vector,
otherwise. (The unconventional indexing by non-positive integers is done for
reasons of convenience when using the infinite bin model to understand asymp-
totics of stochastic ordered graphs.) At each integer step, precisely one particle
of the current configuration is chosen in some random manner. If the particle
is in bin −i ≤ −1, then a new particle is created and placed in bin −i + 1.
Otherwise, if the chosen particle is in bin 0 then a new bin is created to hold the
child particle and a relabeling of the bins occurs: the existing ones are shifted
by one place to the left (and are re-indexed) and the new bin is given the label
0. This kind of system, besides being interesting in its own right, will later be
derived from a stochastic ordered graph.

To make the verbal description above precise, we introduce some notations.
Define the configuration space

S =
⋃

1≤n≤∞

Nn = N∗ ∪N∞,

where N = {1, 2, . . .} is the set of natural numbers, Nn+1 = Nn ×N, n ≥ 1,
N∗ =

⋃
1≤n<∞Nn is the set of all finite-dimensional vectors, and N∞ is the

set of all infinite-dimensional vectors. We endow S with the natural topology
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of pointwise convergence, and let BS be the corresponding class of Borel sets
generated by this topology. The extent of an x ∈ N∗ is defined as

|x| = `, if x = [x(−`), . . . , x(0)],

and the norm as

||x|| =
∑̀
j=0

x(−j),

and if x ∈ N∞, we set |x| = ||x|| = +∞. The concatenation of an x ∈ S with a
y ∈ N∗ is defined by

[x, y] = [. . . , x(−1), x(0), y(−|y|), . . . , y(0)].

The restriction x(−k) of x ∈ S onto {−k, . . . , 0}, where k ≤ |x|, is defined by

x(−k) = [x(−k), . . . , x(0)].

Finally, for any x ∈ S, and any integer 0 ≤ k ≤ |x|, let x + δ−k be the vector
obtained from x by adding 1 to the coordinate x(−k) and leaving everything
else unchanged:

x + δ−k = [. . . , x(−k − 1), x(−k) + 1, x(k + 1), . . . , x(−1), x(0)].

The dynamics of the model requires defining the map Φ : S ×N → S by

Φ(x, ξ) =


[x, 1], if ξ ≤ x(0),
x + δ−k, if

∑k
j=0 x(−j) < ξ ≤

∑k+1
j=0 x(−j), 0 ≤ k < |x|,

x + δ−|x|, if ξ > ||x||.
(7.2)

Given a stationary-ergodic sequence {ξn, n ∈ Z} of N-valued random variables,
and an S-valued random variable X0, define a stochastic recursive sequence by

Xn+1 = Φ(Xn, ξn+1), n ≥ 0. (7.3)

Our goal is to find conditions under which there is a unique stationary solution
to the above stochastic recursion and that any solution strongly converges to
it. A special case, namely when the {ξn} are i.i.d., and, consequently, X is
Markovian, will also be considered.

Extensions of the infinite bin model, which can be handled using the tech-
niques developed here, are possible. For example, we can consider the contents
of the bins to be positive valued (as opposed to just integer-valued) random
variables. These are natural models of random graphs with random weights,
and will be considered in a forthcoming paper.
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It is clear from the outset that the decomposition of the configuration space
into S = N∗ ∪N∞ is a decomposition into a ‘transient part’ (N∗) and a ‘non-
transient part’ (N∞). Indeed, regardless of the initial configuration X0, the
extent of Xn grows as n grows. Thus, it is intuitively clear that a stationary
solution X̃, if any, will be such that P(X̃0 ∈ N∗) = 0. This means that it is
not possible to construct renovation events for the process {Xn} satisfying (7.3).
(Otherwise, we would have coupling between the process {Xn} that is supported
on N∗ and the process {X̃n} that is supported outside N∗). Instead we consider
functionals of it, namely, all its finite-dimensional projections

X(−`)
n = [Xn(−`), . . . , Xn(0)], ` = 0, 1, 2, . . . ,

and find renovation events for each of them.
We start with a couple of properties of the map Φ defined by (7.2).

Lemma 7.1. For any x ∈ S, y ∈ N∗, if ξ ≤ ||y||+ 1, then

Φ([x, y], ξ) = [x, Φ(y, ξ)].

Furthermore, if |y| ≥ `+1, for some ` ≥ 0, then, for all x, x′ ∈ S, and all ξ ∈ N,

Φ([x, y], ξ)(−`) = Φ([x′, y], ξ)(−`).

Proof. If ξ ≤ y(0), then Φ([x, y], ξ) = [x, y, 1], and also Φ(y, ξ) = [y, 1], so the
statement is true. Otherwise, if ξ > y(0), Φ([x, y], ξ) = [x, y] + δ−k for some
k smaller than or equal to |y| because of the condition ξ ≤ ||y|| + 1, as can
be verified by the second line of (7.2). But then Φ([x, y], ξ) = [x, y] + δ−k =
[x, y + δ−k]. Also, again by the assumption ξ ≤ ||y|| + 1, and the second line
of (7.2), Φ(y, ξ) = y + δ−k, for the same k. Hence, here too, Φ([x, y], ξ) =
[x, y + δ−k] = [x,Φ(y, ξ)]. The second identity follows immediately from (7.2).

2

This lemma motivates the consideration of the following events, which will
serve as renovation events

A`
0 =

`+1⋂
j=1

{ξj = 1} ∩
∞⋂

j=`+2

{ξj ≤ j}, ` ≥ 0. (7.4)

Lemma 7.2. Let {Xn, n ≥ 0} be the stochastic recursive sequence (7.3) de-
scribing the infinite bin model. Define random variables Y `

n , n ≥ ` + 1, ` ≥ 0,
by

Y `
`+1 = [1, . . . , 1] (a vector of ` + 1 consecutive 1s),

Y `
n+1 = Φ(Y `

n , ξn+1), n ≥ ` + 1. (7.5)
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Then, for all ` ≥ 0, it holds that

∀ n ≥ ` + 1, Xn = [X0, Y
`
n ], a.s. on A`

0. (7.6)

Furthermore, |Y `
n | ≥ `, ||Y `

n || = n, for all n ≥ ` + 1 ≥ 1.

Proof. First observe that the last statement about the extent and norm of Y `
n

follows from the obvious properties of Φ:

|Φ(x, ξ)| ≥ |x|, ||Φ(x, ξ)|| = ||Φ(x, ξ)||+ 1.

Next, since, on A`
0, ξ1 = · · · = ξ`+1 = 1, the configuration starts from X0

and evolves up to n = ` + 1 by concatenating a 1 to the right of the previous
configuration, namely,

X1 = [X0, 1], X2 = [X0, 1, 1], . . . , X`+1 = [X0, Y
`
`+1],

where Y `
`+1 is a vector of `+1 consecutive 1s. So the result is true for n = `+1.

We proceed by induction. Our induction hypothesis is that, for some fixed
n ≥ ` + 1, Xn = [X0, Y

`
n ], a.s. on A`

0. We have

Xn+1 = Φ(Xn, ξn+1) = Φ([X0, Y
`
n ], ξn+1).

But ||Y `
n || = n and, a.s. on A`

0, ξn+1 ≤ n + 1. Thus, by the first identity of
Lemma 7.1,

Φ([X0, Y
`
n ], ξn+1) = [X0,Φ(Y `

n , ξn+1)] = [X0, Y
`
n+1],

and so Xn+1 = [X0, Y
`
n+1], a.s. on A`

0. 2

We have that |Y `
n | ≥ ` for all n ≥ ` + 1, and we just showed that Xn =

[X0, Y
`
n ], a.s. on A`

0. Thus, a.s. on the same event, the restriction X onto
{−`, . . . , 0} is the restriction of Y `

n . In other words, X
(−`)
n is a function of Y `

n

for all n ≥ ` + 1, a.s. on A`
0. Hence A`

0 is a renovation event for X
(−`)
· , in the

sense of Definition 6.1. In fact, since there is nothing special with 0 as the origin
of time, we can define, for all s,

A`
s := θ−sA`

0 =
`+1⋂
j=1

{ξs+j = 1} ∩
∞⋂

j=`+2

{ξs+j ≤ j}. (7.7)

Then we have

Xs+`+1 = [Xs, Y
`
`+1◦ θs], Xs+`+2 = [Xs, Y

`
`+2◦ θs], . . . , a.s. on A`

s. (7.8)

(Equation (7.6) is just the special case with s = 0.) It follows again that, a.s.
on A`

s, and for all j ≥ `1, the restriction of Xs+j onto {−`, . . . , 0} is obtained
by the restriction of Y `

j ◦ θs onto the same set

X
(−`)
s+`+1 = (Y `

`+1◦ θs)(−`), X
(−`)
s+`+2 = (Y `

`+2◦ θs)(−`), . . . , a.s. on A`
s.
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Use the abbreviation

H`
t,u = (Y `

`+1+(u−t)◦ θt−`−1)(−`), t ≤ u, (7.9)

(which will be the stationary background process) to summarize the last obser-
vations in

Lemma 7.3. Let A`
s be defined by (7.7) and H`

t,u by (7.9). Then, for all ` ≥ 0,

∀t ≥ ` + 1, X
(−`)
t = H`

t,t, X
(−`)
t+1 = H`

t,t+1, . . . a.s. on A`
t−`−1. (7.10)

Furthermore, Ht,u◦ θs = Ht+s,u+s.

Proof. The last relation follows from the fact that Y `
n is a function of (ξi, `+2 ≤

i ≤ n) (see (7.5)) and (7.9). Finally, (7.10) follows from (7.8) and the fact that
the extent of Y `

t+i◦ θt is at least `. 2

We introduce now a probability space (Ω,F ,P) and a measurable flow θ that
preserves P. Also, θ is assumed to be ergodic. A random sequence {ξn, n ∈ Z}
is then stationary-ergodic if ξn◦ θm = ξn+m for all m,n ∈ Z. The theorem that
follows constitutes the main result of this section.

Theorem 7.1. Let {ξn, n ∈ Z} be a stationary-ergodic sequence of nontrivial
N-valued random variables such that P(A`

0) > 0, for all ` ≥ 0, where A`
0 is

defined in (7.4). Then there exists a unique stationary and ergodic stochas-
tic recursive sequence {X̃n, n ∈ Z}, with values in N∞, such that X̃n+1 =
Φ(X̃n, ξn+1), for all n ∈ Z. Furthermore, if X is any SRS satisfying (7.3), then
the distribution of Xn converges weakly, as n →∞, to that of X̃0.

Proof. Consider the infinite bin model {Xn} with arbitrary initial configuration
X0 ∈ S, a.s. Fix ` ≥ 0 and consider the process {X(−`)

n }. Observe that the
premises of Theorem 3.1 are satisfied, namely, {A`

n} is a stationary sequence
with P(A`

0) > 0 and {H`
t,u, t ≤ u} is a stationary background process for which

the “renovation condition” (7.9) holds. Therefore, by the result of Theorem 3.1
the process X

(−`)
n bc-converges. Let {Z`,n, n ∈ Z} denote its stationary ver-

sion. Clearly, this is compatible with the stationary version {Z`+1,n, n ∈ Z} of
X

(−`−1)
n , in the sense that Z`,n = Z

(−`)
`+1,n (the restriction of the latter onto the

set {−`, . . . , 0} is the former). Hence we define uniquely a stationary process
X̃n, with values in N∞, by defining X̃

(−`)
n ≡ Z`,n, for all ` ≥ 0. To show that

X̃n satisfies the recursion, it is enough to show that X̃
(−`)
n = Φ(X̃n, ξn+1)(−`)

for all ` ≥ 0, and all n. Fix ` ≥ 0, and let σ be the minimal coupling time
between X

(−`−1)
n and X̃n. Then

X(−`−1)
n = X̃(−`−1)

n , a.s. on {n ≥ σ}, (7.11)
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and, a fortiori,
X(−`)

n = X̃(−`)
n , a.s. on {n ≥ σ}. (7.12)

We then have that, a.s. on {n ≥ σ},

X̃
(−`)
n+1 = X

(−`)
n+1 = Φ(Xn, ξn+1)(−`) = Φ

([
. . . , Xn(−`− 2), X(−`−1)

n

]
, ξn+1

)(−`)

= Φ
([

. . . , Xn(−`− 2), X̃(−(`+1)
n

]
, ξn+1

)(−`)

= Φ
([

. . . , X̃n(−`− 2), X̃(−`−1)
n

]
, ξn+1

)(−`)

= Φ(X̃n, ξn+1)(−`),

where the first equality is (7.12), the second is the dynamics of X, the third is
a rewriting of the second, the fourth is (7.11), the fifth follows from the second
identity of Lemma 7.1, and the sixth is a rewriting of the fifth. Since X̃ is
stationary, and σ an a.s. finite time, it follows that the proven identity is true
a.s. for all n. Finally, since X

(−`)
n converges weakly, as n →∞, to Z`,0 = X̃

(−`)
0 ,

for each ` ≥ 0, we immediately get that Xn converges weakly to X̃0. 2

Some remarks

Fix ` ≥ 0 and define the random indices j for which 1A`
j−`−1

= 1:

D` = {j ∈ Z : 1A`
j−`−1

= 1}.

The elements of D` are called `th order decoupling epochs and are enumerated
according to the convention

· · · < γ`
−1 < γ`

0 ≤ 0 < γ`
1 < γ`

2 < · · ·

We mention that a renovation epoch occurs ` + 1 before a decoupling epoch.
We have

Xγ`
r

= [Xγ`
r−`−1, 1, . . . , 1]

(i.e., the previous value concatenated with `+1 consecutive 1s.) Every projection
of the stationary solution can be constructed starting from any of this points.
That is, pick a point γ`

r ∈ D` and define

X̃
(−`)

γ`
r

= [1, . . . , 1], ( ` + 1 consecutive 1s).

Then iterate forward according to

X̃
(−`)
n+1 = Φ

(
X̃(−`)

n , ξn+1

)
.

In this manner, the sequence {X̃γ`
r+i, i ≥ 0} is constructed. Note that at the

next point γ`
r+1 of the point process D`, it will again be the case that X̃

(−`)

γ`
r+1

=
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[1, . . . , 1], a vector of ` + 1 consecutive 1s; this happens automatically by the
renovation that takes place at time γ`

r+1− `− 1. The point process D` becomes
rarer and rarer as ` increases, with rate converging to zero (except in the trivial
case ξn ≡ 1, a.s., which is excluded) and thus it is impossible to have the whole
process X couple with X̃ at any of those random times. In other words, it is
impossible to construct the whole X̃ by this coupling method; only its finite-
dimensional projections can be constructed by coupling.

That the condition of Theorem 7.1 is non-vacuous is considered next, in an
important special case.

Corollary 7.1. Suppose {ξn, n ∈ Z} are i.i.d. Then the condition P(A`
0) > 0

for all ` ≥ 0 is equivalent to

(i) P(ξ0 = 1) > 0,

and

(ii) Eξ0 < ∞.

In this case, the infinite bin model forms is a Markov process.

Proof. We have
P(A`

0) = P(ξ0 = 1)`+1
∏

k≥`+2

P(ξ0 ≤ k).

Let G(k) = P(ξ0 > k) and write

log P(A`
0) = (` + 1) log P(ξ0 = 1) +

∑
k≥`+2

log(1−G(k)).

Thus, logP(A`
0)>−∞ implies and is implied by P(ξ0 = 1)>0 and

∑
k≥`+2

G(k)<∞.

The last inequality is equivalent to Eξ0 < ∞. 2

8. Functional law of large numbers for the infinite bin model

We now study the growth of partial sums

Sn(k) := Xn(−k) + · · ·+ Xn(−1) + Xn(0),

as n → ∞, in two cases: for an infinite bin model that starts with X0 ∈
N∗ (i.e., X0 has finite extent), and for the stationary infinite bin model. For
simplicity, in the first case we will assume X0 is the trivial configuration with
just one particle, X0 = [1], and call it the transient infinite bin model. We
will avoid using tildes to denote the stationary version, unless there is a fear of
confusion. Throughout this section, we assume only part of the assumptions of
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Theorem 7.1, and consider A`
n only for ` = 0, so, to simplify notation we omit

the superscript ` everywhere, and let

An = A0
n = {ξn+1 = 1, ξn+2 ≤ 2, ξn+3 ≤ 3, . . .},

and assume that
ρ := P(A0) > 0. (8.1)

We also assume that the model is not trivial, viz., P(ξ0 = 1) < 1, and so ρ is a
constant strictly between 0 and 1. Consider the decoupling epochs

D = {n ∈ Z : 1An−1 = 1, a.s.}.

Thus if the renovation event An occurs, then there is a decoupling at time n+1
(in words, a new bin is created, a new particle is placed in it, and, thereafter,
all particles are never placed in bins occupied prior to time n). Let γr denote
the elements of D, enumerated as

· · · < γ−1 < γ0 ≤ 0 < γ1 < γ2 < · · ·

We regard D as a stationary and ergodic point process on the integers with rate
ρ. We define

Γ(m,n] :=
∑
r∈Z

1(m < γr ≤ n), m ≤ n,

and consider the corresponding counting process, defined by

Γn :=

{
Γ(0, n], n ≥ 0,

−Γ(n, 0], n ≤ 0,

so, in particular, Γ0 = Γ(∅) = 0, a.s. By ergodicity,

Γn

n
→ ρ, as n → ±∞,

γr

r
→ ρ−1, as r → ±∞, a.s.

Consider now the events

Bn = {ξn+1 ≤ Xn(0)}.

When Bn occurs there is a shift at time n + 1 (i.e., a new bin is created and a
new particle is placed in it). By analogy to the above, we consider the set

G = {n ∈ Z : 1Bn−1 = 1, a.s.}.

Let δr denote the elements of G, enumerated as

· · · < δ−1 < δ0 ≤ 0 < δ1 < δ2 < · · ·
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Also, define
L(m,n] :=

∑
r∈Z

1(m < δr ≤ n), m ≤ n,

and consider the corresponding counting process, defined by

Ln :=

{
L(0, n], n ≥ 0,

−L(n, 0], n ≤ 0.

The understanding here is that, if we consider the transient infinite bin model,
then L is defined on the non-negative integers. Unlike the decoupling point
process, L is stationary only for the stationary case. However, due to the results
of the previous section, it is asymptotically stationary and has a well-defined
rate. Indeed, for n > 0,

Ln

n
=

1
n

n−1∑
j=0

1Bj
=

1
n

n−1∑
j=0

1(ξj+1 ≤ Xj(0)).

Since ρ > 0, the bivariate process (ξn, Xn(0)) coupling converges to (ξn, X̃n(0)),
so we can replace Xj(0) by X̃j(0) in the above sum when taking the limit as
n →∞, to conclude that there is a constant

C = P(ξ1 ≤ X̃0(0)), (8.2)

strictly between 0 and 1, such that

Ln

n
→ C, as n →∞, a.s.,

both for the transient and stationary case. For the stationary case, we also have
the same limit when n → −∞. Since An ⊆ Bn for all n, we have

0 < ρ ≤ C < 1.

We now state the main theorem of this section. Below, [x] denotes the integer
part of the real number x, and t ∧ s = min(t, s).

Theorem 8.1. Suppose ρ > 0. Let Sn(k) := Xn(−k) + · · ·+ Xn(−1) + Xn(0).
Then, for any T > 0, for the stationary infinite bin model we have

lim
n→∞

sup
0≤t≤T

∣∣∣ 1
n

Sn([nCt])− t)
∣∣∣ → 0, a.s.,

and for the transient infinite bin model we have

lim
n→∞

sup
0≤t≤T

∣∣∣ 1
n

Sn([nCt])− (t ∧ 1)
∣∣∣ → 0, a.s.
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Note that, in the expression for Sn(k), the index k may exceed the extent
of Xn, in which case we define Sn(k) = ||Xn||. Also, we define Sn(k) = 0 for
k < 0. Note that, in the transient case, the shifts count Ln is precisely equal
to the extent of Xn, i.e., Ln = |Xn|; indeed, X0 = [1], so |X0| = 0 = L0, and,
for n > 0, |Xn| − |Xn−1| = 1Bn−1 = Ln − Ln−1. It is convenient to change the
indexing of the components of Xn (the bins) from “backwards” to “forwards”,
so we let

X̂n(j) = Xn(−(Ln − j)).

In other words, the configuration is now denoted X̂n = [X̂n(0), . . . , X̂n(Ln)],
for the transient infinite bin model, and X̂n = [. . . , X̂(−1), X̂n(0), . . . , X̂n(Ln)],
for the stationary infinite bin model. Correspondingly, we let Ŝn(j) = X̂n(0) +
· · · + X̂n(j). Note that, in the above, the index j ranges between 0 and Ln in
the transient case, and over Z+ in the stationary case. In the transient case,
Ŝn(Ln) = Sn(Ln) = ||Xn|| = n + 1. Finally,

Ŝn(J) =
∑
j∈J

X̂n(j),

for any set J of integers, with the understanding Ŝn(J)=0 for J ⊆ {−1,−2, . . .}.
We can think of the limit theorems in this and the next section, as limit theorems
for space-time rescalings of the random measure on the integers defined by this
Ŝn.

Next, consider the shift counts Ln evaluated at a decoupling epoch n = γr.
We obtain the random indices

· · · < Lγ−1 < Lγ0 ≤ 0 < Lγ1 < Lγ2 < · · · ,

where the indexing follows from that of the previous indexing conventions. As
usually, only the doubly-infinite sequence Lγr is considered for the stationary
case, whereas, for the transient case, we only consider Lγr

for r > 0. We call
these indices special bins. Clearly,

Lγr

r
→ Cρ−1, a.s.,

as r → ∞, for the transient case, or as r → ±∞, for the stationary case. The
main reason for introducing the special bins is because of the following simple
but important computation.

Lemma 8.1. Let α be a decoupling epoch. Then for all n,

Ŝn[Lα, Ln] = (n− α + 1)+,

both for the transient and stationary case.
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Proof. If n < α, then Ln < Lα, strict inequality, because there is a shift at time
α. Hence the interval [Lα, Ln] is empty. Now suppose n ≥ α. Then

Ŝn[Lα, Ln] =
∑

Lα≤j≤Ln

X̂n(j) =
∑

0≤k≤Ln−Lα

Xn(−k).

Notice, here, that Ln − Lα = L(α, n]. The key here is the renovation condi-
tion (7.8), with ` = 0, from which it follows

Xn = [Xα−1, Yn−α+1◦ θα−1], a.s. on {n ≥ α}, (8.3)

where (recall from (7.5)) Y is defined through

Y1 = [1], Yn+1 = Φ(Yn, ξn+1), n ≥ 1. (8.4)

So Y itself is the transient infinite bin model (but starting at n = 1). Hence
||Yn|| = n, and |Yn| = Ln − L1 = L(1, n]. So, for n ≥ α, |Yn−α+1| = L(1, n −
α + 1], and hence

|Yn−α+1◦ θα−1| = L(1, n− α + 1]◦ θα−1 = L(α, n]. (8.5)

Looking at the last expression for Ŝn[Lα, Ln] we see that it involves Xn(−k)
for k up to L(α, n] which is the extent of Yn−α+1◦ θα−1, and which, by (8.3), is
itself the leftmost part of the configuration Xn. Hence

Ŝn[Lα, Lβ) =
∑

0≤k≤|Yn−α+1◦ θα−1|

Yn−α+1◦ θα−1(−k) = ||Yn−α+1|| = n− α + 1.

2

Let us take another look at X̂n, the configuration of the infinite bin model,
in the new indexing. According to this indexing, we can think of bins as having
labels that do not change with n. So, a bin that has label k at time n, will
continue having label k for ever. (This is in contrast to the previous indexing,
according to which a bin changes label every time there is a shift.) In particular,
a special bin Lγr first gets filled with a particle at the decoupling epoch γr. Given
any bin label k ∈ Z, there is a special bin with maximal label ≤ k and a special
bin with minimal label > k. The special bin with maximal label ≤ k is first
filled with a new particle at a decoupling epoch denoted by M(k). This is given
by

M(k) = sup{n ∈ Z : Lγ(Γn) ≤ k}.

Note that we use γr and γ(r), interchangeably, to avoid stacking of indices. The
verbal description preceding the last display is only meant to give a physical
meaning to this definition. Mathematically though, M(k) is defined by the
last display, and in fact it is defined for all k ∈ Z, if we are talking about the
stationary model. Let us make all that precise by proving
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Lemma 8.2. The process {M(k), k ∈ Z} is non-decreasing, tends to ±∞ as
k → ±∞, respectively, and, for all k ∈ Z, M(k) is a decoupling epoch such that

M(k) = γ(ΓM(k)), Lγ(ΓM(k)) ≤ k < Lγ(1+ΓM(k)).

In addition, for all n,
M(Ln) = γ(Γn),

and M(k)/k → C−1 as k → ±∞.

Proof. It is clear that if k < ` then M(k) ≤ M(`). The supremum in the
definition of M(k) is obviously a maximum. Hence Lγ(ΓM(k)) ≤ k. The set
{γ(Γn), n ∈ Z} is the same as D = {γr, r ∈ Z}, i.e., all the decoupling epochs,
just because the range of n 7→ Γn is Z. Hence the supremum in the definition
of M(k) is achieved by an element of D, i.e., M(k) ∈ D. Now, Γn is also
given by Γn = max{r : γr ≤ n}. So Γγr

= r, and γ(Γγr
) = γr. In other

words, γ(Γα) = α, for all α ∈ D. But M(k) itself is an element of D, so
γ(ΓM(k)) = M(k). The inequality k < Lγ(1+ΓM(k)) follows from the fact that
Lγr is strictly smaller than Lγr+1 for all r. To prove the last equality, note that,
for all n, γ(Γn) ≤ n < γ(1 + Γn), and so, max{r : Lγr

≤ Ln} = Γn. Finally, the
limit of M(k)/k is obtained from the fact that γ(Γn)/n → 1, because r 7→ γr and
n 7→ Γn are (generalized) inverses of one another, and the fact that k 7→ M(k)
is (generalized) inverse of n 7→ Ln; the latter satisfies Ln/n → C. 2

Let us now take a close look at the point processes of decoupling epochs {γr}
and special bins {Lγr

}. They are jointly stationary ergodic on our (Ω,F ,P),
in the sense that

∑
r∈Z 1(γr ∈ J)◦ θn =

∑
r∈Z 1(γr ∈ J + n),

∑
r∈Z 1(Lγr

∈
J)◦ θn =

∑
r∈Z 1(Lγr ∈ J + n), for all n ∈ Z. Denote by P0 the conditional

probability measure
P0 := P(· | A0),

where, as usual, A0 = {ξ1 = 1, ξ2 ≤ 2, ξ3 ≤ 3, . . .}. Then standard ergodic
theory shows that ϑ := θγ1 is ergodic and preserves P0, and the bivariate process
{(γr+1−γr, Lγr+1 −Lγr ), r ∈ Z} is stationary-ergodic, in the sense that (γr+1−
γr, Lγr+1 − Lγr )◦ϑs = (γr+s+1 − γr+s, Lγr+s+1 − Lγr+s), for all r, s ∈ Z. We
collect these observations, together with some estimates in the next lemma.
We can think of this as referring to the stationary infinite bin model. Obvious
modifications on the range of indices make it valid for the transient model as
well.

Lemma 8.3. Under P0, the bivariate process

{(γr+1 − γr, Lγr+1 − Lγr ), r ∈ Z}

is stationary-ergodic, and, if E0 denotes expectation with respect to P0,

E0(γr+1 − γr) = ρ−1, E0(Lγr+1 − Lγr
) = Cρ−1.
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For any positive integers a, b it holds that

max
−an≤r≤bn

(γr+1 − γr) = o(n), max
−an≤r≤bn

(Lγr+1 − Lγr
) = o(n),

max
−an≤r≤bn

|Lγr
− Cγr| = o(n), max

−an≤m≤bn
|Lm − Cm| = o(n),

as n →∞, both P0 and P-a.s.

Proof. The stationarity and ergodicity statements are standard results. The
first two maximal estimates follow from Proposition A.1 of the Appendix. The
last estimate follows from Proposition A.2 of the Appendix. Indeed, fix r > 0
and write Lγr−Cγr =

∑r
s=1 ζs, P0-a.s., where ζs := (Lγs

−Lγs−1)−C(γs−γs−1),
and where we also use the fact that P0(γ0 = 0) = 1. Now, {ζs} is a stationary-
ergodic process on (Ω,F ,P0) with E0(ζs) = 0, and this makes Proposition A.2
applicable. It gives that max0≤r≤bn |Lγr

−Cγr| = o(n), P0-a.s. It is easy to see
that this holds P-a.s. also. Similarly, we argue for negative indices. For the last
estimate, we write

|Lm − Cm| ≤ |LγΓm
− CγΓm

|+ |Lm − LγΓm
|+ C|m− γΓm

|
≤ |LγΓm

− CγΓm
|+ |Lγ1+Γm

− LγΓm
|+ C|γ1+Γm

− γΓm
|,

where we used γΓm
≤ m < γ1+Γm

, LγΓm
≤ Lm < Lγ1+Γm

, for all m. Thus,

max
−an≤m≤bn

|Lm−Cm| ≤ max |Lγr −Cγr|+ max |Lγr+1 −Lγr |+ max |γr+1− γr|,

where the three maxima on the left are taken over Γ−an ≤ r ≤ Γbn. Use now
the previous estimate together with the fact that Γ−an/n → −aρ, Γbn/n → bρ,
as n →∞, P and P0-a.s., to conclude. 2

Proof of Theorem 8.1 for the stationary infinite bin model

We will show that max0≤t≤T |Sn([nCt]) − nt| is o(n), a.s., for any T > 0.
Now, this quantity is bounded from above by a constant plus

max
0≤k≤bn

|Sn(k)− C−1k|,

where b = [CT ] + 1. So we look at the last quantity and show that, for any
b > 0, it is o(n), a.s. In fact, without loss of generality, we are going to assume
that b > C. Let

α ≡ αn = M(Ln − bn),

so, Lα ≤ Ln − bn ≤ Ln. Since b > C, we have Ln − bn → −∞, as n →∞, a.s.,
and

α

n
=

M(Ln − bn)
Ln − bn

Ln − bn

n
→ C−1(C − b) = 1− C−1b < 0,



448 S. Foss and T. Konstantopoulos

as n →∞, a.s. So α has a linear growth rate and converges to −∞. We write,
for 0 ≤ k ≤ bn,

Sn(k) = Xn(−k) + · · ·+ Xn(0)

= X̂n(Ln − k) + · · ·+ X̂n(Ln)

= [X̂n(Lα) + · · ·+ X̂(Ln)]− [X̂n(Lα) + · · ·+ X̂(Ln − k − 1)]

= Ŝn[Lα, Ln]− Ŝn[Lα, Ln − k).

Correspondingly, we write

k = (Ln − Lα)− (Ln − Lα − k),

and so we have

|Sn(k)− C−1k| ≤ |Ŝn[Lα, Ln]− C−1(Ln − Lα)|
+ |Ŝn[Lα, Ln − k)− C−1(Ln − Lα − k)|

=: An + Bn,k.

We show that the first term is o(n) and the second is o(n) uniformly in k ∈ [0, bn].
The first term: we have Lα ≤ Ln. Since α is a point of increase of L, it follows
that α ≤ n. Hence, from Lemma 8.1 we have Ŝn[Lα, Ln] = n− α + 1, and so,

C An = |(Ln − Lα)− C(n− α + 1)| ≤ |Ln − Cn|+ |Lα − Cα|+ C.

The terms on the right are o(n), by Lemma 8.3 and the fact that α/n →
−(1− C−1b). The second term:

max
0≤k≤bn

Bn,k = max
Ln−bn≤k≤Ln

|Ŝn[Lα, k)− C−1(k − Lα)|

≤ max
Lα≤k≤Ln

|Ŝn[Lα, k)− C−1(k − Lα)|

≤ max
Lα≤k≤Ln

|Ŝn[Lα, k)− (M(k)− α)|

+ max
Lα≤k≤Ln

|(M(k)− α)− C−1(k − Lα)|

=: Cn + Dn.

Since Lα ≤ k ≤ Ln, we have α ≤ M(k) ≤ n. So Lα ≤ LM(k) and, by Lemma 8.2,
LM(k) ≤ k. Write then

Ŝn[Lα, k) = Ŝn[Lα, LM(k)) + Ŝn[LM(k), k).

But Ŝn[Lα, LM(k)) = Ŝn[Lα, LM(k)]−1 = M(k)−α, as we showed in Lemma 8.1.
And, since Ŝn[LM(k), k) ≥ 0, we get

Ŝn[Lα, k)− (M(k)− α) ≥ 0.
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On the other hand,

Ŝn[Lα, k)− (M(k)− α) = Ŝn[LM(k), k) ≤ Ŝn[Lγ(ΓM(k)), Lγ(1+ΓM(k)))

≤ γ(1 + ΓM(k))− γ(ΓM(k)).

Hence

Cn ≤ max
α≤M(k)≤n

(γ(1 + ΓM(k))− γ(ΓM(k))) ≤ max
Γα≤r≤Γn

(γr+1 − γr),

and this is o(n), by Lemma 8.3 and the convergences Γn/n → ρ > 0, Γα/n →
−ρ(1−C−1b) < 0. Let us finally look at the term Dn. We split it again in two
parts

CDn ≤ max
Lα≤k≤Ln

|(LM(k) − Lα)− C(M(k)− α)|

+ max
Lα≤k≤Ln

|(LM(k) − Lα)− (k − Lα)|

=: En + Fn.

For the first term we have

En ≤ max
α≤j≤n

|(Lj − Lα)− C(j − α)|,

and this is again o(n), by Lemma 8.3. For the other term we have

Fn = max
Lα≤k≤Ln

(k − LM(k)) ≤ max
Lα≤k≤Ln

(Lγ(1+ΓM(k)) − Lγ(ΓM(k))

≤ max
Γα≤r≤Γn

(Lγr+1 − Lγr ),

which is o(n), again by Lemma 8.3. 2

Proof of Theorem 8.1 for the transient infinite bin model

We continue with the transient bin model. To differentiate between the
transient and stationary case, we will use tildes for the stationary one. So far
we proved

max
0≤k≤bn

|S̃n(k)− C−1k| = o(n),

for any b > 0. Consider the first decoupling epoch γ = γ1. Let L̃(γ, n] be
the number of shifts on the interval (γ, n], for the stationary model. Since
L̃(γ, n]/n → C, we also have that

Ũn := max
0≤k≤L̃(γ,n]

|S̃n(k)− C−1k| = o(n).
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Consider (8.3), and write it, using tildes, as

X̃n = [X̃γ−1, Yn−γ+1◦ θγ−1], a.s. on {n ≥ γ}.
Recall that Y satisfies (8.4). So if we let Xn = Yn+1◦ θ−1, we see that X satisfies

X0 = [1], Xn+1 = Φ(Xn, ξn+1), n ≥ 0.

Hence X is the transient infinite bin model. We then write

X̃n = [X̃γ−1, Xn−γ◦ θγ ], a.s. on {n ≥ γ}.

From (8.5) we get |Xn−γ◦ θγ | = L̃(γ, n]. But |Xn| = Ln (the number of shifts
is the extent in the transient model). So L̃(γ, n] = Ln−γ◦ θγ . Thus,

Ũn = max
0≤k≤L̃(γ,n]

|S̃n(k)− C−1k| = max
0≤k≤L̃(γ,n]

∣∣∣∣ k∑
j=0

(Xn−γ◦ θγ)(−j)− C−1k

∣∣∣∣
= max

0≤k≤Ln−γ◦ θγ
|Sn−γ(k)◦ θγ − C−1k| = Un−γ◦ θγ ,

where
Un := max

0≤k≤Ln

|Sn(k)− C−1k|.

Since Ũn/n → 0, P-a.s., we have Un−γ◦ θγ/n → 0, P-a.s. Since γ < ∞, P-
a.s., we have Un◦ θγ/n → 0, P-a.s. By ergodicity, Un◦ θγ/n → 0, P0-a.s. Since
θγ preserves P0, we have Un/n → 0, P0-a.s. And finally, by ergodicity again,
Un/n → 0, P-a.s., also. It is now easy to translate this into the statement
max0≤t≤T |Sn([nCt])− n(t ∧ 1)| = o(n). For T = 1, we have

max
0≤t≤1

|Sn([nCt])− n(t ∧ 1)| ≤ max
0≤k≤[nC]

|Sn(k)− C−1k|+ C−1

= Un ∨ max
Ln≤k≤[nC]

|n− C−1k|+ C−1,

where the last equality follows from a splitting of the maximum and the fact
that Sn(k) = n for k ≥ Ln, for the transient model. The last maximum is
bounded above by a constant times |Ln − nC| which is o(n), as shown earlier.
Finally, for T > 1, we only have to look at

max
1≤t≤T

|Sn([nCt])− n(t ∧ 1)| ≤ max
[nC]≤k≤[nCT ]

|Sn(k)− C−1[nC]|+ C−1.

We can then write, on the event {Ln ≤ [nCT ]} (the probability of which con-
verges to 1),

max
[nC]≤k≤[nCT ]

|Sn(k)− C−1[nC]|

≤ max
[nC]≤k≤Ln

|Sn(k)− C−1[nC]| ∨ max
Ln≤k≤[nCT ]

|Sn(k)− C−1[nC]|.

In the second term, Sn(k) = n, so this term is bounded by a constant. The first
term is bounded by a constant plus Un. Hence they are both o(n). 2
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9. Functional central limit theorem for the infinite bin model

Now we study the deviation of Sn([nCt]) from its functional mean, which,
according to the results of the previous section, is a linear function. We consider
the stationary infinite bin model, and, to make things simple, we assume that
the ξn are i.i.d.

Lemma 9.1. Consider the stationary infinite bin model. If the driving se-
quence {ξn} is i.i.d., nontrivial, and Eξ0 < ∞, then the point process of decou-
pling epochs {γr} is a stationary renewal process. Also, the point process of
special bins {Lγr} is another stationary renewal process.

Proof. From the theory of stationary point processes, it suffices to show that,
conditionally on {γ0 = 0}, the sequence {γr+1−γr, r ∈ Z} is i.i.d. In fact, more
is true: conditionally on {γ0 = 0} the bivariate sequence {(γr+1 − γr, Lγr+1 −
Lγr

), r ∈ Z} is i.i.d. From the definition of the sequence {γr}, we have

γ−1 = sup{n < γ0 : 1An−1 = 1}
= sup{n < γ0 : ξn = 1, ξn+1 ≤ 2, . . . , ξ−1 ≤ −n,

ξ0 ≤ −n + 1, ξ1 ≤ −n + 2, . . .}.

Consider the event {γ0 = 0}. We have {γ0 = 0} = A−1 = {ξ0 ≤ 1, ξ1 ≤ 2, ξ2 ≤
3, . . .}. So, conditionally on this event, γ−1 is distributed as

sup{n < 0 : ξn = 1, ξn+1 ≤ 2, . . . , ξ−1 ≤ −n},

and is independent of {γr, r ≥ 1}. Moreover, conditionally on {γ0 = 0}, the
array {ξn}γ−1≤n<0 is independent of {ξn, n ≥ 0}. Since Lγr+1 − Lγr is a deter-
ministic function of {ξn}γr≤n<γr+1 , for all r, the result follows. 2

Note that the distribution of γr+1 − γr, conditionally on {γ0 = 0}, is the
distribution of the stopping time

inf
{
n ≥ 1 : max

1≤k≤n
(ξk + k − 1) ≤ n

}
, (9.1)

which is, in principle, computable. But what is of interest is the distribution of
Lγr+1 − Lγr

. This is a harder problem. More on that in the next section.

Lemma 9.2. Under the assumptions above, if {r(n), n = 1, 2, . . .} is a random
sequence such that r(n)/n → c > 0, a.s., then the random sequence

(γr(n)+1 − γr(n), Lγr(n)+1 − Lγr(n)), n = 1, 2, . . .

is tight.
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Proof. Omitted.

Theorem 9.1. Suppose that the driving sequence {ξn}, for the infinite bin
model, is i.i.d., with values in N, such that P(ξ0 = 1) < 1 and finite mean. Let
{Xn, n ∈ Z} be the stationary version of the infinite bin model, and Sn(k) =
Xn(−k) + · · ·+ Xn(0), k ≥ 0. Define

ηn(t) = n−1/2
(
Sn([nCt])− nt

)
, t ≥ 0,

and consider {ηn, n = 1, 2, . . .} as a sequence of random elements of D[0,∞)
with the uniform topology on compacta. As such, it converges weakly to the
process {√ρσWt, t ≥ 0}, where ρ is the renovation rate (8.1), σ2 = var[γ1 −
γ0 − C−1(Lγ1 − Lγ0)], and W is a standard Brownian motion.

Proof. Define

K ≡ Kn,t = [nCt], α ≡ αn,t = M(Ln − [nCt]).

Wherever there is no confusion, we omit the dependence on t or n. It suffices
to show that {n−1/2(Sn(Kn,t) − C−1Kn,t), t ≥ 0} converges to a Brownian
motion. We have

Sn(K) = Xn(−K) + · · ·+ Xn(0) = X̂n(−K) + · · ·+ X̂n(0) = Ŝn[Ln −K, Ln].

Decompose this as follows

Ŝn[Ln −K, Ln] = Ŝn[Lα, Lγ(Γn))− Ŝn[Lα, Ln −K) + Ŝn[Lγ(Γn), Ln].

Correspondingly, decompose K as

K = (Lγ(Γn) − Lα)− (Ln −K − Lα) + (Ln − Lγ(Γn)).

Hence Sn(K)− C−1K is the sum of three terms

zn(t) := Ŝn[Lα, Lγ(Γn))− C−1(Lγ(Γn) − Lα),

z′n(t) := Ŝn[Lα, Ln −K)− C−1(Ln −K − Lα),

z′′n := Ŝn[Lγ(Γn), Ln]− C−1(Ln − Lγ(Γn)).

Consider the third term. Use the inequalities n < γ(1+Γn), and Ln ≤ Lγ(1+Γn),
to write

|z′′n| ≤ (γ(1 + Γn)− γ(Γn)) + C−1(Lγ(1+Γn) − Lγ(Γn))).

Both terms are tight random sequences. Hence n−1/2z′′n converges to zero in
probability. Similarly, we show that z′′n converges to zero in probability. Use an
inequality from Lemma 8.2

Ln −K < Lγ(1+Γα),
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the fact that α = γ(Γα), to get

Ŝn[Lα, Ln −K) ≤ Ŝn[Lγ(Γα), Lγ(1+Γα)) = γ(1 + Γα)− γ(Γα),

where the last equality follows from Lemma 8.1. Hence we get

|z′n(t)| ≤
(
γ(1 + Γα)− γ(Γα)

)
+ C−1

(
Lγ(1+Γα) − Lγ(Γα)

)
,

and both terms are again tight. Let us write the first term, zn(t), as follows

zn(t) =
b∑

r=a+1

χr,

where

a ≡ an,t = Γα = ΓM(Ln−[nCt]), b ≡ bn = Γn,

χr = (γr − γr−1)− C−1(Lγr
− Lγr−1).

From Lemmas 9.2 and 8.3 the random variables {χr} are i.i.d. with zero mean.
We have that the random sequence Wn(t) := n−1/2

∑[nt]
1 ξr (from Donsker’s

theorem) converges weakly to σWt, where W is a standard Brownian motion,
and σ2 = var(χr). Define

ϕn(t) =
Γn − ΓM(Ln−[nCt])

n
, t ≥ 0.

Observe that ϕn(0) = 0, ϕn has paths in D[0,∞) (in fact, they are increasing),
and ϕn converges, uniformly in probability, to the function ρt. On the other
hand, n−1/2zn is identical in distribution to Wn◦ϕn. By the continuous mapping
theorem, we obtain that n−1/2zn converges to

√
ρσW . 2

Theorem 9.2. Under the same assumptions of Theorem 9.1, consider, for n =
1, 2, . . . ,

η0
n(t) := n−1/2

(
Sn([tLn])− nt

)
, 0 ≤ t ≤ 1.

Then, as n →∞, η0
n converges weakly to a Brownian Bridge (BB).

Before proving the theorem, let us make some remarks. Here, the quantity
Ln refers to the number of shifts on the interval (0, n], as defined in Section 8.1.
Recall that γ0 is the first decoupling epoch prior to 0, and γ1 the first such
epoch after 0; we have

γ0 ≤ 0 < γ1, Lγ0 ≤ 0 < Lγ1 ,

as already noted in Section 8.1. Hence,

Ŝn[Lγ0 , Ln] ≥ Sn(Ln) = Ŝn[0, Ln] ≥ Ŝ[Lγ1 , Ln],
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(for n ≥ γ1). But Ŝn[Lγ0 , Ln] = n − γ0 + 1, and Ŝ[Lγ1 , n] = n − γ1 + 1 (see
Lemma 8.1). Hence

|Sn(Ln)− n| ≤ 1 + |γ0| ∨ γ1,

and so
η0

n(1) → 0, as n →∞.

So we know, at least, that the values at the end points t = 0, and t = 1 are
zero, in the limit, as they should!

Proof. Decompose η0
n(t) as

η0
n(t) =

[
Sn([tLn])− C−1tLn√

n

]
− t

[
n− C−1Ln√

n

]
=: αn(t)− tδn.

Note that if we define

ξn(t) :=
Sn([nCt])− nt√

n
, ϕn(t) :=

tLn

nC
,

we have
αn = ξn ◦ ϕn.

But, from Theorem 9.1,
ξn ⇒

√
ρσW,

where W is a standard Brownian motion. Also, ϕn(t) → t, uniformly in
t ∈ [0, 1], from the functional law of large numbers (Theorem 8.1). Since com-
position is continuous in the Skorokhod topology (see, e.g., [5]), we have that

αn ⇒
√

ρσW,

also. On the other hand,

|δn − αn(1)| =
∣∣∣∣Sn(Ln)− n√

n

∣∣∣∣,
and this converges to zero, as argued in the remarks above. Hence,

δn ⇒
√

ρσW1,

as n →∞. Combining the above, we conclude that{
η0

n(t), 0 ≤ t ≤ 1
}
⇒ √

ρ
{
Wt − tW1, 0 ≤ t ≤ 1

}
,

which is a Brownian bridge. 2
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Final remarks for this section

1. Analogous theorems hold for the transient case, so we will omit them.
We only point out that, due to the nature of Ln in the transient case (it is the
extent of the configuration at time n) it may be more natural to consider the
scaling of Theorem 9.2 instead that of Theorem 9.1. In other words, it may
make more physical sense to approximate the difference of the cumulative sums
from their mean behaviour by a Brownian bridge in the transient case.

2. Clearly, the underlying theorems used for the proofs are regenerative
central limit theorems. So independence can be dropped and replaced by mixing
conditions if desired. The proofs will remain intact.

10. Stochastic ordered graphs

We now consider a stochastic ordered graph with vertex set the integers
and directed edges (i, j) with i < j occurring, independently of each other,
with probability p. Such a model is of interest in several applications. We
mention two. In Mathematical Ecology, it models community food webs; see,
e.g., [21], and [13]. In Performance Evaluation of computer systems, it models
task graphs; see, e.g., [18]. Of interest in both these applications are longest
paths occurring on the restriction of the stochastic graph on the set {1, . . . , n}.
Newman [20] derives asymptotics for maximal lengths when the probability p is
chosen to depend on n in an inversely proportional fashion.

Our interest is in studying asymptotics for the maximal length of the re-
striction on {1, . . . , n}, as n →∞, when the connectivity probability p remains
constant, and related limit theorems. We do some preliminary work to trans-
form the stochastic ordered graph into an infinite bin model.

Our assumptions are as follows. In the simplest case, we are given a sequence
of i.i.d. random variables {αij ,−∞ < i < j < ∞}, with P(αi,j = 1) = p,
P(αi,j = −∞) = 1− p. The meaning of αi,j is that it indicates whether there is
an edge from i to j (in which case αi,j = 1) or not (in which case αi,j = −∞).
More generally, let

αn = (. . . , αn−2,n, αn−1,n)

and assume that {αn, n ∈ Z} are i.i.d. with the property that the marginal
distribution, i.e., the distribution of (. . . , α−3,0, α−2,0, α−1,0) is that of an ex-
changeable random sequence.

The collection of these random variables {αi,j} defines the stochastic ordered
graph. Consider now a vertex j > 0 and define its weight Wj to be the length
of the longest path that ends at j, and starts at some positive vertex. If j is not
connected to any other vertex smaller than j, then Wj = 0. In other words, we
inductively define W1,W2, . . . by

W1 = 0, Wj = max
1≤i≤j−1

(Wi + αi,j)+, j > 1.
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We are interested in the random variable

Ln = max(W1, . . . ,Wn).

Let us define

Xn(−k) =
n∑

i=1

1(Wi = Ln − k), k = 0, 1, . . . , Ln,

Xn = [Xn(−Ln), . . . , Xn(−1), Xn(0)].

Thus, Xn(0) is the number of vertices within {1, . . . , n} with maximal weight
(= Ln). On the other extreme, Xn(−Ln) is the number of vertices that are
not left-connected. Clearly, Xn(0) + Xn(−1) + · · · + Xn(−Ln) = n. We claim
that {Xn} is identical in distribution to an infinite bin model. Consider a
permutation σn of (1, . . . , n) that puts the weights Wi in decreasing order. Since
not all weights are necessarily distinct, the permutation is not unique. To fix
a particular permutation, let σn be the permutation of (1, . . . , n) that puts the
pairs {(Wi, i), 1 ≤ i ≤ n} in decreasing lexicographic order. In other words,

i < j ⇒ Wσn(i) > Wσn(j), or
[
Wσn(i) = Wσn(j) and σn(i) > σn(j)

]
.

Given the weights W1, . . . ,Wn, the weight Wn+1 is found by looking at the
vertex i ≤ n such that Wi is largest among W1, . . . ,Wn, and (i, j) is an edge.
Since we have ordered the weights, we define

ξ̂n+1 = inf{i ∈ [1, n] : ασn(i),n+1 = 1}. (10.1)

Among the weights Wσn(1) ≥ Wσn(2) ≥ . . . ≥ Wσn(n), the first Xn(0) of them
are equal to Ln, the next Xn(−1) of them are equal to Ln−1, etc. So, if ξ̂n+1 ≤
Xn(0) then Wn+1 = max(W1, . . . ,Wn) + 1. Thus, a new maximum is achieved
and, in this case, Xn+1 = [Xn, 1]. If Xn(0) < ξ̂n+1 ≤ Xn(0) + Xn(−1), then no
new maximum is achieved; rather, the number of vertices with maximal weight
increases by 1, and so Xn+1 = [Xn(−Ln), . . . , Xn(−2), Xn(−1), Xn(0) + 1].
Proceeding this way, we see that Xn satisfies

Xn+1 = Φ(Xn, ξ̂n+1),

where Φ is the same as in (7.2), and ξ̂n+1 is defined in (10.1). This is not
an infinite bin model, since {ξn} is not stationary. However, owing to the
assumption that αn+1 is independent of the past and that the components of
αn+1 are exchangeable, it follows that ξ̂n+1 is identical in distribution to

ξn+1 = inf{i ∈ [1, n] : αi,n+1 = 1}.
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The sequence {ξ̂n} is identical in distribution to {ξn}. So {Xn} is identical in
distribution to the SRS defined by

Xn+1 = Φ(Xn, ξn+1).

In the simple case, where the αi,j are i.i.d., ξn is geometric. Under the ex-
changeability assumption, more general distributions for ξn are possible. By
de Finetti’s theorem, this distribution must be a mixture of geometric distri-
butions. This is a fairly general class, so we will need to make the assumption
that Eξn < ∞.

Hence, all the results obtained for the infinite bin model also apply to the
stochastic ordered graph model. In particular, we have the existence of renovat-
ing events and a unique stationary version for X. We will not try to attribute
any special physical meaning to this stationary version. Rather, we shall use it
in order to estimate C.

The perfect simulation approach

This approach is based on the perfect simulation algorithm, described in
Section 4. We assume that Eξn < ∞, so that the renovating events

An = {ξn+1 = 1, ξn+2 ≤ 2, . . .}

have positive probability. Their structure, being of the simple form as required
by the perfect simulation algorithm, leads to the definition of the time

β(0) = min{n ≥ 0 : ξ−n = 1, ξ−n+1 ≤ 2, . . . , ξ0 ≤ n + 1}.

This is a.s. finite. We can then obtain samples from the stationary X0(0) by
starting at time −β(0) from an arbitrary configuration, say the trivial one, and
then monitoring Xn for −β(0) < n ≤ 0, till we obtain X0(0). Specifically,
we first wait till β(0) gets realized. Then we set X−β(0) = [1], and, recursively,
Xn+1 = Φ(Xn, ξn+1), for −β(0) ≤ n ≤ 0. When n = 0, we compute X0(0). This
is one (perfect) sample, say S1, from the stationary distribution. We repeat the
same process, independently, obtaining, say, Sj at the jth trial, j = 1, . . . ,m.
We use the formula 1−

( ∑m
j=1 qSj

)
/m to estimate C(q).

There is a different approach, which may be more advantageous in cer-
tain cases. Namely, since we can simulate, not only X0(0), but any window
[X0(0), X1(0), . . . , Xn(0)], we may estimate C(q) by 1−

( ∑n
j=0 qXn(0)

)
/n. The

way to simulate joint distributions is described in the perfect simulation algo-
rithm of Section 4. However, it may be computationally costly. In addition,
combination of the above two approaches is also possible: a way to reduce the
computational complexity of the second approach is to take a fixed window of
“moderate” size n, and then obtain a number of m independent copies of it.
Of course, finding the “optimal” n and m, as well as estimating computational
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complexity and confidence intervals are problems of interest, but are beyond the
scope of this paper.

The advantage of the simulation approach for estimating C(q) is that it can
be used also in cases where there are dependencies between the random variables
(αi,j , i = j − 1, j − 2, . . .)

If the αi,j are i.i.d. with P(αi,j = 1) = p, P(αi,j = −∞) = 1 − p = q,
we develop analytical methods for obtaining sharp upper and lower bounds on
C(q). This is done next.

The analytical approach

Consider the stationary version, still denoted by X, for simplicity of notation.
The independence assumption implies that X is a Markov process with values
in N∞. Assume, for the remainder of this section, that the αi,j are i.i.d. with
P(αi,j = 1) = p, P(αi,j = −∞) = 1 − p = q. Hence ξ0 is geometric with
parameter q, i.e.,

P(ξ0 > k) = qk, k = 1, 2, . . .

Let C = limn→∞ Ln/n. We will prove the following bounds.

Theorem 10.1. Define the functions

f(q) :=
∑
k≥1

pk−1q(k+1)(k+2)/2 = q3 + pq6 + p2q10 + p3q15 + · · · ,

g(q) :=
∑
k≥1

qk(k+3)/2 = q2 + q5 + q9 + q14 + · · · ,

L(q) := (1− q2) max
{

1 + q

1 + 2q
,

1 + q − q2 − q4 + q5

1 + 2q − q2 − q4 + q5 − q3 + q6

}
,

U(q) := min
{

1− pg(q)
1 + q + pf(q)− pg(q)

, (1− q)
∞∑

n=0

q2n−1

1 + q2n

}
.

Then, for 0 < q < 1,
L(q) < C < U(q).

To prove this, we need two auxiliary lemmas, which are proved first.

Lemma 10.1. Consider the events

Bn = {ξn+1 ≤ Xn(0)}, n ∈ Z,

Dn = {Xn(0) = 1}, n ∈ Z,

H−m = B−mBc
−m+1 · · ·Bc

−1D0, m ≥ 2.
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We then have

Bc
nDn+1 = Dn ∩ {ξn+1 > 1 + Xn(−1)}, n ∈ Z, (10.2)

H−m ⊆ {ξ−m+1 ≤ X−m(0)} ∩
m−1⋂
r=1

{ξ−m+r+1 > X−m(0) + 1}, m ≥ 2, (10.3)

H−m ⊇ {ξ−m+1 ≤ X−m(0)} ∩
m−1⋂
r=1

{ξ−m+r+1 > X−m(0) + r}, m ≥ 2. (10.4)

Proof. Let us first show (10.2). The left-hand side is the event {ξn+1 > Xn(0),
Xn+1(0) = 1}. From the definition of Φ, if ξn+1 > Xn(0), then Xn+1(0) =
Xn(0) + 1(Xn(0) < ξn+1 ≤ Xn(0) + Xn(−1)). If Xn+1(0) = 1, then the last
indicator must be zero, i.e., ξn+1 > Xn(0) + Xn(−1), and so Xn+1(0) = Xn(0);
so Xn(0) = 1. Hence, Bc

nDn+1 ⊆ {ξn+1 > 1+Xn(−1)}∩{Xn(0) = 1}, which is
the right-hand side of (10.2). Conversely, if Xn(0) = 1 and ξn+1 > 1 + Xn(−1),
then ξn+1 > Xn(0)+Xn(−1), and so, again from the definition of Φ, Xn+1(0) =
Xn(0) = 1. This shows that the opposite inclusion also holds, and so (10.2) has
been proved. Consider now H−m = B−mBc

−m+1 · · ·Bc
−1D0, and apply (10.2),

inductively, to get

H−m = {ξ−m+1 ≤ X−m(0)} ∩
m−1⋂
r=1

{ξ−m+r+1 > X−m+r(−1) + 1}. (10.5)

Arguing in a manner similar to the proof of (10.2), we see that, a.s. on H−m,

X−m(0) = X−m+1(−1) ≤ X−m+2(−1) ≤ · · · ≤ X−1(−1),
X−m(0) = X−m+1(−1),

X−m+2(−1) ≤ X−m+1(−1) + 1, . . . ,

X−1(−1) ≤ X−2(−1) + 1.

Using the first set of inequalities in (10.5) proves inclusion (10.3), and using the
second set proves (10.4). 2

Lemma 10.2. For all q,

C(q) ≤ 1− q

1 + q
+

q

1 + q
C(q2). (10.6)

Proof. We work with the stationary version {Xn}. From the discussion preced-
ing Theorem 8.1 and, in particular, formula (8.2), we have

C = C(q) = P(ξ2 ≤ X1(0))
= P(ξ2 ≤ X1(0), ξ1 ≤ X0(0)) + P(ξ2 ≤ X1(0), ξ1 > X0(0))
=: P1 + P2.
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To estimate P1, observe that if ξ1 ≤ X0(0), then X1(0) = 1, and so

P1 = P
(
ξ2 = 1, ξ1 ≤ X0(0)

)
= pE

(
1− qX0(0)

)
= pC(q).

As for P2, if ξ1 > X0(0) then X0(0) ≤ X1(0) ≤ X0(0) + 1. Hence

P2 ≤ P
(
ξ2 ≤ X0(0) + 1, ξ1 > X0(0)

)
= E

[
(1− qX0(0)+1)qX0(0)

]
= E

[
qX0(0)

]
− qE

[
q2X0(0)

]
=

(
1− C(q)

)
− q

(
1− C(q2)

)
.

Combining the estimates for P1 and P2, the lemma is proved. 2

Proof of Theorem 10.1. Let {Xn} denote the stationary version of the infinite
bin model with i.i.d. geometric driver sequence {ξn}. Denote by

πk = P(Xn(0) = k), k = 1, 2, . . .

the marginal distribution of the zeroth component of the steady-state version.
From the discussion preceding Theorem 8.1 and, in particular, formula (8.2),
we have

C = P(ξ1 ≤ X0(0)) = 1− EqX0(0) = 1−
∑
k≥1

πkqk. (10.7)

Consider, as earlier, the shifting event

Bn = {ξn+1 ≤ Xn(0)},

and the event that Xn+1 has a single particle at its zeroth component

Dn+1 = {Xn+1(0) = 1}.

Clearly,
Bn ⊆ Dn+1,

for all n. Now fix n, say n = 0, and decompose D0 as D0 = B−1D0 ∪ Bc
−1D0,

which, in view of the inclusion above, becomes

D0 = B−1 ∪Bc
−1D0. (10.8)

Continuing this, write D0 as the disjoint union

D0 = B−1 ∪
⋃

m≥2

B−mBc
−m+1 · · ·Bc

−1D0. (10.9)

As in Lemma 10.1, denote by H−m the generic term on the right,

H−m = B−mBc
−m+1 · · ·Bc

−1D0, m ≥ 2.
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From (10.8) we get
P(D0) = P(B−1) + P(Bc

−1D0).

Recall that P(D0) = P(X0(0) = 1) = π1, P(B−1) = C, and use (10.2) to get

P(Bc
−1D0) ≤ P(X−1(0) = 1, ξ0 > 2) = π1q

2.

Hence,
π1 ≤ C + π1q

2,

which gives an upper bound of π1 in terms of C:

π1 ≤
C

1− q2
.

We already have (see (10.7)) the following trivial bound

C ≥ 1−π1q− q2
∑
k≥2

πk = 1−π1q− q2(1−π1) = (1− q2)− (q− q2)π1. (10.10)

Combining the last two displays we obtain

C ≥ (1− q2)(1 + q)
1 + 2q

=: L1(q). (10.11)

Now use (10.9) to write

P(D0) = P(B−1) +
∑
m≥2

P(H−m).

From (10.3) we also have, upon conditioning on X−m(0) and recalling that
P(X−m(0) = k) = πk,

P(H−m) ≤
∑
k≥1

πk(1− qk)(qk+1)m−1 ≤ π1(1− q)q2(m−1) + (1− π1)q3(m−1).

Thus,

π1 ≤ C +
∑
m≥2

P(H−m)

≤ C + π1(1− q)
∑
m≥2

q2(m−1) + (1− π1)
∑
m≥2

q3(m−1)

≤ C + π1(1− q)
q2

1− q2
+ (1− π1)

q3

1− q3
.
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This gives another upper bound on π1 in terms of C, which, when combined
with the trivial inequality (10.10), gives

C ≥ (1− q2)
1 + q − q2 − q4 + q5

1 + 2q − q2 − q4 + q5 − q3 + q6
=: L∞(q). (10.12)

Defining L(q) = max(L1(q), L∞(q)) gives the lower bound announced in Theo-
rem 10.1.

We now turn to upper bounds. Note that, for all k,

{X0(0) = k, ξ1 = k + 1} ⊆ {X1(0) = k + 1},

directly from the definition of Φ. This gives

πkpqk ≤ πk+1, k ≥ 1.

From this we have the bounds

πk ≥ π1p
k−1qk(k−1)/2, k ≥ 2.

Using expression (10.7) for C, i.e., C = 1− π1q −
∑

k≥2 πkqk, we get

C ≤ 1− π1q − π1pf(q), (10.13)

where f(q) :=
∑

k≥1 pk−1q(k+1)(k+2)/2. Now, consider the inclusion (10.4). We
have

P(H−m) ≥ π1(1− q)q2q3 · · · qm = π1pq(m−1)(m+2)/2.

So, using (10.9), we obtain

π1 ≥ C + π1pg(q), (10.14)

where g(q) =
∑

k≥1 qk(k+3)/2. Combining (10.13) with (10.14) we obtain

C ≤ 1− pg(q)
1 + q + pf(q)− pg(q)

=: U1(q). (10.15)

This proves the first part of the second inequality of Theorem 10.1.
Consider now the second auxiliary Lemma 10.2. Replace q with q2 in (10.6)

and substitute in itself to obtain

C(q) ≤ 1− q

1 + q
+

q(1− q2)
(1 + q)(1 + q2)

+
q3

(1 + q)(1 + q2)
C(q4).

By induction, we get

C(q) ≤
∞∑

n=0

q2n−1(1− q2n

)
(1 + q)(1 + q2) · · · (1 + q2n)

.
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The last denominator can be expressed as

(1 + q)(1 + q2) · · · (1 + q2n

) =
1− q2

1− q

1− q4

1− q2
· · · 1− q2n+1

1− q2n

=
1− q2n+1

1− q
=

(1− q2n

)(1 + q2n

)
1− q

,

and so

C(q) ≤ (1− q)
∞∑

n=0

q2n−1

1 + q2n =: V (q). (10.16)

So, our upper bound for C is U(q) = min{U1(q), V (q)}. 2

Corollary 10.1.

C =

{
1− q + q2 − 3q3 + 7q4 + O(q5), as q → 0
O(p log p), as q → 1.

Proof. Consider the functions L1(q), L∞(q), U1(q), and V (q), defined via equa-
tions (10.11), (10.12), (10.15), and (10.16), respectively, in the course of proof
of Theorem 10.1. We also defined the functions L(q) = max(L1(q), L∞(q)),
U(q) = min(U1(q), V (q)). It turns out that there is q∗ ∈ (0, 1) such that
L∞(q) > L1(q) for 0 < q < q∗, and L∞(q) < L1(q) for q∗ < q < 1. Using
the symbolic calculator of the program Maple we compute the Taylor expan-
sion of L∞(q), given by (10.12), at q = 0:

L∞(q) = 1− q + q2 − 3q3 + 7q4 + O(q5), as q → 0.

Similarly, it turns out that there is q∗∗ ∈ (0, 1) such that U1(q) < V (q) for
0 < q < q∗∗, while U1(q) > V (q) for q∗∗ < q < 1. Using Maple, we computed
the Taylor expansion of U1(q), given by (10.15), at q = 0:

U1(q) = 1− q + q2 − 3q3 + 7q4 + O(q5), as q → 0,

which is identical to that of L∞(q). (It can be seen that terms of order ≥ 4
differ.) The two Taylor expansions match, and so this is the Taylor expansion
for C(q) at q = 0. To get asymptotics as q → 1 (i.e., p → 0), we use the bound
V (q). From its definition, we see that there is a constant c2 such that

V (q) ∼ c2p(q + q2 + q4 + q8 + · · ·).

The infinite sum in parentheses is asymptotically equivalent to I(− log q) as
p → 0, where

I(u) :=

∞∫
0

exp{−u2x} dx.
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It is easy to see that

I(u) :=
1

log 2

∞∫
u

e−y

y
dy ∼ log u

log 2
, as u → 0.

Setting u = − log q we get

I(− log q) ∼ log2 p, as p → 0.

Hence
V (q) ∼ c2p log2 p, as p → 0.

2

Discussion

It is interesting to observe that L(q) and U(q) agree sharply for q up to
about 0.2. Both functions L(q) and U(q) strictly decrease as q increases. See
Figure 2 for a plot of these two functions. Observe that U(q) ≤ 1/(1+q), which
is already a good upper bound for small values of q. This bound is elementary:
it follows from the inequalities C ≤ 1− π1q, and π1 ≥ C.

Figure 2. Upper and lower bounds on C as a function of q = 1− p.

We also remark, without proof, that if we define the truncated series fn(q) =∑n
k=1 pk−1q(k+1)(k+2)/2, gn(q) =

∑n
k=1 qk(k+3)/2, then the functions Un(q) =
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(
1− pgn(q)

)
/
(
1 + q + pfn(q)− pgn(q)

)
, n = 1, 2, . . . are all upper bounds to C,

and 1/(1 + q) > Un(q) > Un+1(q) > U(q), for all n ≥ 1. As for the constant
c2 that appears in the upper bound V (q), it is easily seen that 1/2 < c2 < 1.
This upper bound was proved to be of order O(p log p) as p → 0. However, the
lower bound does not match this asymptotics. We do, however, believe that the
upper bound is a better approximation to C for very small values of p.

11. Queueing applications, extensions, and future work

Consider customers entering a queueing facility at the epochs Tn of a renewal
process. The customer that arrives at Tn has service time σn and also has a list
of customers of indices i < n that influence him, in the sense that the arriving
customer has to wait until the last of the customers in his list leaves the system;
at that time, he may start service which has duration σn. In other words, this is
a model of a queue with precedence constraints. Let Ln be the list of customers
influencing customer n; Ln is a subset of {n− 1, n− 2, . . .}. Let bn denote the
time at which customer n begins his service, and en the time at which he ends.
To obtain a recursion, notice first that

en = bn + σn,

and
bn = max(Tn, max

j∈Ln

ej).

As an example, if the lists Ln are all empty then there are no constraints, and
the system is simply a G/G/∞ queue. On the other extreme, if Ln = {n− 1},
then the system is a First-Come First-Serve G/G/1 queue. The system satisfies
the monotone separable framework of the saturation rule; see [4]. Thus, under
stationary-ergodic assumptions, the queueing system is stable if

C < Eτ,

where τ is a random variable that has the distribution of Tn+1−Tn (given that
T0 = 0), and C is the constant defined as follows. Consider the above recursions
but with Tn = 0 for all n and let ẽn be the corresponding end-of-service variables.
Then, by the subadditive ergodic theorem,

C = lim
n→∞

n−1max
i≤n

ẽi,

almost surely.
In Section 10, we have studied the case where all service times are equal

to 1, and the Ln is chosen by tossing a coin with success probability p. Then
the constant C just defined is the constant derived in Section 10.
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More generally, assuming σn random, is a problem equivalent to studying
longest paths in a random graph with weights, where “length” of a path is the
sum of the weights of its edges. The problem of finding regeneration events that
enable us to construct a stationary regime (which leads to the bounds for C) is,
at the present moment, the subject of a forthcoming paper.

A. Appendix. Auxiliary results

Lemma A.1. If Y1, Y2 and Z are three random variables such that Z is in-
dependent of (Y1, Y2), P(Z 6= 0) > 0, and Y1Z = Y2Z, a.s., then Y1 = Y2,
a.s.

Proof. Since P(Y1Z = Y2Z) = 1, we have

P(Z 6= 0) = P(Y1Z = Y2Z,Z 6= 0) = P(Y1 = Y2, Z 6= 0)
= P(Y1 = Y2)P(Z 6= 0),

where the last equality follows from independence. Since P(Z 6= 0) > 0, we
obtain the result P(Y1 = Y2) = 1. 2

Proposition A.1. Let X1, X2, . . . be a stationary-ergodic sequence of random
variables with EX+

1 < ∞. Then

1
n

max
1≤i≤n

Xi → 0, a.s. and in L1.

Proof. Without loss of generality, assume Xn ≥ 0, a.s. Put Yn = max1≤i≤n Xi.
Clearly,

Yn+k ≤ max
1≤i≤n

Xi + max
n+1≤i≤n+k

Xi = Yn + Yk◦ θn.

Kingman’s subadditive ergodic theorem shows that Yn/n → c, a.s., where c ≥ 0.
We will show that c = 0. If c > 0 then, for any 0 < ε < c/2, there is k0 such
that P(Yk/k > c + ε) < ε for all k ≥ k0. Fix k ≥ k0 and let n = 2k. We then
have

P(Yn/n > 3c/4) ≤ P(Yn/n > (c + ε)/2) = P(max(Yk/n, Yk◦ θk/n) > (c + ε)/2)
≤ 2P(Yk/n > (c + ε)/2) = 2P(Yk/k > c + ε),

which contradicts the a.s. convergence of Yn/n to c. Hence c = 0. To show
that EYn/n → 0 simply observe that the sequence Yn/n is bounded by Sn/n =
(X1+· · ·+Xn)/n, and since Sn/n → EX1, a.s. and in L1, it follows that {Sn/n}
is a uniformly integrable sequence, and thus so is {Yn/n}. 2

Proposition A.2. Let X1, X2, . . . be a stationary-ergodic sequence of random
variables with EX1 = 0. Consider the stationary walk Sn = X1 + · · · + Xn,
n ≥ 1, with S0 = 0. Put Mn = max0≤i≤n Si. Then Mn/n → 0, a.s. and in L1.
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Proof. Fix ε > 0. Let M∗ = supi≥0(Si − iε). Then M∗ < ∞, a.s. We have

Mn = max
0≤i≤n

(Si − iε + iε) ≤ max
0≤i≤n

(Si − iε) + nε ≤ M∗ + nε.

So, Mn/n ≤ M∗/n + ε, a.s. This implies that lim supn→∞ Mn/n ≤ ε, a.s., and
so Mn/n → 0, a.s. Convergence in L1 can be proved as follows. Let b := EX+

1 .
Define S

(+)
n := X+

1 + · · · + X+
n . By the ergodic theorem, S

(+)
n /n → b, a.s. and

in L1, and so {S(+)
n /n} is a uniformly integrable sequence. But 0 ≤ Mn/n ≤

S
(+)
n /n. So {Mn/n} is also uniformly integrable. 2
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