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This thesis consists of an introduction and five papers, of which two contribute to the theory of 
directed random graphs and three to the theory of greedy walks on point processes. We consider 
a directed random graph on a partially ordered vertex set, with an edge between any two com-
parable vertices present with probability p, independently of all other edges, and each edge is 
directed from the vertex with smaller label to the vertex with larger label. In Paper I we consider 
a directed random graph on ℤ2 with the vertices ordered according to the product order and we 
show that the limiting distribution of the centered and rescaled length of the longest path from 
(0,0) to (n, ⌊na⌋), a<3/14, is the Tracy-Widom distribution. In Paper II we show that, under a 
suitable rescaling, the closure of vertex 0 of a directed random graph on ℤ with edge probability 
n−1 converges in distribution to the Poisson-weighted infinite tree. Moreover, we derive limit 
theorems for the length of the longest path of the Poisson-weighted infinite tree.

The greedy walk is a deterministic walk on a point process that always moves from its current 
position to the nearest not yet visited point. Since the greedy walk on a homogeneous Poisson 
process on the real line, starting from 0, almost surely does not visit all points, in Paper III we 
find the distribution of the number of visited points on the negative half-line and the distribution 
of the index at which the walk achieves its minimum. In Paper IV we place homogeneous Pois-
son processes first on two intersecting lines and then on two parallel lines and we study whether 
the greedy walk visits all points of the processes. In Paper V we consider the greedy walk on 
an inhomogeneous Poisson process on the real line and we determine sufficient and necessary 
conditions on the mean measure of the process for the walk to visit all points.
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1. Introduction

This thesis contributes to two models in probability theory: directed random
graphs and greedy walks. All models studied in this thesis are related to
point processes. As they play an important role in the proofs, we give a brief
overview of point processes in Section 1.1. The first two papers included in the
thesis study models of directed random graphs, which are introduced in Sec-
tion 1.2. In Paper I we look at the longest path in a long and thin rectangle and
prove that the length of such a path, properly rescaled and centered, converges
to the Tracy-Widom distribution. To be able to show this, we observe that
there are special points in the graphs, called skeleton points, which are defined
in Section 1.3. The Tracy-Widom distribution is described in Section 1.4. The
last three papers study greedy walks defined on various point processes. The
greedy walk model is presented in Section 1.5.

1.1 Point processes
In this section we define point processes in one dimension and explain the con-
cept of a stationary and ergodic point process. We also present two examples
of point processes. Point processes (or some models of point processes) are
studied in many textbooks in probability theory and stochastic processes. For
a broad survey of the theory of point processes we refer to [15].

Let E be a complete separable metric space and let B(E) be the Borel
σ -field generated by the open balls of E. A counting measure m on E is a
measure on (E,B(E)) such that m(C) ∈ {0,1,2, . . .}∪{∞} for all C ⊂B(E)
and m(C)< ∞ for all bounded C ⊂B(E). The counting measure m is simple
if m({x}) is 0 or 1 for all x ∈ E. Let M be the set of all counting measures
on E and let M be the σ -field of M generated by the functions m 7−→ m(C),
C ∈B(E). A counting measure m can be expressed as

m(·) = ∑
i∈N

kiδxi(·),

where ki ∈ {0,1,2, . . .}, {xi : i ∈N} ⊂ E and δx denotes the Dirac measure. If
m is a simple counting measure, then ki = 1 for all i ∈ N.

A point process is a measurable mapping from a probability space (Ω,F ,P)
into (M,M ). The point process is simple if it is a simple counting measure
with probability 1. Instead of thinking of a simple point process Π as a ran-
dom measure, we may think of Π as a random discrete subset of E. We write
|Π∩A| for the number of points of Π in the set A and x ∈Π for |Π∩{x}|= 1.
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A point process Π is stationary if, for all k ≥ 1 and for all bounded Borel
sets A1,A2, . . . ,Ak ⊂B(E), the joint distribution

{|Π∩ (A1 + t)|, |Π∩ (A2 + t)|, . . . , |Π∩ (Ak + t)|}

does not depend on the choice of t ∈ E.
For t ∈ E, define the shift operator θt : M→M by θtm(A) = m(A+ t) for all

A ∈B(E). Let I be the set of all I ∈B(E) such that θ
−1
t I = I for all t ∈ E.

We say that a stationary point process is ergodic if P(Π ∈ I) = 0 or 1 for any
I ∈I .

If E = R, then the rate of a stationary point process is defined as ρ =
E
[∣∣Π∩ (0,1]∣∣] (more generally, for a stationary point process on any E the

rate is the expected number of points in a set of measure 1). If the rate m is
finite, then the limit

ψ = lim
x→∞

|Π∩ (0,x]|
x

exist almost surely and Eψ = ρ . If a stationary point process with finite rate
m is ergodic, then

P(ψ = ρ) = 1.

Two standard examples of point processes appearing also in this thesis are
Bernoulli processes and Poisson processes. Let {Xi}i∈Z be a sequence of in-
dependent random variables with Bernoulli distribution with parameter p, that
is, for all i∈Z, P(Xi = 1) = 1−P(Xi = 0) = p. The law of φ = {i∈Z : Xi = 1}
is called Bernoulli process with parameter p.

Let ψn = {i/n : Xi = 1} be the rescaled Bernoulli process with parameter
n−1. The number of points of ψn in any interval (a,b] has binomial distribu-
tion with parameters bn(b−a)c and n−1 and this distribution converges to the
Poisson distribution with mean (b−a). Moreover, the number of points of ψn
in disjoint sets are independent and this is preserved in the limit. The law of
the limit of the processes ψn is called the homogeneous Poisson process with
rate 1. Both, a Bernoulli process and a homogeneous Poisson process, are
stationary and ergodic point processes.

In general, a Poisson process on R is defined as follows. A Poisson pro-
cess Π with mean measure µ is a random countable subset of R such that the
number of points in disjoint Borel sets A1,A2, . . . ,An are independent and so
the number of points in a Borel set A has the Poisson distribution with mean
µ(A), that is,

P(|Π∩A|= k) = e−µ(A) µ(A)k

k!
, k ≥ 0.

The mean density µ of a Poisson process might be given also in terms of an
intensity function λ , where λ : R→ [0,∞) is measurable, so that

µ(A) =
∫

A
λ (x)dx,
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for any Borel set A⊂ R. A Poisson process with a constant intensity function
λ is called a homogeneous Poisson process. A Poisson process with any other
mean measure is referred to as an inhomogeneous Poisson process.

Paper I contains yet another example of a stationary and ergodic point pro-
cess formed by special points in the graph called skeleton points. These points
are defined in Section 1.3.

1.2 Random graphs
One of the fundamental models of random graphs is the graph G(n, p) on the
vertex set V = {1,2, . . . ,n} with each pair of distinct vertices {i, j} connected
by an edge with probability p, 0< p< 1, independently of the other pairs. This
random graph is usually referred to as the Erdős-Rényi graph. The probability
p of connecting two vertices is called edge probability.

1.2.1 Directed random graphs
The directed random graph considered in this thesis is obtained from the
Erdős-Rényi graph on the vertex set {1,2, . . . ,n} with edge probability p by
directing all edges from the vertex with smaller label to the vertex with larger
label.

Directed random graphs have applications in computer science, biology and
physics. One such example from biology [14] is the modelling of food webs,
where the vertices {1,2, . . . ,n} represent different species and the presence of
a directed edge (i, j), i < j, indicates that species i is the predator and species
j the prey. In computer science we can find an example of a model of parallel
computation [19] where the directed edge (i, j) indicates that task i has to be
done before task j.

Directed random graphs have also been referred to in the literature as ran-
dom acyclic directed graphs and random graph orders. The name random
acyclic directed graph relates to the fact that for every acyclic directed graph
there exists a permutation of the vertices such that all of the edges are directed
from the vertex with the smaller label to the vertex with the larger label. The
other name, random graph orders, stems from a partial ordered set induced by
the edges in the graph, that is, i ≺ j whenever i < j and there is an edge be-
tween i and j. Various properties of directed random graphs have been studied
in terms of partial orders, for example width (the longest antichain) [7], height
(the longest chain) [2, 10, 17, 16], the number of linear extensions [4, 10] and
the number of incomparable pairs [10, 23].

In Paper I we consider an extension of the directed random graph to Z2

with labels of the vertices ordered according to the product order ≺, that is,
(i1, j1) ≺ (i2, j2) if the two pairs are distinct, i1 ≤ i2 and j1 ≤ j2. The graph
has an edge between any two comparable vertices present with probability p,
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independently of the other edges, and the edge is directed from the vertex with
the smaller label to the vertex with the larger label. There are no edges between
the vertices which are not comparable. We are interested in the asymptotic
behaviour of the height (the length of the longest path) of n×m subgraphs in
this graph.

An extension of the directed random graph to Z is considered in Paper II,
where we let p→ 0 and look at the height of the limit graph. A vertex i of the
directed random graph on Z with edge probability p is connected via directed
edges to the vertices j1, j2, j3, . . . , i < j1 < j2 < .. . , that form a Bernoulli
process { j1− i, j2− i, j3− i, . . .} with rate p starting from 0. As mentioned in
Section 1.1, a Bernoulli process on n−1Z with parameter n−1 converges to the
Poisson process with rate 1 as n→ ∞. It is therefore natural to guess that we
can find a similar connection also when we appropriately rescale the directed
random graph on Z and simultaneously let p→ 0. To be able to do this, we
need to introduce rooted geometric graphs.

1.2.2 Rooted geometric graphs
In a survey paper, Aldous and Steele [3] define rooted geometric graphs as
follows: Let G= (V,E) be a connected graph with a finite or countably infinite
vertex set V , edge set E and associated function w : E→ (0,∞] for weights of
the edges of G. The distance between any two vertices u and v is defined as
the infimum over all paths from u to v of the sum of the weights of the edges
in the path. The graph G is called a geometric graph if the weight function
makes G locally finite in the sense that for each vertex v and each ρ > 0 the
number of vertices within distance ρ from v is finite. If, in addition, there is
a distinguished vertex v∗, we say that G is a rooted geometric graph with root
v∗. The set of rooted geometric graphs will be denoted by G∗.

In Paper II we look at three rooted geometric random graph models. The
first model arises from the directed random graph on vertices {0,1,2, . . .}with
edge probability n−1. We look at a subgraph of the directed random graph
which consists of all vertices that are connected via a directed path to 0 and
of all edges between these vertices. This subgraph is also called the closure
of vertex 0. We take the vertex 0 to be the root and to each edge e = (i, j) we
assign the weight wn(e) = n−1| j− i|.

The other two models, the Bernoulli-weighted infinite tree with parame-
ter n−1 (BWITn) and the Poisson-weighted infinite tree (PWIT), are infinite
trees with vertex set U = {∅}∪

⋃
∞
k=1Nk such that ∅ is the root and any ver-

tex u ∈U of the tree has a countably infinite number of children with labels
u1,u2,u3, . . . . The weight functions for the BWITn and the PWIT are denoted
by ŵn and w, respectively. We define ŵn as follows: To each u ∈U assign an
independent Bernoulli process with parameter n−1 and let {ζ u

j , j ∈ N} be the
arrival times of that Bernoulli process. Let then, for each u ∈U and j ∈N, the
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weight ŵn of the edge (u,u j) be ŵn(u,u j) = n−1ζ u
j . Similarly, for the PWIT,

assign to each vertex u ∈U an independent Poisson process with rate 1 and
let {ξ u

j , j ∈ N} be the arrival times of that Poisson process. Then the weight
function w of the edges from the vertex u is given by w(u,u j) = ξ u

j , j ∈ N.
Aldous and Steele [3] also define the convergence of rooted geometric

graphs. Before defining the convergence, we need a definition of the iso-
morphism between two rooted geometric graphs. A graph isomorphism be-
tween rooted geometric graphs G = (V,E) and G′ = (V ′,E ′) is a bijection
Φ : V → V ′ such that (Φ(u),Φ(v)) ∈ E ′ if and only if (u,v) ∈ E and Φ maps
the root of G to the root of G′. A geometric isomorphism between rooted ge-
ometric graphs G and G′ is a graph isomorphism Φ between G and G′ which
preserves edge weights, that is w′(Φ(e)) = w(e) for all e ∈ E (where Φ(e)
denotes (Φ(u),Φ(v)) for e = (u,v)).

When comparing two infinite rooted geometric graphs, we look at their
subgraphs with all vertices at finite distance ρ from the root. Thus, define first
Nρ(G), where G ∈ G∗ and ρ > 0, to be the graph whose vertex set Vρ(G) is
the set of vertices of G that are at a distance of at most ρ from the root and
whose edge set consists of precisely those edges of G that have both vertices
in Vρ(G). We say that ρ is a continuity point of G if no vertex of G is exactly
at a distance ρ from the root of G.

We say that Gn converges (locally) to G in G∗ if for each continuity point
ρ of G there is an n0 = n0(ρ,G) such that for all n ≥ n0 there exists a graph
isomorphism Φρ,n from the rooted geometric graph Nρ(G) to the rooted geo-
metric graph Nρ(Gn) such that for each edge e of Nρ(G) the weight of Φρ,n(e)
converges to the weight of e.

In Paper II we propose the following distance function d on G∗: Let G1,G2 ∈
G∗ and define

d(G1,G2) =
∫

∞

0

R(Nρ(G1),Nρ(G2))

eρ
dρ,

where

R(Nρ(G1),Nρ(G2)) = min{1, min
{Φ: Φ:Vρ (G1)→Vρ (G2)

graph isomorphism}

max
{e: e edge

of Nρ (G1)}

|w(e)−w(Φ(e))|}.

This distance function makes G∗ into a complete separable metric space. More-
over, the notion of convergence in this metric space is equivalent with the def-
inition of convergence given by Aldous and Steele [3].

1.3 The longest path and skeleton points
In this section we define the longest path and skeleton points of a directed
random graph on the vertex set Z and we describe why the skeleton points are
an important tool in the evaluation of the length of the longest path.
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A path in a directed random graph is a sequence of vertices (i0, i1, . . . , i`),
i0 < i1 < · · ·< i`, such that every consecutive pair of vertices in the sequence
is connected by an edge. The length of a path is the number of edges traversed
along the path. The path between vertices i and j with maximal length is
called the longest path and is denoted by L[i, j]. In the example with food
webs, mentioned in Subsection 1.2.1, the maximal path represents the longest
food chain, while in parallel computation, if we assume that we have enough
processors and each task takes one unit of time, the maximum path length is
the total time needed for processing. In [2] and [17] it is shown that there
exists a constant C =C(p) such that

lim
n→∞

L[1,n]
n

=C a.s.

and also upper and lower bounds on C are provided.
A version of the central limit theorem for L[1,n] is studied in [10] and [16].

The first paper investigates the case that the edge probability p is a function of
n such that p tends to 0 slower than (logn)−1, while the second paper considers
the case that the edge probability p is constant. Both papers introduce skeleton
points as a tool to find an asymptotic distribution of L[1,n]. A vertex i is a
skeleton point if for all j, j < i, there exists a path from vertex j to vertex i
and for all j, j > i, there exists a path from vertex i to vertex j. Alon et al. [4]
showed that the probability of vertex i being a skeleton point is given by

λ =
∞

∏
k=0

(1− (1− p)k)2.

They further prove that the sequence of the skeleton points in a directed ran-
dom graph forms a stationary renewal process with the distances between two
successive skeleton points having all moments finite. Denote the skeleton
points by

· · ·< Γ−1 < Γ0 ≤ 0 < Γ1 < .. .

and let (Φ(n) : n ∈ Z) be a counting process such that Φ(n) = max{i : Γi ≤ n}
is the index of the last skeleton point before vertex n. An important property
of the skeleton points is that if γ is a skeleton point such that 1≤ γ ≤ n, then a
path with length L[1,n] must necessarily contain γ (see Figure 1.1).

i v γ w j

Figure 1.1. The gray point is the skeleton point γ . By the definition of the skeleton
points, there is a path from vertex v to γ and there is a path from γ to w. Therefore, the
longest path from vertex i to vertex j goes through skeleton point γ (marked by solid
lines), instead of connecting the vertices v and w directly (marked by dashed line).
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Therefore, we can write

L[1,n] = L[1,Γ1]+
Φ(n)

∑
i=2

L[Γi−1,Γi]+L[ΓΦ(n),n].

The first and last terms of the right hand side above are negligible when divided
by
√

n and the middle term is a sum of independent and identically distributed
random variables. Thus, as proved in [16, Thm. 2], the middle term carries
the weak limit of L[1,n] so that

L[1,n]−Cn
λσ
√

n
(d)−−−→

n→∞
N(0,1), (1.1)

where σ2 = var(L[Γ1,Γ2]−C(Γ2−Γ1)).

1.4 The Tracy-Widom distribution
One of the classic random matrix models is the Gaussian Unitary Ensemble
(GUE). That is an ensemble of n×n Hermitian matrices Mn with entries:

[Mn]i j =

{
Xi, j + iYi, j, if i < j
Zi, if i = j,

where {Xi, j, i, j ∈ {1,2, . . . ,n}} and {Yi, j, i, j ∈ {1,2, . . . ,n}} are independent
and normally distributed random variables with mean 0 and variance 1/2 and
{Zi, i ∈ {1,2, . . . ,n}} are independent and normally distributed random vari-
ables with mean 0 and variance 1. Moreover, all three families of random
variables are assumed to be independent. The term unitary refers to the fact
that the distribution is invariant under unitary conjugation, that is, for any uni-
tary matrix U the matrix U∗MnU has the same distribution as Mn.

Let λ n
1 ,λ

n
2 , . . . ,λ

n
n , with λ n

1 < λ n
2 < · · ·< λ n

n , be the eigenvalues of Mn. The
empirical distribution function of the eigenvalues, defined by 1

n ∑
n
i=1 δλ n

i /
√

n,

converges weakly, in probability, to the semicircle law with density 1
2π

√
4− x2

on [−2,2] [5, Thm. 2.2.1]. Fluctuations of λ n
n around the upper bound of the

density support 2 have been quantified by Tracy and Widom [24]. The limiting
distribution which they found is today called the Tracy-Widom distribution.
This distribution function describes universal limit laws for a wide range of
processes arising in mathematical physics and interacting particle systems. A
variety of the examples is collected in a survey by Tracy and Widom [25]. Here
we present two examples, a directed last-passage percolation and a Brownian
directed percolation model, which are important in the study of the length of
the longest path in Paper I.

A directed last-passage percolation model on N2
0 is defined as follows. Let

{X(i, j), i, j ∈ N0} be independent and identically distributed random vari-
ables. To each node (i, j) ∈ N2

0 we associate the weight X(i, j). Let Πm,n
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be the set of all up/right paths in N2
0 from (0,0) to (m,n), that is, all sequences

((0,0),(i1, j1), . . . ,(im+n−1, jm+n−1),(m,n)) such that each successive mem-
ber of the sequence has a single coordinate increased by 1. The last-passage
time from (0,0) to (m,n) is the maximum weight of all directed paths from
(0,0) to (m,n), that is,

Tm,n = max
π∈Πm,n

∑
(i, j)∈π

X(i, j).

Johansson [20] showed that if the weights are geometrically or exponentially
distributed, then Tn,banc, appropriately rescaled, converges in law to the Tracy-
Widom distribution as n→ ∞, for any a ≥ 1. Later, Bodineau and Martin
[9] proved that Tn,bnac, appropriately rescaled, converges to the Tracy-Widom
distribution, whenever the weights have a finite moment greater than 2 and a is
sufficiently small (the threshold depending on the order of the finite moment).
Independently, Baik and Suidan [6] obtained the same result for weights with
finite fourth moment and for a < 3/14.

A Brownian directed percolation model is defined on [0,∞)×{1,2, . . . ,n}
with a standard Brownian motion (B( j)

t , t ≥ 0) associated with every half-line
[0,∞)×{ j}. Then a last-passage time at t ≥ 0 is defined as

Zt,n = sup
0=t0<t1···<tm−1<tn=t

n

∑
j=1

[B( j)
t j −B( j)

t j−1
].

Baryshnikov [8] showed that Z1,n has the same distribution as the largest eigen-
value of a random n×n matrix from the GUE, and thus, appropriately scaled,
converges in distribution to the Tracy-Widom distribution as n→ ∞.

1.5 Greedy walks
Consider a simple point process Π in a metric space (E,d). We think of Π as
a collection of points (the support of the measure) and we assume that there
are no accumulation points in E. We define a greedy walk (Sn)n≥0 on Π recur-
sively as follows. The walk starts from some point S0 ∈ E and

Sn+1 = argmin
{

d(X ,Sn) : X ∈Π, X /∈ {S0,S1, . . . ,Sn}
}
, (1.2)

that is, the greedy walk always moves on the points of Π by picking the nearest
not yet visited point.

The greedy walk is a model in queueing systems where the points of the pro-
cess represent positions of customers and the walk represents a server moving
towards customers. Applications of such a system can be found, for example,
in telecommunications, computer networks and transportation. As described
in [11], the model of a greedy walk on a point process can be defined in vari-
ous ways and on different spaces. For example, Coffman and Gilbert [13] and
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Leskelä and Unger [21] study a dynamic version of the greedy walk on a circle
with new customers arriving to the system according to a Poisson process.

Bordenave et al. [11] and Rolla et al. [22] state that one can show, using
the Borel-Cantelli lemma, that the greedy walk on a homogeneous Poisson
process on the real line does not visit all the points of Π. Since none of their
papers gives a detailed proof of this claim, we include it here.

Theorem 1. Let Π be a homogeneous Poisson process with rate 1 on the real
line. Then the greedy walk, with S0 = 0, almost surely does not visit all points
of Π.

Proof. We show that, almost surely, the walk jumps over S0 only finitely many
times and, thus, visits only finitely many points on one side of S0. For ` ≥ 1
define the events

A` = {∃ n : `≤ Sn < `+1 and Sn+1 < 0}

that the walk jumps over 0 after visiting a point in [`,`+1). If A` occurs, then
from the definition of the greedy walk (1.2) it follows that all points of Π in
the open interval (Sn+1, 2Sn− Sn+1) have been visited in the first n steps. In
particular, Π has no points in the subinterval [`+ 1, 2`) ⊂ (Sn, 2Sn− Sn+1).
Therefore,

A` ⊂ {Π∩ [`, `+1) 6= 0}∩{Π∩ [`+1, 2`) = 0}

and
P(A`)≤ (1− e−1)e−`+1.

Since
∞

∑
`=1

P(A`)≤
∞

∑
`=1

(1− e−1)e−`+1 = 1,

the Borel-Cantelli lemma implies that

P(A` for infinitely many `≥ 0) = 0

and hence the walk does not visit all the points of Π almost surely.

A homogeneous Poisson process Π on the real line and its mirrored process
−Π have the same law. Moreover, the greedy walk exits any finite interval
in a finite time and jumps over 0 finitely many times. Thus, an immediate
observation is that

P( lim
n→∞

Sn =+∞) = P( lim
n→∞

Sn =−∞) =
1
2
.

Since the greedy walk visits finitely many points on one side of 0, in Paper III
we find the exact distribution of the number of visited points on the negative
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half-line, as well as the distribution of the last time when the point on the
negative half-line is visited.

Foss et al. [18] and Rolla et al. [22] study two modifications of the greedy
walk on a homogeneous Poisson process on the line. They introduce additional
points on the line, which they call “rain” and “dust”, respectively. Foss et
al. [18] consider a space-time model, starting with a Poisson process at time
0. The positions and times of arrival of new points are given by a Poisson
process on the half-plane. Moreover, the expected time that the walk spends at
a point is 1. In this case the walk, almost surely, jumps over the starting point
finitely many times and the position of the walk diverges logarithmically in
time. Rolla et al. [22] assign to the points of a Poisson process one mark with
probability p or two marks with probability 1− p. The points with two marks
can be visited twice by the greedy walk. The authors show that the points with
two marks force the walk to jump over the starting point infinitely many times.
Thus, unlike the walk on a Poisson process with only single marks, the walk
here almost surely visits all points of the point process.

In Paper V we introduce a third modification of the greedy walk on a real
line. We study the greedy walk on an inhomogeneous Poisson process. If the
mean measure of the process enforces many long empty intervals, then the
greedy walk might visit all points. We find necessary and sufficient condi-
tions which the mean measure of the Poisson process should satisfy so that the
greedy walk almost surely visits all points of the point process.

There are only a few results about the behaviour of the greedy walk on a
homogeneous Poisson process in higher dimensions. Boyer [12], in a simu-
lation study of the greedy walk on a strip R× [0,ε], observes that the greedy
walk bypasses some of the points of the process when the walk visits points
around them and those bypassed points cause the walk to change direction
later and to return towards the starting point. Assigning randomly two or more
marks to the points of the Poisson process on the line mimics the greedy walk
on a strip; bypassed points correspond to the points with multiple marks on
the line. An explanation is that the greedy walk needs to pass several times
over the point with multiple marks to delete all marks, similarly as the greedy
walk on the strip might pass several times around the point before it is finally
visited. Rolla et al. [22] conjecture that whenever the points of a Poisson
process are assigned two or more marks with positive probability, the greedy
walk visits all points of the point process. In Paper IV we study the greedy
walk on two homogeneous Poisson processes placed on two parallel lines at
distance r. This can be compared to a strip or the line with “double” marks,
because the greedy walk might pass on one line, leaving some of the points
on the other line unvisited. Those unvisited points cause the walk to return
towards the starting point.

Rolla et al. [22] also discuss the behaviour of the greedy walk on a homoge-
neous point process in Rd , d ≥ 2. They compare the steps of the greedy walk
with the Brownian motion in Rd . The Brownian motion in R2 is recurrent,
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Figure 1.2. The first 106 steps of the greedy walk in R2 starting from (0,0).

but the greedy walk has some local self-repulsion and it is uncertain how this
affects the walk in the long run. (See Figure 1.2 for a simulation of the greedy
walk in R2.) The Brownian motion in Rd , d ≥ 3, is transient and, thus, it is
expected that also the greedy walk in Rd , d ≥ 3, never visits some points.
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2. Summary of Papers

2.1 Paper I
In Paper I we consider a directed random graph on Z2 with vertices ordered
according to the product order ≺ and with edge probability p. We say that
((i0, j0),(i1, j1), . . . ,(i`, j`)), with (i0, j0)≺ (i1, j1)≺ ·· · ≺ (i`, j`), is a path of
length ` if all pairs of consecutive vertices in the sequence are connected via
an edge. We are interested in the random variable Ln,m, that is defined as the
maximum length of all paths between vertices (0,0) and (n,m). Denisov et al.
[16] found a version of a limit theorem for Ln,m when n tends to infinity, but
m is constant. In Paper I we prove a limit theorem for Ln,m when both n and m
tend to infinity, so that m = bnac.

Using a slightly modified definition of the skeleton points from Section 1.3,
we can find upper and lower bounds for Ln,m defined in terms of the skeleton
points. Further, we make a sequence of transformations in order to establish an
estimate Sn,m of Ln,m−Cn which resembles a last-passage percolation model.
Similarly as Bodineau and Martin [9], we couple Sn,m with a last-passage time
Zn,m of the Brownian directed percolation and show that, if properly rescaled,
they have the same limit distribution. Thus, the asymptotic distribution of Sn,m,
as well as the the asymptotic distribution of Ln,m, appropriately rescaled, is the
Tracy-Widom distribution as n→ ∞, m = bnac and a < 3/14.

2.2 Paper II
In Paper II we use the framework of rooted geometric graphs defined in Sub-
section 1.2.2. We look at the closure of vertex 0 of a directed random graph
on the vertex set {0,1,2, . . .}, with edge probability n−1 and weight function
wn((i, j)) = n−1|i− j|.

We prove that the closure of vertex 0 converges in distribution to the Poisson-
weighted infinite tree (PWIT) when n→ ∞. We do this in three steps: First
we show that the probability that the closure of vertex 0 in a finite radius is a
tree converges to 1. Whenever the closure of vertex 0 is a tree in a finite ra-
dius, it has the same law as the Bernoulli-weighted infinite tree with parameter
n−1 (BWITn) in that radius. Since the BWITn converges in distribution to the
PWIT, it follows that also the closure of vertex 0 converges in distribution to
the PWIT.

Moreover, let Lx be the length of the longest path of the PWIT, between all
paths from the root to a vertex at a distance of at most x from the root. Using
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the related results from Addario-Berry and Ford [1], we prove that the median
of Lx is

median(Lx) = xe− 3
2

logx+O(1),

where f (x) = O(g(x)) means that there exists a constant C > 0 such that
| f (x)| ≤C|g(x)| for all large x. We also show that the tails of the distribution
of Lx−median(Lx) are exponentially bounded. This implies that the expected
value of Lx is median(Lx)+O(1) and that the variance of Lx is O(1).

2.3 Paper III
In Paper III we study the greedy walk on a homogeneous Poisson process with
rate 1 on the real line starting from S0 = 0. Using properties of exponential
distribution, we are able to show that the probability that the walk jumps over
0 after visiting Sn is 2−n and that this probability is independent of the steps of
the greedy walk before time n. An immediate consequence of this observation
is that the expected number of times the walk jumps over 0 is 1/2.

Furthermore, let N be the number of visited points on the negative half-
line and let L be the index of the last step of the greedy walk which is less
than or equal to 0. We derive the exact distributions of these two random
variables. Moreover, we show that the quantities P(N = k) and P(L= k) decay
geometrically with factor 1/2.

2.4 Paper IV
In Paper IV we study the greedy walk on various point processes defined on
the union of two lines E ⊂ R2, where the distance function d on E is the
Euclidean distance, d ((x1,y1),(x2,y2)) =

√
(x1− x2)2 +(y1− y2)2. For each

point process, we answer the question whether the greedy walk visits all points
of the point process.

We study first a point process Π on two lines intersecting at (0,0) with inde-
pendent homogeneous Poisson processes on each line. The greedy walk starts
from (0,0). When the walk visits a point that is far away from (0,0), then the
distance to (0,0) and to any point on the other line is large and the probability
of changing lines or jumping over (0,0) is small. Using the Borel-Cantelli
lemma we show that almost surely the walk jumps over (0,0) or changes lines
only finitely many times, which implies that almost surely the walk does not
visit all points of Π.

Thereafter, we look at the greedy walk on point processes placed on two
parallel lines at a fixed distance r, R×{0,r}. The behaviour here depends on
the definition of the process. The first case we study is a process Π consist-
ing of two identical copies of a homogeneous Poisson process on R, that are
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placed on the parallel lines. We observe that the greedy walk visits the points
of Π in clusters: it visits successively all points on one line which are at the
distance less than r. When the next point on the line is at a distance greater
than r, the walk changes the line and it visits the copies of the visited points on
the other line in the reversed order. The last point the greedy walk visits in a
cluster is a copy of the first visited point of the cluster. Therefore, it is enough
to have information about the position of the first points of the clusters, to
know if the walk jumps over the vertical line {0}×R infinitely often. Thus,
we can just look at the closest points to (0,0) on line 0 of all clusters. Since
the distances between two first points of the cluster are identically distributed
and independent, we can use a similar argument as in the proof of Theorem 1
in Section 1.5 to show that the greedy walk moving just on the first points of
the clusters does not visit all points. Therefore, also the greedy walk on two
lines does not visit all the points of Π, but it visits all the points on one side of
the vertical line {0}×R and just finitely many points on the other side.

In the second case, we modify the definition of the process above by delet-
ing exactly one of the copies of each point with probability p > 0, indepen-
dently from the other points, and the line on which the point will be deleted
is chosen with probability 1/2. In particular, if p = 1 we have two indepen-
dent Poisson processes on these lines. For any p > 0, the greedy walk almost
surely visits all points. The reason is that the greedy walk skips some of the
points when it goes away from the vertical line {0}×R and those points will
force the walk to return and jump over the vertical line {0}×R infinitely many
times. We prove this using arguments from [22]. The idea is to show that the
walk starting from (0,0) almost surely returns and jumps over the vertical line
{0}×R in a finite time. Then we can repeatedly use that argument to show
that the walk jumps over the vertical line {0}×R infinitely often. In order to
prove that the walk jumps over the vertical line {0}×R in almost surely finite
time, we define a stationary and ergodic sequence of points Ξ that will never
be visited by the greedy walk. If Ξ is almost surely empty, then the probability
that the walk stays on one side of the starting point is 0 and the claim follows.
If Ξ is almost surely non-empty, then the distance between two points of Π is
infinitely often big enough so that the greedy walk prefers to return, visit the
bypassed points of Ξ and to jump over the vertical line {0}×R, instead of
moving further from the {0}×R.

In the third case, we place two identical copies of a homogeneous Poisson
process on the parallel lines, but this time we shift one of the copies by |s| <
r/
√

3. A first guess is that we can divide the points into clusters, as in the
first case, so that all points of a cluster are visited successively. However, one
can find examples when the walk moves to another cluster without visiting all
points of the cluster. Those points that are not visited, will cause the walk to
return later and jump over the vertical line {0}×R. Hence, the greedy walk
eventually visits all the points. The proof here follows similarly as the proof
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in the second case. Note that the result in all three cases is independent of the
choice of r.

2.5 Paper V
In Paper V we consider the greedy walk on an inhomogeneous Poisson pro-
cess on the real line. We assume that the greedy walk starts from 0 and we
assume that the Poisson process with mean measure µ has almost surely in-
finitely many points on each half-line. Moreover, we assume that there are
no accumulation points. We prove that if the mean measure µ of the Poisson
process satisfies∫

∞

0
exp(−µ(x,2x+R))µ(dx) = ∞ and

∫ 0

−∞

exp(−µ(2x−R,x))µ(dx) = ∞,

for all R ≥ 0 then the greedy walk almost surely visits all points. If either
integral is finite for some R ≥ 0, then the greedy walk almost surely does
not visit all points. The proof follows from the observation that the greedy
walk crosses 0 infinitely many times if and only if for all R ≥ 0 there are
infinitely many points X > 0 such that the interval (X ,2X +R) is empty and
infinitely many points Y < 0 such that (2Y −R,Y ) is empty. Given X and
Y , the number of points in those intervals have exponential distributions with
parameters µ(X ,2X +R) and µ(2Y −R,Y ), respectively. We use Campbell’s
theorem to determine if the sums over the points of the Poisson process of
the probabilities that the intervals are empty is convergent or divergent. The
conclusion that the intervals are empty infinitely often if and only if the sum
is divergent follows from the extended Borel-Cantelli lemma.

Using the criterion above, we are able to find a threshold function for the
property of visiting all points. That is, we can compare the tails of any density
function with the threshold function: If the tails of another function are below
the threshold function then the greedy walk visits all points and if the tails are
significantly above the threshold function, then the greedy walk does not visit
all points. We also discuss some cases when the tails are not comparable.
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3. Summary in Swedish

Denna avhandling består av en inledning och fem artiklar, av vilka två behand-
lar riktade slumpgrafer och tre behandlar giriga vandringar på punktprocesser.

I artikel I beaktar vi en riktad slumpgraf med nodmängd Z2. Dess kant-
mängd konstrueras genom att för varje par {(i1, i2),( j1, j2)} som uppfyller
i1 ≤ j1 och i2 ≤ j2 inkludera en kant från (i1, i2) till ( j1, j2) med sannolikhet
p, oberoende av alla andra par. Låt Ln,m beteckna den maximala längden av
alla vägar som ligger i en n×m–rektangel. Vi visar att för a < 3/14, Ln,bnac
konvergerar (efter centrering och lämplig omskalning) i fördelning till Tracy-
Widomfördelningen. Denna fördelning tros vara den universella gränsvärdes-
fördelningen för en stor klass av tvådimensionella processer i matematisk
fysik och interagerande partikelsystem.

I artikel II koncentrerar vi oss på en riktad slumpgraf med nodmängd Z.
Kantmängden konstrueras genom att, för alla i < j, inkludera en kant från i till
j med sannolikhet p, oberoende av alla andra par av noder. Det slutna höljet av
noden 0 är den delgraf som induceras av alla noder i så att det finns en riktad
väg från 0 till i. Då p = n−1 visar vi att det slutna höljet av 0 (efter lämplig
omskalning) konvergerar i fördelning till det Poisson-viktade oändliga trädet.
Dessutom härleder vi gränsvärdesresultat för längden av den längsta vägen i
det Poisson-viktade oändliga trädet.

En girig vandring (Sn)n≥0 på en enkel punktprocess Π i ett metriskt rum
(E,d) definieras som följer. Vandringen startar i någon punkt S0 ∈ E och
följer sedan regeln

Sn+1 = argmin
{

d(X ,Sn) : X ∈Π, X /∈ {S0,S1, . . . ,Sn}
}
.

Detta innebär att den giriga vandringen hela tiden går till den närmaste ännu
icke besökta punkten.

Den giriga vandringen på en homogen Poissonprocess på den reella tallinjen
besöker nästan säkert inte alla punkter. Med sannolikhet 1/2 divergerar den
till +∞ och besöker då som mest ändligt många punkter på den negativa delen
av tallinjen. I artikel III bestämmer vi fördelningen för antalet punkter som
besöks på den negativa delen av tallinjen, och fördelningen för det index för
vilket vandringen når sitt minimum.

I artikel IV undersöker vi den giriga vandringen på några olika punktpro-
cesser som definieras på unionen av två linjer i R2. Vi tittar först på fallet
då linjerna skär varandra. Om man placerar två oberoende endimensionella
Poissonprocesser på linjerna visar det sig att den giriga vandringen nästan
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säkert inte besöker alla punkter. Vi tittar sedan på fallet med två parallella
linjer. Resultaten här beror på hur processerna definieras. Om vardera linje
har en kopia av samma realisering av en homogen Poissonprocess, besöker
den giriga vandringen nästan säkert inte alla punkter. Om man för varje punkt
i denna process tar bort den (från en av de två linjerna, vald slumpmässigt)
med sannolikhet p, oberoende av alla andra punkter, besöker den giriga van-
dringen nästan säkert alla punkter. Slutligen studeras fallet då varje linje har
en kopia av samma realisering av samma Poissonprocess, men där en kopia
har förskjutits en sträcka s i sidled (där s är litet). I detta fall besöker den
giriga vandringen nästan säkert alla punkter.

I artikel V tittar vi på den giriga vandringen på en ickehomogen Poisson-
process på den reella tallinjen. Vi hittar tillräckliga och nödvändiga villkor på
intensiteten för att den giriga vandringen ska besöka alla punkter. Dessutom
undersöker vi tröskelbeteendet.
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Abstract. We consider a directed graph on the 2-dimensional integer lattice, plac-
ing a directed edge from vertex (i1, i2) to (j1, j2), whenever i1 ≤ j1, i2 ≤ j2, with
probability p, independently for each such pair of vertices. Let Ln,m denote the
maximum length of all paths contained in an n×m rectangle. We show that there
is a positive exponent a, such that, if m/na → 1, as n → ∞, then a properly cen-
tered/rescaled version of Ln,m converges weakly to the Tracy-Widom distribution.
A generalization to graphs with non-constant probabilities is also discussed.

1. Introduction

Random directed graphs form a class of stochastic models with applications in
computer science (Isopi and Newman, 1994), biology (Cohen and Newman, 1991;
Newman, 1992; Newman and Cohen, 1986) and physics (Itoh and Krapivsky, 2012).
Perhaps the simplest of all such graphs is a directed version of the standard Erdős-
Rényi random graph (Barak and Erdős, 1984) on n vertices, defined as follows: For
each pair {i, j} of distinct positive integers less than n, toss a coin with probability of
heads equal to p, 0 < p < 1, independently from pair to pair; if heads shows up then
introduce an edge directed from min(i, j) to max(i, j). There is a natural extension
of this graph to the whole of Z studied in detail in Foss and Konstantopoulos
(2003). In particular, if we define the asymptotic growth rate C = C(p), as the a.s.
limit of the maximum length of all paths between 1 and n divided by n, Foss and
Konstantopoulos (2003) provide sharp bounds on C(p) for all values of p ∈ (0, 1).

A natural generalization arises when we replace the total order of the vertex
set by a partial order, usually implied by the structure of the vertex set. In such
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a model, coins are tossed only for pairs of vertices which are comparable in this
partial order. The canonical case is to consider, as a vertex set, the 2-dimensional
integer lattice Z × Z, equipped with the standard component-wise partial order:
(i1, i2) ≺ (j1, j2) if the two pairs are distinct and i1 ≤ i2, j1 ≤ j2. Such a graph was
considered in Denisov et al. (2012). In that paper, it was shown that if Ln,m denotes
the maximum length of all paths of the graph, restricted to {0, . . . , n}×{1, . . . ,m},
then there is a positive κ (depending on p and the fixed integer m), such that(

L[nt],m − Cnt

κ
√
n

, t ≥ 0

)
(d)−−−−→

n→∞
(Zt,m, t ≥ 0), (1.1)

where Z•,m is the stochastic process defined in terms of m independent standard

Brownian motions, B(1), . . . , B(m), via the formula

Zt,m := sup
0=t0<t1···<tm−1<tm=t

m∑
j=1

[B
(j)
tj −B

(j)
tj−1

], t ≥ 0.

One can speak of Z as a Brownian directed percolation model, the terminology
stemming from the picture of a “weighted graph” on R × {1, . . . ,m} where the

weight of a segment [s, t]×{j} equals the change B
(j)
t −B

(j)
s of a Brownian motion.

If a path from (0, 0) to (t,m) is defined as a union
⋃m

j=1[tj−1, tj ] × {j} of such
segments, then Z represents the maximum weight of all such paths.

Baryshnikov (2001), answering an open question by Glynn and Whitt (1991),
showed that

Z1,m
(d)
= λm,

where λm is the largest eigenvalue of a GUE matrix of dimension m. Since Z•,m is
1/2-self-similar, we see that

Zt,m
(d)
=

√
tλm.

Now, fluctuations of λm around the centering sequence 2
√
m have been quantified

by Tracy and Widom (1994) who showed the existence of a limiting law, denoted
by FTW:

m1/6(λm − 2
√
m)

(d)−−−−→
m→∞

FTW.

A natural question then, raised in Denisov et al. (2012), is whether one can obtain
FTW as a weak limit of Ln,m when n and m tend to infinity simultaneously. Our
paper is concerned with resolving this question. To see what scaling we can expect,
rewrite the last display, for arbitrary t > 0, as

m1/6(
Zt,m√

t
− 2

√
m)

(d)−−−−→
m→∞

FTW.

A statement of the form X(t,m)
(d)−−−−→

m→∞
X, where the distribution of X(t,m) does

not depend on the choice of t > 0, implies the statement X(t,m(t))
(d)−−−→

t→∞
X, for

any function m(t) such that m(t) −−−→
t→∞

∞. Hence, upon setting m = [ta], we have

ta/6
(
Zt,[ta]√

t
− 2

√
ta
)

(d)−−−→
t→∞

FTW. (1.2)
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Therefore, it is reasonable to guess that, when a is small enough, an analogous limit
theorem holds for a centered scaled version of the largest length Ln,[na], namely that

na/6

(
Ln,[na] − c1n

c2
√
n

− 2
√
na

)
(d)−−−−→

n→∞
FTW, (1.3)

where c1, c2 are appropriate constants.
A stochastic model, bearing some resemblance to ours, is the so-called directed

last passage percolation model on Z
d (the case d = 2 being of interest here). We

are given a collection of i.i.d. random variables indexed by elements of Zd
+. A path

from the origin to the point n ∈ Z
d
+ is a sequence of elements of Z

d
+, starting

from the origin and ending at n, such that the difference of successive members
of the sequence is equal to the unit vector in the ith direction, for some 1 ≤
i ≤ d. The weight of a path is the sum of the random variables associated with
its members. Specializing to d = 2, let Ln,m be the largest weight of all paths
from (0, 0) to (n,m). Assuming that the random variables have a finite moment
of order larger than 2, Bodineau and Martin (2005) showed that (1.3) holds for
all sufficiently small positive a (the threshold depending on the order of the finite
moment). Independently, Baik and Suidan (2005) obtained the same result for
random variables with a finite 4th moment and for a < 3/14. In both papers,
partial sums of i.i.d. random variables were approximated with Brownian motions,
in the first case using the Komlós-Major-Tusnády (KMT) construction, while in
the second using Skorokhod embedding.

To show that (1.3) holds for our model, we adopt the technique introduced in
Denisov et al. (2012), which involves the existence of skeleton points on each line
Z × {j}. Skeleton points are, by definition, random points which are connected
with all the other points on the same line. In Denisov et al. (2012) Denisov, Foss
and Konstantopoulos used this fact, together with the fact that, for finite m, one
can pick skeleton points common to all m lines, in order to prove (1.1). However,
when m tends to infinity simultaneously with n, it is not possible to pick skeleton
points common to all lines. Modifying the definition of skeleton points enables us
to give a new proof of (1.1), as well as to prove (1.3). To achieve the latter, we
borrow the idea of KMT coupling from Bodineau and Martin (2005). However, we
need to do some work in order to express the random variable Ln,m in a way that
resembles a maximum of partial sums.

Although we focus on the case where the edge probability p is constant, it
is possible to consider a more general case, where the probability that a vertex
(i1, i2) ∈ Z× Z connects to a vertex (j1, j2) depends on the distances |j1 − i1| and
|j2 − i2| of the two vertices. This generalization is discussed in the last section of
the article.

2. The one-dimensional directed random graph

We summarize below some properties of the directed Erdős-Rényi graph on Z

with connectivity probability p taken from Foss and Konstantopoulos (2003). For
i < j, let L[i, j] be the maximum length of all paths with start and end points
in the interval [i, j]. Then, for i < j < k, we have L[i, k] ≤ L[i, j] + L[j, k] + 1.
Since the distribution of the random graph is invariant under translations, and is
also ergodic (the natural invariant σ-field is trivial), it follows, from Kingman’s
subadditive ergodic theorem, that there is a deterministic constant C = C(p) such
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that

lim
n→∞

L[1, n]/n = C, a.s. (2.1)

In fact, C = infn≥1 EL[1, n]/n. The function C(p) is not known explicitly; only
bounds are known (Foss and Konstantopoulos, 2003, Thm. 10.1). For example,
0.5679 ≤ C(1/2) ≤ 0.5961. We also know that there exists, almost surely, a random
integer sequence {Γr, r ∈ Z} with the property that for all r, all i < Γr, and all
j > Γr, there is a path from i to Γr and a path from Γr to j. The existence of
such points, referred to as skeleton points, is not hard to establish (Denisov et al.,
2012). Since the directed Erdős-Rényi graph is invariant under translations, so is
the sequence of skeleton points, i.e., {Γr, r ∈ Z} has the same law as {n+Γr, r ∈ Z},
for all n ∈ Z. Moreover, it turns out that the sequence forms a stationary renewal
process. If we enumerate the skeleton points according to · · · < Γ−1 < Γ0 ≤
0 < Γ1 < · · · , we have that {Γr+1 − Γr, r ∈ Z} are independent random variables,
whereas {Γr+1−Γr, r 	= 0} are i.i.d. Stationarity implies that the law of the omitted
difference Γ1−Γ0 has a density which is proportional to the tail of the distribution
of Γ2−Γ1. In Denisov et al. (2012) it is shown that the distance Γ2−Γ1 between two
successive skeleton points has a finite 2nd moment. One can follow the same steps
of the proof, to show that in our case, with constant probability p, this random
variable has moments of all orders. Moreover, one can show that for some α > 0
(the maximal such α depends on p) it holds that Eeα(Γ2−Γ1) < ∞.

The rate λ0 of the sequence of skeleton points can be expressed as an infinite
product:

λ0 :=
1

E(Γ2 − Γ1)
=

∞∏
k=1

(1− (1− p)k)2. (2.2)

For example, for p = 1/2, λ0 ≈ 1/12.
A central limit theorem for L[1, n] is also available (Denisov et al., 2012, Thm.

2). If we let

σ2
0 := var(L[Γ1,Γ2]− C(Γ2 − Γ1)), (2.3)

then
L[1, n]− Cn√

λ0σ2
0n

(d)−−−−→
n→∞

N(0, 1), (2.4)

where N(0, 1) is a standard normal random variable. Note that σ2
0 	= var(L[Γ1,Γ2]).

Unfortunately, we have no estimates for σ2
0 , but, interestingly, there is a technique

for estimating it, based on perfect simulation. This was briefly explained in Foss and
Konstantopoulos (2003) in connection with an infinite-dimensional Markov chain
which carries most of the information about the law of the directed Erdős-Rényi
random graph.

In addition, it is shown in Foss and Konstantopoulos (2003) that C can also be
expressed as

C =
EL[Γ1,Γ2]

E(Γ2 − Γ1)
. (2.5)

In fact, if {νr, r ∈ Z} is a random sequence of integers, defined on the same prob-
ability space as the one supporting the random graph, such that {Γνr , r ∈ Z} is a
stationary point process then

C =
EL[Γνr ,Γνr+1 ]

E(Γνr+1 − Γνr )
.
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The most important property of the skeleton points is that if γ is a skeleton
point, and if i ≤ γ ≤ j, then a path with length L[i, j] (a maximum length path)
must necessarily contain γ. This crucial property will be used several times below,
especially since, for every i < j, the following equality holds

L[Γi,Γj ] = L[Γi,Γi+1] + L[Γi+1,Γi+2] + · · ·+ L[Γj−1,Γj ].

Furthermore, the restriction of the graph on the interval between two successive
skeleton points is independent of the restriction on the complement of the interval;
hence the summands in the right-hand side of the last display are independent
random variables.

3. Statement of the main result

It is clear from (2.4) that the constants c1, c2 in (1.3) should be as follows:

c1 = C, c2 =
√
λ0σ2

0 . Now we can formulate the main result.

Theorem 3.1. Let C, λ0, σ
2
0 be the quantities associated with the directed random

graph on Z with connectivity probability p, defined by (2.1) (equivalently, (2.5)),
(2.2), (2.3), respectively. Consider the directed random graph on Z × Z and let
Ln,m be the maximum length of all paths between two vertices in [0, n] × [1,m].
Then, for all 0 < a < 3/14,

na/6

(
Ln,[na] − Cn√

λ0σ2
0

√
n

− 2
√
na

)
(d)−−−−→

n→∞
FTW, (3.1)

where FTW is the Tracy-Widom distribution.

To prove this theorem, we will first define the notion of skeleton points for the
graph on Z × Z and then prove pathwise upper and lower bounds for Ln,m which
depend on paths going through these skeleton points. This will be done in Section
4. In Section 5.1 we show that the difference between these bounds is of the order
o(nb), where b = (1/2)− (a/6) is the net exponent in the denominator of (3.1). We
will then (Section 5.2) introduce a quantity Sn,m which resembles a last passage
percolation problem and show that it differs from Ln,m by a quantity which is of the
order o(nb), when m = [na]. The problem will then be translated to a last passage
percolation problem (with the exception of random indices). This will finally, in
Section 5.3 be compared to the Brownian directed percolation problem by means
of strong coupling.

4. Skeleton points and pathwise bounds

Our model is a directed random graph G with vertices Z × Z. For each pair of
vertices i, j, such that i ≺ j, toss an independent coin with probability of heads
equal to p; if heads shows up introduce an edge directed from i to j.

A path of length � in the graph is a sequence (i0, i1, . . . , i�) of vertices i0 ≺ i1 ≺
. . . ≺ i� such that there is an edge between any consecutive vertices.

We denote by Gn,m the restriction of G on the set of vertices {0, 1, . . . , n} ×
{1, . . . ,m}. The random variable of interest is

Ln,m := the maximum length of all paths in Gn,m.

We refer to the set Z×{j} as “line j” or “jth line”, and note that the restriction of
G onto Z×{j} is a directed Erdős-Rényi random graph. We denote this restriction
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by G(j). Typically, a superscript (j) will refer to a quantity associated with this
restriction. For example, for a ≤ b,

L(j)[a, b] := the maximum length of all paths in G(j)

with vertices between (a, j) and (b, j)

and we agree that L(j)[a, b] = 0 if a ≥ b.
Clearly, the {G(j), j ∈ Z} are i.i.d. random graphs, identical in distribution to

the directed Erdős-Rényi random graph. Therefore, for each j ∈ Z,

lim
n→∞

L(j)[1, n]/n = C, a.s.

To establish upper and lower bounds for Ln,m, we need to slightly change the
definition of a skeleton point in G.

Definition 4.1 (Skeleton points in G). A vertex (i, j) of the directed random graph
G is called skeleton point if it is a skeleton point for G(j) (for any i′ < i < i′′, there
is a path from (i′, j) to (i, j) and a path from (i, j) to (i′′, j)) and if there is an edge
from (i, j) to (i, j + 1).

Therefore, the skeleton points on line j are obtained from the skeleton point
sequence of the directed Erdős-Rényi random graph G(j) by independent thinning
with probability p. When we refer to skeleton points on line j, we shall be speaking
of this thinned sequence. The elements of this sequence are denoted by

· · · < Γ
(j)
−1 < Γ

(j)
0 ≤ 0 < Γ

(j)
1 < Γ

(j)
2 < · · ·

and have rate

λ =
1

E(Γ
(j)
2 − Γ

(j)
1 )

= pλ0 = p
∞∏
k=1

(1− (1− p)k)2.

The associated counting process of skeleton points on line j is defined by

Φ(j)(t)− Φ(j)(s) =
∑
r∈Z

1(s < Γ(j)
r ≤ t), s, t ∈ R, s ≤ t,

together with the agreement that

Φ(j)(0) = 0.

Note that we insist on having the parameter t in Φ(j)(t) as an element of R (and
not just Z). We also let

X(j)(t) := Γ
(j)

Φ(j)(t)
,

Y (j)(t) := Γ
(j)

Φ(j)(t)+1
,

be the skeleton points on line j straddling t:

X(j)(t) ≤ t < Y (j)(t). (4.1)

Next we prove upper and lower bounds for Ln,m. The set of dissections of the
interval [0, n] ⊂ R in m non-overlapping, possibly empty intervals is denoted by

Tn,m := {t = (t0, t1, . . . , tm) ∈ R
m+1 : 0 = t0 ≤ t1 ≤ · · · ≤ tm−1 ≤ tm = n}.
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Lemma 4.2. (Upper bound) Define

Ln,m := sup
t∈Tn,m

m∑
j=1

L(j)[X(j)(tj−1), Y (j)(tj)] +m. (4.2)

Then Ln,m ≤ Ln,m.

Proof : Let π be a path in Gn,m. Consider the lines visited by π, denoting their
indices by 1 ≤ ν1 < ν2 < · · · < νJ ≤ m. Let (aj , νj) and (bj , νj) be the first and
the last vertex of line νj in the path π. Then the length of π satisfies

|π| ≤
J∑

j=1

L(νj)[aj , bj ] + J − 1.

Since successive vertices in the path should be increasing in the order ≺, we have
bj−1 ≤ aj , 2 ≤ j ≤ J . Hence, with b0 := 0,

|π| ≤
J∑

j=1

L(νj)[bj−1, bj ] + J − 1 ≤
J∑

j=1

L(νj)[X(νj)(bj−1), Y (νj)(bj)] + J − 1,

where we used (4.1). Since J ≤ m, we can extend 0 = b0 ≤ b1 ≤ · · · ≤ bJ ≤ n to
a dissection of [0, n] into m non-overlapping intervals, showing that the right-hand
side of the last display is bounded above by Ln,m. Taking the maximum over all π

in Gn,m, we obtain Ln,m ≤ Ln,m, as required. �

Note that the existence and properties of skeleton points were not used in the
proof of the upper bound, other than to ensure that the upper bound is a.s. finite.

Lemma 4.3. (Lower bound) Define

Δ(j)
n := max

0≤i≤Φ(j)(n)
(Γ

(j)
i+1 − Γ

(j)
i ),

and

Ln,m := sup
t∈Tn,m

m∑
j=1

L(j)[Y (j)(tj−1), X(j)(tj)]−
m∑
j=1

Δ(j)
n .

Then Ln,m ≥ Ln,m.

Proof : We will show that, for all t = (t0, . . . , tn) ∈ Tn,m, there is a path π in Gn,m

with length |π| satisfying
m∑
j=1

L(j)[Y (j)(tj−1), X(j)(tj)] ≤ |π|+
m∑
j=1

Δ(j)
n . (4.3)

Fix t ∈ Tn,m and use the notation

Ij = [Y (j)(tj−1), X(j)(tj)] = [aj , bj ], j = 1, . . . ,m.

Note that aj ≥ bj if there is one or no skeleton points on the segment (tj−1, tj ]×{j}
and then L(j)(Ij) = 0.

Given two skeleton points (x, i), (y, j) we say that there is a staircase path from
(x, i) to (y, j) if there is a sequence of skeleton points

(x, i) = (x0, i), (x1, i+ 1), . . . , (xj−i, j) = (y, j),
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such that x = x0 ≤ x1 ≤ · · · ≤ xj−i = y. See Figure 4.1. Clearly then, there is
a path from (x, i) to (y, j) which jumps upwards by one step each time it meets a
new skeleton point from the sequence. We denote this by

(x, i) s� (y, j).

x y
i

j

(

(

)

)

Figure 4.1. A staircase path from (x, i) to (y, j) jumps upwards
at skeleton points (denoted by x) but may skip several of them
before deciding to make a jump

Among all the staircase paths from (x, i) to (y, j), we will consider the best one,
defined by two properties:

• Property 1: A best path from (x, i) to (y, j) jumps from line k to line k+1,
k = i, i + 1, . . . , j − 1, at the first next skeleton point on line k, i.e. at the
points x0 and xk−i+1 = Y (k+1)(xk−i), k = i, . . . , j − 2.

• Property 2: Every horizontal segment of a best path is a path of maximal
length.

If all the intervals I1, . . . , Im are empty, the left-hand side of (4.3) is zero and
the inequality is trivially satisfied for any path π.

Otherwise, for a fixed t ∈ Gn,m we will construct a path π in Gn,m for which
(4.3) holds. Define a subsequence ν1 < ν2 < · · · of 1, . . . ,m, inductively, as follows:

ν1 := inf{1 ≤ j ≤ m : Ij 	= ∅}, (4.4)

νr := inf{j > νr−1 : (bνr−1 , νr−1)
s� (bj , j)}, r ≥ 2. (4.5)

See Figure 4.2 for an illustration. The procedure stops if one of the elements of the
subsequence exceeds m or if the condition inside the infimum is not satisfied by a
path in Gn,m.

Let J be the last index in the above defined sequence. Let π1 be a path of
maximum length from (aν1 , ν1) to (bν1 , ν1) and define, for r = 2, 3, . . . , J , a path
πr as a best staircase path from (bνr−1 , νr−1) to (bνr , νr). Note that, for each
r = 2, 3, . . . , J , J ≥ 2, the end vertex of πr−1 is the start vertex of πr. Therefore
we can concatenate the paths π1, . . . , πJ to obtain a path π. This path starts from
(aν1 , ν1) and ends at (bνJ , νJ).

Let

π(j) := the restriction of path π on line j

and |π(j)| its length on line j. Also, for j ≥ ν1 denote

(cj , j) := the first vertex on line j of path π.
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Figure 4.2. Illustration of the procedure defined by (4.4)-(4.5).
There are four best staircase paths: the path from (b2, 2) to (b3, 3),
the path from (b3, 3) to (b4, 4), the path from (b4, 4) to (b5, 5), and
the path from (b5, 5) to (b8, 8). Observe that Ij = (aj , bj), in
the figure, are nonempty only for j = 2, 5, 7 and 8 (these are the
highlighted intervals), but I7 is not visited by the constructed path.
Moreover, I8 is only partly visited and the path enters I8 at a point
c8 between b8.

Split the sum in the left-hand side of (4.3) along the elements of the subsequence
{ν1, . . . , νJ}:

m∑
j=1

L(j)(Ij) =

J+1∑
r=1

νr∑
j=νr−1+1

L(j)(Ij) =:

J+1∑
r=1

Gr,

where we have conveniently set

ν0 := 0, νJ+1 := m,

in order to take care of the first and last terms. By the defintion of ν1, the intervals
I1, I2, . . . , Iν1−1 are empty and

G1 = L(ν1)(Iν1
) = |π(ν1)|.

Assume now that 2 ≤ r ≤ J , and write

Gr =

νr∑
j=νr−1+1

L(j)(Ij) =

νr−1∑
j=νr−1+1

L(j)(Ij) + L(νr)(Iνr ).

Since πνr is the path of maximal length from (cνr , νr) to its end-vertex (bνr , νr)
(Property 2), if cνr < aνr then L(νr)(Iνr ) ≤ |π(νr)|. Define in this case I ′νr

= ∅.
Otherwise, we can write

L(νr)(Iνr ) ≤ L(νr)[aνr , Y
(νr)(cνr )] + L(νr)[Y (νr)(cνr ), bνr ].

Then, again because of Property 2, L(νr)[Y (νr)(cνr ), bνr ] < |π(νr)| and it is left
to find a bound on the interval I ′νr

= [aνr , Y
(νr)(cνr )]. Recall that by Property
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1, depending whether j is a member of the sequence {νr, r = 1, . . . , J} or not,
cj+1 = bj or cj+1 = Y (j)(cj), respectively. Also, because of Ij ⊆ [tj−1, tj ], we know

that L(j)(Ij) ≤ tj − tj−1. Hence, if νr − νr−1 > 1 it holds

νr−1∑
j=νr−1+1

L(j)(Ij) + L(j)(I ′νr
) ≤

νr−1∑
j=νr−1+1

(tj − tj−1) + (Y (νr)(cνr )− tνr−1)

≤ Y (νr)(cνr )− bνr−1 =

νr∑
j=νr−1+1

(Y (j)(cj)− cj) ≤
νr∑

j=νr−1+1

Δ(j)
n .

Combining the above, we obtain

Gr ≤
νr−1∑

j=νr+1

Δ(j)
n + |π(νr)|.

If νJ = m, then GJ+1 = 0. Otherwise, we can extend the sequence {cj , j =

ν1, ν1+1, . . . , νJ} defining iteratively cνJ+1 := bνJ
and cj+1 := Y (j)(cj) until cj > n

for some j. Let K be the last index such that cK ≤ n. As there was not possible
to construct the best staircase path after the line νJ , K is at most m. Similarly as
above, for GJ+1 it holds

GJ+1 =

m∑
j=νJ+1

L(j)(Ij) ≤
m∑

j=νJ+1

(tj − tj−1) ≤ n− bνJ

=
K∑

j=νJ+1

(Y (j)(cj)− cj) ≤
K∑

j=νJ+1

Δ(j)
n .

Finally, we obtain

m∑
j=1

L(j)(Ij) ≤
m∑
j=1

Δ(j)
n +

J∑
r=1

|π(νr)| ≤
m∑
j=1

Δ(j)
n + |π|,

as required. �

5. Further estimates in probability and Brownian directed percolation

In the present section we prove Theorem 3.1 as a sequence of lemmas.

5.1. Asymptotic coincidence of the two bounds. Looking at (1.3), we can see that
the correct scaling requires exponent

b :=
1

2
− a

6

in the denominator and condition a < 3/7, which is equivalent to a < b.
In the following two lemmas we will not specifically use the definiton of b and

condition on a. Both lemmas hold for more general a, b > 0, 0 < b− a < 1.

Lemma 5.1. With b = (1/2)− (a/6) and a < 3/7,

Ln,[na] − Ln,[na]

nb

(p)−−−−→
n→∞

0.
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Proof : Let t be such that the maximum in the right-hand side of (4.2) is achieved.
Then

Ln,m − Ln,m ≤ m+

m∑
j=1

Δ(j)
n

+
m∑
j=1

L(j)[X(j)(tj−1), Y
(j)(tj)]−

m∑
j=1

L(j)[Y (j)(tj−1), X
(j)(tj)]

≤ m+

m∑
j=1

Δ(j)
n

+
m∑
j=1

{
L(j)[X(j)(tj−1), Y

(j)(tj−1)] + L(j)[X(j)(tj), Y
(j)(tj)]

}

≤ m+
m∑
j=1

Δ(j)
n + 2

m∑
j=1

max
0≤i≤Φ(j)(n)

L(j)[Γ
(j)
i ,Γ

(j)
i+1]

≤ m+ 3

m∑
j=1

Δ(j)
n .

Hence

1

nb
E[Ln,[na] − Ln,[na]] ≤

na

nb
+ 3

na

nb
E[Δ(1)

n ].

Since b > a and the random variables {Γ(1)
i+1 − Γ

(1)
i , i ≥ 1} have a finite 1/(b − a)-

th moment, the converegence to 0 for the second term above follows by Lemma
A.1. �

5.2. Centering. We introduce the quantity

Sn,m := sup
t∈Tn,m

m∑
j=1

{
L(j)[X(j)(tj−1), X

(j)(tj)]− C[X(j)(tj)−X(j)(tj−1)]

}
.

This should be “comparable” to Lm,n − Cn when m = [na]. Indeed, we have:

Lemma 5.2. With b = (1/2)− (a/6), and a < 3/7,

Sn,[na] − (Ln,[na] − Cn)

nb

(p)−−−−→
n→∞

0.

Proof : We begin by rewriting the numerator above as

Sn,m − (Ln,m − Cn)

= sup
t∈Tn,m

{ m∑
j=1

L(j)[X(j)(tj−1), X
(j)(tj)] + Cn− C

m∑
j=1

[X(j)(tj)−X(j)(tj−1)]

}

− Ln,m.
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Upon writing n =
∑m

j=1(tj − tj−1), for any t ∈ Tn,m, we have∣∣∣∣n−
m∑
j=1

[X(j)(tj)−X(j)(tj−1)]

∣∣∣∣ =

∣∣∣∣
m∑
j=1

[tj −X(j)(tj)]−
m∑
j=1

[tj−1 −X(j)(tj−1)]

∣∣∣∣
≤ 2

m∑
j=1

Δ(j)
n .

Hence, on the one hand we have

Sn,m − (Ln,m − Cn) ≤ sup
t∈Tn,m

m∑
j=1

L(j)[X(j)(tj−1), X
(j)(tj)]− Ln,m + 2C

m∑
j=1

Δ(j)
n

≤ sup
t∈Tn,m

m∑
j=1

L(j)[X(j)(tj−1), Y
(j)(tj)]− Ln,m + 2C

m∑
j=1

Δ(j)
n

≤ Ln,m − Ln,m + 2C
m∑
j=1

Δ(j)
n .

On the other hand,

Sn,m − (Ln,m − Cn) ≥ sup
t∈Tn,m

m∑
j=1

L(j)[X(j)(tj−1), X
(j)(tj)]− Ln,m − 2C

m∑
j=1

Δ(j)
n

≥ sup
t∈Tn,m

m∑
j=1

L(j)[Y (j)(tj−1), X
(j)(tj)]− Ln,m − 2C

m∑
j=1

Δ(j)
n

≥ Ln,m − Ln,m − 2C
m∑
j=1

Δ(j)
n

= −(Ln,m − Ln,m)− 2C
m∑
j=1

Δ(j)
n .

Therefore,

|Sn,m − (Ln,m − Cn)| ≤ Ln,m − Ln,m + 2C
m∑
j=1

Δ(j)
n .

Thus, for m = [na], the result follows by applying Lemma A.1 and Lemma 5.1. �
Define now variance σ2 as

σ2 := var(L(j)[Γ
(j)
k−1,Γ

(j)
k ]− C(Γ

(j)
k − Γ

(j)
k−1))

and observe that σ2 = σ2
0/p. We work with the quantity 1

σSn,m, which can be
rewritten as

1

σ
Sn,m = sup

t∈Tn,m

m∑
j=1

Φ(j)(tj)∑
k=Φ(j)(tj−1)+1

χ
(j)
k ,

where

χ
(j)
k :=

1

σ

{
L(j)[Γ

(j)
k−1,Γ

(j)
k ]− C(Γ

(j)
k − Γ

(j)
k−1)

}
.
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Note that the random variables {χ(j)
k }k≥1,j≥1, indexed by both k and j, are inde-

pendent and that {χ(j)
k }k≥2,j≥1 are identically distributed with zero mean and unit

variance. The fact that the {χ(j)
1 }j≥1 do not have the same distribution will not

affect the result, so we will not separately take care of it.

5.3. Coupling with Brownian motion. The term 1
σSn,m resembles a centered last

passage percolation path weight, except that random indices are involved. There-
fore, we start using the idea of strong coupling with Brownian motions, analogously
to the proof in Bodineau and Martin (2005). Let B(1), B(2), . . . be i.i.d. standard
Brownian motions, and recall that

Zn,m := sup
t∈Tn,m

m∑
j=1

[B
(j)
tj −B

(j)
tj−1

]. (5.1)

Define the random walks R(1), R(2), . . . by

R
(j)
i =

i∑
k=1

χ
(j)
k , i = 0, 1, 2, . . . , (5.2)

with R
(j)
0 = 0. With this notation, we have

1

σ
Sn,m = sup

t∈Tn,m

m∑
j=1

[R
(j)

Φ(j)(tj)
−R

(j)

Φ(j)(tj−1)
]. (5.3)

Taking into account (1.2) and Lemma 5.2, it is evident that to prove Theorem 3.1
it remains to show that

σ−1Sn,[na] −
√
λZn,[na]

nb

(p)−−−−→
n→∞

0,

or, using the scaling property of Brownian motion, that:

Lemma 5.3. For all a < 3/14,

σ−1Sn,[na] − Zλn,[na]

nb

(p)−−−−→
n→∞

0.

To show that the random walks are close enough to the Brownian motion we use
the following version of the Komlós-Major-Tusnády strong approximation result
(Komlós et al., 1976, Thm. 4):

Theorem 5.4. For any 0 < r < 1, n ∈ Z+ and x ∈
[
c1(log n)

1/r, c2(n logn)1/2
]
,

starting with a probability space supporting independent Brownian motions B(j),

j = 1, 2, . . ., we can jointly construct i.i.d. sequences χ(j) = (χ
(j)
1 , χ

(j)
2 , . . .), j =

1, 2, . . ., with the correct distributions and, moreover, such that, with R
(j)
i as in

(5.2) above,

P ( max
1≤i≤n

|B(j)
i −R

(j)
i | > x) ≤ Cn exp{−αxr} for all j = 1, 2, . . . ,

where the constants C, c1, c2 are depending on α, r and distributions of χ
(1)
1 and

χ
(1)
2 .

In addition to this, in order to take care of the random indices appearing in (5.3),
we need a convergence rate result for the counting processes {Φ(j), j ≥ 1} which is
proven in the appendix.
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Proof of Lemma 5.3: From (5.3) and (5.1) we have

|σ−1Sn,m − Zλn,m| ≤ sup
t∈Tn,m

m∑
j=1

{∣∣(R(j)

Φ(j)(tj)
−R

(j)

Φ(j)(tj−1)
)− (B

(j)
λtj

−B
(j)
λtj−1

)
∣∣}

= sup
t∈Tn,m

m∑
j=1

{∣∣R(j)

Φ(j)(tj)
−B

(j)

Φ(j)(tj)

∣∣+ ∣∣R(j)

Φ(j)(tj−1)
−B

(j)

Φ(j)(tj−1)

∣∣
+
∣∣B(j)

Φ(j)(tj)
−B

(j)
λtj

∣∣+ ∣∣B(j)

Φ(j)(tj−1)
−B

(j)
λtj−1

∣∣}

≤ 2
m∑
j=1

{
max
0≤i≤n

∣∣R(j)
i −B

(j)
i

∣∣+ sup
0≤s≤n

∣∣B(j)

Φ(j)(s)
−B

(j)
λs

∣∣}

=: 2
m∑
j=1

U (j)
n + 2

m∑
j=1

V (j)
n ,

where

U (j)
n := max

0≤i≤n

∣∣R(j)
i −B

(j)
i

∣∣, V (j)
n := sup

0≤s≤n

∣∣B(j)

Φ(j)(s)
−B

(j)
λs

∣∣.
Therefore, it is enough to show that,

1

nb

[na]∑
j=1

U (j)
n

(p)−−−−→
n→∞

0 and
1

nb

[na]∑
j=1

V (j)
n

(p)−−−−→
n→∞

0.

For the first convergence we will take into account the coupling estimate as in
Theorem 5.4. That is, we will throughout assume that the random walks and
Brownian motions have been constructed jointly. The second convergence will be
established without this estimate, i.e., we will show that it is true, regardless of the
joint construction of the Brownian motions and the random walks. This is because
the coupling we use is not detailed enough to give us information about the joint
distribution of B(j) and the counting process Φ(j) (the latter is not a function of
the random walks used in the coupling).

Proof of the first convergence. Let δ > 0. We need to show that

P
( [na]∑
j=1

U (j)
n > δnb

)
→ 0 as n → ∞.

Let ε < b− a. Then

P
( [na]∑
j=1

U (j)
n > δnb

)
≤ P

(
max

1≤j≤[na]
U (j)
n ≤ nε,

[na]∑
j=1

U (j)
n > δnb

)
+ P

(
max

1≤j≤[na]
U (j)
n > nε

)
.

(5.4)

The first term from right-hand side is zero for large n. We are allowed, for n large
enough, to estimate the second term using Theorem 5.4 for an arbitrary r ∈ (0, 1)
and x = nε as

P
(

max
1≤j≤[na]

U (j)
n > nε

)
≤ naP

(
max
1≤i≤n

|B(1)
i −R

(1)
i | > nε

)
≤ naCn exp{−αnεr} → 0,

as n → ∞.
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Proof of the second convergence. Let 1/4 < ε < b − a. Replacing U
(j)
n by V

(j)
n

in (5.4), we see that the first term is again zero for large n and it remains to show
that second term converge to 0, i.e., it is enough to show the convergence for its
upper-bound

naP
(
V (1)
n > nε

)
→ 0,

as n → ∞. Let γ > 1 and 1/2 < q < 2ε. Then we can write

naP
(
V (1)
n > nε

)
≤ naP

(
sup

0≤s≤2n
|Φ(1)(s)− λs| > γnq

)
+ naP

(
sup

0≤s≤n
|B(1)

Φ(1)(s)
−B

(1)
λs | > nε, sup

0≤s≤2n
|Φ(1)(s)− λs| ≤ γnq

)
.

Corollary A.1 implies the convergence of the first term above

naP
(

sup
0≤s≤2n

|Φ(1)(s)− λs| > γnq
)
≤ na exp{−α(2n)qr} → 0,

as n → ∞, where 0 < r < 2− 1/q. Set ϕ = γnq/λ. For the second term using the
fact that, under our condition, λs − γnq ≤ Φ(1)(s) ≤ λs + γnq for s ∈ [0, 2n], we
have

naP
(

sup
0≤s≤n

|B(1)

Φ(1)(s)
−B

(1)
λs | > nε, sup

0≤s≤2n
|Φ(1)(s)− λs| ≤ γnq

)
≤ naP

(
max

0≤k≤�n/ϕ	
sup

0≤s≤ϕ
|B(1)

Φ(1)(kϕ+s)
−B

(1)
λ(kϕ+s)| > nε,

sup
0≤s≤2n

|Φ(1)(s)− λs| ≤ γnq
)

≤ naP
(

max
0≤k≤�n/ϕ	

sup
0≤s≤ϕ

−γnq≤t≤γnq

|B(1)
λ(kϕ+s)+t −B

(1)
λ(kϕ+s)| > nε

)

≤ na(n/ϕ+ 1)P
(

sup
0≤s≤t≤3γnq

|Bt −Bs| > nε
)

≤ na(n/ϕ+ 1)P
(

sup
0≤s≤3γnq

|Bs| > nε/2
)

≤ 4na(n/ϕ+ 1)P (B3γnq > nε/2) (a)

≤ 4na(n/ϕ+ 1) exp{−n2ε/(24γnq)} → 0, (b)

as n → ∞. The inequality (a) is the consequence of P (sup0<s<t Bs > x) = 2P (Bt >
x) and the inequality (b) is an estimate for the tail of the normal distribution. �

Remark 5.5. The condition a < 3/14 is equivalent to b − a > 1/4 and, thus, it
ensures existence of an ε > 1/4 and later existance of 1/2 < q < 2ε. Therefore, it
is necessary for application of Corollary A.1, as well as for the convergence of the
last estimate above.

6. Graph with non-constant edge probabilities

In Denisov et al. (2012), the authors consider a one-dimensional model with
the connectivity probability depending on the distance between points, i.e. there is
an edge between vertices i and j with probability p|i−j|. To prove a central limit
theorem for the maximal path length in that graph, two conditions are introduced:

• 0 < p1 < 1;
• ∑∞

k=1 k(1− p1) · · · (1− pk) < ∞.
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The conditions guarantee the existence of skeleton points and finite variance, defined
as in (2.3).

We can extend the idea of the graph on Z × Z keeping, whenever possible, the
notation from the Z× Z graph with constant probability p.

Let {pi,j , i, j ≤ 0} be a sequence of probabilities that satisfies the following:

• 0 < p1,0 < 1;
• 0 < p0,1 < 1;
• ∑∞

k=1 k
r−1(1− p1,0)(1− p2,0) · · · (1− pk,0) < ∞ for some r > 2.

Then the vertices (i1, i2) and (j1, j2), (i1, i2) ≺ (j1, j2), are connected with proba-
bility pj1−i1,j2−i2 .

The conditions above are needed to ensure the existence of skeleton points, as in
Definition 4.1, and a finite rth moment of the random variables χ2, χ3, . . . for some
r > 2.

From now on, let r denote the order of the highest finite moment, i.e.

r = sup{q > 0 :
∞∑
k=1

kq−1(1− p1,0)(1− p2,0) · · · (1− pk,0) < ∞}.

Now we can state the analogue of Theorem 3.1 for this more general setting:

Theorem 6.1. For all a < min(3/14, (r − 2)/(3r/7 + 1)),

na/6

(
Ln,[na] − Cn√

λσ2
√
n

− 2
√
na

)
(d)−−−−→

n→∞
FTW.

Proof : We follow the lines of the proof of Theorem 3.1, emphasizing the points one
should be careful about or which need to be modified.

The construction of the upper and lower bounds for Ln,[na] is the same as in

Section 4. In Lemma 5.1 and Lemma 5.2, the term naE[Δ1]/n
b converges to 0 if

a+ 1/r < b, which leads to the constraint a < 6/7(1/2− 1/r).
Next, we rewrite, as in Lemma 5.3,

|σ−1Sn,m − Zλn,m| ≤ 2
m∑
j=1

U (j)
n + 2

m∑
j=1

V (j)
n

and prove convergence of each term separately.
Proof of the first convergence. Instead of Theorem 5.4, we use the combination

of results from Komlós et al. (1976) and Major (1976), as stated in Proposition 2
of Bodineau and Martin (2005), which allow us to couple Brownian motions B(j),
j = 1, 2, . . . and random walks R(j), j = 1, 2, . . . so that

P
(
max
1≤i≤n

|B(j)
i −R

(j)
i | > x

)
≤ Cnx−r, for all n ∈ Z+, and all x ∈ [n1/r, n1/2].

(6.1)
Let ε = 1/2. We want to establish convergence of the same terms as in (5.4).

Applying, on the first term, the Markov inequality and properties of the coupling
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with Brownian motion (6.1) yield:

P
(

max
1≤j≤[na]

U (j)
n ≤ n1/2,

[na]∑
j=1

U (j)
n > δnb

)
≤ na

δnb
E
[
U (1)
n 1(U (1)

n ≤ n1/2)
]

≤ na

δnb

(
n1/r +

∫ n1/2

n1/r

P (U (1)
n > x)dx

)
≤ na

δnb

(
n1/r +

∫ n1/2

n1/r

Cnx−rdx

)

=
na

δnb

(
n1/r − C

r − 1
n3/2−r/2 +

C

r − 1
n1/r

)
≤

(
1 +

C

r − 1

)
nan1/r

δnb
→ 0

as n → ∞. For the second term we use again the coupling properties (6.1):

P
(

max
1≤j≤[na]

U (j)
n > n1/2

)
≤ naP

(
max
1≤i≤n

|B(1)
i −R

(1)
i | > nε

)
≤ naCnn−r/2 → 0,

as n → ∞ because a+ 1− r/2 < 0 due to our new constraint on a.
Proof of the second convergence. Here, the only change is the replacement of

Lemma A.2 by part of Theorem 6.12.1 in Gut (2013), in our notation:
If 1/2 ≤ q < 1, then for all ε > 0 it holds that nqr−2P (max0≤k≤n|Γk − λk| >

εnq) → 0 as n → ∞.
One can, in the same fashion as before, prove the following analogue of Corollary

A.1,
nqr−2P

(
sup

0≤t≤n
|Φ(t)− λt| > εnq

)
→ 0 as n → ∞.

Likewise in Remark 5.5, condition a < 3/14 is necessary. Another constraint
that occurs is a ≤ qr − 2 and it can be shown that this is satisfied if a ≤ (r −
2)/(3r/7 + 1). �

Appendix A.

Lemma A.1. Let r ≥ 1 and {Xi, i ≥ 1} be a sequence of nonnegative i.i.d. random
variables such that E|X1|r < ∞. Then,

1

n
1
r

E

[
max
1≤i≤n

Xi

]
→ 0 as n → ∞.

Proof : It suffices to prove the lemma for r = 1, since then the result for r > 1 follows
easily by Jensen’s inequality. Let Mn = max1≤i≤n Xi and Sn = X1+X2+ · · ·+Xn.
Borel-Cantelli lemma, together with the assumption EX < ∞, give Xn/n → 0,
almost surely, as n → ∞. An easy computation shows that then also Mn/n → 0,
almost surely, as n → ∞.

On the other hand, we know that Mn ≤ Sn for all n and that {Sn/n, n ≥ 1} is
uniformly integrable. Therefore, Mn/n is also unformly integrable and EMn/n → 0
as n → ∞ (Gut, 2013, Thm. 5.4.5, Thm. 5.5.2). �

The following lemma is an analogue of a result by Lanzinger (1998, Prop. 2),
with slight improvement in the probability bound. Moreover, we specialize the
lemma to our case.

Lemma A.2. Let 1/2 < q ≤ 1 and r < 2 − 1/q. Suppose that X,X1, X2, . . . are
i.i.d. random variables such that EX = μ and Eeα|X| < ∞ for some α > 0, and set
Sn =

∑n
i=1 Xk. Then, for all ε > 1,

exp{αnqr}P ( max
1≤k≤n

|Sk − kμ| > εnq) → 0
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as n → ∞.

Proof : Without loss of generality we can assume that μ = 0. We first show that,
for all ε > 1, exp{αnqr}P (Sn > εnq) → 0 as n → ∞ .

For fixed n ∈ Z+, define X ′
k = Xk1(Xk ≤ εnq) and set S′n =

∑n
k=1 X

′
k.

Note that EX ′ ≤ 0 and that for α′, where α′ < α and α′εr > α, it holds that
EX2eα

′|X|r < ∞. We can write

P (Sn > εnq) ≤ P (S′n > εnq) + nP (X > εnq). (A.1)

We first find a bound for the moment generating function for X ′ in α′(εnq)r−1:

Eeα
′(εnq)r−1X′ ≤ 1 +

1

2
α′2(εnq)2(r−1)(EX ′2 + EX ′2eα

′(εnq)r−1X′1{X ′ > 0})

≤ 1 +
1

2
α′2(εnq)2(r−1)(EX2 + EX2eα

′|X|r )

≤ 1 + Cn2q(r−1) ≤ exp{Cn−2q(1−r)},

where for the first inequality we used ey ≤ 1+max{1, ey}y2/2 and for the last one
1+ y ≤ ey. Now, using Markov’s inequality and the bound above for the first term
in (A.1) yields

P (S′n > εnq) = P (eα
′(εnq)r−1S′n > eα

′(εnq)r ) ≤ e−α′(εnq)r
(
Eeα

′(εnq)r−1X′
)n

≤ exp{−α′(εnq)r + Cnn−2q(1−r)}.

For the second term in (A.1), again using Markov’s inequality, we have

nP (X > εnq) = nP (eαX
r

> eα(εn
q)r ) ≤ ne−α(εnq)rE(eα|X|

r

).

Combining the two estimates finally establishes that

exp{αnqr}P (Sn > εnq) ≤ exp{−nqr(α′εr − α− Cn1−2q+qr)}
+ n exp{−nqrα(εr − 1)}Eeα|X|

r → 0

as n → ∞ because of the choice of r, α′ and ε.
By symmetry, the same convergence rate holds also for P (Sn < −εnq).
Thus, the statement of the theorem follows using Lévy inequality (Gut, 2013,

Thm. 3.7.2) and the fact that for n large enough we can find ε′ such that 1 < ε′ <
ε−

√
2σ2n1/2−q:

P ( max
1≤k≤n

|Sk| > εnq) ≤ 2P (|Sn| > εnq −
√
2nσ2) = 2P (|Sn| > nq(ε−

√
2σ2n1/2−q))

≤ 2P (|Sn| > ε′nq). �

Corollary A.1. Let X,X1, X2, . . . be positive, integer-valued i.i.d. random variables
and suppose that the assumptions of Lemma A.2 are satisfied. Then, for the count-
ing process Φ, where Φ(t) = max{n : Sn ≤ t}, it holds that

exp{αnqr}P ( sup
0≤t≤n

|μΦ(t)− t| > εnq) → 0 for all ε > 1.
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Proof : For the counting process we have t − XΦ(t)+1 ≤ SΦ(t) ≤ t. Therefore, we
can write

{ sup
0≤t≤n

|μΦ(t)− t| > εnq} =

= { sup
0≤t≤n

(μΦ(t)− t) > εnq} ∪ { inf
0≤t≤n

(μΦ(t)− t) < −εnq}

⊂ { sup
0≤t≤n

(μΦ(t)− SΦ(t)) > εnq} ∪ { inf
0≤t≤n

(μΦ(t)− SΦ(t) −XΦ(t)+1) < −εnq}

⊂ { sup
0≤t≤n

(μΦ(t)− SΦ(t)) > εnq} ∪ { inf
0≤t≤n

(μΦ(t)− SΦ(t)) < −ε′nq}

∪ { sup
0≤t≤n

XΦ(t)+1 > (ε− ε′)nq}

⊂ { max
1≤k≤n

|Sk − kμ| > εnq} ∪ { max
1≤k≤n

|Sk − kμ| > ε′nq}

∪ { max
1≤k≤n+1

Xk > (ε− ε′)nq},

where 1 < ε′ < ε. Thus,

exp{αnqr}P ( sup
0≤t≤n

|μΦ(t)− t| > εnq) ≤ exp{αnqr}P ( max
1≤k≤n

|Sk − kμ| > εnq)

+ exp{αnqr}P ( max
1≤k≤n

|Sk − kμ| > ε′nq) + (n+ 1) exp{αnqr}P (X > (ε− ε′)nq).

The first and the second term above converge to 0 as n → 0 by Lemma A.2. We
prove convergence to 0 for the third term using Markov’s inequality,

(n+ 1)eαn
qr

P (X > (ε− ε′)nq) ≤ (n+ 1)eα(n
qr−(ε−ε′)nq)EeαX → 0 as n → ∞.

�
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CONVERGENCE OF DIRECTED RANDOM GRAPHS
TO THE POISSON-WEIGHTED INFINITE TREE

KATJA GABRYSCH,∗ Uppsala University

Abstract

We consider a directed graph on the integers with a directed edge from vertex i to j present
with probability n−1, whenever i < j , independently of all other edges. Moreover, to
each edge (i, j) we assign weight n−1(j − i). We show that the closure of vertex 0 in
such a weighted random graph converges in distribution to the Poisson-weighted infinite
tree as n → ∞. In addition, we derive limit theorems for the length of the longest path
in the subgraph of the Poisson-weighted infinite tree which has all vertices at weighted
distance of at most ρ from the root.

Keywords: Directed random graph; Poisson-weighted infinite tree; rooted geometric
graph

2010 Mathematics Subject Classification: Primary 05C80
Secondary 60F05; 60C05

1. Introduction and main results

In this paper we consider a directed version of the standard Erdős–Rényi random graph [7]
on n vertices, defined as follows. For each pair {i, j} of distinct positive integers, i, j ≤ n,
toss a coin with probability of heads equal to p, 0 < p < 1, independently from pair to pair;
if heads shows up then introduce an edge directed from min(i, j) to max(i, j). A path in a
directed graph is a sequence of increasing vertices which are successively connected and the
length of a path is the number of edges in the path. The longest path in the graph is a path
with maximal length. The length of the longest path in a directed random graph, sometimes
also called the height of a graph, was the subject in a number of papers, see [9] and [12]–[15].
Newman [15] and Itoh and Krapivsky [14] showed that the length of the longest path starting
from vertex 1 in a directed random graph on n vertices with edge probability n−1, rescaled by
n−1, converges to the constant e. In both papers, the authors also describe the limiting object
of the closure of vertex 1. This limiting object can be found in the literature under the name
Poisson-weighted infinite tree.

Let U = {∅} ∪ ⋃∞
k=1N

k and, if u, v ∈ U , denote by uv the concatenated element and
∅u = u∅ = u. The Ulam–Harris tree is the infinite rooted tree with vertex set U , the root in
the vertex with label ∅, and an edge joining vertices u and uj for any u ∈ U and j ∈ N. This,
in the language of trees, means that if u ∈ U then the children of u are u1, u2, u3, . . . .

The Poisson-weighted infinite tree (PWIT) is the Ulam–Harris tree with weight function w

on edges defined as follows. Assign to each vertex u ∈ U an independent realization of a
Poisson process with rate 1. Let the arrival times of the Poisson process assigned to vertex u

be {ξu
j , j ∈ N}. Then the weight function w of the edges from the vertex u is given by

w(u, uj) = ξu
j , j ∈ N.
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In their survey, Aldous and Steele [4] defined rooted geometric graphs and their convergence,
a framework which we use here in order to prove rigorously that the limit graph of directed
random graphs is the PWIT.

Let G = (V , E) be a connected graph with a finite or countably infinite vertex set V , edge
set E, and associated function w : E → (0, ∞] for weights of the edges of G. Moreover, for
any pair of vertices u and v, the distance between u and v is defined as the infimum over all
paths from u to v of the sum of the weights of the edges in the path. The graph G is called a
geometric graph if the weight function makes G locally finite in the sense that for each vertex v

and each ρ > 0 the number of vertices within distance ρ from v is finite. If, in addition, there
is a distinguished vertex v, we say that G is a rooted geometric graph with root v. The set of
rooted geometric graphs will be denoted by G∗.

For any ρ > 0 and for any rooted geometric graph G denote by Nρ(G) the graph whose
vertex set Vρ(G) is the set of vertices of G that are at a distance of at most ρ from the root
and whose edge set consists of just those edges of G that have both vertices in Vρ(G). We say
that ρ is a continuity point of G if no vertex of G is exactly at a distance ρ from the root of G.

A graph isomorphism between rooted geometric graphs G = (V , E) and G′ = (V ′, E′) is
a bijection � : V → V ′ such that (�(u), �(v)) ∈ E′ if and only if (u, v) ∈ E and � maps
the root of G to the root of G′. A geometric isomorphism between rooted geometric graphs G

and G′ is a graph isomorphism � between G and G′ which preserves edge weights, that is,
w′(�(e)) = w(e) for all e ∈ E (where �(e) denotes (�(u), �(v)) for e = (u, v)).

We say that Gn converges (locally) to G in G∗ if for each continuity point ρ of G there is an
n0 = n0(ρ, G) such that for all n ≥ n0 there exists a graph isomorphism �ρ,n from the rooted
geometric graph Nρ(G) to the rooted geometric graph Nρ(Gn) such that for each edge e of
Nρ(G) the weight of �ρ,n(e) converges to the weight of e.

In Appendix A we propose a distance function d which makes G∗ into a complete separable
metric space and for which the notion of convergence in the metric space is equivalent with the
definition of convergence above. In this setting we can use the usual definition of convergence
in distribution, see, e.g. [8].

Consider now an extension of a directed random graph to the infinite, countable vertex set
with labels N0 = {0, 1, 2, . . . } and with edge probability n−1. As before, any two vertices are
connected with an edge with probability n−1, independently of the other edges, and an edge is
always directed from the vertex with the smaller label to the vertex with the larger label. We
define the weight of an edge in this graph as the absolute difference between its labels rescaled
by n−1, that is, if e = (i, j) is an edge of the graph then its weight is wn(e) = n−1|j − i|. The
closure of vertex 0 in a directed random graph is its subgraph consisting of all vertices which
are connected with vertex 0 through a path (including vertex 0) and all the edges between these
vertices. We call vertex 0 the root of the closure of vertex 0.

Our main result is the following theorem.

Theorem 1. Let Tn, n ∈ N, be the closure of vertex 0 in a directed random graph on N0,
with edge probability n−1 and weight function wn. Then Tn converges in distribution to a
Poisson-weighted infinite tree as n → ∞.

We show convergence in distribution of the closure of vertex 0 of the directed random graphs
on an infinite vertex set to the PWIT, instead for their finite versions. A reason is that directed
random graphs on n vertices with weight function wn have all vertices at the distance at most 1
from the root and their weak limit is a subgraph of a PWIT T , N1(T ). To obtain a PWIT in the
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limit, one could consider finite directed random graphs but then the number of vertices need to
grow faster than linearly.

The PWIT appears also as a weak limit of a randomly rooted complete graph on n vertices
with independent and exponentially distributed edge weights with mean n. Aldous [3] proved
this limit theorem and used it in a study of a random assignment problem with n jobs, n machines,
and the costs of performing a job on each machine being independent and exponentially
distributed with mean n.

The PWIT was also studied in the domain of branching random walks [1]. A branching
random walk is an extension of the Galton–Watson branching process obtained by associating
to each individual of the process a real-valued random variable. In a tree generated by the
branching process, the displacement of a particle is defined as the sum of random variables
associated to the particle’s ancestors, from the root to the particle itself. An object of interest
in a branching random walk is the minimal displacement of particles in the nth generation,
denoted by Mn.

Let Lx be the length of the longest path in the PWIT, between the root vertex and all
the vertices at a distance of at most x from the root. Itoh and Krapivsky [14] gave arguments
supporting the assertion that the distribution of Lx attains travelling wave behaviour for large x.
It is assumed that the convergence to a travelling wave is a general phenomenon for the minimal
displacement in branching random walks, but only a few examples exist where it is explicitly
proven [6], [11]. A consequence of the travelling wave behaviour in the limit is tightness of
the minimal displacements, that is, the tightness of the family {Mn − median(Mn), n ≥ 1},
which was also separately studied in [10]. A stronger result than tightness is the existence of
an exponential upper bound for the deviation probability for Mn − median(Mn), which was
obtained in [1], [2], and [11].

In this paper we obtain the asymptotic expression for the median of the length of the longest
path Lx in the PWIT and show that the distribution of Lx has uniform exponential tails.

Theorem 2. The median of the length of the longest path of the PWIT, for x ≥ 1, is

median(Lx) = xe − 3
2 log x + O(1).

Theorem 3. For the length of the longest path of the PWIT, for all x ≥ 1, y ≥ 0, and any
c1 < 1/e, there exists a constant C1, dependent only on c1, so that

P(Lx ≤ median(Lx) − y) ≤ C1e−c1y,

and for any c2 < 1 there exists a constant C2, dependent only on c2, so that

P(Lx ≥ median(Lx) + y) ≤ C2e−c2y.

In particular,

ELx = xe − 3
2 log x + O(1) and var(Lx) = O(1).

The paper is organized as follows. In Section 2 we show that the studied random graphs
are almost surely rooted geometric graphs. Theorem 1 is proven in Section 3 and the proofs of
Theorem 2 and Theorem 3 are given in Section 4. In Section 3 we use a definition of distance
between two rooted geometric graphs, which we study in more detail in Appendix A.
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2. Rooted geometric graphs

The closure of vertex 0 in a directed random graph on vertex set N0 with edge probability n−1

is a graph with the root at vertex 0 and a countably infinite vertex set. The weight function wn

makes the graph locally finite as, for any ρ > 0, the number of vertices within the distance ρ

from a vertex v of the graph is at most 2
ρn�+1.
The PWIT is also a rooted graph with a countably infinite vertex set. To show that the PWIT

is almost surely a rooted geometric graph, it is left to prove that is almost surely locally finite.
We start by a connection between the PWIT and the Yule process. The Yule process

{Y (t), t ≥ 0} is a branching process which starts at time 0 with one particle, Y (0) = 1, and
each particle, independently of all others and of the past of the process, after an exponential
waiting time with mean 1 splits into two particles. The number of particles present at time t

is Y (t).

Lemma 1. Let {Y (t), t ≥ 0} be the Yule process and let T be the PWIT. Let, for t > 0, |Vt (T )|
be the number of vertices of the graph T at a distance of at most t from the root. Then

{Y (t), t ≥ 0} d= {|Vt (T )|, t ≥ 0},

where ‘
d=’ denotes equality in distribution.

Proof. For t = 0, Y (0) = 1, V0(T ) = ∅, and |V0(T )| = 1. Because of the memoryless
property of the exponential distribution, at any time t ≥ 0 the time left until the next splitting
occurs in the Yule process is the minimum of Y (t) exponential random variables with mean 1,
that is, exponential random variable with mean Y (t)−1. Similarly for the PWIT, at time t ≥ 0
there are |Vt (T )| vertices and each vertex is assigned a Poisson process which defines the
weights of the edges. The closest vertex to the root that is outside Vt (T ) is determined by
the position of the first point after t in these |Vt (T )| Poisson processes. Thus, the first vertex
with distance from the root greater than t is at the distance t + X from the root, where X is
exponentially distributed random variable with mean |Vt (T )|−1. �
Proposition 1. The PWIT is almost surely a locally finite graph.

Proof. Let T be a PWIT and let {Y (t), t ≥ 0} be the Yule process. For the Yule process is
E(Y (t)) = et [5, Chapter III.4] and, thus, by Lemma 1, we have E(|Vt (T )|) = et . Hence, the
number of vertices within the distance t from the root is, almost surely, finite.

Let v be a vertex of T and denote by r the distance between v and the root. Note that
r < ∞. Then the set of vertices that are within distance ρ from vertex v is a subset of Vr+ρ(T ).
Therefore, there exists almost surely finitely many such vertices and the PWIT is almost surely
a locally finite graph. �

3. Convergence to the PWIT

In this section we prove Theorem 1. The first step is to show that for large enough n, with
high probability, the directed graph on the segment [0, ρ] is a tree, which suggests that the
limiting object should also be a tree.

Lemma 2. Let Tn, n ∈ N, be the closure of vertex 0 in a directed random graph on N0, with
edge probability n−1 and weight function wn. For ρ > 0,

P(Nρ(Tn) is a tree) → 1 as n → ∞.
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Proof. Note first that for ρ > 0 it holds that |Vρ(Tn)| ≤ 
nρ�+1. For vertices i and j , i < j ,
we denote by i � j the event that there exists a path from vertex i to vertex j and by i

2� j the
event that there exist two nonintersecting paths from vertex i to j , where by nonintersecting
we mean that the paths do not have any common vertices except i and j . Define now for n ∈ N

and ρ > 0 the events
Aρ,n = {Nρ(Tn) is not a tree}

and for i, j ∈ N0, i < j ,

A
ρ,n
i,j = {i, j ∈ Vρ(Tn), i

2� j}.
Obviously, when j = i + 1 the events A

ρ,n
i,j are empty. If the graph Nρ(Tn) is not a tree, there

exist vertices i1, i2, j ∈ Vρ(Tn), i1, i2 < j , such that (i1, j) and (i2, j) are edges of Nρ(Tn).
Then we can find a vertex i ∈ Vρ(Tn), i ≤ min{i1, i2}, such that i and j are connected with
two nonintersecting paths. Therefore, we can write

P(Aρ,n) ≤
∑

0≤i<j≤
nρ�
P(A

ρ,n
i,j ) =


nρ�∑
j=2

P(A
ρ,n
0,j ) +


nρ�−2∑
i=1


nρ�∑
j=i+2

P(A
ρ,n
i,j ). (1)

For i ≥ 1, i + 2 ≤ j ≤ 
nρ�, we have

P(A
ρ,n
i,j ) = P(0� i)P(i

2� j)

≤
i−1∑
k=0

P((0, v1, v2, . . . , vk, i) is a path in Nρ(Tn))

×
j−i−1∑
�=1

P((i, u1, u2, . . . , u�1 , j) and (i, u′
1, u

′
2, . . . , u

′
�2

, j) are

nonintersecting paths in Nρ(Tn), �1 + �2 = �)

=
i−1∑
k=0

(
i − 1

k

)
pk+1

j−i−1∑
�=1

(
j − i − 1

�

)
2�−1p�+2

<
p3

2
(1 + p)i−1(1 + 2p)j−i−1.

Similarly, for i = 0, 2 ≤ j ≤ 
nρ�,

P(A
ρ,n
0,j ) = P(0

2� j)

≤
j−i−1∑
�=1

P((0, u1, u2, . . . , u�1 , j) and (0, u′
1, u

′
2, . . . , u

′
�2

, j) are

nonintersecting paths in Nρ(Tn), �1 + �2 = �)

=
j−1∑
�=1

(
j − 1

�

)
2�−1p�+2

<
p2

2
(1 + 2p)j−1.
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Applying the above inequalities to (1) and replacing p with n−1, we obtain

P(Aρ,n) <


nρ�∑
j=2

p2

2
(1 + 2p)j−1 +


nρ�−2∑
i=1


nρ�∑
j=i+2

p3

2
(1 + p)i−1(1 + 2p)j−i−1

<
p2

2

(1 + 2p)
nρ� − (1 + 2p)

2p
+ p3

2


nρ�−2∑
i=1

(1 + p)i−1 (1 + 2p)
nρ�−i − (1 + 2p)

2p

<
p

4
(1 + 2p)
nρ�

+ p2

4
(1 + 2p)
nρ�−1

{(
1 −

(
1 + p

1 + 2p

)
nρ�−2)(
1 − 1 + p

1 + 2p

)−1}

<
p

2
(1 + 2p)
nρ�

<
1

2n
e2ρ,

which gives

P(Nρ(Tn) is a tree) = 1 − P(Aρ,n) ≥ 1 − 1

2n
e2ρ → 1 as n → ∞. �

In the proofs of Lemma 3 and Theorem 1 we use the following definition for a distance
between two geometric graphs G1, G2 ∈ G∗:

d(G1, G2) =
∫ ∞

0

R(Nρ(G1), Nρ(G2))

eρ
dρ,

where

R(Nρ(G1), Nρ(G2)) = min
{

1, min
{� : � : Vρ (G1)→Vρ (G2)

graph isomorphism}
max{e : e edge of Nρ(G1)}

|w(e) − w(�(e))|
}
;

see Appendix A for more details.
To show convergence in distribution of rooted geometric graphs {Gn, n ≥ 1} to G, we show

one of the equivalent statements of the Portmanteau theorem [8, Theorem 2.1]:

lim
n→∞ P(Gn ∈ A) = P(G ∈ A)

for all Borel sets A whose boundary ∂A satisfies P(G ∈ ∂A) = 0.
Furthermore, define the Bernoulli-weighted infinite tree with parameter n−1 (BWITn) to be

the Ulam–Harris tree with weight function ŵn on edges defined as follows. Let {Xu
j , u ∈ U, j ∈

N} be a sequence of independent and geometrically distributed random variables with law
P(Xu

j = k) = n−1(1−n−1)k−1, k ∈ N. The weight function ŵn is ŵn(u, uj) = n−1∑j
k=1 Xu

k .

Lemma 3. Let T̂n, n ∈ N, be a BWITn. Then the sequence T̂n converges in distribution to a
PWIT as n → ∞.

Proof. Let T and T̃n, n ∈ N, be the Ulam–Harris trees with weight functions w and w̃n on
edges defined as follows. Let {Yu

j , u ∈ U, j ∈ N} be independent and exponentially distributed
random variables, P(Y u

j ≤ x) = 1 − e−x , x ≥ 0. For n ∈ N, let an = 1/ log(n/(n − 1)) and
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set Xu
n,j = �anY

u
j , u ∈ U, j ∈ N. Then the random variables {Xu

n,j , u ∈ U, j ∈ N} have
geometric distribution with parameter n−1. The weight functions of the trees T and T̃n are

w(u, uj) =
j∑

k=1

Yu
k and w̃n(u, uj) = 1

n

j∑
k=1

Xu
n,k for u ∈ U, j ∈ N.

The tree T has the law of a PWIT and T̃n has, the same as T̂n, the law of a BWITn. Moreover,
n−1Xu

n,j → Yu
j , almost surely, as n → ∞, so the weights of the edges of trees T̃n converge,

almost surely, to the weights of the corresponding edges of the tree T . Therefore, almost
surely, for all continuity points ρ of T , there is n0 ∈ N, such that Nρ(T̃n) and Nρ(T ) are
graph isomorphic for all n ≥ n0 and R(Nρ(T̃n), Nρ(T )) → 0 as n → ∞. By the dominated
convergence theorem, it follows that d(T̃n, T ) → 0, almost surely, as n → ∞. Thus, for any
Borel set A with P(T ∈ ∂A) = 0, we have

lim
n→∞ P(T̂n ∈ A) = lim

n→∞ P(T̃n ∈ A) = P(T ∈ A). �

Proof of Theorem 1. Fix ρ > 0 and let Tn,ρ be the set of all rooted geometric graphs G

which are trees and for which P(Nρ(Tn) = G) > 0. Since a vertex i of Tn is connected with
any vertex in {i + 1, i + 2, . . . } with probability n−1, the corresponding weights of the edges
from i are sums of geometrically distributed random variables with parameter n−1 rescaled
by n−1. Thus, for G ∈ Tn,ρ is P(Nρ(Tn) = G) = P(Nρ(T̂n) = G), where T̂n is a BWITn.
Moreover, whenever the graphs Nρ(Tn) and Nρ(T̂n) are geometric isomorphic, the distance
between Tn and T̂n is

d(Tn, T̂n) =
∫ ∞

ρ

R(Nr(Tn), Nr(T̂n))

er
dr ≤

∫ ∞

ρ

1

er
dr = 1

eρ
. (2)

Let A ⊂ G∗ be a Borel set with P(T ∈ ∂A) = 0. Furthermore, for ε > 0, define
A+ε = {G ∈ G∗ : there is G′ ∈ A such that d(G, G′) < ε} and A−ε = (Ac+ε)

c. Using
these definitions and the upper bound (2), we can write

P(T̂n ∈ A−e−ρ , Nρ(T̂n) ∈ Tn,ρ) ≤ P(Tn ∈ A, Nρ(Tn) ∈ Tn,ρ) ≤ P(T̂n ∈ A+e−ρ ). (3)

Using
P(Tn ∈ A) = P(Tn ∈ A, Nρ(Tn) ∈ Tn,ρ) + P(Tn ∈ A, Nρ(Tn) /∈ Tn,ρ)

and (3), we obtain

P(T̂n ∈ A−e−ρ , Nρ(T̂n) ∈ Tn,ρ) ≤ P(Tn ∈ A)

≤ P(T̂n ∈ A+e−ρ ) + P(Nρ(Tn) /∈ Tn,ρ).

Letting n → ∞ and using the result of Lemma 2 that P(Nρ(T̂n) ∈ Tn,ρ) = P(Nρ(Tn) ∈
Tn,ρ) → 1 as n → ∞ yields

lim inf
n→∞ P(T̂n ∈ A−e−ρ ) ≤ lim inf

n→∞ P(Tn ∈ A) ≤ lim sup
n→∞

P(Tn ∈ A) ≤ lim sup
n→∞

P(T̂n ∈ A+e−ρ ).

Finally, letting ρ → ∞ in the inequalities above and Lemma 3, we obtain

lim
n→∞ P(Tn ∈ A) = lim

n→∞ P(T̂n ∈ A) = P(T ∈ A),

where T is a PWIT. �
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4. The length of the longest path in the PWIT

Denote by S(v) the distance of a vertex v from the root of the PWIT. For n ∈ N, define the
minimal displacement over all individuals in the nth generation to be Mn = infv∈Nn S(v) and
let M̃n = median(Mn) = sup{x : P(Mn < x) < 1

2 }. The minimal displacement of the nth
generation of a PWIT was studied by Addario-Berry and Ford [1], who obtained the following
results.

Theorem 4. The median of the minimal displacement of the nth generation of the PWIT is

M̃n = n

e
+ 3

2e
log n + O(1).

Theorem 5. For the minimal displacement Mn of the PWIT, for all n ≥ 1, x ≥ 0, and any
c1 < e, there exists a constant C1, dependent only on c1, such that

P(Mn ≤ M̃n − x) ≤ C1e−c1x,

and for any c2 < 1, there exists a constant C2, dependent only on c2, such that

P(Mn ≥ M̃n + x) ≤ C2e−c2x.

The length of a path is the number of edges in the path. We denote by Lx the length
of the longest path in the PWIT between all the paths of a tree starting from the root and
ending in a vertex at a distance of at most x from the root. Let L̃x be a median of Lx and let
L̂x = max{n : P(Lx ≥ n) ≥ 1

2 }. Note that |L̂x − L̃x | ≤ 1, so the asymptotic result for L̂x holds
for the median as well. We will show that Theorem 2 and Theorem 3 follow from Theorem 4
and Theorem 5, respectively, and from the observation: Lx ≥ n if and only if Mn ≤ x.

Proof of Theorem 2. Combining the definition of L̂x with the above observation, we obtain

L̂x = max
{
n : P(Lx ≥ n) ≥ 1

2

} = max
{
n : P(Mn ≤ x) ≥ 1

2

}
.

The maximum in the last term above will be achieved for n such that M̃n ≤ x < M̃n+1. Using
Theorem 4 we can assert that the n that satisfies these inequalities is n = xe − 3

2 log x + O(1),
which is then the asymptotic value of L̂x and L̃x . �

Proof of Theorem 3. Using the second part of Theorem 5 and definitions of M̃n and L̃x from
Theorem 4 and Theorem 2, respectively, for any x ≥ 1, 0 ≤ y ≤ L̃x , and c2 < 1, we have

P(Lx ≤ L̃x − y) ≤ P(M
L̃x−y�+1 > x)

≤ C2 exp{−c2(x − M̃
L̃x−y�+1)}

≤ C2 exp

{
−c2

(
x − 
L̃x − y� + 1

e
− 3

2e
log(
L̃x − y� + 1) + O(1)

)}

≤ C2 exp

{
−c2

y

e
+ c2

3

2e
log

xe − (3/2) log x

x
+ O(1)

}

≤ C′
1e−c′

1y,

where c′
1 = c2/e. For y ≥ L̃x the same holds because P(Lx ≤ L̃x − y) = 0.

The second statement of the theorem can be obtained in an analogous way.
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Applying Theorem 3 to ELx = ∑∞
n=1P(Lx ≥ n), we obtain ELx = L̃x + O(1) and then

from Theorem 2, we have ELx = xe − 3 log x/2 + O(1). Moreover, L̃x can be replaced by
ELx in the first part of Theorem 3 and this can be used to calculate var(Lx) = O(1). �

Appendix A. A metric on G∗
On the set of simple rooted graphs (rooted geometric graphs with all edges of weight 1), a

distance between two graphs G1 and G2 is sometimes defined as

d(G1, G2) = 1

2R(G1,G2)
,

where R(G1, G2) = inf{ρ ∈ N0 : Nρ(G1) and Nρ(G2) are not graph isomorphic}.
We expand this formula to the definition of the distance for rooted geometric graphs in the

following way. Let G1, G2 ∈ G∗, then

d(G1, G2) =
∫ ∞

0

R(Nρ(G1), Nρ(G2))

eρ
dρ,

where

R(Nρ(G1), Nρ(G2)) = min
{

1, min
{� : � : Vρ (G1)→Vρ (G2)

graph isomorphism}
max{e : e edge of Nρ(G1)}

|w(e) − w(�(e))|
}
.

Note that R(Nρ(G1), Nρ(G2)) = 1 if there is no graph isomorphisms from Nρ(G1) to Nρ(G2).
Whenever there exist an isomorphism then the set of edges will be nonempty with an exception
if the graphs contain just the root vertex. In the latter case, we define R(Nρ(G1), Nρ(G2)) = 0.

Proposition 2. The function d is a metric on G∗ and (G∗, d) is a complete separable metric
space.

Proof. The function d is symmetric and nonnegative, with d(G1, G2) = 0 if and only if
the graphs G1 and G2 are graph isomorphic and all the corresponding edges have the same
weights, i.e. if there exists a geometric isomorphism from G1 to G2.

Now fix ρ > 0 and let G1, G2, G3 ∈ G∗. We want to show that the triangle inequality
is satisfied for the function R, which by integrating over ρ immediately gives the triangle
inequality for the function d . If the graphs Nρ(G1), Nρ(G2), Nρ(G3) are not graph isomor-
phic the triangle inequality holds. Otherwise, let �ρ,1 and �ρ,2 be the graph isomorphisms
from Nρ(G1) to Nρ(G2) and from Nρ(G2) to Nρ(G3), respectively, for which the functions
R(Nρ(G1), Nρ(G2)) and R(Nρ(G2), Nρ(G3)) attain the minima. Then, by the triangle in-
equality, for any edge e of Nρ(G1), we have

|w(e) − w(�ρ,1(e))| + |w(�ρ,1(e)) − w(�ρ,2 ◦ �ρ,1(e))| ≥ |w(e) − w(�ρ,2 ◦ �ρ,1(e))|.
Taking a maximum over edges of Nρ(G1) yields

R(Nρ(G1), Nρ(G2)) + R(Nρ(G2), Nρ(G3))

≥ min
{

1, max{e : e edge of Nρ(G1)}
|w(e) − w(�ρ,2 ◦ �ρ,1(e))|

}
≥ R(Nρ(G1), Nρ(G3)),

which is precisely the triangle inequality for function R.
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We now proceed to show that this metric space is complete. Let {Gn, n ≥ 1} be a Cauchy
sequence of graphs in G∗, that is, a sequence for which for every ε > 0 there exists n0 = n0(ε)

such that for all m, n ≥ n0 the distance d(Gn, Gm) < ε. We want to show that there exists a
graph G ∈ G∗ for which d(Gn, G) → 0 when n → ∞.

We start by choosing a subsequence {Gni
, i ≥ 1} of the Cauchy sequence of graphs such

that d(Gni
, Gni+1) < 2−i . Then, we have

1 >

∞∑
i=1

d(Gni
, Gni+1) =

∫ ∞

0

∞∑
i=1

R(Nρ(Gni
), Nρ(Gni+1))

eρ
dρ

and, thus,
∑∞

i=1R(Nρ(Gni
), Nρ(Gni+1)) < ∞ for almost all ρ. For all such ρ and for all

ε, 0 < ε < 1, there exists an i0 = i0(ρ, ε) such that R(Nρ(Gni
), Nρ(Gni+1)) < ε for

all i ≥ i0. Therefore, for i ≥ i0 the pairs of graphs Nρ(Gni
) and Nρ(Gni+1) are graph

isomorphic and, hence, all the graphs {Nρ(Gni
), i ≥ i0} are graph isomorphic. Denote now by

�ρ,i a graph isomorphism from Nρ(Gni
) to Nρ(Gni+1) for which the maximum of the edge

weight differences is minimal. Furthermore, define for i < j graph isomorphism �ρ,(i,j) =
�ρ,j−1 ◦ �ρ,j−2 · · · ◦ �ρ,i and let �ρ,(i,i) be the identity graph isomorphism. Then, for all
ε′ > 0, there exists a j0 = j0(ρ, ε′), j0 ≥ i0, such that for j > i ≥ j0 and for any edge e of
the graph Nρ(Gni

),

|w(e) − w(�ρ,(i,j)(e))| ≤
j−1∑
k=i

|w(�ρ,(i,k)(e) − w(�ρ,(i,k+1)(e))|

≤
j−1∑
k=i

R(Nρ(Gnk
), Nρ(Gnk+1))

≤
∞∑
k=i

R(Nρ(Gnk
), Nρ(Gnk+1))

< ε′.

Thus, for each edge e of the graph Nρ(Gni0
) the sequence {w(�ρ,(i0,i)(e)), i ≥ i0} is a Cauchy

sequence and, hence, it converges.
Construct now the limit graph G in radius ρ in the following way. Set Nρ(G) to be graph

isomorphic to Nρ(Gni0
) and let �ρ be the graph isomorphism from Nρ(G) to Nρ(Gni0

).
Furthermore, set the weight of every edge e of Nρ(G) to be w(e) = limi→∞ w(�ρ,(i0,i) ◦
�ρ(e)). In the same way, we can construct the limit graph G in any arbitrary large radius. For
each continuity point ρ of the limit graph G, the function R(Nρ(Gni

), Nρ(G)) → 0 as i → ∞
and then by the dominated convergence theorem d(Gni

, G) → 0 as i → ∞.
Moreover, we need to show that d(Gn, G) → 0. For every ε > 0 there exists n0 = n0(ε)

such that for m, n ≥ n0 d(Gn, Gm) ≤ ε/2 and there exists i0 = i0(ε) such that for i ≥ i0 is
ni ≥ n0 and d(Gni

, G) ≤ ε/2. Then, by the triangle inequality, we have

d(Gn, G) ≤ d(Gn, Gni
) + d(Gni

, G) ≤ ε

and, thus, d(Gn, G) → 0 as n → ∞.
Separability follows from the facts that the geometric graphs are locally finite and rational

numbers are a countable dense subset of the real line. Hence, an example of a countable dense
subset of the set of the rooted geometric graphs is the set of all rooted geometric graphs with
finite number of vertices and rational edge weights. �
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Proposition 3. Rooted geometric graphs Gn, n ∈ N, converge to rooted geometric graph G if
and only if d(Gn, G) → 0 as n → ∞.

Proof. If rooted geometric graphs Gn converge to G, then R(Nρ(Gn), Nρ(G)) → 0 as
n → ∞ for all continuity points ρ. Moreover, the function R(Nρ(Gn), Nρ(G))e−ρ is bounded
by the integrable function e−ρ . Since there are countably many discontinuity points, by the
dominated convergence theorem,

d(Gn, G) =
∫ ∞

0

R(Nρ(Gn), Nρ(G))

eρ
dρ → 0 when n → ∞,

which proves one direction of the proposition.
Assume now that d(Gn, G) → 0 as n → ∞. Let ρ > 0 be a continuity point of graph G

and let x be the last discontinuity point of G before ρ and y be the first discontinuity point
after ρ. Set δ1 = ρ − x and δ2 = y − ρ. For any ε, 0 < ε < min{δ1e−ρ, δ2e−y}, there exists
n0 = n0(ε) such that d(Gn, G) < ε for all n ≥ n0. Assume now that Nρ(Gn) and Nρ(G)

are not graph isomorphic for some n ≥ n0. Then, we have two cases, either the graphs are
not graph isomorphic for all the points of the interval [x, ρ] or there is a discontinuity point x′
of Gn in the interval [x, ρ], such that the graphs are graph isomorphic in the interval [x, x′),
but not graph isomorphic in the interval [x′, ρ]. In the latter case, the graphs are not graph
isomorphic for all the points in the interval [ρ, y). In these two cases, we have

d(Gn, G) ≥
∫ ρ

x

1

er
dr >

δ1

eρ
or d(Gn, G) ≥

∫ y

ρ

1

er
dr >

δ2

ey
,

which contradicts d(Gn, G) < ε. Thus, the graphs Nρ(Gn) and Nρ(G) are graph isomorphic
for all n ≥ n0. Assume now that the weights of the edges do not converge to the weights of the
edges of G, i.e. that there exist an ε′ > 0 such that for all n1 ≥ n0, there is an n ≥ n1 for which

min{� : � : Vρ(G)→Vρ(Gn) graph isomorphism} max{e : e edge of Nρ(G)} |w(e) − w(�(e))| > ε′.

But then the function R(Nr(Gn), Nr(G)) is greater than ε′ for r between x and ρ and, thus,
similarly as above d(Gn, G) > ε′δ1e−ρ which is impossible. Hence, for all continuity points ρ,
the graphs are graph isomorphic for large enough n and the weights of the edges converge to
the weights of the corresponding edges of G, which is precisely the definition of convergence
of rooted geometric graphs. �
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DISTRIBUTION OF THE SMALLEST VISITED POINT
IN A GREEDY WALK ON THE LINE

KATJA GABRYSCH,∗ Uppsala University

Abstract

We consider a greedy walk on a Poisson process on the real line. It is known that the
walk does not visit all points of the process. In this paper we first obtain some useful
independence properties associated with this process which enable us to compute the
distribution of the sequence of indices of visited points. Given that the walk tends to +∞,
we find the distribution of the number of visited points in the negative half-line, as well
as the distribution of the time at which the walk achieves its minimum.

Keywords: Poisson point process; greedy walk

2010 Mathematics Subject Classification: Primary 60G55
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1. Introduction

We consider a stationary Poisson process � with rate 1 on the real line and define a greedy
walk on � as follows. The walk starts from point S0 = 0 and always moves on the points of �

by picking the point closest to its current position that has not been visited before. In other
words, the sequence of the visited points of � of the walk (Sn)n≥0 is defined recursively by

Sn+1 = arg min{d(X, Sn) : X ∈ � \ {S0, S1, . . . , Sn}}, (1)

where d is the usual Euclidean distance. Note that the sequence (Sn)n≥0 is almost surely (a.s.)
well defined, i.e. there is a.s. a unique point which is arg min in the definition of the walk (1).
Moreover, 0 /∈ � a.s.

The distance between the current position and the closest nonvisited point on the other side
of 0 increases with each step. Using the Borel–Cantelli lemma, one can show that the walk a.s.
jumps over 0 finitely many times. Therefore, {S1, S2, . . . } �= � a.s. and, moreover,

P

(
lim

n→∞ Sn = +∞
)

= P

(
lim

n→∞ Sn = −∞
)

= 1
2 . (2)

In this paper we study the distribution of the number of visited points of � which are less than 0
and the distribution of the index of the last point in the sequence (Sn)n≥0 which is less than or
equal to 0. We denote these random variables by N and L, respectively.

The greedy walk is a model in queueing systems where the points of the process in our
case represent positions of customers and a server (the walker) moving towards customers.
Applications of such a system can be found, for example, in telecommunications and computer
networks or transportation. As described in [1], the model of a greedy walk on a point process
can be defined in various ways or/and on different spaces. For example, Coffman and Gilbert [2]
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and Leskelä and Unger [5] studied a dynamic version of the greedy walk on a circle with new
customers arriving to the system according to a Poisson process. Two modifications of the
greedy walk model on a homogeneous Poisson process on the real line were studied by Foss
et al. [3] and Rolla et al. [6]. In the first paper, the authors considered a space-time model,
starting with a Poisson process at time 0 and the time and position of arrivals of new points are
given by a Poisson process on the space-time half-plane. Moreover, the expected time that the
walk spends at a point is 1. In this case the walk, a.s., jumps over the starting point finitely
many times and the position of the walk diverges logarithmically in time. In the second paper,
the points of a Poisson process were assigned one or two marks at random. The walk always
moves to the point closest to the current position which still has at least one mark and then
removes exactly one mark from the point. The authors showed that introducing points with two
marks will force the walk to change sides infinitely many times and, thus, to visit all the points
of �. There is not much known about the behaviour of the greedy walk on a homogeneous
Poisson process in higher dimensions. For example, it is an open problem whether the greedy
walk on the points of a homogeneous Poisson process on R

2 visits all points [6].
The paper is organized as follows. In Section 2 we calculate the probability that the server

visits the points of � in a particular order. The distributions of random variables N and L are
studied in Section 3 and Section 4, respectively.

2. The probability to visit points in a predefined order

The points of � ∪ {0} can be written in order as

· · · < X−3 < X−2 < X−1 < X0 = 0 < X1 < X2 < X3 < · · · .

For n ∈ Z, let
Yn = Xn − Xn−1.

Since � is a stationary Poisson process with rate 1, {Yn}n∈Z are independent and exponentially
distributed random variables with parameter 1.

Lemma 1. Let {Yi}i≥1 be independent and exponentially distributed random variables with
mean 1 and let Dn = ∑n

i=1Yi . Then

P(Dn < Yn+1) = 1

2n

and the events {Dn < Yn+1}n≥1 are independent.

Proof. For n = 1 this is P(D1 < Y2) = P(Y1 < Y2) = 1
2 . Using the memoryless property

of the exponential random variable Yn+1, we have

P(Dn < Yn+1) = P(Dn < Yn+1 | Dn−1 < Yn+1)P(Dn−1 < Yn+1)

= P(Yn < Yn+1)P(Dn−1 < Yn+1)

= 1
2 P(Dn−1 < Yn+1).

Thus, by induction, we obtain P(Dn < Yn+1) = 1/2n.
The event {Dn > Yn+1} can be written as

{Dn > Yn+1} =
{

Yn+1

Dn+1
<

1

2

}
=

{
Dn

Dn+1
>

1

2

}
.

Therefore, in order to show the independence of the events {Dn > Yn+1}n≥1, we prove the
independence of the random variables {Dn/Dn+1}n≥1.
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For i < j , let Ui,j = Di/Dj . For any � > 0, choose integers i1 < i2 < · · · < i�.
The random variable Ui1,i2 = Di1/Di2 is independent of Di2 (see, for example, [4, Theorem
8.4.1]) and it is also independent of Di3 − Di2 , . . . , Di� − Di�−1 . This implies that the random
variable Ui1,i2 is independent of the random variables {Uij ,ij+1}�−1

j=2 since

Uij ,ij+1 = Di2 + ∑j−1
k=2

(
Dik+1 − Dik

)
Di2 + ∑j

k=2

(
Dik+1 − Dik

) for 2 ≤ j < �.

We can use the same argument to show that, for 2 ≤ k < �−1, the random variableUik,ik+1 is also
independent of {Uij ,ij+1}�−1

j=k+1. Therefore, the random variables {Uij ,ij+1}�−1
j=1 are independent

for any choice of � and for any increasing sequence i1, i2, . . . , i� and, thus, the random variables
{Un,n+1}n≥1 = {Dn/Dn+1}n≥1 are independent as well. �

Let

S =
{
(in)n≥0 ∈ Z

∞ : i0 = 0 and in ∈
{

min
0≤j≤n−1

ij − 1, max
0≤j≤n−1

ij + 1
}

for all n ∈ N

}
.

If the sequence (Sn)n≥0 satisfies (1) then there exists a sequence (in)n≥0 ∈ S such that Sn = Xin

for all n ≥ 0. Furthermore, denote by π(Sn) = in the index of the nth visited point. In the
following lemma we compute the probability that the sequence (π(Sn))n≥0 is (in)n≥0 ∈ S.

Lemma 2. Let (in)n≥0 ∈ S and let

δ1 =
{

0 if i1 = 1,

1 if i1 = −1,
and, for n ≥ 2, δn =

{
0 if |in − in−1| = 1,

1 otherwise.

Then

P((π(Sn))n≥0 = (in)n≥0) =
∞∏

n=1

(
1 − 1

2n

)1−δn
(

1

2n

)δn

.

In other words, the random variables {δn}n≥1 are independent and δn has a Bernoulli distribu-
tion with parameter 2−n.

Proof. Let Mn = max0≤j≤n ij and let mn = min0≤j≤n ij . Moreover, define random
variables {Zn}n≥1 as

Z1 = Y0, Z2 = Y1, Zn =
{

Yin−2+1 if in−2 > 0,

Yin−2 if in−2 < 0,
n ≥ 3.

Assume that the event {(π(Sj ))
n
j=0 = (ij )

n
j=0} occurs and, without loss of generality, assume

that in = Mn. If in+1 = Mn + 1 then δn+1 = 0 and

P(π(Sn+1) = in+1 | (π(Sj ))
n
j=0 = (ij )

n
j=0)

= P(XMn+1 − Xin < Xin − Xmn−1 | (π(Sj ))
n
j=0 = (ij )

n
j=0)

= P

(
YMn+1 <

Mn∑
j=mn

Yj

∣∣∣∣ (π(Sj ))
n
j=0 = (ij )

n
j=0

)

= P

(
Zn+2 <

n+1∑
j=1

Zj

∣∣∣∣ (π(Sj ))
n
j=0 = (ij )

n
j=0

)
. (3)
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Since {Zn}n≥1 are independent and identically distributed exponential random variables with
parameter 1 and the event {(π(Sj ))

n
j=0 = (ij )

n
j=0} is the intersection of the events {Zk+2 <∑k+1

j=1Zj }n−1
k≥0 or their complements, from Lemma 1, it follows that the value of (3) is 1−2−(n+1).

If in+1 = mn − 1 then δn+1 = 1 and

P(π(Sn+1) = in+1 | (π(Sj ))
n
j=0 = (ij )

n
j=0)

= P(XMn+1 − Xin > Xin − Xmn−1 | (π(Sj ))
n
j=0 = (ij )

n
j=0).

We deduce, again from Lemma 1, that the probability above is 2−(n+1). Thus, we can write

P(π(Sn+1) = in+1 | (π(Sj ))
n
j=0 = (ij )

n
j=0) =

(
1 − 1

2n+1

)1−δn+1
(

1

2n+1

)δn+1

,

and the claim of the lemma follows. �

Corollary 1. The expected number of times the sequence (Sn)n≥1 changes sign is 1
2 .

Proof. The sequence changes sign after visiting point Sn, n ≥ 1, if δn+1 = 1. Since {δn}n≥1
are independent random variables with P(δn = 1) = 2−n, the expected number of times the
sequence changes sign is

E

( ∞∑
n=2

δn

)
=

∞∑
n=2

P(δn = 1) =
∞∑

n=2

1

2n
= 1

2
. �

Remark 1. Corollary 1 implies that the number of times the sequence (Sn)n≥0 changes sign
is a.s. finite and, thus, the walk a.s. does not visit all the points of �. This is another way to
prove the fact that {S1, S2, . . . } �= � a.s.

3. Distribution of the random variable N

In this section we study the distribution of the random variable N , the number of visited
points of � which are less than S0 = 0. We can write N = − minn≥0 π(Sn). From (2), we
know that N is a defective random variable with P(N = ∞) = 1

2 and the law of N , when N is
finite, is given in the following theorem.

Theorem 1. Let

C(k, �) =
∑

1≤i1<j1<i2<j2<···<i�<j�∑�
m=1(jm−im)=k

1

(2i1 − 1)(2j1 − 1) · · · (2i� − 1)(2j� − 1)
for k, � ≥ 1.

Then,

P(N = 0) =
∞∏

n=1

(
1 − 1

2n

)

and, for k ≥ 1,

P(N = k) =
∞∏

n=1

(
1 − 1

2n

) k∑
�=1

C(k, �).
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Moreover, for k ≥ 0,

P(N = k) = c

2k
+ O

(
1

22k

)
,

where c is a positive constant that does not depend on k.

Proof. If N = 0, the walk visits points X0, X1, X2, . . . successively. This implies that
(π(Sn))n≥0 = (n)n≥0 and the sequence (δn)n≥0, defined in Lemma 2, is identically 0. Now,
the result follows directly from Lemma 2.

If N = k ≥ 1, the set of indices of visited points is {π(S0), π(S1), π(S2), . . . } = {−k, −k+
1, −k + 2, . . . }. Then there is �, 1 ≤ � ≤ k, and sequences i1, i2, . . . , i� and j1, j2, . . . , j�

such that 0 < i1 < j1 < i2 < j2 < · · · < i� < j� and the sequence (Sn)n≥0 is negative when
im ≤ n ≤ jm −1, m ∈ {1, 2, . . . , �} and nonnegative otherwise. Since the walk visits exactly k

points on the left, we have
∑�

m=1(jm − im) = k, δn = 1 for n ∈ {i1, i2, . . . , i�, j1, j2, . . . , j�}
and δn = 0 otherwise.

Therefore, from Lemma 2, we obtain

P(N = k)

=
∑

(in)n≥0∈S
{i0,i1,i2,...}={−k,−k+1,−k+2,...}

P((π(Sn))n≥0 = (in)n≥0)

=
k∑

�=1

∑
1≤i1<j1<i2<j2<···<i�<j�∑�

m=1(jm−im)=k

∏
i /∈{i1,...,i�,j1,...,j�}

(
1 − 1

2i

) ∏
i∈{i1,...,i�,j1,...,j�}

1

2i

=
∞∏

n=1

(
1 − 1

2n

) k∑
�=1

∑
1≤i1<j1<i2<j2<···<i�<j�∑�

m=1(jm−im)=k

1

(2i1 − 1)(2j1 − 1) · · · (2i� − 1)(2j� − 1)

=
∞∏

n=1

(
1 − 1

2n

) k∑
�=1

C(k, �).

In order to find the asymptotic value of the expression above, we first obtain an upper bound
for 2kC(k, �) by using the inequalities 1/(2k − 1) ≤ 2/2k and 1/(4k − 1) ≤ 2/4k . Thus,

2kC(k, �)

=
∑

1≤i1,i2,...,i�
1≤k1,k2,...,k�−1∑�−1

i=1 ki<k

2k

(2i1 − 1)(2i1+k1 − 1) · · · (2i1+···+i�+k1+···+k�−1 − 1)(2i1+···+i�+k − 1)

≤
∑

1≤i1,i2,...,i�
1≤k1,k2,...,k�−1∑�−1

i=1 ki<k

22�

22�i1 22(�−1)i2 · · · 22i�22(�−1)k1 22(�−2)k2 · · · 22k�−1

= 22�

(4� − 1)(4�−1 − 1)2(4�−2 − 1)2 · · · (4 − 1)2
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≤ 22�22�−1

4�2

= 1

22�2−4�+1
. (4)

Let

c� =
∑

1≤i1,i2,...,i�

1

2i1+···+i�

∑
1≤k1,k2,...,k�−1

1

(2i1 − 1)(2i1+k1 − 1) · · · (2i1+···+i�+k1+···+k�−1 − 1)
.

Similarly as in (4) one can show that c� ≤ 1/(22�2−4�+2) and, moreover,

|c� − 2kC(k, l)|
≤

∑
1≤i1,i2,...,i�

1

2i1+···+i� (2i1+···+i�+k − 1)

×
∑

1≤k1,k2,...,k�−1∑�−1
i=1 ki<k

1

(2i1 − 1)(2i1+k1 − 1) · · · (2i1+···+i�+k1+···+k�−1 − 1)

+
∑

1≤i1,i2,...,i�

1

2i1+···+i�

×
∑

1≤k1,k2,...,k�−1∑�−1
i=1 ki≥k

1

(2i1 − 1)(2i1+k1 − 1) · · · (2i1+···+i�+k1+···+k�−1 − 1)

≤ 1

2k

∑
1≤i1,i2,...,i�

∑
1≤k1,k2,...,k�−1

22�

2(2�+1)i1 2(2�−1)i2 · · · 23i�22(�−1)k1 22(�−2)k2 · · · 22k�−1

+
∑

1≤i1,i2,...,i�

∑
1≤k1,k2,...,k�−1∑�−1

i=1 ki≥k

22�−1

22�i1 22(�−1)i2 · · · 22i�22(�−1)k1 22(�−2)k2 · · · 22k�−1

≤ 1

2k

1

22�2−3�+1

+ 1

22k

22�−1

(4� − 1)(4�−1 − 1) · · · (4 − 1)

∑
1≤k1,k2,...,k�−2

2

22(�−2)k1 22(�−3)k2 · · · 22k�−2

≤ 1

2k

1

22�2−3�+1
+ 1

22k

1

22�2−6�+4

= O

(
1

2k

1

2�2

)
. (5)

Since c� ≤ 1/(22�2−4�+2) then
∑∞

�=k+1 c� ≤ 1/(22k2−1). This, together with (5), gives

2k
P(N = k) =

∞∏
n=1

(
1− 1

2n

) k∑
�=1

2kC(k, �) =
∞∏

n=1

(
1− 1

2n

) k∑
�=1

c�+O

(
1

2k

)
= c+O

(
1

2k

)
,

where c = ∏∞
n=1(1 − 1/2n)

∑∞
�=1 c�. �
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4. Distribution of the random variable L

In this section we study the distribution of the index of the last point in the sequence (Sn)n≥0,
which is less than or equal to S0 = 0; that is, the distribution of the random variable L =
max{n : Sn ≤ 0}. Again, from (2), we have P(L = ∞) = 1

2 . Just as in the previous section,
we find the exact distribution of this random variable as well as an asymptotic result.

Theorem 2. We have P(L = 0) = ∏∞
n=1(1 − 1/2n) and, for k ≥ 1,

P(L = k) = 1

2k+2

∞∏
n=k+2

(
1 − 1

2n

)
.

Moreover, for k ≥ 0,

P(L = k) = 1

2k+2 + O

(
1

22k

)
.

Proof. The value of P(L = 0) follows directly from Theorem 1 since {N = 0} = {L = 0}.
If L = k, k ≥ 1, for the sequence (π(Sn))n≥0 ∈ S it holds that π(Sk) < 0 and π(Sk+�) > 0

for all � ≥ 1. Thus, for the corresponding sequence (δn)n≥1, which was defined in Lemma 2,
we have δk+1 = 1 and δk+�+1 = 0 for all � ≥ 1. The only constraint for the first k members
in both sequences, other than the constraints given by the definition of the sequences, is that
π(Sk) < 0. This has probability 1

2 due to symmetry. Thus, by Lemma 2, we have

P(L = k) =
∑

(in)n≥0∈S
ik<0, ik+�>0 for �≥1

P((π(Sn))n≥0 = (in)n≥0)

= 1

2

∑
δ1,δ2,...,δk∈{0,1}

k∏
n=1

(
1 − 1

2n

)1−δn
(

1

2n

)δn 1

2k+1

∞∏
n=k+2

(
1 − 1

2n

)

= 1

2k+2

∞∏
n=k+2

(
1 − 1

2n

)
.

Furthermore, we can write

P(L = k) = 1

2k+2

(
1−

∞∑
n=k+2

1

2n
+· · ·

)
= 1

2k+2

(
1− 1

2k+1 +· · ·
)

= 1

2k+2 +O

(
1

22k

)
. �
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GREEDY WALKS ON TWO LINES

KATJA GABRYSCH

Abstract. The greedy walk is a walk on a point process that always moves from
its current position to the nearest not yet visited point. We consider here various
point processes on two lines. We look first at the greedy walk on two independent
one-dimensional Poisson processes placed on two intersecting lines and prove that
the greedy walk almost surely does not visit all points. When a point process is
defined on two parallel lines, the result depends on the definition of the process: If
each line has a copy of the same realisation of a homogeneous Poisson point process,
then the walk almost surely does not visit all points of the process. However, if
each point of this process is removed with probability p from either of the two lines,
independently of the other points, then the walk almost surely visits all points.
Moreover, the greedy walk on two parallel lines, where each line has a copy of the
same realisation of a homogeneous Poisson point process, but one copy is shifted by
some small s, almost surely visits all points.

Keywords and phrases. Poisson point process; greedy walk
AMS 2000 subject classifications. 60K37; 60G55,60K25

1. Introduction

Consider a simple point process Π in a metric space (E, d). We think of Π as a
collection of points (the support of the measure) and we use the notation |Π ∩ B| to
indicate the number of points on the Borel set B ⊂ E. If x ∈ E, the notation x ∈ Π
is used instead of Π ∩ {x} 6= ∅.

We define a greedy walk on Π as follows. The walk starts from some point S0 ∈ E
and always moves on the points of Π by picking the point closest to its current position
that has not been visited before. Thus a sequence (Sn)n≥0 is defined recursively by

(1) Sn+1 = arg min
{
d(X,Sn) : X ∈ Π, X /∈ {S0, S1, . . . , Sn}

}
.

The greedy walk is a model in queuing systems where the points of the process repre-
sent positions of customers and the walk represents a server moving towards customers.
Applications of such a system can be found, for example, in telecommunications and
computer networks or transportation. As described in [1], the model of a greedy walk
on a point process can be defined in various ways and on different spaces. For exam-
ple, Coffman and Gilbert [2] and Leskelä and Unger [6] study a dynamic version of
the greedy walk on a circle with new customers arriving to the system according to a
Poisson process.

The greedy walk defined as in (1) on a homogeneous Poisson process on R almost
surely does not visit all points. More precisely, the expected number of times the walk
jumps over 0 is 1/2 [4]. Foss et al. [3] and Rolla et al. [7] study two modifications
of this model where they introduce some extra points on the line, which they call
“rain” and “dust”, respectively. Foss et al. [3] consider a space-time model, starting
with a Poisson process at time 0. The positions and times of arrival of new points
are given by a Poisson process on the half-plane. Moreover, the expected time that
the walk spends at a point is 1. In this case the walk, almost surely, jumps over the
starting point finitely many times and the position of the walk diverges logarithmically

1
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in time. Rolla et al. [7] assign to the points of a Poisson process one or two marks at
random. The walk always moves to the point closest to the current position which still
has at least one mark left and then removes exactly one mark from that point. The
authors show that introducing points with two marks will force the walk to change
sides infinitely many times. Thus, unlike the walk on a Poisson process with single
marks, the walk here almost surely visits all points of the point process.

There is not much known about the behaviour of the greedy walk on a homogeneous
Poisson process in higher dimensions. For example, it is an open problem whether the
greedy walk on the points of a homogeneous Poisson process on R2 visits all points [7].

In this paper, we study various point processes defined on the union of two lines E ⊂
R2, where the distance function d on E is the Euclidean distance, d ((x1, y1), (x2, y2)) =√

(x1 − x2)2 + (y1 − y2)2. For all point processes Π considered in this paper, every step
of the greedy walk on Π is almost surely uniquely defined, that is for every n ≥ 0, there
is, almost surely, only one point for which the minimum (1) is obtained.

We study first a point process Π on two lines intersecting at (0, 0) with independent
homogeneous Poisson processes on each line. The greedy walk starts from (0, 0). When
the walk visits a point that is far away from (0, 0), then the distance to (0, 0) and to
any point on the other line is large. Thus, the probability of changing lines or crossing
(0, 0) is small. In Section 2 we show by using the Borel-Cantelli lemma that almost
surely the walk crosses (0, 0) or changes lines only finitely many times, which implies
that almost surely the walk does not visit all points of Π.

Thereafter, we look at the greedy walk on two parallel lines at a fixed distance r,
R × {0, r}, with a point process on each line. The behaviour here depends on the
definition of the process. The first case we study is a process Π consisting of two
identical copies of a homogeneous Poisson process on R, that are placed on the parallel
lines. We show in Section 3 that the greedy walk does not visit all the points of Π, but
it visits all the points on one side of the vertical line {0} × R and just finitely many
points on the other side.

In the second case, we modify the definition of the process above by deleting exactly
one of the copies of each point with probability p > 0, independently from the other
points, and the line is chosen with probability 1/2. In particular, if p = 1 we have two
independent Poisson processes on these lines. For any p > 0, the greedy walk almost
surely visits all points. The reason is that the greedy walk skips some of the points
when it goes away from the vertical line {0} × R and those points will force the walk
to return and cross the vertical line {0} × R infinitely many times. We prove this in
Section 4 using arguments from [7].

The greedy walk also visits all points of Π in the case when Π consists of two
identical copies of a homogeneous Poisson process on R where one copy is shifted by
|s| < r/

√
3. This is discussed in Section 5. Note that all results are independent of

the choice of r.
For the greedy walk on a homogeneous Poisson process on R, with single or double

marks assigned to the points, Rolla et al. [7] show that, even though the walk visits
all the points, the expected first crossing time of 0 is infinite. One can in a similar
way show analogous results for the greedy walk on the processes on two parallel lines
defined in Sections 4 and 5, but that is not included in this paper.

2. Two intersecting lines

Let E = {(x, y) ∈ R2 : y = m1x or y = m2x} where m1,m2 ∈ R, m1 6= m2. The
point (0, 0) divides E into four half-lines. Let d be the Euclidean distance and denote
the distance of a point (x, y) from the origin by ||(x, y)|| = d((0, 0), (x, y)).
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Let Π1,Π2 be two independent Poisson processes on R with rate 1. Then, for any
a, b ∈ R let ∣∣∣Π ∩ {(x,mix) : x

√
1 +m2

i ∈ (a, b)
}∣∣∣ =

∣∣Πi ∩ (a, b)
∣∣,

so that the distances between the points of Π1 and Π2 are preserved in E. The greedy
walk (Sn)n≥0 on Π defined by (1) starts from (0, 0).

Theorem 1. Almost surely, the greedy walk does not visit all points. More precisely,
the greedy walk almost surely visits only finitely many points on three half-lines.

Proof. Let B(0,0)(R) be a ball in R2 of radius R around point (0, 0). Then

|Π ∩B(0,0)(R)| = |Π1 ∩ (−R,R)|+ |Π2 ∩ (−R,R)| <∞ a.s.

Thus, limn→∞ ||Sn|| =∞ almost surely. To show that the walk does not visit all points
of Π, it suffices to prove that the sequence (Sn)n≥0 changes half-lines only finitely many
times.

We can define a subsequence of the times when the walk changes half-lines as follows:

j0 = 0,

jn = inf {k > jn−1 : Sk and Sk+1 are not on the same half-line

and ||Sk|| > max{n, ||Sjn−1 ||}
}
,

k0 = 0,

kn = inf {k ≤ jn : Sk, Sk+1, . . . , Sjn are on the same half-line} ,

where inf ∅ = ∞. Let (Un)n≥0 and (Vn)n≥0 be the corresponding subsequences of
(Sn)n≥0, that is,

Un = Skn and Vn = Sjn ,

when jn, kn <∞, and Un = (1, 1), Vn = (0, 0) otherwise. Moreover, define the events

Bn = {||Un|| ≤ ||Vn||} and Cn = {||Un|| > ||Vn||}.

If the greedy walk changes half-lines infinitely often, then jn < ∞ for all n and
exactly one of the events Bn and Cn occurs for each n.

Assume that Cn occurs for some n such that jn < ∞. Let X = Skn−1 be the
last visited point before Un. Then, by the definition of the sequence (Vn)n≥0, ||X|| ≤
max{n, ||Vn−1||} < ||Vn||. From ||Un|| > ||Vn|| > ||X|| it follows that d(X,Vn) <
d(X,Un), which contradicts the definition of the greedy walk, and therefore also the
assumption that Cn occurs.

Assume now that Bn occurs for some n such that jn <∞. Denote by α the acute
angle between the lines y = m1x and y = m2x. By the definition of the sequence
(Vn)n≥0, the walk up to time jn never changed lines from a point whose distance from
the origin is greater than ||Vn||. Moreover, because of the assumption ||Un|| ≤ ||Vn||,
between times kn and jn the walk never visited the points further away than Vn on
the corresponding half-line. Thus, the points on this half-line outside B(0,0)(||Vn||) are
not yet visited. The distance from Vn to the other line is ||Vn|| sinα. Since the walk
changes lines after visiting the point Vn, we can conclude that there are no unvisited
points of Π in BVn(||Vn|| sinα) at time n. Hence, for n ≥ n0, where n0 is such that
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n0 sinα > 1, we have

Bn ⊂
2⋃
i=1

{
Πi ∩ (||Vn||, ||Vn||(1 + sinα)) = ∅

}
∪
{

Πi ∩ (−||Vn||(1 + sinα),−||Vn||) = ∅
}

⊂
2⋃
i=1

∞⋃
R=n

{
Πi ∩ (R+ 1, R(1 + sinα)) = ∅

}
∪
{

Πi ∩ (−R(1 + sinα),−(R+ 1)) = ∅
}
.

Then,

P(Bn) ≤ 4
∞∑
R=n

e−R sinα+1 =
4e−n sinα+1

1− e− sinα

and
∞∑

n=n0

P(Bn) ≤ 4e−n0 sinα+1

(1− e− sinα)2
<∞.

Hence, by the Borel-Cantelli lemma, P (Bn for infinitely many n ≥ 1) = 0.
Since the event Cn does not occur for any n such that jn <∞ and Bn occurs almost

surely finitely many times, there exists, almost surely, n0 such that jn =∞ for n ≥ n0.
Thus, the greedy walk changes lines finitely many times. �

Remark 1. The theorem holds also when Π1 and Π2 are Poisson processes with different
rates. Moreover, we can generalise this theorem as follows. Let E be a space of finitely
many intersecting lines (every two lines are intersecting, but not necessarily all in
the same point) and Π is a point process on E consisting of a homogeneous Poisson
process (with possibly different rates) on every line. Then the greedy walk starting
from a point in E does not visit all points of Π. Similarly as above, one can show that
the walk changes lines finitely many times, and therefore, visits finitely many points
on all but one line.

3. Two parallel lines with the same Poisson process

Let E = R× {0, r} and let d be the Euclidean distance. Sometimes we refer to the
lines R× {0} and R× {r} as line 0 and line r, respectively.

We define a point process Π on E in the following way. Let Π̂ be a homogeneous

Poisson process on R with rate 1 and let |Π ∩ (B × {0})| = |Π ∩ (B × {r})| = |Π̂ ∩B|
for all Borel sets B ⊂ R. Denote the points of the process Π̂ by

. . . < X−2 < X−1 ≤ 0 < X1 < X2 < . . . .

The greedy walk on Π starts from the point S0 = (0, 0), which is with probability 1
not a point of Π.

Theorem 2. Almost surely, the greedy walk does not visit all points of Π. More
precisely, the greedy walk almost surely visits all points on one side of the vertical line
{0} × R and finitely many points on the other side.

Proof. We can divide the points (Xi)i∈Z into clusters, so that successive points in the
same cluster have a distance less than r and the distance between any two points in
different clusters is greater than r. Let (τi)i∈Z be the indices of the closest point to 0 in
each cluster. More specifically, τ0 = −1 if |X−1| < X1 and τ0 = 1 otherwise, (τi)i≥1 is
the unique sequence of integers such that Xτi−Xτi−1 > r and Xk−Xk−1 ≤ r for τi−1 <
k < τi, and, similarly, (τ−i)i≥1 is a sequence of integers such that Xτ−i+1 −Xτ−i > r
and Xk+1 −Xk ≤ r for τ−i−1 < k < τ−i. Moreover, we call the cluster containing the
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0

Π0

Πr

Xτ0Xτ−1 Xτ1 Xτ2

Xτ0Xτ−1 Xτ1 Xτ2

Figure 1. The points closest to 0 in each cluster form the sequence
(Xτi)i∈Z. Once the greedy walk enters a cluster, it visits successively
all the points of that cluster before it moves to the next cluster.

point Xτi cluster i. See Figure 1 for an example of clusters −1, 0, 1 and 2. The points
{Xτ−1 , Xτ0 , Xτ1 , Xτ2} × {0, r} are marked with gray colour.

The greedy walk starting from (0, 0) visits several points around (0, 0) and then
moves to line r from one of the outermost points of cluster 0 on line 0. Then it visits
all points of cluster 0 on line r and if there are points left it changes lines again to
visit the remaining points on line 0 before moving to the next cluster. Later, when the
greedy walk is in cluster i, i 6= 0, it always visits first a point at Xτi , that is (Xτi , 0)
or (Xτi , r). Then the walk visits successively all the points of cluster i on the same
line and it changes lines at the other outermost point of the cluster. Thereafter the
walk visits the corresponding points on the other line in reverse order until it reaches
a point at Xτi . Thus, the walk visits all points of cluster i consecutively and it ends at
the starting position Xτi , but on the other line. Therefore, to know whether the walk
visits all points, it is enough to know the positions of the points in cluster 0 and the
position of the points at Xτi , i 6= 0. Since the points of cluster 0 almost surely do not
change the asymptotic behaviour of the walk, for the proof we look at the greedy walk

(S̃n)n≥0 on (Xτi)i∈Z with 0 as starting point. Note that the distances Xτi+1 − Xτi ,
i ∈ Z \ {−1, 0}, are independent and identically distributed random variables with
finite expectation.

To visit all points (Xτi)i∈Z, the greedy walk needs to cross over 0 infinitely many

times. Let Am be the event that the walk (S̃n)n≥0 crosses 0 after visiting a point in
the interval (rm, r(m+ 1)), that is

Am = {∃ n : rm ≤ S̃n < r(m+ 1) and S̃n+1 < 0}.

This can be written as

Am = {∃ n, i : rm ≤ Xτi < r(m+ 1), S̃n = Xτi and S̃n+1 < 0}
⊂ {∃ i : rm ≤ Xτi < r(m+ 1), Xτi+1 −Xτi > rm}

=
⋃
i≥0
{rm ≤ Xτi < r(m+ 1), Xτi+1 −Xτi > rm}.

For i ≥ 1, the random variable Xτi+1 −Xτi is independent of Xτi and it has the same
distribution as Xτ2 −Xτ1 . Moreover, Xτi ∈ [rm, r(m+ 1)) for at most one i. Thus, we
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have

P(Am) ≤ P(rm ≤ Xτ0 < r(m+ 1)) +
∞∑
i=1

P(rm ≤ Xτi < r(m+ 1), Xτi+1 −Xτi > rm)

≤ P(rm ≤ Xτ0 < r(m+ 1)) +

∞∑
i=1

P(rm ≤ Xτi < r(m+ 1))P(Xτ2 −Xτ1 > rm)

= P(rm ≤ Xτ0 < r(m+ 1)) + P(Xτ2 −Xτ1 > rm)

∞∑
i=1

E
(
1{rm≤Xτi<r(m+1)}

)
≤ 1

2
e−2rm(1− e−2r) + P (Xτ2 −Xτ1 > rm) .

Then
∞∑
m=1

P(Am) ≤
∞∑
m=1

1

2
e−2rm(1− e−2r) +

∞∑
m=1

P(Xτ2 −Xτ1 > rm)

<
1

2
e−2r +

1

r
E(Xτ2 −Xτ1) <∞.

Now the Borel-Cantelli lemma implies that

P(Am for infinitely many m ≥ 1) = 0.

Hence, the walk (S̃n)n≥0 almost surely crosses 0 finitely many times. Therefore, also
the walk (Sn)n≥0 crosses the vertical line {0} × R finitely many times and visits just
finitely many points on one side of that line. �

4. Two parallel lines with thinned Poisson processes

Let E = R × {0, r} and let d be the Euclidean distance. Moreover, let 0 < p ≤ 1.
We define a point process Π on E as follows.

Let Π̂ be a homogeneous Poisson process with rate 1. Let Π0 and Πr be two

(dependent, in general) thinnings of Π̂ generated as follows. For all X ∈ Π̂, do one of
the following:

• With probability 1 − p, duplicate the point X and make it a point of both
processes Π0 and Πr.
• With probability p, assign X to either Π0 or Πr (but not both), with probability

1/2 each.

Let now Π be the point process on E with Π ∩ (B × {0}) = (Π0 ∩ B) × {0} and
Π ∩ (B × {r}) = (Πr ∩B)× {r} for all Borel sets B ⊂ R.

We study the greedy walk on Π defined by (1) that starts at S0 = (0, 0). Note that
(0, 0) /∈ Π with probability 1. Sometimes in the proofs we consider the greedy walk
starting from another point x ∈ E. We emphasise this by writing the superscript x in
the sequence (Sxn)n≥0.

If p = 0, Π0 and Πr are identical. This was studied in Section 3 where we showed
that the greedy walk does not visit all points of the process. In this section we consider
p > 0 and we get the opposite result:

Theorem 3. For any p > 0, the greedy walk visits all points of Π almost surely.

For p = 1, the processes Π0 and Πr defined above are two independent Poisson
processes with rate 1/2. When 0 < p < 1, the process Π has some “double” points
and Π0 and Πr are not independent. However, for p = 1 and p ∈ (0, 1) the behaviour
of the walk is similar and, thus, we study these cases together.
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Let us now introduce some notation and definitions that we use throughout this
section. We call the projections of elements of E on their first coordinate shadows of
the elements of E on R and we denote it by ·̂ . For example, the shadow x̂ of a point

x = (x1, x2) ∈ E is x1. The point process Π is defined from the process Π̂ that can be

seen as a shadow of Π, that is, x ∈ Π̂ if and only if there exists ι ∈ {0, r} such that

(x, ι) ∈ Π. Also, (Ŝn)n≥0 is the shadow of the greedy walk (Sn)n≥0, that is, (Ŝn)n≥0
contains just the information about the first coordinates of the locations of the walk.

Let Πn = Π \ {S0, S1, S2, . . . , Sn−1} be the set of all points of Π that are not visited
before time n. Let Π0

n and Πr
n be the shadows of Πn ∩ (R× {0}) and Πn ∩ (R× {r}),

respectively. Moreover, Π̂n denotes the shadow of Πn, that is, the set of the first
coordinates of the points of Πn.

Define the shift operator θ(x,ι), (x, ι) ∈ E, on Π, by θ(x,0)Π =
((

Π0 − x
)
× {0}

)
∪

((Πr − x)× {r}) and θ(x,r)Π = ((Πr − x)× {0}) ∪
((

Π0 − x
)
× {r}

)
. Define also the

mirroring operator σ by σΠ =
((
−Π0

)
× {0}

)
∪ ((−Πr)× {r}).

For any subset A of R define

TA = inf{n ≥ 1 : Ŝn ∈ A}
to be the first time the shadow of the greedy walk enters A and write Tx for T{x}. Let

TRx = inf{n ≥ 0 : Π̂n+1(x) = 0}, that is, TRx is the time when both points (x, 0) and
(x, r) are visited. If exactly one of (x, 0) and (x, r) is in Π then TRx = Tx.

Note that for any x > 0 we have T[x,∞) <∞ or T(−∞,0) <∞ because Π̂[0, x] <∞,
almost surely, and the walk exits [0, x]×{0, r} in a finite time. Define now the variable

Dx, x ∈ Π̂, x > 0, as follows. If T(−∞,0) < T[x,∞) then Dx = 0. Otherwise, T[x,∞) <

T(−∞,0) and 0 < Ŝ1, Ŝ2, . . . , ŜT[x,∞)−1 < x, ŜT[x,∞)
≥ x. We can label the remaining

points of Π̂T[x,∞)
in the interval (0, x) by z1, z2, . . . , zn−1 so that

0 = zn < zn−1 < · · · < z1 < z0 = x.(2)

Let then

Dx = max
0≤i≤n−1

{(zi − zi+1)− (x− zi)} = max
0≤i≤n−1

{2zi − zi+1 − x} .(3)

Since 2z0 − z1 − x = x− z1 > 0 and 2zi − zi+1 − x ≤ 2zi − x ≤ x for 0 ≤ i ≤ n− 1, we
have 0 < Dx ≤ x. The variable Dx measures how big should be the distance between

x and the closest point to x in Π̂ ∩ (x,∞), so that the walk possibly visits a point in
(−∞, 0)× {0, r} before visiting any point in (x,∞)× {0, r}.

We prove Theorem 3 in a similar way as Rolla et al. [7] prove that the greedy walk
visits all marks attached to the points of a homogeneous Poisson process on R, where
each point has one mark with probability p or two marks with probability 1− p. The
idea of the proof is the following. We define first a subset Ξ of Π0, which is stationary
and ergodic. Then, using the definition and properties of Ξ, we are able to show that

there exists d0 > 0 such that, almost surely, DX < d0 for infinitely many X ∈ Π̂. This
we use to show that events Ak, which we define later in (6), occur for infinitely many
k > 0, almost surely. Then we show that whenever Ak occurs, the greedy walk visits
(−∞, 0)×{0, r} in a finite time. Therefore, we can conclude that T(−∞,0) <∞, almost
surely. Finally, using repeatedly the fact that T(−∞,0) <∞, almost surely, we are able
to show that the greedy walk on Π crosses the vertical line {0} × R infinitely many
times and, thus, almost surely visits all points of Π.

Let us first discuss general properties of the greedy walk on E that do not depend
on the definition of the point process Π. If the greedy walk visits two points (x, ι)
and (y, ι) on a line ι ∈ {0, r}, without changing lines in between those visits, then it
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visits also all the points between x and y on line ι. So the walk clears some intervals
on the lines, but because of changing the lines it possibly leaves some unvisited points
between those intervals. The following lemma shows that if the walk omits two points
on different lines between visited intervals, then the horizontal distance between those
points is greater than r. Moreover, looking from a point that is to the right of those
two points, the closer point is always the point that is more to the right. Thus, when
the walk returns to a partly visited set, it always visits first the rightmost remaining
point in this set.

Lemma 1. Let a = min0≤i≤n Ŝi and b = max0≤i≤n Ŝi.

(a) Let a ≤ x < y ≤ b such that (x, ιx), (y, ιy) ∈ Πn+1 and ιx 6= ιy. Then y−x > r.
(b) Let a ≤ x < y ≤ z ≤ b such that (x, ιx), (y, ιy) ∈ Πn+1, (z, ιz) ∈ Πn. Then

d((y, ιy), (z, ιz)) < d((x, ιx), (z, ιz)).

Proof. (a) Let x, y be as in the lemma and suppose on the contrary that y − x ≤ r.
Let I1 = ((a, x)× {ιx})∪ ((a, y)× {ιy}) and I2 = ((x, b)× {ιx})∪ ((y, b)× {ιy}). Since
the greedy walk has visited points at a and b up to time n, but not the points (x, ιx)
and (y, ιy), the walk before time n moved from I1 to I2 or in the opposite direction.
Because of the assumption y − x ≤ r, a point in I1 is closer to (x, ιx) or (y, ιy) than
to any point in I2, and conversely. Thus, if y − x ≤ r it is impossible to visit a point
at a and a point at b without visiting either (x, ιx) or (y, ιy), which contradicts the
assumptions of the lemma.

(b) If ιy = ιz then d((y, ιy), (z, ιz)) = z − y < z − x ≤ d((x, ιx), (z, ιz)). If ιy 6= ιz
and ιx = ιy then d((y, ιy), (z, ιz))

2 = (z − y)2 + r2 < (z − x)2 + r2 ≤ d((x, ιx), (z, ιz))
2.

If ιy 6= ιz and ιx 6= ιy, it follows from part (a) of this lemma that y−x > r. This yields

d((y, ιy), (z, ιz))
2 = (z − y)2 + r2 < (z − y + r)2

< (z − y + y − x)2 = d((x, ιx), (z, ιz))
2. �

Let (c, ιc) ∈ Π, c > 0, be a point far enough from (0, 0). If (c, ιc) is not visited
when the walk goes for the first time from (−∞, c)×{0, r} to (c,∞)×{0, r}, then this
point is visited before the walk returns to (−∞, c)× {0, r}. Furthermore, as we show
in the following lemma, when the walk is finally at the location (c, ιc), then there is no

unvisited points left in (c,max0≤i≤TRc Ŝi]×{0, r}. If (c, ιc) is close to (0, 0) and ιc = r,
then this is not always true because the greedy walk might jump several times over
(0, 0) (and (c, 0)) without visiting any point on line r.

Lemma 2. Let a = min0≤i≤n Ŝi and b = max0≤i≤n Ŝi. Let a ≤ c ≤ b, ιc ∈ {0, r},
such that (c, ιc) ∈ Πn+1. If Ŝn ≥ c and (c, ιc) is visited before any other point of Πn

in (−∞, c)×{0, r}, then all points of Π in (c,max0≤i≤TRc Ŝi]×{0, r} are visited before

time TRc .

Proof. Let us denote max0≤i≤TRc Ŝi by M . It is easy to see that the lemma is true for

c = M . Thus, assume that M > c and let j be the first time for which Ŝj = M . Then,
for j + 1 ≤ k ≤ TRc − 1, Sk is in (c,M ]× {0, r}.

Let x be the rightmost point of Π̂j+1 in the interval [c,M ] and let ιx be the corre-
sponding line of that point. Note that at time j+ 1 there is only one point left at x. If
x = c, the claim of the lemma follows directly. Otherwise, by Lemma 1 (b), the point
(x, ιx) is closer to Sj than any other point in [c, x)× {0, r}. Thus, Sj+1 = (x, ιx) and
there are no points left in [x,M ]×{0, r} after time j+1. Repeating the same arguments
we can see that the walk successively visits all the remaining points in [c,M ]× {0, r}
until it reaches c. Hence, at time TRc the set (c,M ]× {0, r} is empty. �
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To show that DX <∞ for infinitely many X ∈ Π̂, the crucial will be the subset Ξ
of Π0 which we define as follows. For X ∈ Π0, let L0(X) = max{Y ∈ Π0 : Y < X}.
Then let

Ξ = {X ∈ Π0 : S(L0(X),0)
n ∈

(
[L0(X),∞)× {0, r}

)
\ {(X, 0)} for all n ≥ 1 and

S(L0(X),r)
n ∈

(
[L0(X),∞)× {0, r}

)
\ {(X, 0)} for all n ≥ 1},

that is, Ξ contains all points X ∈ Π0 such that if we start a walk from (L0(X), 0) or
(L0(X), r), then the walk stays always in [L0(X),∞)×{0, r} and it never visits (X, 0).
We have defined Ξ in this way because then for every X ∈ Ξ, whenever the greedy
walk approaches (X, 0) and (X, r) from their left, the walk passes around (X, 0) and
it never comes back to visit (X, 0). Thus, if Ξ is non-empty, there are some points of
Π that are never visited.

The point process Π is generated from the homogeneous Poisson process Π̂ and thus
it is stationary and ergodic. The process Ξ is defined as a function of the points in Π
and therefore Ξ is a stationary and ergodic process in R. Therefore, Ξ is almost surely
the empty set or it is almost surely a non-empty set, in which case Ξ has a positive
rate. We look at these two cases in the next two lemmas.

For the first lemma we need the random variable W(x,ι), x ∈ R, ι ∈ {0, r}, which
measures a sufficient horizontal distance from (x, ι) to the rightmost point in the set
(−∞, x)×{0, r}, so that the greedy walk starting from (x, ι) never visits that set. For
x ∈ R let Πx = Π∩ ([x,∞)× {0, r}). Consider for the moment the greedy walk on Πx

starting from (x, ι) defined by (1) and let

W(x,ι) = inf
i≥0
{Ŝi − d(Si, Si+1)}.

Let L0(x) = max{Y ∈ Π0 : Y < x} and Lr(x) = max{Y ∈ Πr : Y < x}. If for some
x ∈ R, ι ∈ {0, r}, |W(x,ι)| <∞ and max{L0(x), Lr(x)} < W(x,ι), then for all i ≥ 0

min{d(Si, (L
0(x), 0)), d(Si, (L

r(x), r))} ≥ Ŝi −max{L0(x), Lr(x)}

> Ŝi −W(x,ι) ≥ d(Si, Si+1).

Therefore, the walk on Π starting from (x, ι) coincides with the walk on Πx, because
for every i ≥ 0 the point Si is closer to Si+1 than to any point in Π \ Πx. Thus, the
walk does not visit Π \ Πx. The opposite is also true, i.e. if the walk on Π starting
from (x, ι) coincides with the walk on Πx, then |W(x,ι)| <∞.

Lemma 3. If Ξ is almost surely the empty set, then Ψ = {(X, ι) ∈ Π : |W(X,ι)| <∞}
is also almost surely the empty set.

Proof. For x ∈ R, let L0(x) and Lr(x) be as above. Since W(X,ι) is identically dis-
tributed for all (X, ι) ∈ Π, Ψ is stationary and ergodic. Suppose, on the contrary,
that Ψ is a non-empty set. For d > 0 let Ψd = {(X, r) ∈ Ψ : |W(X,r)| < d} and note
that

⋃
d>0 Ψd = Ψ ∩ (R × {r}). Thus, there exists d large enough so that Ψd is a

non-empty set which is stationary and ergodic. Let Ψ̃d be the set of all (X, r) ∈ Ψd

such that the points (L0(X), 0), (Lr(X), r) and (L0(L0(X)), 0) satisfy the following.
First, these points are in (−∞, X − d)× {0, r}. Second, the point (Lr(X), r) is closer
to (X, r) than to (L0(X), 0). Third, the greedy walks starting from (L0(L0(X)), 0)
and (L0(L0(X)), r) visit only the points in [L0(L0(X)),∞) × {0, r} and these walks
visit (Lr(X), r) before visiting (L0(X), 0). Since these three conditions have a positive

probability, which is independent of W(X,r), Ψ̃d is also almost surely a non-empty set.

But, by definition of Ξ, for every (X, r) ∈ Ψ̃d, L
0(X) ∈ Ξ and Ξ is a non-empty set,

which is a contradiction. �
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In the following lemma we use the random variable D̃X , X ∈ Π0, which can be

compared to DX defined in (3). For X ∈ Π0 \ Ξ set D̃X = 0. For X ∈ Ξ denote the
points of Ξ ∩ (∞, X] in decreasing order

· · · < z̃2 < z̃1 < z̃0 = X

and define D̃X as

D̃X = sup
i≥0
{2z̃i − z̃i+1 −X} .(4)

For d1, d2 > 0 define

Ξd1,d2 = {X ∈ Ξ : D̃X < d1 and there exists Y ∈ Π̂ such that 0 < Y −X < d2 and

Π̂ ∩ (Y, Y + r) = ∅},

i.e. X ∈ Ξ belongs to Ξd1,d2 if D̃X < d1 and at the distance less than d2 from X there is

an interval of length r where there is no points of Π̂. We consider the empty intervals

of length r in Π, because whenever Π̂ ∩ (Y, Y + r) = ∅ for some Y ∈ Π̂, Y > 0, the
greedy walk is forced to visit the points (Y, 0) and (Y, r), before crossing the interval
and visiting a point in [Y + r,∞)× {0, r}.

Lemma 4. If Ξ is almost surely a non-empty set, then there exist d1, d2 > 0 such that
Ξd1,d2 is almost surely a non-empty set. Moreover, Ξd1,d2 is a stationary and ergodic
process.

Proof. If Ξ is non-empty, the rate δ of Ξ is positive. Then for X ∈ Ξ, limi→∞
X−z̃i
i =

δ−1, almost surely. Also, limi→∞
z̃i−z̃i+1

i = 0, almost surely. Hence, for all large i,

2z̃i − z̃i+1 −X = (z̃i − z̃i+1) − (X − z̃i) < 0 and we can conclude that D̃X is almost

surely finite. Therefore, there exists d1 such that {X ∈ Π0 : X ∈ Ξ, D̃X < d1} is with

positive probability a non-empty set. Moreover, since D̃X is identically distributed for

all X ∈ Ξ, {X ∈ Π0 : X ∈ Ξ, D̃X < d1} is a stationary and ergodic process with
positive rate.

Almost surely, the gap between two neighbouring points of the homogeneous Poisson

process Π̂ is infinitely often greater than r. Thus, also Π ∩ ((Y, Y + r)× {0, r}) = ∅
for infinitely many Y ∈ Π̂ and all such Y form a stationary and ergodic process. Thus,
Ξd1,d2 is also stationary and ergodic for all d2 > 0. Since

⋃
d2>0 Ξd1,d2 = {X ∈ Π0 :

X ∈ Ξ, D̃X < d1} and this is not empty when d1 is large enough, we can choose d2
large enough so that Ξd1,d2 is almost surely a non-empty set. �

We study the greedy walk starting from the point (0, 0), which is, almost surely,

not a point of Π. From now on denote the points of Π̂ by

. . . < X−2 < X−1 ≤ 0 < X1 < X2 < . . .

and denote the points of Π0 and Πr by

. . . < X0
−2 < X0

−1 ≤ 0 < X0
1 < X0

2 < . . . and . . . < Xr
−2 < Xr

−1 ≤ 0 < Xr
1 < Xr

2 < . . . ,

respectively.

Now we are ready to prove that DX < d0 for infinitely many X ∈ Π̂. We use here
the definition of Ξ and divide the proof in two parts, depending weather Ξ is almost
surely the empty set or a non-empty set.

Lemma 5. There exists d0 <∞ such that, almost surely, DXk < d0 and Xk+1−Xk > r
for infinitely many k > 0.
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Proof. Assume first that Ξ is almost surely the empty set. Then, by Lemma 3,
Ψ = {(X, ι) ∈ Π : |W(X,ι)| < ∞} is almost surely the empty set. Moreover, {(X, 0) ∈
Π : X /∈ Πr, |W(X,0)| < ∞} is also the empty set. The greedy walk (S

(0,0)
n )n≥0

on Π ∩ ([0,∞)× {0, r}) has the same law as the greedy walk (S
(X,0)
n )n≥0 on Π ∩

([X,∞)× {0, r}) shifted for (X, 0), where X ∈ Π0, X /∈ Πr. This implies that

P(|W(0,0)| < ∞) = 0 and the greedy walk (S
(0,0)
n )n≥0 almost surely visits a point

in (−∞, 0) × {0, r} in a finite time. Then it follows from the definition of Dx that
Dx = 0 for all large enough x > 0. Since Xk+1−Xk > r for infinitely many k > 0, the
claim of the lemma holds for any d0 > 0.

Assume now that Ξ is not empty. Then, by Lemma 4, we can find d1 and d2 large
enough so that Ξd1,d2 is a non-empty set. We first show that DX ≤ d1 for infinitely
many X ∈ Ξ, X > 0, and then we prove that DXk < d1 + d2 and Xk+1 −Xk > r for
infinitely many k > 0.

For X ∈ Ξ, X > 0, denote the points of Ξ in [0, X] by z̃0, z̃1, . . . , z̃ñ−1 so that

0 = z̃ñ < z̃ñ−1 < · · · < z̃1 < z̃0 = X

and define D̃′X , an analogue of DX and a restricted version of D̃X , as

D̃′X = max
0≤i≤ñ−1

{2z̃i − z̃i+1 −X} = max

{
max

0≤i≤ñ−2
{2z̃i − z̃i+1 −X}, 2z̃ñ−1 −X

}
.(5)

Let ξ = min{Y ∈ Ξ : Y > 0} and note that zñ−1 = ξ for every X ∈ Ξ, X > 0.

Then for X ∈ Ξ, X > 2ξ we have 2zñ−1−X = 2ξ−X < 0. Since D̃′X ≥ 2z̃0− z̃1−X =

X − z̃1 > 0, the term 2zñ−1 − X does not contribute to D̃′X . From the definition of

Ξd1,d2 , we have D̃X < d1 for infinitely many X ∈ Ξ, almost surely. When X > 2ξ, D̃′X
is the maximum of a finite subset of the values in (4) and thus D̃′X ≤ D̃X < d1 for
infinitely many X ∈ Ξ, X > 2ξ.

We prove now that DX ≤ D̃′X in two steps. First, we show that the points used in

the definition of D̃′X are a subset of the points used in the definition of DX . Second, we
show that adding a new point to the definition (5) decreases the value of the maximum.
Let ξ ∈ Ξ, ξ > 0. Before visiting any point in [ξ,∞)× {0, r}, the greedy walk starting
from (0, 0) visits the leftmost point on one of the lines in [L0(ξ),∞) × {0, r}, where
L0(ξ) = max{Y ∈ Π0 : Y < ξ}. That is, the greedy walk visits (L0(ξ), 0) or the closest
point to the right of (L0(ξ), r) on the line r (which is (L0(ξ), r) if that point exists).
By the definition of Ξ, the greedy walk starting from one of these two points never
visits (ξ, 0) and it never visits any point to the left of {L0(ξ)}×{0, r}. Therefore, once
the greedy walk starting from (0, 0) enters [L0(ξ),∞)×{0, r}, it continues on the path
of one of these two walks. Thus, the greedy walk starting from (0, 0) does not visit
(ξ, 0). From this we can conclude that all points in {Ξ ∩ (0,∞)} × {0} are not visited
by the greedy walk and for X ∈ Ξ ∩ (0,∞) we have {z̃0, z̃1, . . . , z̃ñ} ⊂ {z0, z1, . . . , zn},
where z0, z1, . . . , zn are as in (2).

Let Y ∈ {z0, z1, . . . , zn}\{z̃0, z̃1, . . . , z̃ñ} and find j such that z̃j < Y < z̃j−1. Adding
Y to the set {z̃0, z̃1, . . . , z̃ñ} in the definition (5), removes the value 2z̃j−1 − z̃j − X
and adds the values 2z̃j−1 − Y − X and 2Y − z̃j − X. Since, 2z̃j−1 − Y − X <
2z̃j−1−z̃j−X and 2Y −z̃j−X < 2z̃j−1−z̃j−X, the point at Y added to {z̃0, z̃1, . . . , z̃ñ}
decreases the value of D̃′X or leaves it unchanged. Since both DX and D̃′X are defined
on {z̃0, z̃1, . . . , z̃ñ}, but DX has also points {z0, z1, . . . , zn} \ {z̃0, z̃1, . . . , z̃ñ} in the

definition, we can conclude that DX ≤ D̃′X for all X ∈ Ξ, X > 0. Thus DX < d1 for
infinitely many X ∈ Ξ, X > 0.
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This together with Lemma 4 implies that for infinitely many X ∈ Ξ∩ (0,∞), DX <

d1 and there exists Y ∈ Π̂ such that 0 < Y −X < d2 and Π((Y, Y + r)× {0, r}) = 0.
Choose one such X and let k be such that Xk − X < d2 and Xk+1 − Xk > r. If
T(−∞,0) < T[Xk,∞), then DXk = 0 < d1 + d2. Otherwise, T[Xk,+∞) < T(−∞,0), and we

can denote the points of Π̂T[Xk,∞)
in (0, Xk) by z1, z2, . . . , zn−1 so that 0 = zn < zn−1 <

· · · < z1 < z0 = Xk. By the definition of Ξ, the point (X, 0) is never visited by the
walk and thus there exists j such that zj = X. Then we have

DXk = max
0≤i≤n−1

{2zi − zi+1 −Xk}

≤ max{ max
j≤i≤n−1

{2zi − zi+1 −X} − (Xk −X), max
0≤i≤j−1

{2zi − zi+1 −Xk}}

≤ max{DX , Xk −X} ≤ DX +Xk −X < d1 + d2,

where in the second inequality we use the fact that, by the definition of the points in
Ξ, the walk does not visit any point in (0, X)× {0, r} after time T[X,∞) and therefore
DX = maxj≤i≤n−1 {2zi − zi+1 −X}.

Let now d0 = d1 + d2. Since there are, almost surely, infinitely many X ∈ Ξ and k
such that DX < d1, Xk −X < d2 and Xk+1 −Xk > r, it follows that DXk < d0 and
Xk+1 −Xk > r for infinitely many k > 0, almost surely, which proves the claim of the
lemma. �

Since DXk < d0 for infinitely many k, almost surely, one should expect that also
Xk+1−Xk > d0 > DXk for infinitely many k. That is exactly what we show next, but
let us first state the extended Borel–Cantelli Lemma which we use in the proof.

Lemma 6 (Extended Borel–Cantelli lemma, [5, Corollary 6.20]). Let Fn, n ≥ 0, be a
filtration with F0 = {0,Ω} and let An ∈ Fn, n ≥ 1. Then a.s.

{An i.o.} =

{ ∞∑
n=1

P[An | Fn−1] =∞

}
.

Lemma 7. Almost surely, the events

Ak = {Xk+1 −Xk > DXk −X−1 + r}(6)

occur for infinitely many k > 0.

Proof. For k > 0 let j0k = max{i : X0
i ≤ Xk} and jrk = max{i : Xr

i ≤ Xk}. Further-
more, define the σ-algebra

Fk = σ((X0
−1, 0), (X0

0 , 0), . . . , (X0
j0k
, 0), (Xr

−1, r), (X
r
0 , r), (X

r
1 , r), . . . , (X

r
jrk
, r))

and denote by T σA and Dσ
x analogues of TA and Dx for the greedy walk on the set of

points which generates Fk. Assume T[Xk,∞) < T(−∞,0). Then, the greedy walk on Π
and the walk on the restricted set are the same until time T[Xk,∞). If Xk+1 −Xk > r

then ŜT[Xk,∞)
= Xk, T

σ
Xk

= T[Xk,∞) and Dσ
Xk

= DXk .

Let Aσk = {Xk+1 −Xk > Dσ
Xk
−X−1 + r} and observe that Aσk ∈ Fk+1. For d0 > 0

we have

P (Aσk | Fk) ≥ P
(
Dσ
Xk

< d0, Xk+1 −Xk > d0 −X−1 + r | Fk
)

= 1{DσXk<d0}P (Xk+1 −Xk > d0 −X−1 + r | Fk)

= 1{DσXk<d0}e
−(d0−X−1+r) a.s.

The first equality above holds because {Dσ
Xk

< d0} ∈ Fk. The second equality follows
from the facts that X−1 ∈ Fk and Xk+1 −Xk is exponentially distributed with mean
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1 and independent of Fk. By Lemma 5, there exists d0 such that DXk < d0 and
Xk+1 − Xk > r for infinitely many k, almost surely. Since, Dσ

Xk
= DXk whenever

Xk+1 −Xk > r, also Dσ
Xk

< d0 for infinitely many k and, thus,

∞∑
k=1

P (Aσk | Fk) =∞ a.s.

It follows now from the extended Borel-Cantelli lemma (Lemma 6) that

P(Aσk for infinitely many k ≥ 1) = 1.

Since Aσk ⊂ {Xk+1 −Xk > r} and Ak = Aσk whenever Xk+1 −Xk > r, also

P(Ak for infinitely many k ≥ 1) = 1. �

Whenever Ak occurs, as we show in the next lemma, the greedy walk is forced to
visit (−∞, 0)× {0, r} before visiting [Xk+1,∞)× {0, r}. Note that the arguments do
not depend on the definition of the point process Π.

Lemma 8. Almost surely, T(−∞,0) <∞.

Proof. By Lemma 7, the events Ak = {Xk+1−Xk > DXk−X−1+r} occur for infinitely
many k, almost surely. To prove the lemma, it suffices to prove that whenever Ak
occurs, then T(−∞,0) < T[Xk+1,∞). Because the walk exits [0, Xk+1]× {0, r} in, almost
surely, finite time, it follows that T(−∞,0) <∞, almost surely.

Assume that T[Xk,∞) < T(−∞,0) and Ak occurs for some k. Then Xk+1 − Xk >
DXk −X−1 + r > r and a point in (0, Xk) × {0, r} is closer to a point at Xk than to

any point in [Xk+1,∞)× {0, r}. Hence, ŜT[Xk,∞)
= Xk.

Denote the remaining points of Π̂T[Xk,∞)
in the interval [0, Xk] as in (2). Note that

at time T[Xk,∞) there is exactly one unvisited point left at each position z1, z2, . . . , zn−1
and denote by ι1, ι2, . . . , ιn−1 the corresponding lines of these points. If there is only
one point at Xk, let ι0 be the line of this point. If there are two points at Xk, let ι0
be the line of the point that is not visited at time TXk . The point STXk is closer to

the second point at Xk, if such exists, than to any point in (Xk+1,∞)×{0, r} because
Xk+1 − Xk > r or to any of the remaining points with shadows at z1, z2, . . . , zn−1
because of Lemma 1 (b).

For i = 0, 1, . . . , n−2, from the definition of DXk (3) we have DXk ≥ 2zi−zi+1−Xk

and

d((zi, ιi), (zi+1, ιi+1))
2 ≤ (zi − zi+1)

2 + r2 < (zi − zi+1 + r)2 ≤ (DXk +Xk − zi + r)2

< (DXk −X−1 + r +Xk − zi)2 < (Xk+1 − zi)2

≤ d((zi, ιi), (Xk+1, ιi))
2.

Thus the point (zi, ιi) is closer to (zi+1, ιi+1) than to any point in [Xk+1,∞)× {0, r}.
Moreover, by Lemma 1 (b), (zi+1, ιi+1) is closer to (zi, ιi) than any other point in
[0, zi+1)× {0, r}. Thus, when the walk is at (zi, ιi) it visits (zi+1, ιi+1) next, except if
zi < r and there is a point at (−∞, 0)×{0} which is closer. In the latter case we have
T(−∞,0) < T[Xk+1,∞).

Assume that the walk visits successively the points at z1, z2, . . . , zn−1. Hence, all
points in (zn−1, Xk+1) × {0, r} are visited. When the greedy walk is at (zn−1, ιn−1),
the closest unvisited point is in (−∞, 0)× {0, r}, because a point with shadow X−1 is
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closer to (zn−1, ιn−1) than any point in [Xk+1,∞)× {0, r}. This follows from

d((zn−1, ιn−1), (X−1, r − ιn−1))2 = (zn−1 −X−1)2 + r2

≤ (DXk +Xk − zn−1 −X−1)2 + r2

< (DXk +Xk − zn−1 −X−1 + r)2 < (Xk+1 − zn−1)2

= d((zn−1, ιn−1), (Xk+1, ιn−1))
2,

where in the first inequality above we use that, by the definition of DXk (3), DXk ≥
2zn−1−Xk. Thus, the walk visits (−∞, 0)×{0, r} next. Therefore, also now T(−∞,0) <
T[Xk+1,∞), which completes the proof. �

Now we are ready to prove Theorem 3 where we use Lemma 8 repeatedly to show
that the greedy walk crosses the vertical line {0} × R infinitely often. Therefore the
greedy walk visits all the points of Π.

Proof of Theorem 3. From Lemma 8 we have P(T(−∞,0) <∞) = 1, which is equivalent
to

(7) P
(
T(−∞,0) <∞ | X0

−1, X
r
−1, X

0
1 , X

r
1

)
= 1 a.s.

Moreover, the conditional probability (7) is almost surely 1 for any absolutely contin-
uous distribution of (X0

−1, X
r
−1, X

0
1 , X

r
1) on (−∞, 0)2 × (0,∞)2, which is independent

of Π ∩
((

(X0
1 ,∞)× {0}

)
∪
(
(Xr

1 ,∞)× {r}
))

.
Let T0 = 0 and let Ti, i ≥ 1, be the first time the greedy walk visits a point in

(−∞,min0≤n≤Ti−1 Ŝn)×{0, r} for i odd and in (max0≤n≤Ti−1 Ŝn,∞)×{0, r} for i even.
That is, for i odd (even) Ti is the time when the walk visits the part of Π on the left
(right) of {0} ×R which is unvisited up to time Ti−1. We prove first that Ti is almost
surely finite for all i and, thus, the greedy walk, almost surely, crosses the vertical line
{0} ×R infinitely many times. Then we show that it is not possible that a point of Π
is never visited, and thus the walk almost surely visits all points of Π.

Assume that Ti is finite for some even i. Let Y0 = ŜTi , Y
0
1 = min{Y ∈ Π0 : Y > Y0}

and Y r
1 = min{Y ∈ Πr : Y > Y ′0}. Furthermore, let Y 0

−1 = max{Y ∈ Π0 : Y <

min0≤n≤Ti Ŝn} and Y r
−1 = max{Y ∈ Πr : Y < min0≤n≤Ti Ŝn}. By the definition of Y 0

−1
and Y r

−1, at time Ti the set I1 = (−∞, Y 0
−1]×{0} ∪ (−∞, Y r

−1]×{r} is not yet visited.

Also, by definition Y 0
1 , Y

r
1 > ŜTi and the set I2 =

(
[Y 0

1 ,∞)× {0}
)
∪
(
[Y r

1 ,∞) × {r}
)

is never visited before time Ti. Moreover, because of the strong Markov property, the
distributions of Π∩ I1 and Π∩ I2 are independent of the points of Π outside I1 and I2.

Let Π′ = Π ∩ (I1 ∪ I2). From (7) we have that the greedy walk on θSTiΠ
′ starting

from (0, 0), visits the set (−∞, 0) × {0, r} in a finite time, almost surely. In other
words, the greedy walk on Π′ starting from STi , almost surely, visits a point in I1 at
some time T ′i+1 <∞. The greedy walk on ΠTi , starting from STi , might differ from the
walk on Π′ if there are some points outside I1 and I2 that are not visited up to time

Ti. Denote the shadows of these points by c1, c2, . . . , cj , so that ŜTi ≥ c1 > c2 > · · · >
cj > max{Y 0

−1, Y
r
−1}. Because of Lemma 1 (b), a point in (ŜTi ,∞)× {0, r} is closer to

the point at c1, than to any of the points at c2, c3, . . . , cj . Hence the walk visits the
point at c1 before visiting any of the points at c2, c3, . . . , cj .

Let T 1
i+1 = min{TRc1 , TÎ1}, where Î1 = (−∞,max{Y 0′

−1, Y
r′
−1}). The greedy walks on

ΠTi and Π′ starting from STi are the same until the time T 1
i+1. If T 1

i+1 = T
Î1

then

T ′i+1 = T 1
i+1 = Ti+1 and, thus, Ti+1 is finite. Otherwise, the point at c1 is visited

before any point in I1, so TRc1 < T ′i+1 and Tc1 is, almost surely, finite. In this case,

similarly as above, let us define Y c1
0 = c1, Y

0,c1
1 = min{Y ∈ Π0 : Y > max0≤n≤Tc1 Ŝn}
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and Y r,c1
1 = min{Y ∈ Πr : Y > max0≤n≤Tc1 Ŝn}. Moreover, let Ic11 = I1 and let

Ic22 =
(

[Y 0,c1
1 ,∞)× {0}

)
∪
(

[Y r,c1
1 ,∞) × {r}

)
. From Lemma 2 we can deduce that

(c1,max0≤n≤TRc1
Ŝn]×{0, r} is empty at time TRc1 and, therefore, Ic12 contains all points

of ΠTRc1
to the right of {(c1, 0), (c1, r)}. Now, by the same arguments as above, it

follows that the walk starting from the point at c1 visits almost surely a point in I1 or
a point at c2 in a finite time. If the walk, starting from a point at ck, 1 ≤ k ≤ j − 1,
visits a point at ck+1 before I1, we repeat the same procedure. Since there are only
finitely many such points, the walk in almost surely finite time eventually visits I1 and
thus Ti+1 <∞, almost surely.

When i is odd, we can look at the walk on σΠTi starting from σSTi . Then the same
procedure as above yields Ti+1 < ∞, almost surely. Therefore, Ti is almost surely
finite for all i. Assume now that the walk does not visit all points of Π and let (x, ιx)

be a point of Π that is never visited. Then, there is i0 even, such that x < ŜTi0 and

x−min0≤n≤Ti0 Ŝn > r. Then for all n ∈ (Ti0 , Ti0+1−1) such that Ŝn ≥ x, by the choice

of i0, Sn is closer to (x, ιx) than to any point in (−∞,min0≤n≤Ti0 Ŝn)×{0, r}. Also, by

Lemma 1 (b), Sn is closer to (x, ιx) than to any remaining point in [min0≤n≤Ti0 Ŝn, x).

Hence, the greedy walk visits (x, ιx) before time Ti0+1, which is a contradiction. �

5. Two parallel lines with shifted Poisson processes

Let E = R× {0, r} and let d be the Euclidean distance. We define a point process
Π on E in the following way. Let Π0 be a homogeneous Poisson process on R with rate
1 and let Πr be a copy of Π0 shifted by s, 0 < |s| < r/

√
3, i.e. Πr = {x : x− s ∈ Π0}.

Then, let Π be a point process on E with Π ∩ (B × {0}) = (Π0 ∩ B) × {0} and
Π∩ (B×{r}) = (Πr ∩B)×{r} for all Borel sets B ⊂ R. We consider the greedy walk
on Π defined by (1) starting from S0 = (0, 0).

We call the pair of points (Y, 0) and (Y +s, r) shifted copies. Moreover, we say that
a point of Π is an indented point if it is further away from the vertical line {0} × R
than its shifted copy. That is, for s > 0, the indented points are in (−∞, 0)× {0} and
(0,∞)× {r}. For s < 0, the indented points are in (0,∞)× {0} and (−∞, 0)× {r}.

We can divide the points of Π into clusters in the following way. Any two successive
points on line 0 are in the same cluster if their distance is less than

√
r2 + s2, otherwise

they are in different clusters. Moreover, any two points on line 0 are in the same cluster
only if all points between those two points belong to that cluster. The points on line
r belong to the cluster of its shifted copy. Throughout this section, we will call the
closest point to the vertical line {0} × R of a cluster on each line the leading point of
the cluster. Every cluster has one leading indented and one leading unindented point,
except the cluster around (0, 0) that has possibly points in both (−∞, 0)× {0, r} and
(0,∞)× {0, r}.

In Section 3 the points were divided into clusters in a similar way and we observed
that the walk always visits all points of a cluster before moving to a new cluster. This
is not the case here. See Figure 2 for an example where the greedy walk moves to
a new cluster before visiting all points in a current cluster. The points that are not
visited during the first visit of a cluster cause the walk to jump over the vertical line
{0}×R infinitely many times. Therefore, we obtain here the same result as in Section
4:

Theorem 4. Almost surely, the greedy walk visits all points of Π.



16 KATJA GABRYSCH

Π0

Πr

Xj−1 XjXi Xj+1

Xi + s Xj+1 + s

Figure 2. The leading points of the clusters are marked in gray.
After visiting the indented leading point (Xi + s, r), the walk visits
successively all points of its cluster. This is not always the case when
the first visited point of the cluster is the unindented leading point. In
the example above, the point (Xj , 0) is closer to (Xj−1 + s, r) than to
(Xj+s, r), so the walk moves from (Xj , 0) to (Xj−1+s, r). Later, when
the walk is at (Xj + s, r), the closest unvisited point is (Xj+1 + s, r),
which is in a new cluster. The greedy walk moves to the next cluster
before visiting all points of the current cluster.

The proof follows similarly as the proof of Theorem 3. We change here the definition
of the set Ξ. In addition, the arguments in the first part of the proof of Lemma 11,
where we show that if Ξ is almost surely the empty set then the walk almost surely
jumps over the starting point, are different from those in Lemma 5. Furthermore, in
the proof of Theorem 4 we use the fact that whenever the walk enters a cluster at
its leading unindented point, then the walk always visits successively all points of the
cluster. This can be explained as follows: Let (X, r) be the leading indented point and
assume that (X, r) is the first point that the greedy walk visits in its cluster. (The case
when the walk first visits the leading indented point on the line 0 can be handled in the
same way.) Denote the closest point to (X, r) on line r be (Y, r) and let the distance
between those points be a = |X−Y |. Then the distance between (X, r) and (X− s, 0)

is
√
r2 + s2 and the distance between (X, r) and (Y − s, 0) is

√
r2 + (a− s)2. Because

s <
√
r2 + s2/2 < a − s, whenever a <

√
r2 + s2, then (Y, r) is closer to (X, r) then

these two points on line 0 and thus (Y, r) is visited next. We can argue in the same
way for all the points in this cluster on line r, until the walk reaches the outermost
point. The distance from the outermost point of the cluster to the closest point on
line r is greater than

√
r2 + s2 and the closest unvisited point is its shifted copy. Once

the walk is on line 0, it visits all remaining points of the cluster, because the distances
between the successive points in the cluster are less than

√
r2 + s2, all points of the

cluster on line r are already visited and the distance to any point in another cluster is
greater than

√
r2 + s2.

We define now the set Ξ in a slightly different way than in Section 4. For x ∈ R,
let L0(x) = max{Y ∈ Π0 : Y < x}. Then define

Ξ = s+

{
X ∈ Π0 : S(X,0)

n ∈ ((X,∞)× {0, r}) \ {(X + s, r)} for all n ≥ 1

and X − L0(X) >
r2 + s2

2s

}
,

that is, Ξ contains all points X + s ∈ Πr such that the distance to the closest point on

its right is greater than r2+s2

2s and if we start a walk from (X, 0), then the walk always

stays in [X,∞)× {0, r}, but it never visits (X + s, r). If X − L0(X) > r2+s2

2s and the
walk approaches (X, 0) and (X + s, r) from their right, then the walk visits the point
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(X, 0) before visiting (X + s, r). Hence, if X + s ∈ Ξ and X + s > 0, then the point
(X + s, r) is never going to be visited.

Note that the set Ξ is a function of a homogeneous Poisson process and hence it is
stationary and ergodic.

Let us define now the random variable Wx, x ∈ R, that corresponds to the random
variable Wx,ι from Section 4. For x ∈ R, let

Πx = Π ∩ (([x,∞)× {0}) ∪ ([x+ s,∞)× {r})) .
Consider for the moment the greedy walk on Πx starting from (x, 0) defined by (1)
and let

Wx = inf
i≥0
{Ŝi − d(Si, Si+1)}.

If s > 0 and if |Wx| <∞ and L0(x) + s < Wx, for x ∈ R, then for all i ≥ 0

min{d(Si, (L
0(x), 0)), d(Si, (L

0(x) + s, r))} ≥ Ŝi − L0(x)− s > Ŝi −Wx ≥ d(Si, Si+1).

Since the point Si is closer to Si+1 than to any point in Π \Πx for all i ≥ 0, the walk
on Π starting from (x, 0) coincides with the walk on Πx. Thus, the walk does not visit
Π \ Πx. The opposite is also true, i.e. if the walk on Π starting from (x, 0) coincides
with the walk on Πx, then |Wx| < ∞. For s < 0 the same holds: if |Wx| < ∞ and
L0(x) < Wx, for x ∈ R, then the walk on Π starting from (x, 0) does not visit Π \ Πx

and if the walk does not visit Π \Πx then |Wx| <∞.

Lemma 9. If s > 0 and if Ξ is almost surely the empty set, then Ψ = {X ∈ Π0 :
|WX | <∞} is almost surely the empty set.

Proof. Since WX is identically distributed for all X ∈ Π0, Ψ is stationary and ergodic.
Suppose, on the contrary, that Ψ is almost surely a non-empty set. For d > 0 let
Ψd = {y ∈ Π0 : |Wx| < d} and note that

⋃
d>0 Ψd = Ψ. Then there exists d such that

Ψd is almost surely a non-empty set.

Let Ψ̃d be the set of all X ∈ Ψd which satisfy the following. First, there are no
points in (X−d,X)×{0, r}. Secondly, there is Y ∈ Π0, Y < X, such that the distance

between Y and max{Z ∈ Π0 : Z < Y } is greater than r2+s2

2s . Thirdly, the walk starting
from (Y, 0) stays in (Y,∞) × {0, r} until it visits (X, 0) and it never visits (Y + s, r).
Since there is a positive probability that all three conditions occur and this probability

is independent of Wx, Ψ̃d is almost surely a non-empty set. But, then by definition of

Ξ, for every X ∈ Ψ̃d, Y +s ∈ Ξ and Ξ is a non-empty set, which is a contradiction. �
In the next two lemmas we use the random variable D̃X , X ∈ Πr, which can be

compared with the corresponding random variable in Section 4 defined in (4). For

X ∈ Πr \Ξ set D̃X = 0. For X ∈ Ξ denote the points of Ξ∩ (∞, X] in decreasing order

· · · < z̃2 < z̃1 < z̃0 = X

and define D̃X as

D̃X = sup
i≥0
{2z̃i − z̃i+1 −X} .(8)

Also we define the set Ξd1,d2 in the same way as in Section 4. For d1, d2 > 0 define

Ξd1,d2 = {X ∈ Ξ : D̃X < d1 and there exists Y ∈ Πr such that 0 < Y −X < d2 and

Π̂ ∩ (Y, Y + r) = ∅},

where Π̂ = Π0 + Πr.
The following lemma corresponds to Lemma 4. Since the proof is very similar, it is

not included here.
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Lemma 10. If s > 0 and if Ξ is almost surely a non-empty set, then there exists
d1, d2 > 0 such that Ξd1,d2 is almost surely a non-empty set. Moreover, Ξd1,d2 is a
stationary and ergodic process.

We study the greedy walk starting from the point (0, 0), which is almost surely not
a point of Π. From now on denote the points of Π0 by

. . . < X−2 < X−1 ≤ 0 < X1 < X2 < . . . .

Also, we let Π̂ = Π0∪Πr be the shadow of all the points of the process Π. As in Section
4, we denote by Πn the set of points that are not visited until time n. Similarly, Π0

n,

Πr
n denotes unvisited points of Π0 and Πr until time n, respectively, and Π̂n = Π0

n∪Πr
n.

We define TA = inf{n ≥ 0 : Ŝn ∈ A} to be the first time the walk visits A× {0, r},
where A is a subset of R.

Define the variable Dx, x ∈ R, x > 0, as follows. If T(−∞,0) < T[x,∞) then Dx = 0.

Otherwise, 0 < Ŝ1, Ŝ2, . . . , ŜT[x,∞)−1 < x, ŜT[x,∞)
≥ x and we label the remaining

points of Π̂T[x,∞)
in the interval (0, x) by z1, z2, . . . , zn−1 so that

0 = zn < zn−1 < · · · < z1 < z0 = x.

Let then

Dx = max
0≤i≤n−1

{(zi − zi+1)− (x− zi)} = max
0≤i≤n−1

{2zi − zi+1 − x} .

From the definition it follows that 0 ≤ Dx ≤ x. As in Section 4, this random variable
measures how large at least should be the distance between (x, 0) or (x, r) and the
points in (x,∞) × {0, r}, so that the walk possibly visits a point in (−∞, 0) × {0, r}
before visiting any point in (x,∞)× {0, r}.

We prove next that DX < d0 for infinitely many X ∈ Π0. The proof is divided
into two parts, one discussing the case when Ξ is almost surely the empty set and
another one discussing the case when Ξ is a non-empty set. The proof of the second
case follows in the similar way as the second part of the proof of Lemma 5, so we are
not going to write all the details here.

Lemma 11. When s > 0, there exists d0 < ∞ such that, almost surely, DXk+s < d0
and Xk+1 −Xk > r + s for infinitely many k > 0.

Proof. Assume first that Ξ is almost surely the empty set. Then, by Lemma 9, {X ∈
Π0 ∩ (0,∞) : |WX | < ∞} is almost surely empty. Observe that d((X1, 0), (0, 0)) <
d((X1 + s, r), (0, 0)) and if X−1 + s > 0 then d((X−1, 0), (0, 0)) < r < d((X−1 +

s, r), (0, 0)). Thus, if the walk starts from (0, 0) and Ŝ1 > 0, then S1 must be (X1, 0).

Assume that {Ŝn > 0 for all n ≥ 1} occurs with positive probability. Then one of the
following three events also has positive probability.

First, {X−1 +s < 0, Ŝn > 0 for all n ≥ 1}. But, this event implies that |WX1 | <∞
and X1 ∈ Ψ, which has probability 0.

Secondly, {0 < X−1 + s, Ŝn > 0 for all n ≥ 1 and the walk does not visit (X−1 +
s, r)}. If this event occurs then the walk does not visit any point in (0, X−1 + s)×{r},
because X−1 + s < r/2 and the distance from any point in (0, X−1 + s) × {r} to
(X−1 + s, r) is smaller than to a point in (0,∞) × {0}. Therefore, from S1 = (X1, 0)
the walk visits just the points of ΠX1 and we can conclude that |WX1 | <∞, which is
impossible.

Thirdly, {Ŝn > 0 for all n ≥ 1 and the walk visits (X−1 + s, r)}. Assume that this
event occurs. There are almost surely finitely many points in (0, X−1 + s] × {r} and
thus there is a time k when that interval is visited for the last time. From Lemma 2 it



GREEDY WALKS ON TWO LINES 19

follows that all points in (Ŝk,max0≤i≤k Ŝi]×{0, r} are visited up to time k. Therefore,

Sk+1 is in (max0≤i≤k Ŝi,∞)×{0, r}. Since the distance from Sk to (X−1, 0) is at most√
r2 + s2, the distance from Sk to Sk+1 is less than

√
r2 + s2. Thus, we can conclude

that both Sk and Sk+1 belong to the cluster around (X1, 0). Moreover, the greedy
walk did not visit another cluster before time k and it moved from line 0 to line r only
once.

At time k there might be some unvisited points of the cluster around (X1, 0) on
line r whose shifted copies are visited before time k. Those points are visited directly
after Sk, because those points are closer to Sk than any unvisited point on line 0.
After visiting those points, all remaining unvisited points of the cluster around (X1, 0)
have unvisited shifted copy. We can think about that part of the cluster as a new
cluster. The walk visits the next cluster starting from the indented or the unindented
leading point. If it visits first the indented point, then the walk visits consecutively
all the points of that cluster and afterwards it visits the unindented leading point of
the next cluster. Once the walk is at the unindented leading point (Y, 0), all points in
(0, Y )× {0, r} are visited except possibly some points in (0, X−1 + s]× {r} which are

never visited. Since Ŝn > 0 for all n ≥ 1, we can conclude that the walk after visiting
(Y, 0) stays in ΠY . But, then |WY | <∞ and Ψ is not empty, which is a contradiction.

Since these three events almost surely do not occur, also {Ŝn > 0 for all n ≥ 1}
does not occur. Thus T(−∞,0) < ∞, almost surely. This together with the definition
of Dx, implies that Dx = 0 for all large enough x ≥ 0. Since Xk+1 −Xk > r + s for
infinitely many k > 0, the claim of the lemma holds for any d0 > 0.

If Ξ is a non-empty set, the proof follows in the same way as the corresponding part
of the proof of Lemma 5. Thus we omit the proof here and we only emphasize that

points Ξ ∩ (0,∞) are never visited because the condition X − L0(X) > r2+s2

2s implies
that for X ∈ Ξ∩ (0,∞) points in (−∞, X − s)×{0, r} are closer to (X − s, 0) than to
(X, r). Thus, the point (X − s, 0) is visited first and then by the definition of Ξ the
walk never visits (X, r). �

Using that event DXk < d0 occurs for infinitely many k > 0 and Xk+1 −Xk > d0
occurs for infinitely many k > 0, we show in the next lemma that there are infinitely
many k > 0 such that both events occur simultaneously.

Lemma 12. If s > 0 then, almost surely, the events

Ak = {Xk+1 −Xk > DXk+s −X−1 + r + s}

occur for infinitely many k > 0.

Proof. Let js = max{i : Xi < −s}, Bk = {Xjs , Xjs+1, . . . , X−1, X1, . . . , Xk−1, Xk} and
Fk = σ(Bk). Let T σA and Dσ

x be the analogues of TA and Dx for the greedy walk
on the set of points (Bk × {0}) ∪ ((Bk + s)× {r}). When T[Xk+s,∞) < T(−∞,0), the
greedy walk on Π and the walk on the restricted set are the same until time T[Xk+s,∞).

Moreover, if Xk+1 − Xk > r + s then ŜT[Xk+s,∞)
= Xk + s, T σXk+s = T[Xk+s,∞) and

Dσ
Xk+s

= DXk+s.

Let Aσk = {Xk+1 −Xk > Dσ
Xk+s

−X−1 + r + s} and observe that Aσk ∈ Fk+1. For
d0 > 0 we have

P (Aσk | Fk) ≥ P
(
Dσ
Xk+s

< d0, Xk+1 −Xk > d0 −X−1 + r + s | Fk
)

= 1{DσXk+s<d0}P (Xk+1 −Xk > d0 −X−1 + r + s | Fk)

= 1{DσXk+s<d0}e
−(d0−X−1+r+s) a.s.
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The first equality above holds because {Dσ
Xk+s

< d0} ∈ Fk. The second equality
follows from the facts that X−1 ∈ Fk and Xk+1−Xk is exponentially distributed with
mean 1 and independent of Fk. By Lemma 11, we can choose d0 such that DXk+s < d0
and Xk+1 −Xk > r + s for infinitely many k, almost surely. Since, Dσ

Xk+s
= DXk+s

whenever Xk+1 −Xk > r + s, also Dσ
Xk+s

< d0 for infinitely many k and, thus,

∞∑
k=1

P (Aσk | Fk) =∞ a.s.

It follows now from Lemma 6 that

P(Aσk for infinitely many k ≥ 1) = 1.

Since Aσk ⊂ {Xk+1 −Xk > r + s} and Ak = Aσk whenever Xk+1 −Xk > r + s, also

P(Ak for infinitely many k ≥ 1) = 1. �

Whenever Ak occurs, the greedy walk is forced to visit (−∞, 0) × {0, r} before
visiting [Xk+1,∞)×{0, r}. If s > 0 then from Lemma 12 it follows that T(−∞,0) <∞.
We prove that the same is true if s < 0, but in the proof we use that T(−∞,0) < ∞,
almost surely, for s > 0.

Lemma 13. Almost surely, T(−∞,0) <∞.

Proof. If s > 0 one can show in the same way as in Lemma 8, that if Ak = {Xk+1−Xk >
DXk − X−1 + r + s} occurs, then the walk visits (−∞, 0) × {0, r} before visiting
[Xk+1,∞)×{0, r}. By Lemma 12, the event Ak occurs for some k, almost surely, and
hence T(−∞,0) <∞, almost surely.

Furthermore,

(9) P(T(−∞,0) <∞ | X−1, X1) = 1 a.s.,

for any absolutely continuous distribution of (X−1, X1) on (−∞, 0) × (0,∞) which is
independent of Π0 ∩ (X1,∞).

Assume now on the contrary that P(T(−∞,0) = ∞) > 0 for s < 0. If T(−∞,0) = ∞,
then S1 is in (0,∞) × {0} or in (0,∞) × {r}. If S1 is on line 0 then S1 is indented
and the walk consecutively visits all points of its cluster. Since the walk stays in
(0,∞)× {0, r}, the last visited point of this cluster is (X1 + s, r) and X1 + s > 0. Let
T be the time when the walk visits (X1 + s, r) and let Y0 = (X1 + s, r). Moreover, let

Y−1 = X−1 + s and let Y1 = min{Y ∈ Πr : Y > max0≤n≤T Ŝn} be the leading indented
point of the next cluster on the right of Y0. If S1 is on line r, then the greedy walk is
the same as if the walk starts from (0, r). Thus let Y0 = (0, r), T = 0, Y−1 = X−1 + s
and Y1 = X1 + s.

From (9) it follows that the walk on θY0(ΠT ) starting from (0, 0) and given X−1 =
Y−1 and X1 = Y1, visits (−∞, 0) × {0, r} in a finite time, almost surely. In other
words, the walk on ΠT starting from Y0 visits (X−1, 0) or (X−1 + s, r) in a finite time,
almost surely. This contradicts the assumption that P(T(−∞,0) = ∞) > 0. Therefore,
the claim of the lemma holds also for s < 0. �

Proof of Theorem 4. From Lemma 13 it follows that for any |s| < r/2

(10) P(T(−∞,0) <∞ | X−1, X1) = 1 a.s.,

for any absolutely continuous distribution of (X−1, X1) on (−∞, 0) × (0,∞) which is
independent of Π0 ∩ (X1,∞).

We prove the theorem for s > 0. The proof of the theorem for s < 0 follows in a
similar way. Let us first look at the cluster around the starting point of the greedy
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walk (0, 0). If X1 −X−1 >
√
r2 + s2 this cluster is empty. If the cluster is not empty,

it has finitely many points and the walk visits a point in another cluster in a finite
time. Let T0 be the first time the walk visits a point in another cluster (T0 = 1 if the
cluster around (0, 0) is empty).

We assume at the moment that ŜT0 > 0. For i ≥ 1 let Ti be the first time the greedy

walk visits (−∞,min0≤n≤Ti−1 Ŝn)× {0, r} for i odd and (max0≤n≤Ti−1 Ŝn,∞)× {0, r}
for i even. That is, for i odd (even) Ti is the time when the walk visits the part of Π
on the left (right) of the vertical line {0} × R which is not visited up to time Ti−1.

Let Y0 = ST0−1 be the last visited point in the cluster around (0, 0) before the first
visit to another cluster and let ι be the line of ST0−1. Moreover, let Y−1 and Y1 be
the closest not yet visited points of Πι to Y0, such that their shifted copy is also not
visited, that is

Y−1 = max{Y ∈ Πι
T0 : Y < min

0≤n<T0
Ŝn, Y + (−1)1r(ι) · s ∈ Πr−ι

T0
}

and
Y1 = min{Y ∈ Πι

T0 : Y > max
0≤n<T0

Ŝn, Y + (−1)1r(ι) · s ∈ Πr−ι
T0
}.

Let
I1 =

(
(−∞, Y−1)× {ι}

)
∪
(
(−∞, Y−1 + (−1)1r(ι) · s)× {r − ι}

)
and

I2 =
(
(Y1,∞)× {ι}

)
∪
(
(Y1 + (−1)1r(ι) · s)× {r − ι}

)
.

Because of the strong Markov property the distribution of Π in I1 and I2 is independent
of the points of Π outside these sets. Now let Π′ = Π ∩ (I1 ∪ I2). From (10), we know
that the walk on σθY0(Π′) starting from (0, 0) and given X−1 = Y−1 and X1 = Y1 visits
(−∞, 0) × {0, r} in a finite time, almost surely. Hence, the walk on ΠT0 starting at
ST0 visits I1 or a point of the cluster around (0, 0) in almost surely finite time. Denote
that time by T ′1.

If ST ′1 is in I1, then T1 = T ′1. Otherwise, ST ′1 is in ((−∞, Y0)× {0, r}) \ I1 and from
the definition of I1 we can deduce that the shifted copy of the point ST ′1 must have

been visited before T1. Set now Y0 = ST ′1 and redefine Y−1, Y1, I2 and Π′ with respect

to the time T ′1 instead of T0.

Observe that, by Lemma 2, at time T ′1 the set (ŜT ′1 ,max0≤n≤T ′1 Ŝn)×{0, r} is empty.

Moreover, if there are some points in (max0≤n≤T ′1 Ŝn,∞) × {0, r} whose shifted copy
is visited, then these points are on line r and belong to one cluster. The closest point
with a still unvisited shifted copy is at a horizontal distance of at least r−s from those

points. Since the distance from ST ′1 to (max0≤n≤T ′1 Ŝn,∞)×{0, r} is at least
√
r2 + s2,

the remaining points on line r which do not have a shifted copy are closer to ST ′1 than
the closest point on line 0. Thus, these points, whose shifted copies are already visited,
are visited before visiting (Y ′1 , ι) or its shifted copy.

Now, we can conclude that the walk starting from ST ′1 visits in almost surely finite

time I1 or a point of Π \ (I1 ∪ I2), that is one of the remaining points of the cluster

around (0, 0) or a point in (max0≤n≤T ′1 Ŝn, Y
′
1) × {r}. There are finitely many points

in Π \ (I1 ∪ I2) and every time the walk visits one of these points, we redefine Y0, Y−1,
Y1, I2 and Π′, and repeat the same arguments as above. Thus the walk visits I1 in
almost surely finite time.

Assume now that Ti is finite for some odd i ≥ 1. Let Y0 = ŜTi−1 and define Y−1, Y1,
I1, I2 and Π′ as before. Then points of ΠTi \Π′ are in (Y−1, 0)× {r}, (0, Y1)× {0} or
the cluster around (0, 0) and there are almost surely finitely many such points. By the
observation above, the greedy walk visits all points in (Y−1, Y0)×{0} before it visits I1
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and it visits all points in (Y0, Y1)× {r} before it visits a point in I2. Denote the time
when the walk visits a point of ΠTi \ Π′ before visiting I2 with T ′i . Set then Y0 = ST ′i
and redefine Y ′−1, Y1 and Π′, with the respect with the time T ′i . Again, by (10), the
walk on σθY0Π′ visits (−∞, 0)× {0, r} in almost surely finite time. Thus, the walk on
ΠT ′i

in almost surely finite time visits I2 or another point in ΠTi \ Π′. Repeating this

arguments for every visited point in ΠTi \Π′, we can see that the walk eventually visits
I2 and that Ti+1 is almost surely finite.

Similarly, one can show that if Ti, i ≥ 2 even, is finite, then Ti+1 is also almost surely
finite. Therefore, inductively we can conclude that the walk almost surely crosses the
vertical line {0} × R infinitely many times and, thus, it eventually visits all points of
Π. �

Remark 2. We conjecture that Theorem 4 holds also for |s| > r/2. For those s the idea
to cluster the points of Π does not work in the same way. For example, the greedy walk
does not always visit all points of the cluster when it starts from the leading indented
point of the cluster. Thus, the walk more often does not visit all points of a cluster
successively and we expect that the points that are not visited during the first visit of
a cluster cause the walk to return and to cross the vertical line {0}×R infinitely often.
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THE GREEDY WALK ON AN INHOMOGENEOUS POISSON

PROCESS

KATJA GABRYSCH AND ERIK THÖRNBLAD

Abstract. The greedy walk is a deterministic walk that always moves from its
current position to the nearest not yet visited point. In this paper we consider the
greedy walk on an inhomogeneous Poisson point process on the real line. Our primary
interest is whether the walk visits all points of the point process, and we determine
sufficient and necessary conditions on the mean measure of the point process for
this to happen. Moreover, we provide precise results on threshold functions for the
property of visiting all points.

Keywords and phrases. greedy walk; inhomogeneous Poisson point pro-
cesses; threshold
AMS 2000 subject classifications. 60K37; 60G55,60K25

1. Introduction and main results

Consider a simple point process Π in a metric space (E, d). We think of Π either
as an integer-valued measure or as a collection of points (the support of the measure).
Moreover, the process is assumed to have no accumulation points in E. We use the
notation Π(B), or, simply, ΠB, to indicate the number of points (the value of the
random measure) on the Borel set B ⊂ E. If x ∈ E, we write x ∈ Π instead of
Π{x} = 1.

The greedy walk on Π is defined as follows. Let S0 ∈ E and Π0 = Π. Define, for
n ≥ 0,

Sn+1 = arg min{d(Sn, X) : X ∈ Πn},
Πn+1 = Πn \ {Sn+1}.

The set Πn denotes the set of unvisited points of Π up until (and including) time n and
we write Π∞ =

⋂∞
n=1 Πn for the set of points that are never visited by the walk. Note

that, once the underlying environment Π is fixed, the process (Sn)∞n=0 is deterministic
(except possibly for ties which need to be broken, but these will almost surely not
occur in our setting).

The greedy walk has been studied before in the literature, with various choices of
the underlying point process. When Π is a homogenous Poisson process on R, one
can show using a Borel–Cantelli–type argument that Π∞ 6= ∅ with probability 1, that
is, the greedy walk does not visit all points of the underlying point process. More
precisely, the expected number of times the greedy walk starting from 0 changes sign
is 1/2 [4]. Due to this Rolla et al. [7] considered a related problem, in which each
point in the process can be visited either once, with probability 1 − p, or twice, with
probability p. They show that Π∞ = ∅, for any 0 < p < 1, meaning that every point is
eventually visited. Another modification of the greedy walk on R is studied by Foss et
al. [3]. The authors considered a dynamic version of the greedy walk, where the times
and positions of new points arriving in the system are given by a Poisson process on
the space-time half-plane. They show that the greedy walk still diverges to infinity in
one direction and does not visit all points. In the survey paper [2], Bordenave et al.

1
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state several questions about the behaviour of the greedy walk on an inhomogeneous
Poisson process in Rd. We resolve here the problem for d = 1.

In this paper we define Π to be an inhomogeneous Poisson process on R (with the
Euclidean metric) with some non-atomic mean measure µ. For such a process, the
number of points in disjoint measurable subsets of R are independent and

P[Π(a, b) = k] =
µ(a, b)

k!
e−µ(a,b)

for any a < b and any k ≥ 0, where, for any measurable A ⊆ R, Π(A) is the cardinality
of the restriction of Π to the set A. This means that the number of points in any
interval (a, b) is distributed like Poi(µ(a, b)). Sometimes, but not always, we will
assume that the mean measure µ is absolutely continuous and given in terms of a
measurable intensity function λ : R→ [0,∞), so that

µ(A) =

∫
A
λ(x) dx

for any measurable A ⊆ R.
Throughout we let S0 = 0 (note that 0 /∈ Π with probability 1), so that the walk

starts in the origin. The process (Sn)∞n=0 will be referred to as GWIPP. If we want to
emphasise the underlying point process, the underlying mean measure, or the under-
lying intensity function, we write GWIPP(Π), GWIPP(µ) or GWIPP(λ), respectively. We
say that the walk jumped over 0 if sign(Sn+1) 6= sign(Sn) for some n. If the event
{sign(Sn+1) 6= sign(Sn) i.o.} occurs, then we say that GWIPP is recurrent. Otherwise
we say that GWIPP is transient. This choice of notation is explained by viewing each
jump over 0 as a pseudo–visit at 0.

To avoid certain degenerate cases, we will typically impose the following two con-
ditions on the measure µ.

(i) µ(−∞, 0) = µ(0,∞) =∞.
(ii) µ(A) <∞ for all bounded measurable A ⊆ R.

Note that the first condition is equivalent to Π(−∞, 0) = Π(0,∞) =∞ with probability
1, and the second condition is equivalent to Π(A) < ∞ with probability 1, for any
bounded measurable A ⊆ R. The set of all measures on R which satisfy (i) and (ii)
will be denotedM. If µ ∈M and µ is given in terms of the intensity function λ, then we
will abuse notation and write λ ∈ M. In Remark 2.2 we consider situation in which
condition (i) is not satisfied. Condition (ii) implies that there are no accumulation
points. If a point process has some accumulation points, arg min in the definition of
the greedy walk may not be well-defined for some n ≥ 1.

If µ ∈ M, then GWIPP(µ) is recurrent if and only if Π∞ = ∅, and GWIPP(µ) is
transient if and only if Π∞ 6= ∅. Thus the dichotomy between recurrence and transience
translates to a dichotomy between “visits all points” and “does not visit all points”.
This stems from the fact that GWIPP essentially can behave in two ways. Either the
points of Π are eventually dense enough that GWIPP eventually gets stuck on either
the positive or negative half-line and go towards∞ or −∞ accordingly (i.e. transient),
or the points of Π are sparse enough that there are infinitely many “sufficiently long”
empty intervals on both half-lines, and that GWIPP switches sign infinitely many times
and thus visits all points of Π (i.e. recurrent). Moreover, if GWIPP(µ) is transient and
µ symmetric around zero, then, by symmetry, GWIPP(µ) goes to +∞ or −∞ with
probability 1/2 each.

The aim of this paper is to characterise (in terms of µ or λ) when GWIPP is recurrent
or transient. The following result does precisely this.
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Theorem 1.1. Let µ ∈M. Then GWIPP(µ) is recurrent with probability 1 if∫ ∞
0

exp(−µ(x, 2x+R))µ( dx) =∞ and

∫ 0

−∞
exp(−µ(2x−R, x))µ( dx) =∞,

for all R ≥ 0. If either integral is finite for some R ≥ 0, then GWIPP(µ) is transient
with probability 1.

Let λ ∈M. Then GWIPP(λ) is recurrent with probability 1 if∫ ∞
0

exp

(
−
∫ 2x+R

x
λ(t) dt

)
λ(x) dx =∞ and

∫ 0

−∞
exp

(
−
∫ x

2x−R
λ(t) dt

)
λ(x) dx =∞,

for all R ≥ 0. If either integral is finite for some R ≥ 0, then GWIPP(λ) is transient
with probability 1.

The proof of this, presented in Section 2, is an application of Campbell’s theo-
rem (which allows one to determine whether random sums over Poisson processes are
convergent or divergent) and the Borel–Cantelli lemmas.

We remark a few things. First, the second part of the theorem is an immediate
consequence of the first. Second, this result also states that recurrence (or transience)
is a zero-one event. Third, it is a straightforward consequence that taking λ(t) = c
for all t ∈ R, i.e. taking Π to be a homogenous Poisson process with rate c, results in
GWIPP(λ) being transient. This is well-known and another proof appears in [4].

Take now two point processes Π and Π0, and assume GWIPP(Π) is transient. Con-
sider Π′ = Π+Π0. Intuitively, adding more points to an already transient process only
makes it “more” transient, since it will be more difficult to find long empty intervals
which allow (Sn)∞n=1 to change sign. Conversely, removing points from an already re-
current process makes it “more” recurrent. Since recurrence (or transience) does not
depend on the point process in any finite interval around 0, as the following result
shows, it suffices to look at what happens far away from the origin. (Equivalently,
the convergence or divergence of the integrals in Theorem 1.1 depends only on the tail
behaviour.) The proof appears in Section 2.

Lemma 1.2. Let µ, µ′ ∈M and suppose there is some K > 0 such that µ′(A) ≥ µ(A)
for all measurable A ⊆ (−∞,−K)∪ (K,∞). If GWIPP(µ′) is recurrent with probability
1, then GWIPP(µ) is recurrent with probability 1.

Theorem 1.1 also facilitates the identification of threshold functions for recurrence,
and it transpires that the iterated logarithms are useful in this context. Before we state
our next result, we need some definitions. We define the “power tower” recursively by
a ↑↑ 0 := 1 and a ↑↑ n := aa↑↑(n−1) for any a ∈ [0,∞) and n ≥ 1. Let log be the

ordinary natural logarithm. We define the iterated logarithm log(n), for n ≥ 1, to be
the function defined recursively by

log(1) t :=

{
log t if t > 1

0 otherwise,

and, for any n ≥ 2,

log(n) t := log(1)
(

log(n−1) t
)
.

Note that log(n) t = 0 for any t ≤ e ↑↑ (n− 1).
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Proposition 1.3. Let

λ(t) :=
1

|t| log 2

n∑
i=2

ai log(i) |t|.

where n ∈ {2, 3, 4, . . . } and ai ≥ 0 for all 2 ≤ i ≤ n. Then GWIPP(λ) is transient with
probability 1 if

• a2 > 1, or
• a2 = 1, a3 > 2, or
• a2 = 1, a3 = 2, and there exists some m ≥ 4 such that a4 = 1, a5 = 1, . . . , am =

1 and am+1 > 1.

Otherwise, GWIPP(λ) is recurrent with probability 1.

One could also ask to what extent Proposition 1.3 extends to the infinite case. The
statement about transience remains true, but the final statement about recurrence
does not, unless one introduces some (rather mild) restrictions on the growth rate of
the sequence (an)∞n=2. Consider

λ(t) =
1

|t| log 2

∞∑
i=2

ai log(i) |t|.(1)

If a2 = 0 and an = (e ↑↑ n) for n ≥ 3, then GWIPP(λ) is transient with probability 1,
even though a2 = 0. However, if a2 = 0 and an = (2 ↑↑ n) for n ≥ 3, then GWIPP(λ) is
recurrent with probability 1.

The next result describes the threshold between transience and recurrence in even
greater detail. In particular, it shows that taking a3 = 2 and a2 = 1 = a4 = a5 = . . .
in (1) means that GWIPP(λ) is recurrent with probability 1.

Proposition 1.4. Let a3 = 2 and a2 = 1 = a4 = a5 = . . . and let (bn)∞n=1 be
non–decreasing sequence satisfying bn = O(e ↑↑ (n − 2)), g : (0,∞) → [1,∞) be a
non–decreasing slowly varying function satisfying g(e ↑↑ n) = bn, and let

λ(t) :=
1

|t| log 2

( ∞∑
i=2

ai log(i) |t|+ log(1) g(|t|)
)
.

If
∑∞

n=2 1/bn =∞, then GWIPP(λ) is recurrent with probability 1. If
∑∞

n=2 1/bn <∞,
then GWIPP(λ) is transient with probability 1.

The following result provides a useful tool for investigating the behaviour of a given
intensity function. The idea behind the proof is essentially to find a suitable intensity
function for comparison, and apply Lemma 1.2 and Proposition 1.3.

Proposition 1.5. Let λ ∈M. Let a3 = 2 and a2 = 1 = a4 = a5 = . . . . If there exists
some n ≥ 2 such that

lim
t→∞

tλ(t) log 2−∑n−1
i=2 ai log(i) t

an log(n) t
> 1 or lim

t→−∞

|t|λ(t) log 2−∑n−1
i=2 ai log(i) |t|

an log(n) |t|
> 1

then GWIPP(λ) is transient with probability 1. If there exists some n ≥ 2 such that

lim
t→∞

tλ(t) log 2−∑n−1
i=2 ai log(i) t

an log(n) t
< 1 and lim

t→−∞

|t|λ(t) log 2−∑n−1
i=2 ai log(i) |t|

an log(n) |t|
< 1

then GWIPP(λ) is recurrent with probability 1.
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Proposition 1.5 does not answer what happens if, say,

lim
t→∞

tλ(t) log 2−∑n−1
i=2 ai log(i) t

an log(n) t
= 1 and lim

t→−∞

|t|λ(t) log 2−∑n−1
i=2 ai log(i) |t|

an log(n) |t|
= 1

for all n ≥ 2. As seen in Proposition 1.4, both recurrence and transience are possible
in this case.

The remainder of this paper is outlined as follow. In Section 2 we prove mainly
general results, including Theorem 1.1 and Lemma 1.2. In Section 3 we concentrate
on more concrete threshold results, i.e. Propositions 1.3–1.5 along with related results.

2. Proof of Theorem 1.1 and related results

Throughout we will write Π = {Xi : i ∈ Z \ {0}}, assuming as we may that

· · · < X−2 < X−1 < 0 < X1 < X2 < · · · .
For k > 0, let

ARk = {Π(Xk, 2Xk +R) = 0} = {d(Xk,−R) < d(Xk, Xk+1)}
and

BR
k = {Π(2X−k −R,X−k) = 0} = {d(X−k, R) < d(X−k, X−k−1)}.

The following lemma describes the connections between these events and recurrence
of GWIPP.

Lemma 2.1. GWIPP is recurrent if and only if {ARk i.o.} and {BR
k i.o.} occur for all

R ≥ 0.

Proof. For one direction, one can argue as follows. Suppose GWIPP is transient and
{ARk i.o.} and {BR

k i.o.} occur for all R. Without loss of generality, we may assume
Sn → ∞ as n → ∞. Then there exists J such that Sn+1 > Sn for all n > J . Let
Y = max{X ∈ Π : X < min0≤k≤J Sk} be the rightmost point never visited (such
a point exists because of the assumptions of transience and Sn → ∞ as n → ∞)
and choose R such that R > |Y |. Note that Y is the closest unvisited point to the
left of Sn, when n ≥ J . Since, by assumption, ARk occurs for some k > J , we have
d(Xk, Y ) < d(Xk,−R) < d(Xk, Xk+1). Moreover, there exists n such that Sn = Xk

and by the definition of the greedy walk Sn+1 = Y , which is a contradiction.
For the other direction, we assume that GWIPP is recurrent, but that ARk (the ar-

gument being identical for BR
k ) occurs at most finitely many times for some R ≥ 0.

Let K be the last index for which the event ARk occurred. Since GWIPP visits all points
of Π, there are indices J1 and J2 such that SJ1 < −R and SJ2 = XK . Whenever
j > max{J1, J2} and Sj > 0, then Π(Sj , 2Sj + R) > 0. This implies that the closest
unvisited point of Sj is to the right of Sj , because the closest point on the left of Sj is
in (−∞, SJ1) ⊂ (−∞,−R), that is, at the distance greater than Sj +R from Sj . Thus,
after visiting Sj > 0 such that j > max{J1, J2}, the walk stays always on the right of
Sj , which contradicts the assumption that GWIPP is recurrent. �

This characterisation suggests that the Borel–Cantelli lemmas will be useful. In
particular, we use the extended Borel–Cantelli Lemma.

Lemma 2.2 (Extended Borel–Cantelli lemma, [5, Corollary 6.20]). Let Fn, n ≥ 0, be
a filtration with F0 = {0,Ω} and let An ∈ Fn, n ≥ 1. Then a.s.

{An i.o.} =

{ ∞∑
n=1

P[An | Fn−1] =∞
}
.
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The convergence or divergence of the associated random series will be determined
using Campbell’s theorem, which provides a zero-one law when f is a non-negative
measurable function.

Theorem 2.3 (Campbell’s theorem, [6, Section 3.2]). Let Π be a Poisson process on
S with mean measure µ and let f : S → [0,∞] be a measurable function. Then the
sum ∑

X∈Π

f(X)

is convergent with probability 1 if and only if∫
S

min{f(x), 1}µ( dx) <∞.

Moreover, the sum diverges with probability 1 if and only if the integral diverges.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. From Lemma 2.1 it follows that the sufficient and necessary
conditions implying that the GWIPP is recurrent with probability 1, are the same as
those implying that {ARk i.o.} and {BR

k i.o.} occur with probability 1.

Let Fk = σ(X1, X2, . . . , Xk). Then ARk ∈ Fk+1 for any R ≥ 0, and

P[ARk | Fk] = P[Π(Xk, 2Xk +R) = 0 | Fk] = exp(−µ(Xk, 2Xk +R)),

where the final equality holds since Xk ∈ Fk, Π∩(Xk,∞) is independent of Fk and the
number of points in a measurable set A ⊆ R is distributed like Poi(µ(A)). Applying
Theorem 2.3 with f(x) = exp(−µ(x, 2x+R)), we obtain

∞∑
k=1

P[ARk | Fk] =
∞∑
k=1

exp(−µ(Xk, 2Xk +R)) =∞

with probability 1 if and only if∫ ∞
0

exp(−µ(x, 2x+R))µ( dx) =∞.

Moreover, Lemma 2.2 implies that
∑∞

k=1 P[ARk | Fk] =∞ a.s. if and only if P[ARk i.o.] =

1. Thus, the integral above diverges if and only if P[ARk i.o.] = 1.
Similarly, if the integral above converges, so does the sum

∞∑
k=1

P[ARk | Fk]

with probability 1, and then by Lemma 2.2, the event {ARk i.o.} does not occur with
probability 1.

In the same way one can show that
∫ 0
−∞ exp(−µ(2x−R, x))µ( dx) =∞ if and only

if P[BR
k i.o.] = 1, and conversely, if the integral converge then P[BR

k i.o.] = 0. �

Remark 2.1. We lose no generality by assuming that the greedy walk on Π starts
from the origin, since recurrence/transience does not depend on the starting point.
One explanation is that the distribution of the points in any finite interval around the
origin does not influence the behaviour of the greedy walk far away from the origin.
More precisely, if the walk that starts from a ∈ R, a > 0 (one can argue similarly for
a < 0), the events {Π(Xk, 2Xk − a+R) = 0} and {Π(2X−k − a−R,X−k) = 0} occur,
for any R ≥ 0, for infinitely many k if and only if {ARk i.o.} and {BR

k i.o.} occur for
all R ≥ 0. As we have seen in Lemma 2.1, GWIPP(Π) is recurrent if these events occur.
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In the following remark we explore what happens if µ does not satisfy condition (i).

Remark 2.2. If µ(−∞, 0) <∞ and µ(0,∞) =∞, then it is not true that GWIPP(µ) is
transient if and only if Π∞ 6= ∅. (This should be contrasted with the situation when
µ ∈ M.) To see this, consider the intensity function λ(t) = 1(−M,∞)(t), where M > 0
will be chosen later. It is clear that GWIPP(λ) is transient with probability 1, for any
M , but we will show that M can be chosen so that 0 < P[Π∞ 6= ∅] < 1. Note that

P[Π∞ = Π∞ ∩ (−M, 0)] = 1.

so we may consider Π∞ ∩ (−M, 0) instead of Π∞.
Let λ′(t) = 1 for all −∞ < t <∞ and denote by Π′ the associated Poisson process

and by (S′n)∞n=1 the associated greedy walk. We can couple Π and Π′ together so that
Π = Π′ ∩ (−M,∞). By symmetry, we have

P[S′n →∞] =
1

2
= P[S′n → −∞].

It holds that

P[Π′∞ ∩ (−M, 0) = ∅ | S′n → −∞] = 1,

and

P[Π′∞ ∩ (−M, 0) = ∅ | S′n →∞] > 0.

By the coupling of Π and Π′, it holds that Π′∞ ∩ (−M, 0) = Π∞ ∩ (−M, 0) almost
surely, whence

P[Π∞ ∩ (−M, 0) = ∅] = P[Π′∞ ∩ (−M, 0) = ∅]
= P[Π′∞ ∩ (−M, 0) = ∅ | S′n → −∞]P[S′n → −∞]

+ P[Π′∞ ∩ (−M, 0) = ∅ | S′n →∞]P[S′n →∞]

>
1

2
.

Therefore P[Π∞ ∩ (−M, 0) 6= ∅] < 1
2 .

For the other inequality, we first have

P[Π∞ ∩ (−M, 0) = Π ∩ (−M, 0)] = P[Π′∞ ∩ (−M, 0) = Π′ ∩ (−M, 0)]

≥ P[Π′∞ ∩ (−∞, 0) = Π′ ∩ (−∞, 0)]

=
∞∏
n=1

(
1− 1

2n

)
≈ 0.288 . . . ,

where the final equality follows from [4, Theorem 1]. Now pick M large enough that

P[Π ∩ (−M, 0) 6= ∅] > 1−
∞∏
n=1

(
1− 1

2n

)
.

Then

P[Π∞ ∩ (−M, 0) 6= ∅] ≥ P[Π∞ ∩ (−M, 0) = Π ∩ (−M, 0), Π′∞ ∩ (−M, 0) 6= ∅]
≥ P[Π∞ ∩ (−M, 0) = Π ∩ (−M, 0)] + P[Π′∞ ∩ (−M, 0) 6= ∅]− 1

> 0.

This implies that 0 < P[Π∞ = ∅] < 1
2 , even though GWIPP(λ) is transient with

probability 1.
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A natural question is which conditions one needs to place on µ (or λ) so that
{ARk i.o.} for all R > 0 if and only if {A0

k i.o.}. The reason why this is not an unrea-
sonable demand is that the events Π(Xk, 2Xk+R) = 0 and Π(Xk, 2Xk) = 0 should not
be too different for large Xk, since the length of the interval (2Xk, 2Xk +R) becomes
negligible compared to the length of (Xk, 2Xk) in the limit. However, the following
example shows that some extra conditions need to be placed, and that, in general,
{A0

k i.o.} does not imply that {ARk i.o.} for all R > 0.

Remark 2.3. Let

λ(t) =

∞∑
n=1

an1(2n − 2 < t < 2n − 1)

for some increasing sequence (an)∞n=1. Denote by Cn the event that Π(2n−2, 2n−1) = 0,
for n = 1, 2, . . . . Then P[Cn] = e−an .

If X equals the rightmost point in the interval (2n − 2, 2n − 1), then Π(X, 2X) = 0
almost surely. This implies that X is always closer to 0 than to the leftmost point in
(2n+1 − 2, 2n+1 − 1). Hence, {A0

n i.o.} occurs with probability 1.
However, for R = 3 we have {A3

n i.o.} ⊆ {Cn i.o.}. Choose now the sequence
(an)∞n=1 such that

∞∑
n=1

P[Cn] =

∞∑
n=1

e−an <∞.

By the Borel–Cantelli lemma, the probability of {Cn i.o} is 0, which implies that also
P(A3

n i.o.) = 0. Therefore GWIPP(λ) is transient even though A0
n occurs infinitely often

with probability 1.

Denote by Mb ⊆M those measures µ ∈M with the property that for any R ≥ 0,
there exists some constant C = C(R) > 0, such that µ(x, x + R) < C and µ(−x −
R,−x) < C for all x ≥ 0. As the following lemma shows, this boundedness assumption
disallows any examples of the type in Remark 2.3.

Lemma 2.4. Let µ ∈Mb. Then GWIPP(µ) is recurrent with probability 1 if∫ ∞
0

exp(−µ(x, 2x))µ( dx) =∞ and

∫ 0

−∞
exp(−µ(2x, x))µ( dx) =∞.

If either integral is finite, then GWIPP(µ) is transient with probability 1.

Proof. Fix R > 0. We have

exp(−C)

∫ ∞
0

exp(−µ(x, 2x))µ( dx) ≤
∫ ∞

0
exp(−µ(x, 2x)− µ(2x, 2x+R))µ( dx)

=

∫ ∞
0

exp(−µ(x, 2x+R))µ( dx)

≤
∫ ∞

0
exp(−µ(x, 2x))µ( dx).

The integral on the negative half-line can be similarly bounded. Therefore the integrals
in the statement of the lemma both diverge if and only if all integrals in Theorem 1.1
diverge. This proves the claim. �

For instance, if µ ∈ M and the maps x 7→ µ(0, x) and x 7→ µ(−x, 0) from [0,∞)
to [0,∞) are Lipschitz, then µ ∈ Mb. Also, limt→±∞ λ(t) < ∞ implies that λ ∈ Mb,
which gives the following corollary.
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Corollary 2.5. Suppose λ ∈ M and limt→±∞ λ(t) <∞. Then GWIPP(λ) is recurrent
with probability 1 if

∫ ∞
0

exp

(
−
∫ 2x

x
λ(t) dt

)
λ(x) dx =∞ and

∫ 0

−∞
exp

(
−
∫ x

2x
λ(t) dt

)
λ(x) dx =∞.

If either integral is finite, then GWIPP(λ) is transient with probability 1.

Next we prove Lemma 1.2.

Proof of Lemma 1.2. Denote by Π the point process with mean measure µ and let
(Sn)∞n=0 be GWIPP(Π). Similarly, denote by Π′ the point process with mean measure
µ′ and let (S′n)∞n=0 be GWIPP(Π′). Denote the points of Π and Π′ by

· · · < X−2 < X−1 < 0 < X1 < X2 < · · · and · · · < X ′−2 < X ′−1 < 0 < X ′1 < X ′2 < · · ·
respectively. Since µ′(A) ≥ µ(A) for all measurable A ⊂ (−∞,−K) ∪ (K,∞), we can
couple Π and Π′ together so that x ∈ ((−∞,−K) ∪ (K,∞)) ∩Π implies that x ∈ Π′.

Assume, for contradiction, that GWIPP(Π′) is recurrent and GWIPP(Π) is transient.
Without loss of generality, we may assume that Sn → ∞ as n → ∞. Then there is
some M0 ≥ 1 such that Sk+1 > Sk for all k > M0, i.e. (Sn)∞n=1 moves only to the right
after time M0. Assume moreover that M0 is large enough that SM0 > K, so that we
are on the region where Π and Π′ are coupled.

For the remainder of the proof, see Figure 1 for an illustration. Let Y = max{X ∈
Π : X < min0≤k≤M0 Sk}, that is, let Y be the rightmost point of Π that is never
visited. Note that Y is well-defined because of the transience of GWIPP(Π) and the
assumption Sn →∞ as n→∞.

Since GWIPP(Π′) is recurrent, (S′n)∞n=1 visits all points of (K,∞)∩Π ⊆ (K,∞)∩Π′

and jumps over 0 infinitely often. Thus we can find J ≥ 1 such that S′J > SM0 and
S′J+1 < Y . Let S′J = X ′k and let ` be such that X` ≤ X ′k < X`+1. Moreover, let
M > M0 be such that SM = X` and SM+1 = X`+1.

log2 K− log2 K

0

0

Π

Π′

Y SM

X`

SM+1

X`+1

S′
J+1 S′

J

X ′
k X ′

k+1

Figure 1. An illustration of the proof of Lemma 1.2. Note that both
the positive and negative axis have been rescaled logarithmically. The
proof shows that S′J+1 = X ′k+1 is forced, which contradicts the choice
of J (which implies that S′J+1 < 0).

The coupling between Π and Π′ on (K,∞) implies that X` ≤ S′J < X ′k+1 ≤ X`+1.
Therefore d(S′J , X

′
k+1) ≤ d(SM , SM+1) < d(SM , Y ) ≤ d(S′J , S

′
J+1), which contradicts

the choice of J , that is SJ+1 < Y . Thus, if GWIPP(Π′) is recurrent, so is GWIPP(Π). �
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A question that complements Lemma 1.2 is the following. Suppose GWIPP(λ′) is
recurrent and let λ = λ′ + λ0 for some intensity function λ0. Which conditions on
λ0 should one place to ensure that GWIPP(λ) is also recurrent? That is, how many
points, and where, can we add to a recurrent process without making it transient?
The following lemma yields a partial answer to this.

Lemma 2.6. Suppose GWIPP(λ) is recurrent with probability 1. If, for all R ≥ 0,

lim
x→∞

∫ 2x+R

x
max

(
0, λ′(t)− λ(t)

)
dt <∞,

and

lim
x→−∞

∫ x

2x−R
max

(
0, λ′(t)− λ(t)

)
dt <∞,

then GWIPP(λ′) is recurrent with probability 1.

Proof. For all t ∈ R, let λ′′(t) = max(λ(t), λ′(t)). It suffices to show that GWIPP(λ′′) is
recurrent, since then, by Lemma 1.2, GWIPP(λ′) also is recurrent. The first condition
implies that for any R ≥ 0 there exists some C > 0 such that∫ 2x+R

x
(λ′′(t)− λ(t)) dt < C

for all all large enough x > 0. Therefore∫ 2x+R

x
λ′′(t) dt ≤

∫ 2x+R

x
λ(t) dt+

∫ 2x+R

x
(λ′′(t)− λ(t)) dt <

∫ 2x+R

x
λ(t) dt+ C

for large enough x. For M large enough,

∫ ∞
M

exp

(
−
∫ 2x+R

x
λ′′(t) dt

)
λ′′(x) dx ≥

∫ ∞
M

exp

(
−
∫ 2x+R

x
λ′′(t) dt

)
λ(x) dx

≥
∫ ∞
M

exp

(
−
∫ 2x+R

x
λ(t) dt− C

)
λ(x) dx

= exp(−C)

∫ ∞
M

exp

(
−
∫ 2x+R

x
λ(t) dt

)
λ(x) dx

=∞,
where the final equality follow from the fact that GWIPP(λ) is recurrent and Theorem
1.1. The integral on the negative half-line can be handled similarly. Therefore, by
Theorem 1.1, GWIPP(λ′′) is recurrent. �

3. Treshold results

In this section we study the threshold between transience and recurrence, proving
Propositions 1.3–1.5 and related results. We focus on symmetric intensity functions
of the form λ(t) = |t|−1 log f(|t|), where f : (0,∞) → [1,∞) is a measurable function
satisfying the following assumptions.

(i) The function log f is slowly varying, i.e.

lim
t→∞

log f(at)

log f(t)
= 1

for any a ≥ 0,
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(ii) It holds that ∫ ∞
0

log f(x)

x
dx =∞.

(iii) For any bounded measurable A ⊆ (0,∞),∫
A

log f(x)

x
dx <∞.

We denote the set of such intensity functions byMs. The final two assumptions imply
that Ms ⊆ M, so we may apply the results developed in Section 2. Note that the
intensity function λ(t) = |t|−1 log f(|t|) is symmetric about 0, so it suffices to only look
at the positive half-line. However, the results in this section can be easily adapted to
the case when f is not assumed to be symmetric.

We use the following standard notation. If f, g : R → R are two functions and
there exists C > 0 such that |f(x)| ≤ C|g(x)| for all large enough x, then we write
f(x) = O(g(x)). If f(x) = O(g(x)) and g(x) = O(f(x)), then we write f(x) = Θ(g(x)).

Lemma 3.1 ([1, Theorem 1.2.1]). If A ⊆ (0,∞) is a compact set and f : (0,∞) →
[1,∞) is slowly varying, then f(ax)/f(x)→ 1 as x→∞, uniformly for all a ∈ A.

Lemma 3.2. Suppose λ ∈Ms. Then GWIPP(λ) is recurrent with probability 1 if∫ ∞
0

log f(x)

xf(x)
dx =∞

If the integral is finite, then GWIPP(λ) is transient with probability 1.

Proof. The set [1, 2] is compact and log f is slowly varying. It follows by Lemma 3.1,
that ∫ 2x

x

log f(t)

t log 2
dt = log f(x) +O(1).

Hence∫ ∞
0

exp

(
−
∫ 2x

x
λ(t) dt

)
λ(x) dx =

∫ ∞
0

Θ(1)

f(x)

log f(x)

x log 2
dx = Θ(1)

∫ ∞
0

log f(x)

xf(x)
dx.

Since limt→∞ λ(t) = 0, the claim follows from Corollary 2.5. �

A generalisation of slow variation is that of regular variation. A function f :
(0,∞) → [1,∞) is said to be regularly varying with index β ≥ 0 if, for any a > 0, it
holds that

lim
t→∞

f(at)

f(t)
→ aβ.

A slowly varying function is then regularly varying with index β = 0. If f is regularly
varying with index β > 0, then log f is slowly varying, see e.g. [1, Thm. 1.5.7]). This
is true also if f is slowly varying, under the assumption that f(t)→∞ as t→∞.

The next corollary states that, if f is regularly varying with positive index, then we
obtain a transitive processes with probability 1.

Corollary 3.3. Let f : (0,∞) → [1,∞) be a regularly varying function with index
β > 0 and let λ(t) = (|t| log 2)−1 log f(|t|). Then GWIPP(λ) is transient with probability
1.
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Proof. Note first that λ ∈Ms. Moreover, there is a slowly varying function `(x) such
that f(x) = xβ`(x) (see, e.g. [1, Thm. 1.4.1]). Then for x > 0,

log f(x)

xf(x)
=

log f(x)

x1+β`(x)
=
L(x)

x1+β
,(2)

where L(x) = log f(x)
`(x) is a slowly varying function (see, e.g. [1, Thm. 1.3.6]). The

function on the right hand side of (2) is integrable on (0,∞) whenever β > 0, and by
Lemma 3.2, GWIPP(λ) is transient. �

The intensity functions in Proposition 1.3 satisfy λ ∈ Ms, showing that threshold
behaviour occurs inside the class Ms.

Proof of Proposition 1.3. Let

f(t) =

n∏
i=2

(log(i−1) t)ai ,

so that λ(t) = log f(t)
t log 2 . Note that λ ∈Ms. Assume first that a2 > 0. Then∫

log f(x)

xf(x)
dx =

∫ ∑n
i=2 ai log(i) x

x
∏n
i=2(log(i−1) x)ai

dx = Θ

(∫
log(2) x

x
∏n
i=2(log(i−1) x)ai

dx

)
,

where the final integral is the leading order term of the sum. The final integral is
convergent precisely when one of the conditions in the statement is satisfied. (This
is seen by repeatedly using the change of variables x 7→ ex.) By Lemma 3.2, the

statement follows. If a2 = 0, then consider instead λ′(t) := λ(t) + 1
2

log(2) |t|
|t| log 2 and use the

above along with Lemma 1.2 to conclude that GWIPP(λ) is recurrent in this case. This
completes the proof. �

Proof of Proposition 1.5. Suppose first that

lim
t→∞

tλ(t) log 2−∑n−1
i=2 ai log(i) t

an log(n) t
> 1

for some n ≥ 2. (Let n be minimal with this property.) Let

a :=
1

2

(
1 + lim

t→∞

tλ(t) log 2−∑n−1
i=2 ai log(i) t

an log(n) t

)
> 1

and define

λ′(t) :=

{
λ(t), t ≤ 0

1
|t| log 2

(∑n−1
i=2 ai log(i) |t|+ aan log(n) |t|

)
, t > 0.

Suppose, for contradiction, that GWIPP(λ) is recurrent. Since λ(t) ≥ λ′(t) for all t large
enough, Lemma 1.2 implies that GWIPP(λ′) is recurrent. However, Proposition 1.3
implies that GWIPP(λ′) is transient. (In Proposition 1.3 we assumed that the intensity
function be symmetric, but this does not change the evaluation of the integral on the
positive half-axis.) This is a contradiction, so GWIPP(λ) must be transient.

Now suppose the second condition holds for some n ≥ 2. If

λ′(t) :=
1

|t| log 2

(
n∑
i=2

ai log(i) |t|
)
,

then λ(t) < λ′(t) for all sufficiently large t. By Proposition 1.3, GWIPP(λ′) is recurrent,
and Lemma 1.2 implies that GWIPP(λ) is recurrent. �
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Proof of Proposition 1.4. For t > 0 we have λ(t) = log f(t)
t log 2 with

log f(t) =
∞∑
i=2

ai log(i)(t) + log g(t).

Because of our definition of the iterated logarithm, this implies that

f(t) =

∞∏
i=1

(
max(1, (log(i) t)ai+1)

)
g(t).

Since bn−1 ≤ g(x) for any e ↑↑ (n− 1) ≤ x ≤ e ↑↑ n, we obtain∫ ∞
0

log f(x)

xf(x)
dx =

∞∑
n=2

∫ e↑↑n

e↑↑(n−1)

∑n
i=2 ai log(i) x+ log g(x)

x
∏n−1
i=1 (log(i) x)ai+1g(x)

dx

= Θ(1)

∞∑
n=2

∫ e↑↑n

e↑↑(n−1)

log(2) x

x
∏n−1
i=1 (log(i) x)ai+1g(x)

dx

≤ Θ(1)
∞∑
n=2

∫ e↑↑n

e↑↑(n−1)

1

x
∏n−1
i=1 (log(i) x)bn−1

dx

= Θ(1)

∞∑
n=2

1

bn−1

[
log(n) x

]e↑↑n
e↑↑(n−1)

= Θ(1)
∞∑
n=2

1

bn−1
.

Using instead the bound bn ≥ g(x) for any e ↑↑ (n− 1) ≤ x ≤ e ↑↑ n, we arrive at

∞∑
n=2

1

bn
≤
∫ ∞

0

log f(x)

xf(x)
dx ≤ Θ(1)

∞∑
n=2

1

bn−1
.

Applying Lemma 3.2 completes the proof. �

Remark 3.1. Proposition 1.5 does not answer what happens in, for example, the regime

lim
t→∞

tλ(t) log 2

log log t
< 1 < lim

t→∞

tλ(t) log 2

log log t
.(3)

The intensity functions λ1 and λ2, to be defined next, both satisfy (3), but GWIPP(λ1) is
recurrent while GWIPP(λ2) is transient. For t > 0 let λ1(t) =

∑∞
n=1 1(22n < t < 22n+1)

and λ2(t) =
∑∞

n=1 n1(2n − 2 < t < 2n − 1) and let λ1 and λ2 be symmetric around 0.
We have

0 = lim
t→∞

tλ1(t)

log log t
<

1

log 2
< lim

t→∞

tλ1(t)

log log t
=∞

and

0 = lim
t→∞

tλ2(t)

log log t
<

1

log 2
< lim

t→∞

tλ2(t)

log log t
=∞.

It is easy to check that ∫ ∞
0

exp

(
−
∫ 2x

x
λ1(x)

)
λ1(x) dx =∞,

which together with the fact that λ1 is bounded and Corollary 2.5, yields that GWIPP(λ1)
is recurrent. From Remark 2.3 we know that GWIPP(λ2) is transient.
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