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 STOCHASTIC SEQUENCES WITH A REGENERATIVE
 STRUCTURE THAT MAY DEPEND BOTH ON

 THE FUTURE AND ON THE PAST

 SERGEY FOSS,* ** Heriot-Watt University and Sobolev Institute of Mathematics

 STAN ZACH ARY,* *** Heriot-Watt University

 Abstract

 Many regenerative arguments in stochastic processes use random times which are akin
 to stopping times, but which are determined by the future as well as the past behaviour
 of the process of interest. Such arguments based on 'conditioning on the future' are
 usually developed in an ad-hoc way in the context of the application under consideration,
 thereby obscuring the underlying structure. In this paper we give a simple, unified, and
 more general treatment of such conditioning theory. We further give a number of novel
 applications to various particle system models, in particular to various flavours of contact
 processes and to infinite-bin models. We give a number of new results for existing and
 new models. We further make connections with the theory of Harris ergodicity.

 Keywords: Regenerative process; break point; dependence on the future and on the past;
 contact process; infinite-bin model; Harris ergodicity

 2010 Mathematics Subject Classification: Primary 60K05; 60K35; 60K40; 60J05;
 60G40; 60F99

 1. Introduction

 Many arguments in stochastic processes use random times akin to stopping times to establish
 regenerative or ergodic behaviour. These may be randomised stopping times as in the theory
 of Harris ergodicity. Alternatively, they may be random times in which there is an element of
 probabilistic conditioning on the, possibly infinite, future of the process of interest, but in which

 this conditioning is sufficiently controlled that, with respect to these random times, the process

 behaves as if they were stopping times; such times are used, for example, in establishing the
 long-term behaviour of particle systems and population processes conditional on their survival,
 and in establishing the behaviour of processes conditioned to avoid given regions of their state
 spaces. More generally, such random times, defined by conditioning on future behaviour, may
 also be used to establish the unconditional behaviour of their parent processes - as we illustrate
 in the applications of Sections 3 and 4. Such arguments based on 'conditioning on the future'
 are usually developed from scratch and in an ad-hoc way in the context of the application under
 consideration, thereby to some extent obscuring the underlying structure.

 Our aim in the present paper is to give a unified treatment of these phenomena. In doing so
 we develop a simple theory which is more general than the sum of those already existing, and
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 1 084 S. FOSS AND S. ZACH ARY

 which has applications - for example, to some variants of the models considered in Sections 3
 and 4 - which cannot be managed by the simple application of such bits of theory as already
 exist. We further apply the results obtained to a number of new models, including variants of
 the three-state contact process of Section 3 and of the infinite-bin models of Section 4.
 For simplicity of exposition, we work in this paper in discrete time. In general, the process of

 interest {Xw}w>o, say, may be constructed as a functional of an underlying process {Çn}n>' , or
 {Šn int where, as usual, Z is the set of integers. In the present paper we assume that the process
 {£„} consists of independent, identically distributed (i.i.d.) random variables ķn. However,
 some of the phenomena studied here for the process [Xn } continue to occur under more relaxed

 assumptions for the underlying process {£„}, for example, that it is regenerative in the sense
 that there are some random times at which the process starts anew independently of the past.
 These extensions are typically straightforward; for example, in the case where the process [Ķn }
 is regenerative we may restrict arguments to the regeneration times. Extensions to continuous
 time are also straightforward provided that the process {£„} is replaced by something satisfying

 analogous homogeneity and independence conditions; in the case of interacting particle systems
 (see Section 3) this is typically the collection of underlying Poisson processes.
 In Section 2 we present our basic theory. Our aim is to identify sequences of random times

 0 < to < tļ < • • , the definition of each of which may depend both on the (typically infinite)
 past and on the (typically infinite) future, but which are nevertheless such that the segments of
 the process {£„} between successive such times are i.i.d. Following Kuczek [19], we shall refer
 to these times (which are an instance of regeneration times) as break times.
 It is helpful to give an immediate example (in which the dependence is on the future only).

 Example 1. Let {§«}/!>! consist of i.i.d. random variables, with common distribution given by

 P = 1 ) = p, P(£ - -1) = q, P(& =0) = '-p-q,

 where 0 < q < p and p + q < 1 . We consider three variant constructions of random times
 whose definitions involve conditioning on the (infinite) future.

 (a) For each n > 0, let Fn be the 'future' event that YT= 1 £«+' > 0 for all m > 1. Note
 that the common probability of the events Fn is strictly positive. Let 0 < ro <
 T' < • • • be the successive times n at which the event Fn occurs. Then it is easy to
 see (and is a special case of the result of Example 2 below) that the successive segments

 {£r*+i » • > Çrjfc+i }» k > 0, of the process {§w} are i.i.d. in k. In particular, the successive
 time intervals r*+i - ifc, k > 0, are i.i.d.

 (b) Now suppose that, for each n > 0, we let F'n be the future event that Yl?=' Šn+i - 0
 for all m > 1 and, additionally, £„+2 = 0. Again, the common probability of the
 events F „ is strictly positive. Let 0 < < • be the successive times n at which
 the event F'n occurs. In this case we do not have independence of the successive

 segments {£Tj(+i > • • • » £r¿+1 }, ^ > 0; for example, if the events F¿ and F[ both occur,
 then necessarily = $2 = 0.

 (c) Finally, suppose that the events F'n are as in (b). However, define the sequence 0 <
 Tq < t" < • • • by Tq = min {n > 0 ' F'n occurs} (i.e. = Tq) and, for A: > 1, =
 min{ft > r^_ļ +2 ņ. F'n occurs}. Then it is again easy to see that the successive segments

 {£r4"+i » • • • » %t¡1+ ļ }' k > 0, of the process {§„} are once more i.i.d. in k.

 The reason for the different behaviours in the above example is that, in order to obtain i.i.d.

 behaviour, we require the definitions of the successive times r ¿ to satisfy a form of monotonicity
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 Stochastic sequences with a regenerative structure 1 085

 condition in which, in a sense which we make clear in Section 2, information about the future

 does not cumulate; this condition is satisfied in variants (a) and (c) of Example 1, but not
 in variant (b). In Section 2 we develop the relevant theory in a general setting in which the
 break times may depend on both the past and future behaviours of the underlying process
 {£„}. In particular, we give conditions for the segments of the process {§„} between break
 times to constitute i.i.d. cycles. We believe this theory to be novel in the general setting. As a
 simple example, we apply the theory to a general random walk with positive drift (generalising
 Example 1).

 In Section 3 we give applications of our theory to a number of discrete-time contact process
 models, both showing how existing results are more readily understood, and giving some new
 results for a three-state contact process. The theory is equally applicable in the continuous-
 time setting, and has applications in general to particle systems and similar models in which
 processes 'survive' with probabilities strictly between 0 and 1 . In Section 4 we give applications
 of the theory of Section 2 to a class of 'infinite-bin' models.

 In Section 5 we make some connections with the existing theory of Harri s-ergodic
 Markov chains. Finally, in Section 6 we discuss a number of other models and extended
 applications, including conditioning, scaling, and regeneration/asymptotic stationarity of the
 driving sequence {£„}.

 2. Conditioning on the future

 We assume that the underlying process {Ķn}n& z (defined on some underlying probability
 space (Í2, F , P)) consists of i.i.d. random variables For two events A and B , we write
 A - B if their symmetric difference, AAB = A ' B U B ' A, has probability 0.

 For m < n, denote by am,n the a -algebra generated by §m, . . . , and let on = cr_oo,/i-
 The process {Xn }nez (or [Xn }n€z+ ) of interest will typically be defined in terms of the process
 {ŠnineZ and adapted with respect to the filtration [crn}nGz'-> for example, it may be defined by
 the stochastic recursion

 Xn+' =/(*„, &+l) (D

 for some function / (and, hence, homogeneous Markov).
 Define also o to be the a-algebra generated by all the random variables - oo < n < oo.

 As usual, we may introduce a measure-preserving shift transformation 6 on cr-measurable ran-
 dom variables by assuming that Ķn o 0 - for all n, and that, more generally, g(Ķm , . . . , Ķn) o
 0 - g(Šm+ 1 , • • • , Hn+ 1) for any measurable function g. (Here the finite sequence of random
 variables {£m, . . . , £„} may also be replaced a half-infinite or an infinite sequence.)
 We may further extend the shift transformation to events in o by defining (with a slight abuse

 of notation) G' o 0 - G 2 if Īgi 0 0 = 1 c2- (Here by Ig, we denote the indicator function
 of the event G' which equals 1 if the event G' occurs and 0 otherwise). We then say that a
 sequence of events {Gn} is stationary if it is so with respect to 0 , i.e. Gn o 0 = Gn+' for all n.
 Therefore, if there are two sequences and each of them is stationary, then they are also jointly
 stationary.

 In what follows, we consider, in addition to the process {£„}, a given sequence of events
 {FnineZ+ which always satisfies the following conditions.

 (Fl) The sequence [Ft l}nez+ is stationary, with the common value of P(F„) strictly positive.

 (F2) For each n, the event Fn is defined in terms of the 'future' process {£m }m>n, i.e. 'fn =
 g(£/i+i» £/1+2, •••) f°r some function g (which by stationarity is independent of n).
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 1 086 S. FOSS AND S. ZACH ARY

 Here the future dependence of each of the events Fn may be on either the finite or
 the infinite future.

 It is our intention to define, in terms of the process {£„} and the sequence {Fn}, a sequence
 of random times 0 < ro < x' < • • • on the nonnegative integers Z+. Our interest is in the
 behaviour of the successive segments of processes {£r*+i > • • • > £r¿+i }» ^ > 0. (Note that the
 definition of any such segment {£r*+i , . . . , Šzk+] } includes a specification of its length r*+i - t*.)
 It is convenient to take a 'point process' approach, and to define first a further sequence of events

 {An }«gZ+ ; the times are then defined to be the successive times n > 0 such that the event An
 occurs. (We observe that the need to unambiguously index the times obliges us to choose
 some origin 0 of time, and it is then convenient to restrict attention to behaviour subsequent to
 time 0. However, to the extent that the occurrence times of the events An may be viewed as a

 point process on the positive integers, much of what follows may be extended without difficulty
 to the entire set Z of all the integers.)

 Remark 1. Insofar as the occurrence times of the events An may be regarded as a point
 process on the integers, the determination of their locations, in the results below, is the result of
 simultaneous, and essentially Markovian, conditioning from both the past and the future. There
 are therefore connections with the theory of one-dimensional Markov random fields. However,
 for our present purposes, it is natural to define the conditions for these results directly in terms
 of events. The distribution of the point process is then induced by the underlying i.i.d. driving
 sequence {£„}.

 Our main result of this section is now the following theorem. For the result to hold, we
 require some conditions which imply, in particular, that each event An may be represented as
 an intersection An = HnC l Fn of a 'past' event Hn e on and the 'future' event Fn defined earlier
 (see Remark 2 below).

 Theorem 1. Let a sequence of events {An}nGz+ be given. Let to = min{n > 0: 1 = 1},
 and, for lc > 0, let r¿+i = min{n > : 1 An = U- Assume that < oo almost surely (a.s.)
 for all k. Also , let the following be given: a sequence of future ' events { Fn }nez+ satisfying the

 earlier conditions (Fl) and (F2), sequences {H¡l}nGz+ ^^d{Hļļ}ne z+ of 'past' events such that,
 for each n, we have H'n e on and H„ e on, and, finally, an array of events {En,n+m}n> o,m>o
 with each En^n+m e on+ i,«+m and such that, for each fixed m, the sequence [Enn+m }n>o is
 stationary. Suppose further that all these sequences are linked by the following relations : for
 n > 0,

 {r0 = n] = Ac0 H . . . n nAn = H^n Fn, (2)
 and, for 0 < n' < n,

 {there exists k: T/c = nf , r¿+i = n] = An> Pi Acn,+X fl • • • fi Acn_' H An = Hr¿, fi En> n H Fn. (3)

 Then the successive segments of processes {£r*+l , • • • » £r*+i }, k >0, are i.i.d. In particular,
 the random variables r¿+i - r¿, k > 0, are i.i.d. Furthermore, for some constant a > 0 and
 all k > 0,

 P(r*+i - r k=n) = aF(E0jn)' (4)

 Note that it follows directly from (2) and (3) that, for all n, we have An ç Fn, and from (3)

 that, for all n', we have An< c H'¿. Hence, we note that

 A„c//;nF„, n >0.
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 Stochastic sequences with a regenerative structure 1087

 Proof of Theorem 1. Fix k > 0. For any 0 < no < • • • < 1, it follows, from (2), (3),
 and the observation that An c Fn for all n, that the following representation holds:

 {to = no, . . . , Tic = ilk , T*+1 = rt*+l}

 = Ko n Hn0 n £«o,n. n<n-n //; n n F„t+1 . (5)
 Here the intersection of all but the last two events in (5), say Hnk , belongs to the a -algebra ank

 and is the same for all values of Thus, for any events Gnk e crnk and G nkļflk+ļ e <ynk+'ļnk+l,

 P({to = no, . . . , tk = nkl rk+' = nk+'}n Gnk n Gnktnk+ļ)

 = ^ Enk,nk+ 1 H Gnkinļi+ļ f! Fnk+ļ)

 = ^(G'niWiEnk^nk+x H Gnk,nk+ļ )P(FW¿+1 ), (6)
 where the event G'nk = Hn¡í fi Gnk belongs to onk and is the same for all values of 1 and all
 events Gnk,nM . Thus, also using the stationarity of the sequence {Fn}nGz+ and (for each m)
 of the sequence {En,n+m}n>o, it follows that, conditional on {to = no, . . . , r* = w* } and the
 process {Hn)'<n<nk> the distribution of {£r*+i , • • . , Hxk+X } is that of {^ro+i , • • • , £ri } conditional
 on the occurrence of the event {to = n] for any n such that the latter probability is strictly
 positive. All the assertions of the theorem now follow. In particular, to establish (4), we
 consider (6) again with Gnk = Gn¡c,nk+Í = Œ and with nk+ ' =nk+n, where n is fixed. Then
 we sum expression (6) over all 0 < no < • • • < to obtain P(r*+i - r* = n). This is of the
 form flP(#o,/i)> where, clearly, a does not depend on n ; therefore, a also does not depend on k
 since the probabilities <zP(#o,/i) sum to 1.

 Remark 2. It is worth pausing to note, in somewhat intuitive terms, the significance of the
 conditions of Theorem 1 . Note first that it follows straightforwardly from (2) and (3) that, for
 all n , we have

 An = Hn n Fn with Hn = Hn U Hnr n En> n G on.
 0 <n'<n

 Suppose now that we proceed forward in time with the process {£w}. At each time n such that
 the event An occurs, we learn something about the future evolution of the process, namely that

 the event Fn occurs. In order to have some regeneration at this time, we need to ensure that,
 at each such time n , given the knowledge that Fn occurs, our knowledge at that time about the
 future probabilistic behaviour of the process is not further conditioned by our knowledge of
 whether or not, for each earlier time n' < n, the event Ant occurs. This is essentially guaranteed

 by condition (3), which is in effect a form of monotonicity condition.

 We now give some special cases of Theorem 1 . Corollary 1 below will be applied later to
 the two-state contact process of Section 3.1 and to the basic infinite-bin model of Section 4.1.

 Corollary 1. Suppose that , for all n, we have An = Fn , and that the sequence { Fn}nez+
 satisfies the earlier conditions (Fl) and (F2) and , additionally , the monotonicity condition

 Fn n Fn+m - En n+m ^ Fn+rn* n > 0, m > 0, (7)

 for some array of events {F'nn+m}n>o,m>0 with each Efnn+m e on+',n+m and such that , for
 each fixed m, the sequence {E'n n+m}n> o is stationary. Then the conclusions of Theorem 1
 follow ( with (4) holding for appropriately defined Eo,n)-

 Proof Note first that (7) also implies that

 Fn H Fn+m = (En n_ |_m) H Fn+m, n > 0, m > 0. (8)
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 1 088 S. FOSS AND S. ZACHARY

 Since An = Fn for all n , it follows from (7) and (8) that, for all n > 0,

 ac0 n . . . n a%_x HAn = ( E'0n)c n . . . n (zCi,„)c n Fn

 and, for 0 < n' < n,

 An, n n . . - n Acn_x nAn = E'n, n n {E'nt+X n)c n • • . n (^_1?w)c n f„.

 Thus, the conditions of Theorem 1 are readily seen to be satisfied with {Fn }nez+ as here, and for

 appropriately defined {H'n}ne z+, eZ+ (with //¿' = Í2 for all n), and }«>o,m>o-

 Remark 3. We can now provide some explanation for the observations of Example 1 in the
 introduction. In the variant (a), condition (7) of Corollary 1 is readily seen to be satisfied,
 with E'n n+m = {Yl?=' Hn+i > 0 for all 1 < m' < m}. In the variant (b) of Example 1 the
 monotonicity condition (7) of Corollary 1 (with the sequence {Fn}n> o replaced by {F^}w>o)
 clearly cannot be satisfied, and, more generally, the conditions of Theorem 1 cannot be satisfied

 (for otherwise that theorem would contradict the known behaviour for this example). However,
 for the variant (c) of Example 1, we may observe that condition (7) of Corollary 1 (again
 with the sequence {Fw}w>o replaced by {/^}w>o) is satisfied whenever m > 2, with Efn n+m =
 E/= i Ç/i+i - 0 for all 1 < m' < m and §„+2 = 0}. Since the enforced minimum separation
 Tk - tk-x > 2 for k > 1 implies that An fl An+i = 0 for all n, this restricted version of
 condition (7), coupled with the proof of Corollary 1, is now sufficient to establish that the
 conditions of Theorem 1 are satisfied as before.

 We now give a generalisation of Corollary 1 in which the sequence {An}nez+ is defined by
 An = HnC' Fn for the sequence [Fn}nez{ as above and with {Hn}n€z+ some sequence such
 that each Hn e on. Here a monotonicity condition is additionally required on the sequence
 {Hn}nez+. However, the monotonicity condition on the sequence {Fn}nGz+ is only required to
 hold in relation to those times n at which the event Hn occurs. The result, which reduces to
 Corollary 1 in the case where Hn = Q for all n, is entirely natural for many applications. It
 will be applied in Example 2 below, to the three-state contact process of Section 3.2, and to the
 continuous-space 'infinite-bin' model of Section 4.2.

 Corollary 2. Suppose that , for all n , we have An = Hn fl Fn , where the sequence {Fn}nGz+
 satisfies the earlier conditions ( Fl )and(F2) and the sequence {Hn}n(zz+ is suchthat Hn e onfor
 all n. Suppose further that these sequences satisfy the following monotonicity conditions.

 (a) For all n > 0 and m > 0,

 An n An- |_m = Hn n En n+m n An- i_m, (9)

 where the array of events {E'nn_ |_w}«>o,m>o is such that each Efnn+m e on+',n+m and ,
 for each fixed m, the sequence [E'n n+m}n> o is stationary.

 (b) For all n > 0 and m > 0,

 An n Hn+m = An n En n_^m, (10)

 where the array of events {E^n+m}t i>o,m>o is again such that each E„n+m e crn+ i,n+m
 and, for each fixed m, the sequence {E„ n+m}n> o is stationary.

 Then the conclusions of Theorem 1 follow (again with (4) holding for appropriately defined
 Eo ,n)-
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 Proof. The proof is similar to that of Corollary 1 , if a little messier. It is necessary to verify

 conditions (2) and (3) of Theorem 1, in which the sequence {Fn]nGz+ of that theorem is as
 given here. Note first that (9) also implies that, for all n > 0 and m > 0,

 Hn ^ F n ^ An+m = Hn ^ (En,n+m) ^ (11)

 while (10) similarly also implies that, for all n > 0 and m > 0,

 An n Hl+m = A„n {Kn+mf . (12)

 Consider first the verification of condition (3). For 0 < n' < n, the event

 An' n Acn,+] n • • • n Acn_x n An (13)

 may be written as a union of events of the form

 An' ^ n • • • n Bn- i n Aw, (14)

 where, for each nf < k < n, the event is either H% or Hk H Fļ. Now using (12) to simplify
 Anf PI Hg, (1 1) and then (12) to simplify Hk H Fļ fi An , and, finally, (9) to simplify An> H An,
 it follows that each of the events given by (14), and so also the event given by (13), has a
 representation as Hn > fi En^n H Fn, where, by construction, the array {Zv,n}n'>o,/i»i' satisfies
 the conditions of Theorem 1.

 The verification of condition (2) of Theorem 1 (for some readily calculable sequence
 [H^}neZ+ with each H'n e an) is similar, but simpler.

 We now consider a process {Xw}rt>o which, as indicated at the beginning of this section,
 is adapted with respect to the filtration {an}nez (or {crn}nGz+)' We further assume that this
 process is defined via the specification of Xo and the stochastic recursion (1). This is a standard
 situation (but not the only one) in which the regenerative structure of the successive blocks of the
 process {£„}, as identified in Theorem 1, may be inherited by a (functional of the) process {Xrt}.
 We introduce here a number of typical scenarios which will be complemented by the examples
 of the following sections.

 In what follows we wish to consider, for any time n, the dynamics of the sequence {Xrt+/ }/ >o,

 and of functionals of this sequence, relative to 'an initial' Xn . (One may think of a growth model

 in which we are adding points at each time, or of a model in which we centre the system around
 the value of Xn at time n.) In order to do this, we introduce functions Ri(Xn , Xn+i)> i > 1,
 which capture this relative behaviour. We assume further that each such function R¡ acts as

 Ri : X2 -> y>, where (X, £%) is the space in which Xn take values and (y>, ¿By) is another
 measurable space. In various of the remaining examples of this paper, we indicate precisely
 the form of the functions Ri .

 Recall that a sequence, say {Yn }, is stationary one-dependent if it is stationary and, for any n,
 the families of random variables {Y¿, k < n] and {Y¿, k > n] are independent. The following
 result is an immediate extension of Theorem 1 and the given conditions (15), (16), and (17).

 Theorem 2. Suppose again that the sequence {ÇnineZ consists of i.i.d. random variables and
 that the random times 0 < to < x' < • • • are defined as in Theorem /, with all the conditions
 ofthat theorem holding.

 (a) Suppose that the functions R¡, i > 1, introduced above are such that , for any n, given
 that the event An occurs , each random variable R¡ (Xn+i , Xn) is a measurable function
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 1 090 S. FOSS AND S. ZACH ARY

 ofÇn+ 1 Hn+i only , i.e. for every i > 1,

 ^iC^n+i» ^n) - &/(£/i+l> • • • » Ç/i+i) • (15)

 7Vzčai ř/ře random elements

 (J?/(XTy.+/, XTp, i = 1, . . . , ry+i - Xj) (16)

 are m y.

 (b) Suppose , more generally, that, for some fixed m > 1, the functions Ri, i > 1, introduced
 above are now as follows: for any n, given that the event An occurs , eac/i random
 variable R¿ (Xn+/ , Xw) ¿s a measurable function of%n-m+' , . . . , £w+¿ only, i.e. for every
 i > 1,

 ^iC^/i+i» ^n) = 8i(Šn- m+lí • • • » £«+/)

 and ř/řař

 rn+i - r n >m a.s.for alln. (17)

 77ičn í/íč random elements (16) are stationary one-dependent.

 Recall that a random sequence {Z„ } is regenerative if there exist (random) times 0 < To <
 T' < • • • such that the random elements

 Yo := (to; Zo, . . . , ZT0),

 «= (ti t0; ZfQ_ļ_i , . . . , ZT] ),

 Yi := (t2 - ri; ZTl + i, . . . , ZT2),

 etc. are mutually independent and the elements {F*U> l are identically distributed. The
 random sequence {Zn} is wide-sense regenerative if, for each n > 0, the distribution of the
 sequence {ZT/l+¿, k > 0} does not depend on rw. Furthermore, {Zn} possesses one-dependent
 regenerative cycles induced by {rn} if the sequence {F*U> o is one-dependent, and the random
 variables [Yk]k>' are identically distributed. The latter two properties imply that the sequence
 {Ykik> l is stationary and that the time instants {r*} form a renewal process.

 Corollary 3. Suppose that the sequence {ÇnineZ consists of i.i.d. random variables and that
 the random times 0 < to < x' < • • • are defined as in Theorem 1, with all the conditions
 of that theorem holding. Suppose that the functions Ri, i > 1, introduced above are such
 that either the conditions of part (a) or those of part (b) of Theorem 2 hold. Finally ; suppose
 that the (common) distribution of the random variables rn - rn-', n > 1, is aperiodic, i.e.
 GCD{j : P(ri - to = j) > 0} = 1.

 For any n > to, let

 Zn = Rn-Zj(Xni Xxj) tf^j < n < I y+1.

 Then the sequence Zn converges in the total variation norm to a proper limiting random variable.

 Indeed, by Theorem 1 , the sequence Zn is wide-sense regenerative and, by Theorem 2, it
 possesses one-dependent regenerative cycles, so that Corollary 3 follows from the stability
 theorem for wide-sense regenerative processes; see, e.g. Section 10 of [27] or [1].
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 Example 2. (Random walk with positive drift.) We extend Example 1 to consider a general
 random walk with positive drift. Such a process provides possibly the simplest instance of the
 application of the above theory, and our aims here are to both demonstrate the use of Theorem 1
 and illustrate the use of conditioning simultaneously on both past and future events. The results

 we give for this example are not new, but rather illustrate the immediate applicability of the
 present theory. The sequence {%n}n> l consists as usual of i.i.d. nondegenerate random variables
 Çn with positive mean a = E£ >0. To make the example nontrivial, assume that P(£ < 0) > 0.
 The process of interest is the random walk {Sn]n>o with So = 0 and Sn = Hi (here we
 use the notation Sn instead of Xn).

 We define the earlier sequence {Fn}nez+ » satisfying conditions (Fl) and (F2), by taking each
 Fn to be the event that Y^= i %n+k > 0 for all m > 1, i.e. that Sm > Sn for all m > n.

 First, for a trivial application, we define the events An of Theorem 1 by, for each n, An = Fn,
 so that the random times , k > 0, are simply the successive occurrence times of the events
 Fn , and are simply the last exit times of the process { Sn } above successive levels. As in the
 variant (a) of the earlier Example 1 , condition (7) of Corollary 1 is easily seen to be satisfied

 (with E'n n+m = (XT=i Hn+k > 0 for all 1 < m' < m}). Thus, the conclusions of Theorem 1
 follow, and we have the well-known and elementary result that the segments of the process {Sn }
 between the successive last exit times above are i.i.d.

 We also observe that the functionals R¡ defined above are typically given by R¡ (5rt+/ , Sn) =
 Sn+i ~ Sn-

 A more interesting application is given by defining the events An of Theorem 1 by, for each n,
 An = Hn H Fn, where Hn is the event that Sn / < Sn for all 0 < n' < n. Thus, the times
 are the successive times n at which both Sn > < Sn for all n' < n and Sn> > Sn for all n' > n.

 The sequences of events {Fn}nez+ and {Hn}ne z+ satisfy conditions (9) and (10) of Corollary 2,
 with E'n n+m as above and E'^n+m = {Sn' < Sn+m for all n < n' < n + m}. Hence, again,
 the conclusions of Theorem 1 follow, and we again have the result that the segments of the
 process {Sn} between the successive times are i.i.d. A weak consequence is that these times
 themselves form a delayed renewal process.

 Here, again, the functionals R¡ of Section 2 are typically given by R¡ (Sn+i , Sn) = Sn+¡ - Sn .

 3. The asymptotic behaviour of supercritical contact processes

 The theory of Section 2 has applications to a variety of particle systems and oriented
 percolation models. In this section we consider some fairly general discrete-time contact,
 or oriented percolation, processes on the integers Z. These models are normally studied in a
 continuous-time setting, and it is clear that the relevant theory of Section 2 could, at the cost of
 some work, be adapted to that setting.

 In Section 3. 1 we study a modest generalisation of the traditional two-state contact process on
 Z, in which, at each time n, each site a e Z is either healthy (state 0) or infected (state 1 ). We use

 our earlier theory to study the behaviour of the right-endpoint process , defined for each time n to

 be the rightmost infected site at time n. The underlying ideas here are those of Kuczek [19] and
 of Mountford and Sweet [23] - the somewhat greater generality of the model considered here
 makes little difference. However, we show that the results of Kuczek are an almost immediate

 application of the theory of Section 2, and become clearer when thus understood. (These ideas
 are further used by Mountford and Sweet, but the main work of their paper is an additional
 'block' construction to show that a certain event has a strictly positive probability - see the
 discussion at the end of this section.) The basic theory of Section 3.1 is further a necessary
 preliminary for applications to other particle system models. We give one such application in
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 Section 3.2 in which we study an extension to a three-state process. In this model, which has
 been considered by a number of authors, healthy sites differ in their susceptibility to subsequent
 infection according to whether they have previously been infected. Tzioufas [28] deduced right-
 endpoint behaviour for the 'reverse-immunisation' version of the process, in which previously
 infected sites are easier to reinfect. His argument used a monotonicity property which fails to
 hold in the 'immunisation' version of the process, in which previously infected sites are more
 difficult to reinfect. We show how this difficulty is overcome by a suitable definition of the sets
 Fn of Section 2.

 3.1. The two-state contact process

 Consider a process in which sites, indexed by the integers Z, are at each time n either
 healthy or infected. We define the state Xn of the process at time n to be the set of infected
 sites at that time. Between times n and n + 1 each site x e Xn which is infected at time n
 produces a set rjn+ ',x ç Z of descendants , which is again a subset of Z; at time n H- 1 these
 descendants infect a set of sites x 4- rjt l+',x ç Z, where, for any x e Z and any AC Z, we
 define x + A = {x + a : a e A}. The state Xn+i of the process at time n + 1 is given by

 Xn+ 1 = (J (X + T}n+ 1,*)>
 X€:Xn

 i.e. the union over x e Xn of the sites infected by the descendants of these x. Finally, we
 assume that the random sets rjn+'iX are i.i.d. over both times n and sites x. This model is
 a fairly general form of the discrete-time version of the one-dimensional contact process , or
 oriented percolation. Note that we do not make the restriction (common for both discrete-time
 oriented percolation and continuous- time contact processes) that, for each n and jc, the random
 set rçw+i,jc is such that the events {a e r¡n+ i<JC} are independent over a.

 Let p be the probability that the process started with Xo = {0}, say, survives , i.e. Xn ^ 0
 for all n > 0. Suppose that p > 0, so that the process is described as supercritical. Our
 interest is then in the long-run behaviour of this process. In particular, we are concerned with
 the behaviour of the right-endpoint process {rn}n> o, conditional on survival, where we define
 rn = max(jc : x e Xn) (with rn = - oo in the case where Xn is empty). This, coupled with
 the behaviour of the corresponding left-endpoint process, determines the growth rate of the
 process. We assume that Xo is such that ro < oo (and, hence, rn < oo for all n)' usually,
 ro = 0.

 Consider first the case in which the process possesses the following skip-free property: for
 all n and all jc, y e Z,

 x < y ==» x +a<y + b for ali a e rçw+i,jo b e rjn+',y a.s. (18)

 This is the discrete-time version of the nearest-neighbour property of the contact process on Z.
 The process [rn}n> o was studied by Gal ves and Presutti [17] and by Kuczek [19]. The argument
 here is essentially a rephrasing, in the framework of the present paper, of that of Kuczek, and
 is given not only as an example and for completeness, but because it is required for subsequent
 developments, in particular for the theory of Section 3.2, in which the present arguments are
 extended and generalised.

 We take the driving sequence {$«}«> i (the index range n > 1 is sufficient), introduced in
 Section 2, to be defined as follows. For each n, t-n = {§«,z}z<o> where, for each nonpositive
 integer z, $n,z has the same distribution as any of the random sets rļn^x identified above.
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 In addition to being identically distributed, the random sets Ķn,z are taken to be independent
 over all n and all z. We now define the process {Xn}n>o via a stochastic recursion

 Xn+i =/(X„,Ç„+1); (19)

 for each x G Xn, the random set rjn+ ',x of its descendants at time n + 1 is given by

 Vn+',x - Hn+',x- rn • (20)

 Thus, in particular - and this is critical for the understanding of the argument below, in which
 everything is in effect viewed from the right endpoints of the processes of interest - the random

 set £n+i,o determines the set of descendants of the rightmost infected site rn at time n , and, for
 every other infected site at time n , we count its distance from rn in order to determine which

 of the random sets t-n+',z t0 use for its set of descendants. Different initial sets Xo of infected
 sites lead to different instances of the process {Xw}w>o.

 For each n > 0, consider the process {xffi]nr>n defined by X ^ = {0} and X^+x =
 f(X%' %n'+') for n' > n . Define also the associated right-endpoint process {r^}n/>n by
 rfî = max(jc : x e xffi) (again with r^ = - oo in the case where xffi is empty).

 We define the sequence of events {Fn }n€z+ of Section 2 saying that the event Fn occurs if and

 only if the process {xffi}nr>n survives for all future time. It follows from the definition of the
 process {X^}n'>n that the sequence {Fn}nGz+ satisfies conditions (Fl) and (F2) of Section 2.
 In particular, the common value of the probability of the events Fn is p , which, by our earlier
 assumption of supercriticality is strictly positive.
 We define the events An of Theorem 1 by, for each n, An = Fn, so that the random times
 k > 0, are simply the successive occurrence times of the events Fn. It is our intention to

 apply Corollary 1 . Fix therefore n > 0 and m > 0, and suppose that the event Fm+n occurs.

 Then if the process {X^}nr>n also survives to time n + m, i.e. ^ 0, it follows from (19)
 and (20) that

 r(;im+n, = ri 1 + for all »' > 0. (21)
 It now follows that, given that the event Fm+n occurs, the event Fn occurs if and only if

 there occurs the event E'n nJtm that the process {X^}n/>n survives to time n + m. Thus, the
 monotonicity condition (7) of Corollary 1 is satisfied (with Fn , Fn+m , and E'n n+m as defined
 here) and, by construction, the array {E'nnJtm }w>o, m>0 satisfies the conditions of that corollary,
 so that the conclusions of Theorem 1 follow. Since the events Fn also have strictly positive
 probability p , and since their indicator random variables 1 fn form a stationary ergodic sequence,
 the first statement of Proposition 1 below is now immediate from Theorem 1 combined with
 the strong law of large numbers for such sequences.

 The proof of the second statement of Proposition 1 is also essentially due to Kuczek, but, as
 we require essentially the same argument (with a little extra complication) in Section 3.2 below,
 we summarise it here. Define the random time x' = {minn > 1 : Fn occurs}. The common
 distribution of the intervals r¿+i - k > 0, is that of the random time x' conditioned on
 the event {to = 0}, i.e. on the event Fo, which has strictly positive probability. The latter
 distribution is also that of the random time ť conditioned on the event Fo. Hence, for the
 second statement of Proposition 1, it is sufficient to show that the (unconditional) distribution
 of x' is geometrically bounded. We show that this follows from the well-known property of
 supercritical contact processes that if p = min{n > 1 : = 0} then there exists a > 0 such
 that

 P(n < p < oo) < e~an , n > 1 .
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 To see that rf is geometrically bounded, we may proceed forward in time, starting at time 1 ,
 checking at that and at selected subsequent times n whether the event Fn occurs: if, at any

 such time, it fails to do so, we wait until the process {X^}nr>n dies before resuming checking
 at subsequent times, thereby ensuring that checks are independently successful, each with
 probability p > 0; the time to the occurrence of a first success, and, hence, to the occurrence
 of some event Fn , is thus a geometric sum of i.i.d. geometrically bounded random variables,
 and is hence itself geometrically bounded, implying the same result for x' . We thus have the
 following proposition.

 Proposition 1. The successive (segments of) processes {£r*+i, - , Hxk+' 1> k - are ¿ i d.,
 each with finite mean length 1 /p. Furthermore , the distribution of each of these lengths is light

 tailed, i.e. geometrically bounded , and in particular possesses moments of all orders.

 Now let {Xn}n> o be any version of the contact process defined by (19) such that Xo ^ 0
 and, if {rn}n>o is its right-endpoint process then ro < oo. Let F be the event that the process
 {Xw}w>o survives. Then, as in the argument above used to establish (7), the event F occurs
 if and only if the process survives to time ro. Note also that Fo ç F; in the extreme case
 where there is a single infected site at time 0 we have Fo = F, while in the case the number of
 infected sites at time 0 is infinite, we have P(F) = 1. Furthermore, from the construction of
 the processes involved and recalling (21), conditional on the event F and for all k > 0,

 k- 1

 rTk+n> = rZ0 + + rļ+n' for a11 - °-
 7=0

 We thus immediately have the following corollary to Proposition 1 .

 Corollary 4. (Kuczek [19].) On the set F the successive (segments of) processes {rTk+ 1 , . . . ,
 rzk+ 1 }, k > 0, are i.i.d. Furthermore, for some constant ļi,

 rn

 n

 and , in the Skorokhod topology ;

 'nt i ntß in distribution as n oo,
 V«

 where , for any a > 0, we denote by [a] the integer part of a, and where B is Brownian motion
 with some nontrivial diffusion constant.

 Remark 4. We believe that it is also worth discussing briefly the more general case, considered
 by Mountford and Sweet [23], in which the skip-free condition (18) is replaced by the more
 general condition that the sets rjn+ i<JC have bounded support, if only as an illustration of our

 general thesis that everything depends of the appropriate definition of the sequence {Fn}nGz+
 of Section 2. Here it is sufficient to redefine the events Fn and to show that their common

 probability remains strictly positive. Thus, for each n, define not only the process {X^}nr>n
 as above (in which X ^ = {0}) and its associated right-endpoint process }„/>„, but also

 the process {X^]nr>n given by X ^ = Z_ (where Z_ is the set of nonpositive integers) and

 = f(X^' i;n+ 1) for nf > n' denote also the latter process's associated right-endpoint

 process by {r^}n>>n. Note that the process {X^}n>>n survives a.s., and that, since X^ c X%*'

 we have xffi ç xffl for all n' > n. The event Fn is now defined to occur if and only if
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 rfî = for all nf > n. (The latter condition implies the survival of the process {X^}n>>n
 and is equivalent to it in the earlier skip-free case.) Furthermore, the sequence {Fn}nez+
 continues to satisfy conditions (Fl) and (F2) of Section 2, provided that we can show that the
 common probability p' of the events Fn is strictly positive.

 As before, we define the events An of Theorem 1 by An = Fn for all w, so that the times
 Tk are once more the times of successive occurrences of the events Fn. It follows from the
 definition of the latter events that condition (21) continues to hold for those n > 0 and m > 0
 such that event Fw+m occurs. Thus, the conditions of Corollary 1 hold as in the skip-free case,
 and indeed the entire argument of that case also holds in the present more general case, subject
 only to the above proviso that P(F„) > 0. Thus, in this case, we once more obtain Proposition 1
 (with p replaced by p') and Corollary 4 describing the behaviour of the right-endpoint process.

 That p' > 0 is shown by Mountford and Sweet [23] - in the most difficult part of their
 paper - using a block construction and under a condition on the random sets rļn+'jX which
 limits the extent of the dependence between the events {a e rjn+'ìX}. While it seems likely that
 p' > 0 in the present slightly more general model and that this should not be too difficult to
 show, we do not pursue this here.

 3.2. A three-state contact process with immunisation

 We consider a model in which the susceptibility of sites to infection depends on whether
 they have been previously infected. As noted above, such models (in continuous time) have
 been considered by a number of authors (see [12], [26], and [28]). We show here how right-
 endpoint, and hence growth, behaviour can be deduced for a model with immunisation, in
 which previously infected sites are more difficult to infect than those which have not previously
 been infected. What is interesting here is that we do not have monotonicity of the process
 in the initial level of infection, in that the introduction of additional infected sites at time 0

 may possibly, by premature infection and then immunisation of neighbouring sites, reduce
 the number of infected sites at subsequent times (see [26] for details). This is in contrast to
 the two-state contact process and to the 'reverse-immunisation' three-state process mentioned
 earlier. However, in the present model there do still exist sufficient monotonicity-preserving
 couplings, between instances of the process with suitably different initial states, as to enable
 progress to be made with a little extra care, notably in the definition below of the 'future' events
 Fn of Section 2 and below. A further complication is that the events An of Section 2 are no
 longer simply defined by An = Fn, but rather the occurrence of the event An depends both on
 the past and future behaviours of the process {Çn'}/i'> l relative to the time n.

 We take our argument in stages: we consider first the model, then its formulation as a
 stochastic recursion suitable for the application of the theory of Section 2, and then the definition

 of the events Fn and the times of Section 2; finally, we apply the earlier theory and such
 additional arguments as are necessary to obtain our results.

 3.2.1. The model. The varying susceptibility of sites forces a more careful identification
 between sites at one time period and another. We therefore focus on the following generalisation
 of a simple oriented percolation model, which possesses the skip-free property (18) identified
 in the previous section and which is the discrete-time analogue of the three-state nearest-
 neighbour contact process with a similar immunisation property. The model corresponds to
 oriented percolation through time on the integers in which, given the state of the process at
 time n, each site which would potentially be infected at time n + 1 is only actually infected
 with some fixed probability q , independently of all else, unless it has never previously been
 infected, in which case it is infected with probability 1 .
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 The state Xn of the process {Xw}n>o at time n is given by Xn = {Xn(j t), x e Z}, where
 each Xn(x) e {- 1, 0, 1}, and where this has the interpretation

 - 1 if the site x is uninfected for all n' < n ,

 Xn{x) = 0 if the site x is uninfected at time n but has previously been infected,
 1 if the site x is infected at time n.

 In order to obtain a spatially symmetric model and to maintain the above skip-free property,
 we make the restriction that, at each time n, the set of sites x which possibly may be infected
 (Xw(jc) = 1) is the set of integers x e Z such that n + x is even. This will follow from
 the specification of the dynamics of the process below, provided we require that only evenly
 numbered sites may be infected at time 0. (In these dynamics, which we make precise below, a
 site which is infected at time n reverts to state 0 at time n 4- 1 ; a site which is in state - 1 or 0 at
 time n remains in the same state at time n + 1 unless it becomes infected at time n + 1 , in which

 case its state becomes 1 .) The above restriction on the locations of the infected sites at any
 time is of a purely technical nature and is not necessary is the (more natural) continuous-time
 version of the process.

 We assume therefore that Xq is such that Xo(jc) ^ 1 for odd jc. The state Xn+' of the process
 is obtained from Xn as follows: for each n and each jc e Z such that n + x is even, associate
 a random set i]n+'ìX c {- 1 , 1}; the random sets r)n+ 'yX are assumed i.i.d. over all n and all x.
 Define also, for each n, the set of 'potentially infected' sites Yn+ ' at time n+ 1, given by

 Yn+ 1 = ļ^J (x + *?n+ 1,jc)-
 {jc : n+x even, X„(jc)=l}

 Then, for x e Yn+' such that Xn(x) = 0, we take Xn+'(x) = 1 with probability q and
 Xn_|_i(jc) = 0 with probability 1 - q , independently of all else; for x e Yn+' such that
 Xn(x) = -1, we take Xrt+i(jc) = 1 with probability 1. For x Yn+', we take Xn+'(x) = - 1
 if Xn(x) = - 1 and Xn+'(x) = 0 otherwise. (Note that, by induction, these dynamics do
 indeed imply the property that, for all n and all jc, we may only have Xn (jc) = 1 when n + x
 is even. Note also that there is no additional generality in allowing the above probability 1,
 that a never previously infected site in the set Yn+ 1 becomes infected, to be replaced by any
 other probability qf > q: in such a case we may instead simply redefine the distribution of the
 random sets 77«+ 1,* to correspond to replacing each such set by the empty set with probability
 1 - q' independently of all else; we then replace q' by 1, and q by q/q' ', to re-express the
 model as an instance of that already considered.)

 We shall say that the process {Xw}rt>o survives to time n if Xn(x) = 1 for at least one jc
 and that it survives if it survives to all times n > 0. We assume that the process {Xn}n>o is
 supercritical , i.e. that, for any Xo such that Xo(jc) = 1 for at least one jc, there is a strictly

 positive probability that the process survives. Note that, if Xq is obtained from Xo by defining
 Xq(jc) = max(0, Xo(jc)) for all jc, and the resulting process {X'n }rt>o allowed to evolve as above,
 then, in this coupling, the survival of the process {X'n}n>o implies that of the process {Xrt}n>o.
 The former process may be viewed as an instance of the basic two-state contact process. It
 follows in particular that the supercriticality of the present three-state process is equivalent to
 that of the two-state process obtained as above.

 Given the process [Xn}n>o for each n , define rn = max{jc: Xn(x) = 1} to be the right
 endpoint of Xn (with, as usual, rn = -00 when Xn(x) ^ 1 for all jc). Our interest is in the
 behaviour of the process {rn}n> 0 for suitably chosen initial states Xo. (As usual, this, taken
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 together with the corresponding behaviour of the left-endpoint process, characterises the growth
 of the process {Xw}.)

 3.2.2. Formulation as a stochastic recursion and coupling. We now reformulate the process
 {Xn}n>o as a stochastic recursion (1) as in Section 2. The i.i.d. driving sequence {Çn}n> l is

 given, for each n > 0, by the pair £n+) = (£¿+1, /„+ 1). Here ^+l = {^+1 z}z<o,Zeven and
 each ?n+U £ < - 1 , 1 } is a random set with the common distribution of the random sets rjn+ 'jX
 above. Furthermore, In. |_i = {In+',ziz<0, z even and each In+',z *s an indicator random variable
 which takes the value 1 with probability q and is 0 otherwise. For each n, the random elements

 *«+i and /n+ 1 are independent; furthermore, the random sets *»+i, are independent over all z,
 as are also the random variables In+',z- The process {Xn}w>o is now updated as described
 above, via the stochastic recursion (1), taking, for each n and jc,

 rjn+ ',x = Hn+' ,x-rn> @2)

 analogously to (20). Furthermore, given n, let Kn+ 1 be the rightmost point of the set Yn+'
 defined above; in the case where x ' e Yn+' is such that Xn-'(xf) = 0 or Xn-'{xf) = 1, we
 take

 -X/i+iC* ) = /n+iiJC/_r^+ļ , (23)
 while, for x' e Yn+' such that Xn-'(x ') = -1, we already have Xn+'(x') = 1.

 For each n > 0, let [X^}nr>n be any version of the process {Xnr}nr>n, started at time n
 and defined through the above stochastic recursion (1) using (22) and (23) (with xffi replacing

 Xn /), in which X^'0) = 1 and X^'x) = - 1 for all x > 0. Let [r^}n'>n and {î^}n'>n
 respectively be the left- and right-endpoint processes associated with this process (i.e. r ^ =

 max{jc : X^'x) = 1}, with rffl = - oo if no such x exists, and = min{jc : X%'x) = 1},
 with = oo if no such x exists). (Note that, for each n' > n, it is only possible to have

 X%'x) = 1 at those sites x such that n' - n + x is even. Since our various processes will
 eventually be coupled starting from their right endpoints, this is as it ought to be.)

 Define also the particular version {xffi]nr>n of the above process, in which

 1 if jc = 0,

 X(nn)(x) = 0 if jc < 0,
 - 1 if jc > 0.

 Also, let {r^}nr>n and respectively denote the associated right- and left-endpoint
 processes. Note that it follows from the skip-free property of the dynamics of the process

 {X^}n'>n that, for all n' to which this process survives,

 X^'x) - 1 for all jc < r%' X%'x) = 0 for all jc < l%' (24)
 We now require the following lemma, which is a simple generalisation of the classical result

 for the nearest-neighbour two-state contact process on Z , and which gives the basic coupling
 on which the application of the theory of Section 2 depends.

 Lemma 1. For any instance of the process [X^}n/>n defined above and for the particular
 instance given by [X^}n>>nfor each n' to which the latter process survives ,

 X(nV (x) = X{f ( X ) for all x > . (25)
 In particular, we have - r^n 1 for all n' to which the process { }„/>„ survives.
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 Proof. The proof is also a simple generalisation of that which is well known for the classical
 two-state case, and is given by induction on n' > n. Thus, suppose that (25) holds for some

 particular n' > n such that the process {X^}n>>n survives to (at least) time n' - 1-1. It then
 follows from the dynamics of the two processes involved, and using the observations in (24),

 that, for every x such that X^+l(x) = 1, we also have X^+i(x) = 1. Furthermore, since the
 random sets rjn+'yX are subsets of {0, 1} (the skip-free property of the present model), any site

 A (fj'

 x > rn,}+x such that X^jCx) = 1 is necessarily infected (at least) by some site x' such that

 X%'xf) = 1, so that X^+i(x) = 1 also (i.e. no additional infection can pass from the left of

 at time n' to the right of Z^_ x at time nf + 1). Since we also have X^^(x) ^ - 1 and

 ^ _1 forallx ^ rn"+ 1 ' and Kn'l'(x) = *S-iOO = -1 for a» x > /?|,,then (25)
 holds with n' replaced by nf + 1 .

 We shall also require below the particular instance {Xn}n>o of the process {X^}w>o defined
 above (and started at time 0), given by

 *»w=r, 1-1 v-« if x > 0. <*> 1-1 if x > 0.

 This process is useful since, a.s., it survives for all time. This enables us to make some necessary
 definitions without an a priori need to condition on survival. Also, define {rn}n>o to be the
 right-endpoint process associated with the process {Xn}n>o.

 3.2.3. Definition of events Fn and times r¿. We define the sequence of events {Fn]nez+ of
 Section 2, analogously to Section 3.1, by saying that the event Fn occurs if and only if the

 process {xffi]nr>n survives for all future time, i.e. r ^ > - oo for all n' > n. It again follows
 from the definition of the process {X^}nr>n that the sequence {Fn}nGz+ satisfies conditions
 (Fl) and (F2) of Section 2. (That the common value p, say, of P(Fn) is strictly positive follows
 once more from our earlier assumption of supercriticality.)

 For each n > 0, define the event

 Hn = {Xn(x) = -1 for all jc > řn }

 (where {Xn}n>o is the process defined above with initial state Xo given by (26)). Note that
 an equivalent definition is that Hn = [rn > rn> for all nr < n}, i.e. that n is such that at that
 time the right-endpoint process {rn }„>o is at a record value. Note also that the event Ho always
 occurs, and further that, for all n, we have Hn e an.

 We define the sequence of events {An}n> o of Theorem 1 by, for each n, An = HnC I Fn. As
 usual the random times are the successive occurrence times of the events An. (The more
 complex definition of the events An, in comparison with that of Section 3. 1 , is required to make
 the right-endpoint couplings below work correctly.)

 We can now state and prove the following analogue of Proposition 1 .

 Theorem 3. The successive (segments of) processes {£r*+i, • • • , £t¿+i }, k > 0, are i.i.d.
 Furthermore , the distribution of each of these lengths is light tailed , i.e. geometrically bounded,
 and in particular possesses moments of all orders.

 Proof. We show first that the sequences of events {Fn}w>o and {Hn}n> o defined above are
 such that the conditions of Corollary 1 are satisfied. Note first that it follows from Lemma 1
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 (applied at the time n) that, for any n such that the event Hn occurs,

 fn, = řn + rfî for all ri > n to which the process {xffi]nr>n survives. (27)

 We first show condition (b) of Corollary 2. Fix« > Oandm > 0. Given that the event An occurs
 (which implies both the occurrence of the event Hn and the survival for all time of the process

 {X^ }n'>n)> it follows from (27) that the event Hn+m occurs if and only if there occurs the event

 E'án+m ^at the process {r¿ }n>>n is at a record value at time n + ra, i.e. > r^m, for all
 0 < m' < m. Condition (b) of Corollary 2 is now immediate, since the array {E%n+m}n> o,m>o
 trivially possesses the properties required by that condition. For condition (a) of Corollary 2,
 again fix n > 0 and m > 0. Given that the event Hn fi An+W occurs, it follows from (27) (both
 as stated and with n replaced by n + m) that the event An occurs if and only if there occurs the

 event Efnn+m that the process {xffl]nf>n survives to time n + m. Condition (a) of Corollary 2
 now follows, since again the array [E'n w+w}w>o,w>o trivially possesses the properties required
 by that condition. Thus, the first statement of the present theorem follows from Corollary 2.

 In order to prove the second statement, define the random timer' = {minn > 1 : An occurs}.
 As in the corresponding argument for the second statement of Proposition 1 , it is sufficient to
 show that the (unconditional) distribution of r' is geometrically bounded.

 We first show that if p is the first time to which the process {X^}„>o fails to survive then,
 as for the basic two-state contact process, there exists a > 0 such that

 F(n < p < oo) < c~an, n > 0. (28)

 For each n > 0, define the process {X^}n/>n via the above stochastic recursion (1) and (22),
 (23), with the initial state X ^ given by X^(0) = 1 and X^'x) = 0 for all other x. Let p
 be the minimum value of n > 0 such that the process {X%]nr>n (started at time n) survives.
 Suppose now that the process {X^}„/>o survives to time p ; then, in yet another instance of the
 coupling arguments used above (in which processes are 'matched' from their right endpoints),

 it follows from the above stochastic recursion that the process {X^}„/>o necessarily survives
 for all time. We deduce that if p < oo then necessarily p < p, and, thus, we conclude that, for
 all n > 0,

 F (n < p < oo) < P(p > n). (29)

 However, given the driving sequence {Çn}/i>i» the successive processes {xffl]nr>n are simply
 successive instances of the basic two-state nearest-neighbour contact process, in each case
 started with a single infective, launched by the sequence {í-n}n> l exactly as in Section 3.1. We
 have already observed in that section that the time required to initiate such a process which
 survives (the time to the first of the events Fn of that section) is geometrically bounded. The
 required conclusion (28) now follows from this and (29).

 To complete the proof, we need to show that the distribution of rf is geometrically bounded.
 We argue as in Section 3.1, again with a little extra complication. We again proceed forward in
 time, starting at time v' = 1 and checking at that, and at selected subsequent times k > 1,
 such that the event HVk occurs, whether the event Fn also occurs; if it fails to do so, we wait

 until the process {X^}n/>Vk dies out - which we have shown it then does in a time which is
 geometrically bounded - before resuming checking for Fvk+l at the first subsequent time ty+i
 such that HVk+l occurs. It follows, again from the right-endpoint coupling of Lemma 1 as in
 the first part of the present proof, that, for each such k > 1, the increment rVk+x - ?n is equal to

 the maximum value attained by the right endpoint of the process {X^]n'>Vk prior to its dying
 out, and so this increment is geometrically bounded. Furthermore, from the construction, the

 successive increments rVk+i - rVk are i.i.d. Let K be the number of checks required to obtain a
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 success (the event FVļC occurs). Then, since each of the above checks is independently successful
 with probability p > 0, the random variable K is geometrically distributed, independently of
 the above increments in the right-endpoint process {rn}. Thus, rVK - F' is a geometric sum of
 i.i.d. geometrically bounded random variables, and so rVK is geometrically bounded.
 Now let { rn }w>o be the right endpoint of the three-state process {Xn }w>o in which Xo(0) = 1

 and Xo(jt) = 0 for x ^ 0. Then, from the usual coupling rn < rn for all n , and so rVK is also
 geometrically bounded. However, {Xn}n>o is simply an instance of the supercritical two-state
 contact process, in which the set of initially infected sites is Z_ . It follows easily from the results

 of Kuczek for the regenerative behaviour of this process (as given in the previous section) that,

 since rVK is geometrically bounded, the random variable vk is itself geometrically bounded.
 Since vk is the time n to the occurrence of some event An, the result that ť is geometrically
 bounded now follows.

 Finally, consider again any instance {Xn}n>o of our three-state process, defined by the
 stochastic recursion (1) using (22) and (23) as above, in which the initial state Xo is such that
 Xo(jco) = 1 for some jco and Xo(jc) = - 1 for all x > jco. Again, let rn> - max{jc : Xn'(x) = 1}
 be its associated right-endpoint process. Let F be the event that the process {Xn}n>o survives.
 It follows from the earlier coupling for this process (with the time to replacing the time 0)
 that event F occurs if and only if the process {Xw}w>o survives to time to. Analogously to the
 situation for the two-state process, we have Fo c F, and, conditional on the event F and for
 all k > 0,

 k- 1

 fxk+n' = 'to + J2 + rļ+n> for a11 «' > 0.
 j= 0

 Thus, again as for the two-state process, we have the following corollary to Theorem 3.

 Corollary 5. For the process [Xn }w>o and on the set F defined above, the successive ( segments

 of) processes {rTit+ 1 , . . . , rTk+] }> k >0f are i.i.d. Furthermore , for some constant fi,

 fn

 n

 and , in the Skorokhod topology,

 'nt' ntfi [ii distribution as n - ► oo,
 V«

 where again B is Brownian motion with some nontrivial diffusion constant.

 Similar behaviour holds for the left-endpoint process for any process {Xw}n>o whose initial
 state Xo is such that Xo(jco) = 1 for some jco and XoQc) = - 1 for all x < Jto. Thus, finally,
 for any process { Xn}n>o whose initial state Xo is such that Xo(jc) = - 1 for all x outside some
 finite interval, we may deduce the behaviour, conditional on its survival, of both its left and
 right endpoints. In particular, conditional on its survival, the growth rate of the process is given
 by 2 /x, where ļi is as given by Corollary 5.

 4. Infinite-bin models

 In this section we consider a discrete-space infinite-bin model and its continuous-space
 analogue.

 In the discrete setting, we review the basic model introduced and studied in [13] (see also
 [10] and [15]). We recall a stability result from [13] (see Proposition 2 below), with a new
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 proof, and provide a new generalisation (see Theorem 4). We show that the both results may be
 considered as applications of the techniques developed in Section 2. Then we introduce a new
 continuous-space model and prove a new stability result there (see Theorem 5), by applying
 again the methodology from Section 2.

 4.1. Discrete-space infinite-bin model

 4.1.1. Basic model. Consider an infinite number of bins arranged on the line and indexed,
 say, by the nonpositive integers. Each bin can contain an unlimited number of particles (we
 assume it to be finite for the moment). A configuration is either a finite-dimensional vector
 X = (jc_/, . . . , Jto), where x ¡ is the number of particles in bin i, or an infinite-dimensional
 vector x = (. . . , x _/, . . . , Jto).

 The indexing by nonpositive integers is convenient because we are interested in the
 asymptotic behaviour of a finite number of rightmost coordinates of vectors representing a
 stochastic recursion. At each integer step, precisely one particle - the active particle - of the
 current configuration is chosen according to some rule (to be given below). If the particle is in
 bin -i < - 1 then a new particle is created and placed in bin - i + 1. Otherwise, if the chosen
 particle is in bin 0 then a new bin is created to hold the 'child particle' and a relabelling of the
 bins occurs: the existing bins are shifted by one place to the left (are re-indexed) and the new
 bin is given the label 0.

 To be more precise, define the configuration space X as the set of all infinite-dimensional
 vectors x = (. . . , jc_2, x-', jco) with nonnegative integer- valued coordinates, which have the
 following property: if jc_/ > 0 then jc_/+i > 0. In other words, either all the coordinates of a
 configuration vector are strictly positive or there is only a finite number of nonzero coordinates,

 say I + 1 - then these are coordinates j c_/ , jc_/+i , . . . , jco. We endow X with the natural topology

 of pointwise convergence, and let be the corresponding class of Borei sets generated by
 this topology.

 The extent of an x e X is defined as |jc| = I if there is / + 1 nonzero coordinates, x =
 (. . . , 0, 0, X-i , . . . , jco), with the X'-norm

 l

 Ik II = Ylx-j'
 7=0

 and if all the coordinates of x are positive, we set |x| = ||x|| = +oo.
 Let N be the set of positive integers. The dynamics of the model may be defined using the

 map f: X x N - ► X, where

 [x, 1] if£<*o,

 /(* , Ç) = ■ x + e-k if £*=o x-j < £ ^ Y!jtox-j> 0 <k < 1*1,
 x + e-'x' if§>||*||.

 Here [. x , 1] is a concatenation of the vector x with 1, i.e. if x = (. . . , j t_/, . . . , Jto) then [jc, 1] =

 (. . . , y-i-' , y-i, . . . , y-' , yo), where yo = 1 and y~j~ i = x-j for j > 0. Furthermore, e-j is
 the infinite unit vector whose - j th coordinate is 1 with all other coordinates equal to 0. Then,

 given an i.i.d. sequence {^n]nGZ+ of N-valued random variables and an X-valued random
 variable Xo = (. . . , X_¿+i,o, . . . , X_i,o, ^o,o)> we define a stochastic recursion by

 Xn+l = f (X/i* £/i+l)> W > 0,

 where Xn = (..., X-k n , . . . , X-'yn , Xo n ).
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 In words, the dynamics may be explained as follows. Each time n , we number again
 the existing particles from the rightmost bin to the leftmost (so, if Xn takes value x =
 (. . . , 0, x _/, . . . , Jto) then the particles in the rightmost bin are numbered 1 to jco, in the next bin

 they are numbered jto + 1 to jto + x-' , and so on). Then the random variable Çn is the number
 of the active particle defined in the earlier description.
 Fix a nonnegative integer k , and let Xn(- k) be the (k + l)-dimensional projection of Xn ,

 Xn(-k) = (X_M, x-k+u, . . . , Xo ,„).

 The following result may be found in [13].

 Proposition 2. Assume that {Çn}neZ+ w an i-i-d. sequence. Assume also that P(£/ = 1) > 0
 and E £,• < oo. Then, for any integer k > 0, Xn(-k) converges to a proper limiting random
 vector in the total variation norm. Therefore , Xn weakly converges to its proper limit.

 Based on the theory from Section 2, we can provide a short alternative proof of Proposition 2.
 We start with the simplest case k = 0. In this case, the proof is based on Corollaries 1 and 3.
 In order to avoid trivialities, assume that P(£/ = 1) < 1.
 Let the functions R¡ of Section 2 be given by Xn) = Xo,w+/. Furthermore, let

 f„ =p|{f„-H ^i}=nF"<- (3o)
 i> 1 />1

 Note that, since E < oo, the events Fn have strictly positive probability, and indeed satisfy
 conditions (Fl) and (F2) of Section 2. Define now, for each n , the event An = Fn. Clearly,

 m

 Fn H Fn+m - H JFw_ļ_w,
 i = 1

 and so condition (7) of Corollary 1 holds. Furthermore, condition (15) of Theorem 2 holds
 because, given the event Fn , the future process of placing particles is the same for all histories
 up to time n.

 Finally, the aperiodicity condition of Corollary 3 follows since

 P(Tn+l - X„ = 1) = P(T« =l< r/+l = 1 + !)
 I

 = £>(r„ = /)P(F/+, I Fi)
 I

 = P(Fi I F0)
 oo

 = Y'm < i - 1 u, < o
 /=2

 oo

 > < » - !)
 i= 2

 >o.

 The proof of Proposition 2 now follows in the case k = 0 from Corollaries 1 and 3.
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 For the proof of general k > 0, we need events of the form Bn = Hn fl Fn , where the events
 Fn are again as given by (30) and

 Hn= H fè.+1-i = 1}.
 1 <i<k

 We may observe that, given Hn , we have Xn{-k) = (1, 1,..., 1).
 Now we define the events An as follows: An = 0 for n < 2k and, for n > 2k ,

 k- 1

 A„ = n n *«'
 i= 1

 which may be represented as An = En-k,n H Fn for a stationary sequence En-k,n €
 Finally, we may take Rļ(Xn+i, Xn) = Xn+¡ (-k). Then all conditions of Theorem 2 are
 satisfied, and the result again follows from Corollary 3, on noting that once more aperiodicity
 follows from the condition P (£,• = 1) > 0.

 Remark 5. This model has close links to the model from [9]; see [13] for more details.

 4. 1 .2. Extension of the basic model. Consider the infinite-bin model introduced in Section 4.1.1,
 and let p¡ = P(Ç = i). One of the main conditions in Proposition 2 is that p' > 0. We assume
 now that this condition is violated and that instead the following condition holds: there exist
 two positive integers 1 < i' < /2 such that

 Pi j > 0 and pi2 >0. (31)

 Then the following statement holds.

 Theorem 4. Assume that {Çn }nGz+ ^ an i id. sequence with a common finite mean E £/. Assume
 also that p' = 0 and that condition (31) holds. Assume further that the numbers i' and /2 are
 mutually prime. Then , for any integer k > 0, Xn(-k) converges to a proper limiting random
 vector in the total variation norm. Therefore, Xn weakly converges to its proper limit.

 The proof of Theorem 4 will be based on the following simple observation (see, e.g. [8]).

 Lemma 2. For any two integers 1 < i' < 1*2, there exist a positive integer m and a sequence
 of integers j' , 72, • • • , jm- 1 £ {m , /2} such that , for any n > m and any vector Xn-m as in
 Section 4.1.1 , we have

 Xn,ol Bn > h^Bn as.,

 where the events Bn are defined as

 m- 1

 Bn = {£« - '2} ^ fļ {Hn-m+l - jlì ^ {Hn-m - ř2}- (32)
 /= 1

 Proof of Theorem 4. By the conditions of the theorem, the stationary events Bn defined
 by (32) have a positive probability.

 Let r = j' (k + 1). For n < r, we let An = 0. For n > r, let An = Hn fl Fn, with

 Hn = Bn-r n Dn , where Dn = ļ^ļ {Çw+1_/ = 1" 1 } ,
 1 <l<r

 and where

 /> 1
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 Clearly, for n > r, given the occurrence of the event Hn, all the coordinates of the vector
 %n(-k) are equal to i'. Thus, given the event Aw, the placings of the particles numbered
 n -I- 1 , n + 2, ... do not depend on the left tail of the vector Xn or on the past values of the

 vector Xj, j < n.
 One can check directly that both conditions (9) and (10) are satisfied.
 We may now define the functions R¡ of Section 2 by R¡(Xn+¡, Xn) = Xn+i(- k). Then
 condition (15) holds, which implies conclusion (16) of Theorem 2(a).
 Observe further that Bn+i fl Dn = 0 for any 1 < I < r. Therefore, An fi Anr = 0 for all
 n < n' with n' - n < r + Í2 - i' and P(An fl Anr) > 0 if nf - n > r + 12 - M . The latter
 implies the aperiodicity condition of Corollary 3, and the required result follows.

 4.2. Continuous-space model with varying link lengths

 In this section we introduce and study a new model which is a continuous-space extension
 of the infinite-bin model, and which has applications in, for example, queueing theory. As
 described below, it may be viewed as a model for the locations of points on the negative real
 line, in which at each successive time precisely one of these points gives birth to a further point,
 and in which it is convenient to associate a link between this child point and its parent. We thus
 think of it as a random links model. Once again, our aim is to study the asymptotic behaviour
 of this model as 'seen from the right'.
 Before introducing the new model, we remark that the basic model of Section 4. 1 . 1 may be

 described slightly differently. Namely, we may assume that, at each time n , particle number
 - j may be active with some probability, say p(-j). Each active particle proposes to put a new
 particle in the bin next to its own (in other words, at distance 1 to the right), and the rightmost

 active particle wins. If particles become active independently then this description coincides
 with the description proposed earlier if we let P(£ > j) = ]~[/=i0 - p(-i))-
 Now assume, for simplicity, that all the p(-j) are equal and introduce the following

 continuous-space extension of the model, in which the positions of particles are real valued:
 at time n , each active particle (say particle - j) proposes a location for the new particle at a
 random distance, ln~j to the right of particle - j (here the ln~j needs not be integer), and the
 rightmost proposed location (say that proposed by particle - jo) wins. Then we say there is a

 link of length ln,-j0 from particle -jo to the new particle.

 Remark 6. One may view this model as a model of a system with infinitely many servers
 and with random constraints. There is an infinite queue in front; each successive client n is
 allocated to a free server, but the start of its service is delayed by the maximum of times ln - j of
 all previous clients that are active; see e.g. [13] and the references therein for further comments.

 Remark 7. One can consider various natural generalisations of this setting where the same
 methodology may be easily applied. For example, we may assume that, at any time, the first
 K > 0 particles cannot be active and that all the others become active independently, with
 either equal probabilities p e (0, 1] or varying probabilities.

 Here is a formal description of the model. Let X be the space of left-infinite vectors of the
 form X = (. . . , X-ic, X-k+' , • • • » *-1 » *o)> where *0 = 0 and jc_£ < for all k > 1. We
 also assume that either all the coordinates of x are finite or some of them are equal to -00. In
 the latter case, due to the monotonicity, there will be only a finite number of finite coordinates,

 say, x-j = -00 for all j > k and x-j > -00 for all j < k for some k = 0,1,

 write x = (jc_£, . . . , xo) for short. We denote by Xo the space of finite-dimensional vectors
 (which may be viewed as a subspace of X).
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 Let X be the space of infinite sequences / = (. . . , /-¿./-¿+1, . . . , lo) consisting of non-
 negative real-valued elements, and let ā be the space of infinite sequences of the form q -
 {■■■,q-k,q-k+ 1, where each q_k e {0, 1}.

 Introduce the function

 f:XoxXxa^Xo

 using the following rule. For x = ( x-k , . . . , Jto), let

 h:=h(x,l,q) = max (*_/+/_/)
 {/: </_,- = 1}

 and

 h := /i(x, /, q) = x-k

 if q-i = 0 for all 0 < i < k.
 If h < 0 and, say, x _y- < h < X-j+' for some 7, then

 f(x,l,q) = (x-k, . . .,x-j, h,x-j+', . . . , jc0)

 and if h > 0 then

 h(x , /, q) = (x-k - h , *_*+i - Ä, . . . , - Ä, 0).

 In other words, if h < 0, we add an extra coordinate h , and if /1 > 0, we again add the coordinate
 and then subtract h from all coordinates of the new vector.

 Remark 8. An equivalent way to describe the dynamics is to use point processes. Instead of
 considering vectors, we may consider finite-ordered sequences of points, with the rightmost
 point at 0.

 Now we introduce stochastic assumptions. Let {ln} and {qn} be two i.i.d. sequences of
 vectors that do not depend on each other. Assume also that each 'n and each qn consists of i.i.d.

 random variables, lnj and qnj. Let q = ^{qnj = 0) = 1 - p with p - F(qnj = 1). Assume
 that P(/0,0 > 0) = 1 and that

 E(/o,o)2 < 00, (33)
 and let

 a = E/0,0.

 Recall that vectors Xn always have infinitely many coordinates. Our model is now defined
 by starting from a fixed vector Xo e Xo and running the stochastic recursion

 Xn+ 1 = f(Xn,'n,qn).

 Our aim is now to establish the following analogue of Theorem 4 for the discrete-space
 model.

 Theorem 5. For any j > 0, the finite-dimensional projections (Xn-j, . . . , Xno) of vectors
 Xn converge to a proper limiting vector in the total variation norm.

 Proof. Let vn = min{/ : qn-i - 1}. Then {vn} is an i.i.d. sequence with a common
 geometric distribution. It is convenient to us to assume this sequence to be doubly infinite,
 -00 < n < 00.
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 Analogously to Section 4.1.1, introduce the events

 F™ = < J)
 j> 1

 and conclude that these events form a stationary ergodic sequence, each with a strictly positive
 probability

 nF^ = Y'v-qJ}>o,
 j> i

 and, moreover, satisfy the monotonicity condition (7). Thus, by Corollary 1 , the times 0 <
 T' < T2 < • • • of the occurrences of the events F„ form a stationary renewal sequence. We
 may easily extend this sequence to the stationary renewal sequence • • • < T-' < 7o < 0 <
 T' < T2 < - • on the whole real line.

 Furthermore, the i.i.d. cycle lengths tk = 7*+i - Tk, k / 0, have a light-tailed distribution
 (i.e. have a finite exponential moment) and, therefore, a finite positive mean b = Et' . Also,
 the cycle T' - 7o has a light-tailed distribution.

 Assume for simplicity that the initial vector Xo corresponds to a single particle at the origin

 with all the others at -00. Number this particle 0. Each subsequent configuration Xn adds
 precisely one further, finitely located, particle to the configuration Xn-' (with the existing
 particles relocated if necessary). Number this particle n. Thus, particles are numbered in
 the order of their creation, and are assumed to keep their numbering for all subsequent times
 (including when they are relocated). Now colour 'red' all particles numbered 71, 72, . . i.e.
 those created at the occurrence times of the events colour 'green' the remaining particles.
 For each n and each k such that n > 7*+i, consider the relative locations of the particles in
 vector Xn. The following observations are clear:

 • the red particle 7¿ is located to the left of the red particle 7*+] , and the distance between
 them is a random variable, say, ¿4 which is stochastically bigger than the 'typical' link
 /0,0; in particular, E dk > a > 0;

 • all the green particles numbered 7* + 1 , . . . , 7¿+i - 1 are located between these two red
 particles;

 • the relative locations and, in particular, the distances between particles numbered 7¿ , . . . ,

 Tk+' stay the same for all n > 7*+i •

 Therefore, if n - 7*+i for some k > 0 then the 4 last coordinates of vector Xn take values
 between - du and 0, the next (to the left) tk- 1 coordinates take values between -dk- 1 - ¿4
 and -dk, • • tk coordinates take values between -d' - d^ - - - - dk and -di - ••• - dk,
 and then T' coordinates are smaller than - dk - ••• - d' (recall that there are also infinitely
 many coordinates equal to -00). Therefore, the vector Xn is smaller (coordinatewise) than the
 vector, say Yn , with infinitely many finite coordinates where the last tk coordinates equal 0, the
 next tk- 1 coordinates equal - ¿4, . . .» *i coordinates equal -¿/2

 - dk - • • • - d' , t-' coordinates equal - dk - • • • - do, etc.

 Furthermore, we may define vectors Yn for all n (and not only for those with I^d = 1) as
 follows: if Tk < n < 7*+ 1 for some k , we obtain the vector Yn by concatenating the vector Yjk
 with n - Tk coordinates equal to 0, i.e. Yn = (..., Yrk, 0, 0, ... , 0). Then, clearly, Yn > Xn,
 coordinatewise, for all n > 0.

 Since the sequence {7^} is stationary and renewal, the vectors {Yn} form a stationary ergodic
 sequence. For any n , let Tn$ < n be the last occurrence time of the events before or at
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 time n, let 7^-1 < Tn$ the previous such time, and so on. Furthermore, let dnj be the distance
 between particles Tnj-' and Tnj in the vector Yn. By stationarity, the random variable Tn$ - n
 has the same distribution as 7b and the random vectors {( Tnj - Tn^-', dnj)}, i < 0, do not
 depend on Tn$ and are i.i.d., with the same distribution as (t' , d').

 Let bo = E|7o|. For s e (0, 1), consider the following events:

 Hn = {n - r„,o < bod + e)} n < b( 1 + e), dn,¡ > a(l - «)}. (34)
 i< 0

 These events form a stationary ergodic sequence and, by the strong law of large numbers, have
 a positive probability for any s > 0. Furthermore, one can see that, for n' < n, if the events

 Hn' and occur, with Tnj = n' for some j < 0, then, for event Hn to occur, it is sufficient
 for (34) to hold only for j between i and 0. Namely,

 Hn' n F™ n {Tnj = n'' r'Hn = Hn, n F(J} n {TnJ = n'} n En>,n, (35)

 where the event En> n belongs to the cr -algebra an> n and does not depend on j . Let An =
 Hn D F„' Taking the union in all j in (35), we obtain condition (10) with An in place of An.
 Condition (9), again with An in place of An , may be verified similarly.

 Let the constants c_y, j > 0, be defined as

 c-j =0 for 0 < j < bo(' + e) + b(' + e)

 and, for r > 1 ,

 C- j = ra(' - e) for (1 + s)(bo + rb) < j < ( 1 + e)(bo -f (r + 1 )b).

 Introduce now a second 'future' event

 Fn2) = Wi,o > sup(/w+i,_7 +cn-j) ' O {forali i > 1, ln+i,vn+i > sup(ln+'-j+cn-j)'.
 1 j> 0 J 1 j>i >

 Clearly, for each n, the events Hn , F^' and are mutually independent. Furthermore, the
 events F^ form a stationary ergodic sequence and, by (33), have a strictly positive probability.
 The meaning of the event F^ is: all locations for 'new' particles (with numbers greater than n)
 generated by 'old' particles (with numbers less than n) are relatively small; thus, given the
 simultaneous occurrence of the three events Hn, F^' and F^' all future links (starting from
 time n) are established only between particles numbered n,n+ 1 , n + 2,

 Let Fn = Fn^ H Fn2' and let An - HnnFn. We may conclude that the stationary sequence
 of events {Fn} satisfy properties (Fl) and (F2). Furthermore, an extra intersection with events

 ( 2)
 Fn preserves properties (10) and (9), so the conclusion of Corollary 2 holds.

 The conclusions of Theorem 1 thus hold. It is also easy to verify aperiodicity for the times
 rn defined in Theorem 1, because P(t2 = 1) > 0. Then we may take the random functions R¡
 of Section 2 to be given by /?/(Xrt+/, Xn) = (Xw,_y, . . . , X„,o) f°r any fixed y, and conclude
 that the conditions of Theorem 2 and Corollary 3 are satisfied too. The result now follows from
 the latter corollary.

 5. Relation to Harris ergodicity

 In this section we revisit the basic concept of Harris ergodicity and show that it may be
 considered as a particular case of the approach developed in Section 2.
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 It is known (see, e.g. [6], [7], and [18]) that a time-homogeneous Markov chain {Xn} taking
 values in a measurable state space (X, <©%) may be represented as a stochastic recursion (1)
 with i.i.d. driving sequence {£„} if one assumes to be countably generated. Moreover,
 without loss of generality, one may assume that the random variables Çn are real valued and
 uniformly distributed on the interval (0, 1).
 Recall the following classical definition.

 Definition. A time-homogeneous aperiodic Markov chain {Xn } taking values in a general state
 space (X, dB%) is Harris ergodic (or Harris positive recurrent) if the following conditions
 hold:

 (i) there exist a set V e a number 0 < p < 1, an integer m > 1, and a probability
 measure (p on ( X , £%) such that

 (1.1) if r = r(V) min [n ^ 1 . G V } is the first hitting time of the set then, for
 any x G X,

 Fx(r < oo) = 1,

 (1.2) sup^yE^r < oo,

 (ii) for any x e V,
 Vx(Xm e •) > p<p (■),

 where Fx and Ex respectively denote the probability and expectation conditional on {Xo = x}.
 Note that, frequently, the set V is called positive recurrent if conditions (i. 1 )- (i.2) hold.

 The following result holds (see, e.g. [22]).

 Proposition 3. Assume that the Markov chain {Xn} is Harris ergodic. Then there exists a
 unique stationary (invariant) distribution i r, which is also limiting in the sense of convergence
 in the total variation norm: for any Xq = x e X,

 sup |Pjc(Xw e B) - n(B)' - >• 0 as n - ► oo. (36)
 BeBx

 Conversely , if (36) holds for any initial value Xo = x e X then the Markov chain is Harris
 ergodic.

 The 'coupling-type' interpretation of the dynamics of a Harris ergodic Markov chain was
 proposed in [2] and [24]; see also [6], [7], and [14]. This may be done as follows: we run
 a Markov chain until it hits the set V (say at time n), then we flip a coin (independently of
 everything else) with probability p of getting a head. If this happens then we say that n + m is
 the success time when the Markov chain 'forgets its past', i.e. Xw+/n has distribution (p which
 is independent of what has happened before time n (but may depend on what has happened at
 times n + 1 , . . . , n + m - 1). If, on the contrary, we get a tail (which occurs with probability
 1 - /?), we wait for the first time after time n + m when the Markov chain visits V again and
 then independently flip another coin. After a geometric number of trials, we come to a success
 with probability 1. It is well known (see, e.g. [1] or [22]) that the Harris ergodic Markov
 chain may be made regenerative if m = 1 , and wide-sense regenerative and possessing the
 one-dependence property if m > 2 (the definitions are given in Section 2 after Theorem 4).
 More precisely, let 0 = To < T' < Ti < • • • be the times of successes. Then the cycle lengths
 7/4-1 - 7/ are i.i.d. in i > 0, and the cycles (7/+i - 7/, Xt¿, Xt¿+', . . . , Xtì+x-') are i.i.d.
 in / > 1 if m = 1, and are one-dependent and identically distributed (for i > 1) if m > 2.
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 The one-dependence follows since if m > 2 then the set {n + 1 , . . . , n + m - 1 } is nonempty,
 and if, say, Tt = n + m for some /, then the values Xn+' , . . . , Xn+m-' belong to the i th cycle,
 but they also depend, in general, on the value Xn+m that belongs to the (/ + l)th cycle.

 For self-containedness, we recall in more detail the coupling construction of Athreya and
 Ney [2], in the particular case m - 1; see [27, p. 366] for the general case. Let P(: t, B ) be
 the transition kernel of the Markov chain. Then, using condition (2) in the above definition of
 Harris ergodicity, for x e V,

 P(j t, B) - pw(B)
 P(x, B) = p<p(B) + (1 - p) P(j t, B) i / - pw(B) = p<p(B) + (1 - p)Q(x, B), i - p

 where Q is also a transition probability kernel.
 Now we provide the coupling construction. First, let {an} be an i.i.d. sequence with

 common distribution F(an - 1) = 1 - F(an = 0) = p. Second, let {£„} be another i.i.d.
 sequence (having, say, a distribution which is uniform on (0, 1)) that does not depend on {an}.
 Furthermore, let g' : X x (0, 1) - ► X and g2 : V x (0, 1) -> X be two measurable functions
 such that gi(jc, Çn) has distribution P(x, •) and g2(x, Çn) has distribution Q(; c, •). Finally, let
 {ýn} be a third independent i.i.d. sequence with distribution (p.

 Then the dynamics of Xn are defined as follows:

 • if Xn e V andan+' - 1, then Xn+' - iļrn+ 1;

 • if Xn g V andaw+i = 0, then Xn+] = g2(x, fn+i);

 • if Xn eV then Xn+' = g '(x, ?w+i).

 Clearly, Xn may be represented as a stochastic recursion with an i.i.d. driving sequence =
 (Çn,cin, Therefore, for m = 1, Proposition 3 may be viewed as a particular case of
 Corollary 3, with Hn - { Xn e V}, Fn - [an+' = 1}, An = Hn fl Fn , rn = Tn , and
 Ri(XTtt+hXTtt) = XTtt+i. This follows since condition (7) and then conditions (9) and (10) are
 immediately verified.

 In the case m > 1, we need a slightly more elaborated coupling construction to conclude
 that again Proposition 3 may be viewed as a particular case of Corollary 3.

 6. Comments

 There is an extensive list of other examples, and we mention here a few only.
 First, there are directions where the methodology may be applied directly: Markov chains

 with long memory (see, e.g. [9], [11], and [16]); excited random walks (see, e.g. [4], [5], and
 [21]); modified random walks (see, e.g. [25]).

 Second, there are models which involve conditioning on the infinite future which - in contrast

 with examples considered in this paper - has probability 0 in the original probability space; see,
 e.g. [3].

 A further interesting example of an embedded regenerative structure is of shifts of Brownian
 motions; see [20].

 In the case where the future event Fn admits a representation

 Fn = H Fn.k>
 k>n

 where the Fn ¿ e satisfy the monotonicity property (7), one can introduce a general scheme
 for 'perfect simulation' of the process along the lines of, say, [13].
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 1110 S. FOSS AND S. ZACH ARY

 We also comment that our results may be directly extended onto more general models where
 either the elements of the driving sequence {t-n } remain independent but are only 'asymptotically

 identically distributed', or where this sequence is regenerative or, more generally, converges
 (in an appropriate manner) to a regenerative sequence. Here the renovation method (see, e.g.
 [6]), or the method of renovating events, may be of use.
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