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Abstract

A Barak-Erdős graph is a directed acyclic version of an Erdős-Rényi
graph. It is obtained by performing independent bond percolation with
parameter p on the complete graph with vertices {1, ..., n}, where the
edge between two vertices i < j is directed from i to j. The length of
the longest path in this graph grows linearly with the number of vertices,
at rate C(p). In this article, we use a coupling between Barak-Erdős
graphs and infinite-bin models to provide explicit estimates on C(p). For
p > 1/2, we prove the analyticity of C(p) and we compute its power series
expansion. We also show that C(p) has a first derivative but no second
derivative at p = 0, providing a two-term asymptotic expansion using a
coupling with branching random walks.

1 Introduction
Random graphs and interacting particle systems have been two active fields of
research in probability in the past decades. In 2003, Foss and Konstantopou-
los [11] introduced a new interacting particle system called the infinite-bin model
and established a correspondence between a certain class of infinite-bin mod-
els and Barak-Erdős random graphs, which are a directed acyclic version of
Erdős-Rényi graphs.

In this article, we study the speed at which the front of an infinite-bin model
drifts to infinity. These results are applied to obtain a fine asymptotic of the
length of the longest path in a Barak-Erdős graph. In the remainder of the
introduction, we first describe Barak-Erdős graphs, then infinite-bin models.
We finally state our main results.

1.1 Barak-Erdős graphs
Barak and Erdős introduced in [3] the following model of a random directed
graph with vertex set {1, . . . , n} (which we refer to as Barak-Erdős graphs from
now on) : for each pair of vertices i < j, add an edge directed from i to j with
probability p, independently for each pair. They were interested in the maximal
size of strongly independent sets in such graphs.

However, one of the most widely studied properties of Barak-Erdős graphs
has been the length of its longest path. It has applications to mathematical
ecology (food chains) [9, 21], performance evaluation of computer systems (speed
of parallel processes) [14, 15] and queuing theory (stability of queues) [11].

1

ar
X

iv
:1

61
0.

04
04

3v
1 

 [
m

at
h.

PR
] 

 1
3 

O
ct

 2
01

6



Newman [20] studied the length of the longest path in Barak-Erdős graphs
in several settings, when the edge probability p is constant (dense case), but
also when it is of the form cn/n with cn = o(n) (sparse case). In the dense case,
he proved that when n gets large, the length of the longest path Ln(p) grows
linearly with n in the first-order approximation :

lim
n→∞

Ln(p)
n

= C(p) a.s.,

where the linear growth rate C is a function of p. We plot in Figure 1 an
approximation of C(p).
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Figure 1: Plot of a simulation of C(p), using 600000 iterations of the infinite-bin
model, for values of p that are integer multiples of 0.02.

Newman proved that the function C is continuous and computed its deriva-
tive at p = 0. Foss and Konstantopoulos [11] studied Barak-Erdős graphs under
the name of “stochastic ordered graphs” and provided upper and lower bounds
for C, obtaining in particular that

C(1− q) = 1− q + q2 − 3q3 + 7q4 +O(q5) when q → 0,

where q = 1− p denotes the probability of the absence of an edge.
Denisov, Foss and Konstantopoulos [10] introduced the more general model

of a directed slab graph and proved a law of large numbers and a central limit
theorem for the length of its longest path. Konstantopoulos and Trinajstić [17]
looked at a directed random graph with vertices in Z2 (instead of Z for the
infinite version of Barak-Erdős graphs) and identified fluctuations following the
Tracy-Widom distribution. Foss, Martin and Schmidt [12] added to the origi-
nal Barak-Erdős model random edge lengths, in which case the problem of the
longest path can be reformulated as a last-passage percolation question. Ge-
lenbe, Nelson, Philips and Tantawi [14] studied a similar problem, but with
random weights on the vertices rather than on the edges.

The question of the longest path in Erdős-Rényi graphs, which are the undi-
rected version of Barak-Erdős graphs, was studied in the sparse case by Ajtai,
Komlós and Szemerédi [1].
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1.2 The infinite-bin model
Foss and Konstantopoulos introduced the infinite-bin model in [11] as an inter-
acting particle system which, for a right choice of parameters, gives information
about the growth rate C(p) of the longest path in Barak-Erdős graphs. Consider
a set of bins indexed by the set of integers Z. Each bin may contain any number
of balls, finite or infinite. A configuration of balls in bins is called admissible if
the following two conditions hold :

1. there exists m ∈ Z such that every bin indexed by n > m is empty ;

2. the total number of balls in the configuration is infinite.

The largest integer m indexing a nonempty bin is called the position of the front.
From now on, all configurations will implicitly be assumed to be admissible.
Given an integer k ≥ 1, we define the move of type k as a map Φk from the set
of configurations to itself. Given an initial configuration X, Φk(X) is obtained
by adding one ball to the bin of index bk + 1, where bk is the index of the bin
containing the k-th ball of X (the balls are counted from right to left, starting
from the rightmost nonempty bin).

10−1−2 2 3
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(a) A configuration X, the numbers in-
side the balls indicate how they are
counted from right to left.

10−1−2 2 3

(b) The configuration Φ5(X).
10−1−2 2 3

(c) The configuration Φ2(X).

Figure 2: Action of two moves on a configuration.

Given a probability distribution µ on the set of positive integers and an initial
configuration X0, one defines the Markovian evolution of the infinite-bin model
with distribution µ (or IBM(µ) for short) as the following stochastic recursive
sequence:

Xn+1 = Φξn+1(Xn) for n ≥ 0,

where (ξn)n≥1 is an i.i.d. sequence distributed like µ. We prove in Theorem 1.1
that the front moves to the right at a speed which tends a.s. to a constant
limit vµ. We call vµ the speed of the IBM(µ). Note that the model defined
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in [11] was slightly more general, allowing (ξn)n≥1 to be a stationary-ergodic
sequence. We also do not adopt their convention of shifting the indexing of the
bins which forces the front to always be at position 0.

Foss and Konstantopoulos [11] proved that if µp was the geometric distribu-
tion of parameter p then vµp = C(p), where C(p) is the growth rate of the length
of the longest path in Barak-Erdős graphs with edge probability p. They also
proved, for distributions µ with finite mean verifying µ({1}) > 0, the existence
of renovations events, which yields a functional law of large numbers and central
limit theorem for the IBM(µ). Based on a coupling result for the infinite-bin
model obtained by Chernysh and Ramassamy [8], Foss and Zachary [13] man-
aged to remove the condition µ({1}) > 0 required by [11] to obtain renovation
events.

Aldous and Pitman [2] had already studied a special case of the infinite-bin
model, namely what happens to the speed of the front when µ is the uniform
distribution on {1, . . . , n}, in the limit when n goes to infinity. They were
motivated by an application to the running time of local improvement algorithms
defined by Tovey [23].

1.3 Main results
We now state the main results proved in this paper. The first result is that in
every infinite-bin model, the front moves at linear speed. Foss and Konstan-
topoulos [11] had derived a special case of this result, when the distribution µ
has finite expectation.

Theorem 1.1. Let (Xn) be an infinite-bin model with distribution µ. For any
n ∈ N, we write Mn for the position of the front of Xn. There exists vµ ∈ [0, 1]
such that

lim
n→+∞

Mn

n
= vµ a.s.

The next two results concern the function C associated with Barak-Erdős
graphs. Firstly we prove that for p large enough (i.e. when the Barak-Erdős
graph is dense enough), the function C is analytic and we obtain an explicit
expression for the power series expansion of C(p) centered at 1. Secondly we
provide the first two terms of the asymptotic expansion of C(p) as p→ 0.

We denote by N the set of positive integers, and by A the set of words on the
alphabet N, i.e. the set of all finite-length sequences of elements of N. Given
a non-empty word α ∈ A, written α = (α1, α2, . . . , αn) (where the αi are the
letters of α), we denote by:

L(α) = n and H(α) =
n∑
i=1

αi − L(α),

the length and the height of α respectively. The empty word is denoted by ∅.
Fix an infinite-bin model configuration X. We define the subset PX of A

as follows: a word α belongs to PX if it is non-empty, and if starting from
configuration X and applying successively the moves Φα1 , . . . ,Φαn , the last
move Φαn results in placing a ball in a previously empty bin.

Given a word α ∈ A which is not the empty word, we set $α ∈ A to be
the word obtained from α by removing the first letter (with the convention that
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$∅ = ∅). We define the function εX : A → {−1, 0, 1} as follows:

εX(α) = 1{α∈PX} − 1{$α∈PX}.

Theorem 1.2. For any infinite-bin model configuration X and p ∈
( 3

4 , 1
]
, we

have
C(p) =

∑
α∈A

εX(α)pL(α)(1− p)H(α). (1.1)

Remark 1.3. Given any probability distribution µ on N, we can define the weight
of the word α = (α1, . . . , αn) by

Wµ(α) =
n∏
i=1

µ ({αi}) .

In particular, Wµp(α) = pL(α)(1 − p)H(α). Then Theorem 1.2 admits the fol-
lowing generalization, giving a series expansion of the speed vµ of the IBM(µ) :
for any infinite-bin model configuration X, we have

vµ =
∑
α∈A

εX(α)Wµ(α), (1.2)

provided the series on the right-hand side converges.
We deduce from Theorem 1.2 the following analyticity result for C(p).

Theorem 1.4. The function C is analytic on
( 1

2 , 1
]

and admits a power series
expansion centered at 1 with integer coefficients. For any infinite-bin model
configuration X, we denote by

ak =
∑

α∈A:H(α)≤k,L(α)≤k+1

εX(α)(−1)k−H(α)
(

L(α)
k −H(α)

)
, (1.3)

we have C(p) =
∑
k≥0 ak(1− p)k for any p ∈

(
3−
√

2
2 , 1

]
.

Remark 1.5. Using (1.3), it is possible to explicitly compute as many coefficients
of the power series expansion as desired, by picking a configuration X and
computing quantities of the form εX(α) for finitely many words α ∈ A. For
example, we observe that as q → 0,

C(1− q) = 1− q + q2 − 3q3 + 7q4 − 15q5 + 29q6 − 54q7 + 102q8 +O(q9).

Now, turning to the asymptotic behaviour of C(p) as p → 0, i.e. for sparse
Barak-Erdős graphs, we improve the result obtained by Newman [20].

Theorem 1.6. We have C(p) = ep− pπ2e

2(log p)2 + o(p(log p)−2).

This result is obtained by coupling the infinite-bin model with a branching
random walks with selection. Observe that this result implies that C(p) does not
have a finite second derivative at p = 0. Assuming that a conjecture of Brunet
and Derrida [7] on the speed of a branching random walk with selection holds,
the next term in the asymptotic expansion should be given by 3eπ2p log(− log p)

(− log p)3 .
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Organisation of the paper. We introduce notation to study the infinite-bin
model in Section 2, as well as an increasing coupling used in the rest of the arti-
cle. In Section 3, we provide an explicit formula for the speed of an infinite-bin
model with a measure of finite support. This result is used to prove Theorem 1.1
in the general case. We review in Section 4 the Foss-Konstantopoulos coupling
between Barak-Erdős graphs and the infinite-bin model and use it to provide
a sequence of upper and lower bounds converging exponentially fast to C(p).
Using this coupling again, we prove Theorem 1.2 and Theorem 1.4 in Section 5
and Theorem 1.6 in Section 6.

2 Basic properties of the infinite-bin model
We write N for the set of positive integers, N = N ∪ {+∞}, Z+ for the set of
non-negative integers and Z+ = Z+ ∪ {+∞}. We denote by

S =
{
X ∈ (Z+)Z : ∀j ∈ Z, X(j) = +∞⇒ X(j − 1) = +∞

and X(j) = 0⇒ X(j + 1) = 0

}
the set of admissible configurations for an infinite-bin model. For any X ∈ S
and k ∈ Z, we call X(k) the number of balls at position k in the configuration
X. Observe that in the set of admissible configurations, every bin to the left
of a bin with an infinite number of balls also have an infinite number of balls,
and the set of non-empty bins is connected on Z. In particular, for any X ∈ S,
there exists a unique integer m ∈ Z such that X(m) 6= 0 and X(j) = 0 for all
j > m. The integer m is called the front of the configuration.

The reason for these restrictions is that the dynamic of an infinite-bin model
does not affect bins to the left of a bin with an infinite number of balls, and
does not create balls in a bin at distance greater than 1 from a non-empty
bin. However, the results of this article can easily be generalized to infinite-bin
models with a starting configuration belonging to

S0 =
{
X ∈ (Z+)Z : lim

k→+∞
X(k) = 0 and

∑
k∈Z

X(k) = +∞
}
,

see e.g. Remark 3.7.
Let X ∈ S, k ∈ Z and ξ ∈ N. We denote by

N(X, k) =
+∞∑
j=k

X(j) and B(X, ξ) = inf{j ∈ Z : N(X, j) < ξ}

the number of balls to the right of k and the leftmost position such that there
are less than ξ balls to its right respectively. Note that the position of the front
in the configuration X is given by B(X, 1)− 1. Observe that for any X ∈ S,

∀1 ≤ ξ ≤ ξ′, 0 ≤ B(X, ξ)−B(X, ξ′) ≤ ξ′ − ξ. (2.1)

For ξ ∈ N and X ∈ S, we set Φξ(X) =
(
X(j) + 1{j=B(X,ξ)}, j ∈ Z

)
the

transformation that adds one ball to the right of the ξ-th largest ball in X. We
extend the notation to allow ξ ∈ N, by setting Φ∞(X) = X. We also intro-
duce the shift operator τ(X) = (X(j − 1), j ∈ Z). We observe that τ and Φξ
commute, i.e.

∀X ∈ S, ∀ξ ∈ N,Φξ(τ(X)) = τ(Φξ(X)). (2.2)
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An infinite-bin model consists in the sequential application of randomly cho-
sen transformations Φξ, that we call move of type ξ. More precisely, let µ be
a probability measure on N and (ξn, n ≥ 1) be i.i.d. random variables with
distribution µ. The IBM(µ) (Xn) is the Markov process on S starting from
X0 ∈ S, such that for any n ≥ 0, Xn+1 = Φξn+1(Xn).

In other words, this process starts with a given configuration of balls X0. At
each time n, a new ball is added to the right of ξn-th ball in the process. As for
any j ∈ Z, (Xn(j), n ≥ 1) is increasing, we denote by X∞(j) the almost sure
limit of Xn(j), as n→ +∞.

We introduce a partial order on S, which is compatible with the infinite-bin
model dynamics: for any X,Y ∈ S, we write

X 4 Y ⇐⇒ ∀j ∈ Z, N(X, j) ≤ N(Y, j) ⇐⇒ ∀ξ ∈ N, B(X, ξ) ≤ B(Y, ξ).

The functions (Φξ) are monotone, increasing in X and decreasing in ξ for this
partial order. More precisely

∀X 4 Y ∈ S, ∀1 ≤ ξ ≤ ξ′ ≤ ∞, Φξ′(X) 4 Φξ(Y ). (2.3)

Moreover, the shift operator τ dominates every function Φξ, i.e.

∀X 4 Y ∈ S, ∀1 ≤ ξ ≤ ∞, Φξ(X) 4 τ(Y ). (2.4)

As a consequence, infinite-bin models can be coupled in an increasing fashion.

Proposition 2.1. Let µ and ν be two probabilities on N, and X0 4 Y0 ∈ S0.
If µ([1, k]) ≤ ν([1, k]) for any k ∈ N, we can couple the IBM(µ) (Xn) and the
IBM(ν) (Yn) such that for any n ≥ 0, Xn 4 Yn a.s.

Proof. As for any k ∈ N, µ([1, k]) ≤ ν([1, k]), we can construct a couple (ξ, ζ)
such that ξ has law µ, ζ has law ν and ξ ≥ ζ a.s. Let (ξn, ζn) be i.i.d. copies
of (ξ, ζ), we set Xn+1 = Φξn+1(Xn) and Yn+1 = Φζn+1(Yn). By induction,
using (2.3), we immediately have Xn 4 Yn for any n ≥ 0.

We extended in this section the definition of the IBM(µ) to measures with
positive mass on {∞}. As applying Φ∞ does not modify the ball configuration,
the IBM(µ) and the IBM(µ(.|. <∞)) are straightforwardly connected.

Lemma 2.2. Let µ be a probability measure on N. We set p := µ({∞}) and the
measure ν verifying ν({k}) = µ({k})

1−p . Let (Xn) be an IBM(ν) and (Sn) be an
independent random walk with step distribution Binomial with parameter 1− p.
Then the process (XSn , n ≥ 0) is an IBM(µ).

In particular, assuming Theorem 1.1 holds, we have vµ = (1− p)vν .

3 Speed of the infinite-bin model
In this section, we prove the existence of a well-defined notion of speed of the
front of an infinite-bin model. We first discuss the case when the distribution µ is
finitely supported and the initial configuration is simple, then we extend it to any
distribution µ and finally we generalize to any admissible initial configuration.
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3.1 Infinite bin models with finite support
Let µ be a probability measure on N with finite support, i.e. such that there
exists K ∈ N verifying µ([K + 1,+∞)) = 0. Let (Xn) be an IBM(µ), we say
that (Xn) is an infinite-bin model with support bounded by K. One of the main
observations of the subsection is that such an infinite-bin model can be studied
using a Markov chain on a finite set. As a consequence, we obtain an expression
for the speed of this infinite-bin model.

Given K ∈ N, we introduce the set

SK =
{
x ∈ ZK−1

+ :
K−1∑
i=1

xi < K and ∀1 ≤ i ≤ j ≤ K − 1, xi = 0⇒ xj = 0
}
.

For any Y ∈ SK , we write |Y | =
∑K−1
j=1 Y (j). We introduce

ΠK : S −→ SK
X 7−→ (X(B(X,K) + j − 1), 1 ≤ j ≤ K − 1) .

For any n ∈ N, we write Yn = ΠK(Xn), that encodes the set of balls that are
close to the front. As the IBM has support bounded by K, the bin in which the
(n+ 1)-st ball is added to Xn depend only on the position of the front and on
the value of Yn. This reduces the study of the dynamics of (Xn) to the study
of (Yn, n ≥ 1).

Lemma 3.1. The sequence (Yn) is a Markov chain on SK .

Proof. For any 1 ≤ ξ ≤ K and Y ∈ SK , we denote by

B̃(Y, ξ) =
{

min{k ≥ 1 :
∑K−1
i=k Y (i) < ξ} if |Y | ≥ ξ

1 otherwise,

Φ̃ξ(Y ) =


(
Y (j) + 1{

j=B̃(Y,ξ)
}, 1 ≤ j ≤ K − 1

)
if |Y | < K − 1(

Y (j + 1) + 1{
j+1=B̃(Y,ξ)

}, 1 ≤ j ≤ K − 2, 0
)

if |Y | = K − 1.

For any X ∈ S and ξ ≤ K, we have B(X, ξ) = B(X,K) + B̃(ΠK(X), ξ) − 1.
Moreover, we have ΠK (Φξ(X)) = Φ̃ξ(ΠK(X)).

Let (ξn) be i.i.d. random variables with law µ and X0 ∈ S. For any n ∈ N,
we set Xn+1 = Φξn+1(Xn). Using the above observation, we have

Yn+1 = ΠK(Xn+1) = ΠK(Φξn+1(Xn)) = Φ̃ξn+1(ΠK(Xn)) = Φ̃ξn+1(Yn),

thus (Yn) is a Markov chain.

For any n ∈ N, the set of bins that are part of Yn represents the set of
“active” bins in Xn, i.e. the bins in which a ball can be added at some time in
the future with positive probability. The number of balls in (Yn) increases by
one at each time step, until it reaches K − 1. At this time, when a new ball is
added, the leftmost bin “freezes”, it will no longer be possible to add balls to
this bin, and the “focus” is moved one step to the right.
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Φ4

Φ̃4

Π5 Π5

Figure 3: “Commutation” of Π5 with Φ4 and Φ̃4.

We introduce a sequence of stopping times defined by

T0 = 0 and Tp+1 = inf{n > Tp : |Yn−1| = K − 1}.

We also set Zp = K − |YTp | the number of balls in the bin that “freezes ” at
time Tp. For any n ∈ N, we write τn = p for any Tp ≤ n < Tp+1.

Lemma 3.2. Let X0 ∈ S such that B(X0,K) = 1, then

• for any p ≥ 0, X∞(p) = Zp,

• for any n ≥ 0 and ξ ≤ K, B(Xn, ξ) = τn +B(Yn, ξ).

Proof. By induction, for any p ≥ 0, B(XTp ,K) = p+ 1. Consequently, for any
n ≥ Tp, we have Xn(p) = XTp(p) = K − |YTp | = Zp. Moreover, as

B(Xn,K) = τn + 1 and B(Xn, ξ) = B(Xn,K) +B(Yn, ξ)− 1,

we have the second equality.

Using the above result, we prove that the speed of an infinite-bin model with
finite support does not depend on the initial configuration. We also obtain a
formula for the speed vµ, that can be used to compute explicit bounds.

Proposition 3.3. Let µ be a probability measure with finite support and X be
an IBM(µ) with initial configuration X0 ∈ S. There exists vµ ∈ [0, 1] such that
for any ξ ∈ N, we have

lim
n→+∞

B(Xn, ξ)
n

= vµ a.s.

Moreover, setting π for the invariant measure of (Yn) we have

vµ = 1
Eπ(T2 − T1) = 1

Eπ(Z1) . (3.1)
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Proof. Let X0 ∈ S, we can assume that B(X0,K) = 1, up to a deterministic
shift. At each time n, a ball is added in a bin with a positive index, thus for
any n ∈ N, we have

+∞∑
j=1

Xn(j) = n+
+∞∑
j=1

X0(j).

Using the notation of Lemma 3.2, we rewrite it
∑τn
j=1 Zj+|Yn| = n+

∑+∞
j=1 X0(j).

Moreover, as 0 ≤ |Yn| ≤ K and 0 ≤
∑+∞
j=1 X0(j) ≤ K, we have

1− K

n
≤
∑τn
j=1 Zj

n
≤ 1 + K

n
,

yielding limn→+∞

∑τn

j=1
Zj

n = 1 a.s. As limp→+∞ Tp = +∞ a.s., we obtain

lim
p→+∞

∑p
j=1 Zj

Tp
= 1 a.s.

Moreover limp→+∞
1
p

∑p
j=1 Zj = Eπ(Z1) and limp→+∞

Tp
p = Eπ(T2 − T1) by

ergodicity of (Yn). Consequently, if we set vµ := 1
Eπ(T2−T1) = 1

Eπ(Z1) , the
constant vµ is well-defined.

We apply Lemma 3.2, we have

B(Xn, 1)
n

= τn
n

+ B(Yn, 1)
n

∈
[
τn
n
,
τn
n

+ K

n

]
.

Moreover, we have limn→+∞
τn
n = limp→+∞

p
Tp

= vµ a.s. This yields

lim
n→+∞

B(Xn, 1)
n

= vµ a.s. (3.2)

Using (2.1), this convergence is extended to limn→+∞
B(Xn,ξ)

n = vµ a.s.

Remark 3.4. If the support of µ is included in [1,K] ∪ {+∞}, it follows from
Lemma 2.2 that the IBM(µ) also has a well-defined speed vµ.

3.2 Extension to arbitrary distributions
We now use Proposition 3.3 to prove Theorem 1.1.

Proposition 3.5. Let µ be probability measure on N and (Xn) an IBM(µ) with
initial configuration X0 ∈ S. There exists vµ ∈ [0, 1] such that for any ξ ∈ N,
we have limn→+∞

B(Xn,ξ)
n = vµ a.s.

Moreover, if ν is another probability measure we have

∀k ∈ N, ν([1, k]) ≤ µ([1, k])⇒ vν ≤ vµ. (3.3)

Proof. Let X0 ∈ S. We write (ξn, n ≥ 1) for an i.i.d. sequence of random
variables of law µ. For any n,K ≥ 1, we set ξKn = ξn1{ξn≤K} +∞1{ξn>K}. We
then define the processes (XK

n ) and (XK

n ) by XK
0 = X

K

0 = X0 and

XK
n+1 = ΦξKn+1

(XK
n ) and X

K

n+1 =
{

Φξn+1(XK

n ) if ξn+1 ≤ K
τ(XK

n ) otherwise.

10



By induction, we have XK
n 4 Xn 4 X

K

n for any n ≥ 0, using (2.3) and (2.4).
As (XK

n ) is an infinite-bin model with support included in [1,K] ∪ {+∞},
by Remark 3.4, there exists vK ∈ [0, 1] such that for any ξ ∈ N

lim inf
n→+∞

B(Xn, ξ)
n

≥ lim
n→+∞

B(XK
n , ξ)
n

= vK a.s.

Moreover, by definition of (XK

n ) and (2.2), for any ξ, n ≥ 1 we have

B(XK

n , ξ) = B(XK
n , ξ) +

n∑
j=1

1{K<ξj<+∞},

therefore, by law of large numbers

lim sup
n→+∞

B(Xn, ξ)
n

≤ lim
n→+∞

B(XK

n , ξ)
n

= vK + µ([K + 1,+∞)) a.s.

By Proposition 2.1, we observe immediately that (vK) is an increasing se-
quence, bounded by 1, thus converges. Moreover, limK→+∞ µ([K+1,+∞)) = 0.
We conclude that lim

n→+∞
1
nB(Xn, ξ) = lim

K→+∞
vK =: vµ a.s. By Proposition 2.1,

(3.3) trivially holds.

Remark 3.6. Let µ be a probability measure on N, we set µK = µ(.|. ≤ K). We
observe from the proof of Proposition 3.5 and Lemma 2.2 that

µ([1,K])vµK ≤ vµ ≤ µ([1,K])vµK + µ([K + 1,+∞)).

As vµK is the speed of an IBM with support bounded by K, it can be computed
explicitly using (3.1). This provides tractable bounds for vµ. For example, we
have vµ ≥ µ({K0})

K0
, where K0 = inf{k > 0 : µ(k) > 0}.

Remark 3.7. Proposition 3.5 can be extended to infinite-bin models starting with
a configuration X ∈ S0. Let µ be a probability measure and (Xn) an IBM(µ)
starting with a configuration X ∈ S0. If µ has a support bounded by K, then the
projection (ΠK(Xn)) is a Markov chain, that will hit the set SK in finite time.
Therefore, we can apply Proposition 3.3, we have limn→+∞

1
nB(Xn, 1) = vµ a.s.

If µ has unbounded support, the IBM(µ) can still be bounded, in the same
way than in the proof of Proposition 3.5, by infinite-bin models with bounded
support. As a consequence, Theorem 1.1 holds for any starting configuration
belonging to S0.

4 Length of the longest path in Barak-Erdős
graphs

Let p ∈ [0, 1], we write µp for the geometric distribution on N with parameter p,
verifying µp(k) = p(1− p)k−1 for any k ≥ 1. In this section, we use a coupling
introduced by Foss and Konstantopoulos [11] between an IBM(µp) and a Barak-
Erdős graph of size n, to compute the asymptotic behaviour of the length of the
longest path in this graph.
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Recall that a Barak-Erdős graph on the n vertices {1, . . . , n}, with edge
probability p is constructed by adding an edge from i to j with probability p,
independently for each pair 1 ≤ i < j ≤ n. We write Ln(p) for the length of
the longest path in this graph. Newman [20] proved that Ln increases at linear
speed. More precisely, there exists a function C such that for any p ∈ [0, 1],

lim
n→+∞

Ln(p)
n

= C(p) in probability.

Moreover, he proved that C(p) is continuous and increasing on [0, 1], and that
C ′(0) = e.

Let p ∈ (0, 1) and (Xn) be an IBM(µp), we set vp = vµp the speed of (Xn),
which is well-defined by Proposition 3.5. Foss and Konstantopoulos [11] proved
that

C(p) = vp = lim
n→+∞

B(Xn, 1)
n

a.s. (4.1)

We now construct the coupling used to derive 4.1. We associate an infinite-
bin model configuration in S to each acyclic directed graph on vertices {1, . . . , n}
as follows: for each vertex 1 ≤ i ≤ n, we add a ball in the bin indexed by the
length of the longest path ending at vertex i, and infinitely many balls in bins
with negative index (see Figure 4 for an example). We denote by li the length
of the longest path ending at position li.

1 2 3 4 5 6

(a) An acyclic directed graph G.

1

3

2 4 5

6

-2 -1 0 1 2 3 4

(b) The infinite-bin model configu-
ration corresponding to this graph.

Figure 4: From a Barak-Erdős graph to an infinite-bin model configuration.

We now construct the Barak-Erdős graph as a dynamical process, which is
run in parallel with its associated infinite-bin model. At time n = 0, we start
with the Barak-Erdős graph with no vertex, the empty graph, and the infinite-
bin model with infinitely many balls in bins of negative index, and no ball in
other bins (which is called configuration Y0). At time n = 1, we add vertex 1
to the Barak-Erdős graph. As l1 = 0, we also add a ball in the bin of index 0
to the configuration Y0, to obtain the configuration Y1.

At time n > 1, we add vertex n to the Barak-Erdős graph on {1, . . . , n− 1}.
We compute the law of ln conditionally on (li, i ≤ n−1). Let σ be a permutation
of {1, . . . , n− 1} such that lσ(1) ≥ lσ(2) ≥ · · · ≥ lσ(n−1). The permutation is not
necessarily uniquely defined by these inequalities, but this does not matter for
our purpose. For each 1 ≤ i ≤ n− 1, there is an edge between n and σ(i) with
probability p, independently of any other edge. In this case, there is a path of
length li + 1 in the Barak-Erdős graph that end at site n. The smallest number
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ξn such that there is an edge between σ(ξn) and n is distributed as a geometric
random variable, where if ξn > n − 1, then there is no edge between n and a
previous vertex, thus ln = 0 and we add a ball at position 0. As a consequence,
the state associated to the graph of size n is given by Yn = Φξn(Yn−1).

We have coupled the IBM(µp) (Yn) with a growing sequence of Barak-Erdős
graphs, in such a way that for any n ∈ N, the length of the longest path in the
Barak-Erdős graph of size n is given by B(Yn, 1). Therefore, (4.1) is a direct
consequence of Proposition 3.5.

We now use (3.3) to bound the function C. In [11], Foss and Konstantopoulos
obtained upper and lower bounds for C(p), that are tight enough for p close to
1 to give the first five terms of the Taylor expansion of C around p = 1:

C(1− q) = 1− q + q2 − 3q3 + 7q4 +O(q5) when q → 0.

We use measures with finite support to approach µp, as in the proof of Proposi-
tion 3.5. We obtain two sequences of functions that converge exponentially fast
toward C on [ε, 1] for any ε > 0. Let k ≥ 1, we set

µk
p
({j}) = p(1−p)j−11{j≤k} and µkp({j}) = p(1−p)j−11{j≤k}+ (1−p)k1{j=k}.

We write Lk(p) = vµk
p

and Uk(p) = vµkp . By (3.3), for any k ≥ 1 we have
Lk(p) ≤ C(p) ≤ Uk(p). Moreover, as a (very crude) upper bound, for any
p ∈ [0, 1] we have

0 ≤ Lk(p)− Uk ≤ (1− p)k ∧ 1
k
. (4.2)

Using Proposition 3.3, the functions Lk and Uk can be explicitly computed.
For example, taking k = 3 we obtain

p(p2−3p+3)2(p4−6p3+14p2−16p+8)
3p6−26p5+96p4−196p3+235p2−158p+47 ≤ C(p) ≤ p3−2p2+p−1

p5−4p4+8p3−9p2+6p−3 .

For any k ∈ N, Lk and Uk are rational functions of p. Their convergence toward
C is very fast, which enables to bounds values of C(p). For instance, taking
k = 9, we obtain C(0.5) = 0.5780338± 2.10−8, improving C(0.5) = 0.58± 10−2

given by the bounds in [11].

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

(a) L3 and U3.
0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

(b) L6 and U6.
0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

(c) L9 and U9.

Figure 5: Lower and upper bounds Lk and Uk for C, for k ∈ {3, 6, 9}.

The functions Lk and Uk are very close for p close to 1, which enables to
compute the Taylor expansion of C(1− q) to any order as q → 0. For example,
comparing the Taylor expansion of L6 and U6, we obtain the first 14 terms of
the Taylor expansion of C. However, Theorem 1.4 gives another way to obtain
this Taylor expansion.
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5 Power series expansion of C in dense graphs
In this section, we prove that C is analytic for p > 1/2. The heuristic for
the proof goes along the following lines. Let p ∈ (0, 1) and (ξn, n ≥ 1) be i.i.d.
random variables with law µp. If p is close to 1, then the sequence (ξn) consists in
long blocks of 1, with short patterns appearing at random with integers greater
than 1. Therefore, the value of C(p) should be close to 1 minus the sum over
every pattern of the delay caused by this pattern multiplied by its probability
of occurrence.

With this heuristic behaviour in mind, we build a series C̃ which adds the
effect of all these patterns. We prove that the sum of this series is equal to C
for p > 1/2. In fact, we obtain infinitely many series formulas for C: for each
configuration X ∈ S, we define a series C̃X . All these series turn out to be equal
to C for p > 1/2.

We recall some notation from the introduction. We denote by A the set of
finite words on the alphabet N. For any α = (α1, . . . , αn) ∈ A, we define

L(α) := n and H(α) := α1 + α2 + · · ·+ αn − L(α)

the length and the height of α respectively.
For any p ∈ (0, 1), we write

Wp(α) = pL(α)(1− p)H(α) = P((ξ1, . . . ξL(α)) = α)

for the weight of the word α. If α = (α1, . . . , αn) is a non-empty word, we denote
by πα (respectively $α) the word (α1, . . . αn−1) (resp. (α2, . . . αn)) obtained by
erasing the last (resp. first) letter of α. We use the convention π∅ = $∅ = ∅.

Given any X ∈ S, we define the function εX : A → {−1, 0, 1} by

εX(α) = 1{α∈PX} − 1{$α∈PX},

where PX is the set of non-empty words α such that, starting from X and
applying successively the moves Φα1 , . . . ,Φαn , the last move Φαn results in
placing a ball in a previously empty bin.

For any α ∈ A, we denote by Xα the configuration of the infinite-bin model
obtained after applying successively moves of type α1, α2, . . . αn to the initial
configuration X, i.e.

Xα = ΦαL(α)

(
ΦαL(α)−1

(
· · ·Φα2

(
Φα1

(
X
))
· · ·
))
,

and we set dX(α) = B(Xα, 1) − B(X, 1) the displacement of the front of the
infinite-bin model after performing the sequence of moves in α. We now provide
an alternative expression for εX(α).

Lemma 5.1. For any α ∈ A, we have

εX(α) = dX(α)− dX(πα)− dX($α) + dX(π$α). (5.1)

Proof. Observe that dX(α) − dX(πα) equals 0 (resp. 1) if the last move of α
adds a ball in a previously non-empty (resp. empty) bin. Therefore we have
dX(α)− dX(πα) = 1{α∈PX}. Similarly, dX($α)− dX(π$α) = 1{$α∈PX}. We
conclude that

εX(α) = 1{α∈PX}−1{$α∈PX} = dX(α)−dX(πα)−dX($α) +dX(π$α) (5.2)
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As a direct consequence of Lemma 5.1, for any α = (α1, . . . αn) we have

dX(α) =
n∑
k=1

n−k∑
j=0

εX((αk, αk+1, . . . , αk+j)), (5.3)

i.e., the displacement induced by α is the sum of ε(β) for any consecutive sub-
word β of α (where the subwords β are counted with multiplicity).1

We say that a word α = (α1, . . . , αl) has a renovation event at position n ≥ 1
if for all 0 ≤ k ≤ l−n, αn+k ≤ k+ 1. This concept appears in [11], where these
are were used to create time intervals on which the process starts over and is
independent of its past. We first show that the existence of a renovation event
in α implies εX(α) = 0.

Lemma 5.2. Let X ∈ S ,if α ∈ A with L(α) ≥ 2 has a renovation event at
position n ≥ 2, then εX(α) = 0.

Proof. Let α ∈ A be a word of length l with a renovation event at position
n ≥ 2. When we run α starting from the configuration X, the move αn = 1
creates a ball in a previously empty bin, of index say b.

As αn+k ≤ k + 1 for all 0 ≤ k ≤ l − n, we are capable of placing the balls
produced by these moves in bins of index b or greater, without knowing any
information about the bins to the left of bin b (except for the fact that the bin
b− 1 contains at least one ball).

When we run $α starting from X, the move αn again creates a ball in a
previously empty bin, of index say b′. Running the moves αn+1, . . . , αl will
produce the same construction as when we run α, with everything just shifted
by b′ − b. In particular, the last move of α places a ball in a previously empty
bin if and only if the last move of $α places a ball in a previously empty bin.
Consequently 1{α∈PX} = 1{$α∈PX} so εX(α) = 0.

Using Lemma 5.2, we are able to obtain a control on the length of words α
such that εX(α) 6= 0.

Lemma 5.3. Let X ∈ S, for any α ∈ A such that L(α) > H(α) + 1 we have
εX(α) = 0.

Proof. Let α be a word (α1, . . . , αl) such that l = L(α) > H(α) + 1. For any
1 ≤ k ≤ l, define S(k) =

∑k
i=1(αi−2). As L(α) > H(α)+1 we have S(l) < −1.

We set n = min {k : S(t) < −1 ∀t ≥ k}.
Observe that we have S(1) = α1 − 2 ≥ −1, thus n ≥ 2. By induction, for

any 0 ≤ k ≤ l − n, we have S(n+ k) ≥ −k − 2 and αn+k ≤ k + 1. Thus α has
a renovation event at position n ≥ 2, so εX(α) = 0 by Lemma 5.2.

1One could also go the other way round, start with dX and define εX to be the function
verifying

∀α ∈ A, dX(α) =
∑
β≺α

εX(β)m(β, α),

where β ≺ α denotes the fact that β is a factor of α (i.e. a consecutive subword of α) and
m(β, α) denotes the number of times β appears as a factor of α. In that case, one would
obtain formula (5.2) for εX as the result of a Mőbius inversion formula (see [22, Sections 3.6
and 3.7] for details on incidence algebras and Mőbius inversion formulas).
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By Lemma 5.3, for any p > 0 there are only finitely many words with a
weight larger than pk. We use this estimate to obtain the absolute convergence
of a series.

Lemma 5.4. The series
∑
α∈A |εX(α)|Wp(α) converges for all p > 1/2.

Proof. Let p > 1/2. Define Ahl to be the set of words of length l and height h.
Observe that Ahl is the set of compositions of the integer h+ l into l parts and
it is well-known that #Ahl =

(
h+l−1
l−1

)
. By Lemma 5.3, if α is a word such that

|εX(α)| = 1, then L(α) ≤ H(α) + 1, thus

∑
α∈A
|εX(α)|Wp(α) ≤

∑
h≥0

h+1∑
l=1

∑
α∈Ah

l

Wp(α).

Using the definition of Wp(α), we obtain

∑
α∈A
|εX(α)|Wp(α) ≤

∑
h≥0

h+1∑
l=1

pl(1− p)h#Ahl

≤
∑
h≥0

h+1∑
l=1

pl(1− p)h
(
h+ l − 1
l − 1

)

≤ (1− p)
∑
h≥0

h∑
l=0

pl(1− p)h
(
h+ l

l

)
. (5.4)

Let (Sn) be a random walk on Z starting at 0 and doing a step +1 (resp. −1)
with probability p (resp. 1− p). Then

∑
h≥0

h∑
l=0

pl(1− p)h
(
h+ l

l

)
=
∑
n≥0

bn/2c∑
l=0

(
n

l

)
pl(1− p)n−l

=
∑
n≥0

bn/2c∑
l=0

P (Sn = 2l − n) =
∑
n≥0

P (Sn ≤ 0) < +∞,

(5.5)

as for any p > 1/2, we have limn→+∞ Sn = +∞.

Using the above lemma, for all X ∈ S, we introduce the function

C̃X(p) =
∑
α∈A

εX(α)Wp(α), (5.6)

which is well-defined for p > 1/2.

Lemma 5.5. For any X ∈ S and p > 1/2, we have C(p) = C̃X(p).

Proof. Let p > 1/2, we denote by (Xn) an IBM(µp) starting from X0 = X. We
recall that C(p) is the speed of the front of (Xn). Therefore, by Proposition 3.5
we have

C(p) = lim
n→+∞

1
n

(B(Xn, 1)−B(X, 1)) a.s.
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As | 1n (B(Xn, 1)−B(X, 1))| < 1, by dominated convergence, we also have

C(p) = lim
n→+∞

1
n

E(B(Xn, 1)−B(X, 1)).

Writing (ξn) for i.i.d. random variables with geometric distribution of pa-
rameter p, we compute for any n ∈ N, using (5.3),

E(B(Xn, 1)−B(X, 1)) = E(dX((ξ1, . . . , ξn)))

=
n∑
k=1

n−k+1∑
j=1

E(εX((ξj , ξj+1, . . . , ξj+k−1)))

=
n∑
k=1

∑
α∈Nk

εX(α)(n− k + 1)P((ξ1, ξ2, . . . , ξk) = α)

=
∑
α∈A

L(α)≤n

εX(α)Wp(α)(n− L(α) + 1).

As a consequence, we have

C(p) = lim
n→+∞

∑
α∈A

L(α)≤n

εX(α)Wp(α)
(

1− L(α)−1
n

)
= C̃X(p),

by dominated convergence (using Lemma 5.4), which concludes the proof.

We deduce from this formula for C(p) that the function has a power series
expansion with integer coefficients around p = 1 with positive radius of conver-
gence. Making power series expansions centered at any r > 1/2, we prove that
C(p) is analytic for p > 1/2.

Proof of Theorem 1.4. Fix 1
2 < p ≤ r ≤ 1 and write x = r− p ≥ 0. We want to

write C(p) as a power series in x centered at r and determine when the series
is absolutely convergent.

C(p) =
∑
α∈A

εX(α)pL(α)(1− p)H(α)

=
∑
α∈A

εX(α)(r − x)L(α)(1− r + x)H(α)

=
∑
α∈A

εX(α)
L(α)∑
i=0

(
L(α)
i

)
(−1)ixirL(α)−i

H(α)∑
j=0

(
H(α)
j

)
xj(1− r)H(α)−j .

(5.7)

Taking absolute values inside the last series, we obtain

∑
α∈A
|εX(α)|

L(α)∑
i=0

(
L(α)
i

)
xirL(α)−i

H(α)∑
j=0

(
H(α)
j

)
xj(1− r)H(α)−j

=
∑
α∈A
|εX(α)|(r + x)L(α)(1− r + x)H(α)

=
∑
α∈A
|εX(α)|(2r − p)L(α)(1− p)H(α).
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We have a power series expansion C(p) centered at r of radius of convergence
at least r− p whenever the last series converges. Using a domination argument
similar to (5.4), we get

∑
α∈A
|εX(α)|(2r − p)L(α)(1− p)H(α) ≤ (1− p)

∑
h≥0

h∑
l=0

(2r − p)l(1− p)h
(
h+ l

l

)
.

Let (Sp,rn ) be a random walk on Z starting at 0 and doing a step +1 (resp. −1)
with probability 2r−p

2r+1−2p (resp. 1−p
2r+1−2p ). Then by the same computations as

in (5.5), we have

∑
h≥0

h∑
l=0

(2r − p)l(1− p)h
(
h+ l

l

)
=
∑
n≥0

(2r + 1− 2p)nP (Sp,rn ≤ 0) . (5.8)

By Chernoff’s bound, if we call Y p,r a random variable distributed like one step
of (Sp,rn ), we obtain

P (Sp,rn ≤ 0) ≤ inf
t>0

(
E
[
e−tY

p,r
])n

≤ inf
t>0

(
2r − p

2r + 1− 2pe
−t + 1− p

2r + 1− 2pe
t

)
≤

(
2
√

(2r − p)(1− p)
2r + 1− 2p

)n
.

Thus the series in (5.8) converge if and only if 2
√

(2r − p)(1− p) < 1, i.e.

r + 1
2 −

√
r2 − r + 1

2 < p ≤ r ≤ 1.

When r > 1/2 we have that r + 1
2 −

√
r2 − r + 1

2 < r, thus the power series
expansion of C(p) centered at r has a positive radius of convergence. Thus C(p)
is analytic on

( 1
2 , 1
]
. When r = 1, it follows from (5.7) that the coefficients are

integers.

Remark 5.6. Numerical simulations tend to suggest that the power series ex-
pansion of C(p) at p = 1 has a radius of convergence larger than 0.5 but smaller
than 1. Together with the fact that C admits no second derivative at p = 0,
this raises the question of the existence of a phase transition in this process.

6 Longest directed path in sparse graphs
We study in this section the asymptotic behaviour of C(p) as p→ 0. Newman
proved in [20] that C(p) ∼ pe. We link in Section 6.1 this result with the
estimate obtained by Aldous and Pitman [2] for the speed of an IBM with
uniform distribution. Let k ∈ N, we write νk for the uniform distribution on
{1, . . . , k} and wk for the speed of the IBM(νk), Aldous and Pitman proved that

(kwk, k ∈ N) increases toward e as k → +∞. (6.1)
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This result is obtained by coupling the infinite-bin model with a continuous-
time branching random walk with selection. Adapting the result of Bérard and
Gouéré [4] on the speed of branching random walks with selection, we obtain
the following estimate.

Lemma 6.1. We have kwk = e− π2e
2 (log k)−2(1 + o(1)) as k → +∞.

Applying Lemma 6.1 to compute the asymptotic behaviour of C, we prove
Theorem 1.6 :

C(p) = ep

(
1− π2

2 (log p)−2
)

+ o(p(log p)−2) as p→ 0. (6.2)

The rest of the section is organized as follows. In Section 6.1, we prove
Theorem 1.6 assuming Lemma 6.1. In Section 6.2, we prove Lemma 6.1 using
the coupling with a branching random walk with selection. Some preliminary
results on this model are derived in Section 6.3. The speed of the cloud of
particles in a branching random walk with selection is obtained in Section 6.4.

6.1 Proof of Theorem 1.6 assuming Lemma 6.1
We use the increasing coupling of Proposition 3.5 to link the asymptotic be-
haviours of wk and C(1/k) as k → +∞.

Lemma 6.2. For any k ∈ N we have

∀p ∈ [ 1
k+1 ,

1
k ], C(p) ≤ wk

∀p ∈ [0, 1], C(p) ≥ kp(1− p)kwk.

Proof. Let k ∈ N and p ∈ [ 1
k+1 ,

1
k ]. We observe that for any j ∈ N,

µp([1, j]) =
j∑
i=1

p(1− p)i−1 ≤ (pj) ∧ 1 ≤ νk([1, j]).

Therefore C(p) ≤ wk by (3.3).
Let p ∈ [0, 1], we set x = kp(1 − p)k−1. Observe that 0 ≤ x ≤ 1. For any

j ∈ N, we have

µp([1, j]) =
j∑
i=1

p(1− p)i−1 ≥ (j ∧ k)p(1− p)k−1 ≥ kνk([1, j])p(1− p)k−1.

Therefore, writing νxk = xνk + (1− x)δ∞, we have µp([1, j]) ≥ νxk ([1, j]) for any
j ∈ N. We apply (3.3) to µp and νkx . By Lemma 2.2, the speed of the IBM(νxk )
is xwk. We conclude that for any k ∈ N and p ∈ [0, 1], we have

C(p) ≥ kp(1− p)k−1wk.

Proof of Theorem 1.6. For any k ∈ N and p ∈ [ 1
k+1 ,

1
k ], by Lemma 6.2, we have

C(p)/p ≤ (k + 1)wk, therefore Lemma 6.1 yields

lim sup
p→0

(log p)2
(
C(p)
p
− e
)
≤ lim sup

k→+∞
(log k)2 ((k + 1)wk − e) ≤ −

π2e

2 .
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By Lemma 6.2 again, we have C(p)/p ≥ (1 − p)k(kwk) for any k ∈ N and
p ∈ [0, 1]. Let δ > 0, we set k =

⌈
1/p1−δ⌉. We have (1 − p)k − 1 ∼ −pδ as

p→ 0. This yields

(log p)2
(
C(p)
p
− e
)
≥ (log k)2

(1− δ)2

(
(1− p)k(kwk)− e

)
.

Using again Lemma 6.1, we have

lim inf
p→0

(log p)2
(
C(p)
p
− e
)
≥ − π2e

2(1− δ)2 .

Letting δ → 0 concludes the proof.

6.2 Proof of Lemma 6.1 using branching random walks
By Lemma 6.2, to obtain the asymptotic behaviour of C(p) as p→ 0, it is enough
to control the asymptotic behaviour of kwk as k → +∞. To obtain (6.1), Aldous
and Pitman compared the IBM(νk) with a continuous-time branching random
walk with selection, that we now define.

Let λ > 0 and L be the law of a point process. A continuous-time branching
random walk evolves as follows. Every particle in the process is associated
with an independent exponential clock of parameter λ. When a clock rings,
the corresponding particle dies, giving birth to children that are positioned
according to a point process with law L, shifted by the position of the dead
parent particle. For any t ≥ 0, we write Nt for the set of particles alive at
time t. For any u ∈ Nt, we write Xt(u) for the position of the particle u alive
at time t.

Let L be a point process of law L. We write Λ(θ) = E
(∑

`∈L e
θ`
)
− 1 for

any θ > 0 and v = λ infθ>0
Λ(θ)
θ . We assume that

there exists ϕ∗ > 0 such that ϕ∗Λ′(ϕ∗)− Λ(ϕ∗) = 0. (6.3)

Then we have v = λΛ(ϕ∗)
ϕ∗ and we set τ2 = λΛ′′(ϕ∗). Using a straightforward

extension of the classical result of Biggins [6], we have

lim
t→+∞

1
t

max
u∈Nt

Xt(u) = v a.s.

Let N ∈ N. A continuous-time branching random walk with selection of
the rightmost N particles or N -BRW is defined as follows. Each particle in the
process reproduces independently as in a continuous-time branching random
walk, but every time there are more than N particles currently alive in the
process, every particle but the rightmost N are immediately killed without
reproducing.

For any t ≥ 0, we denote by NN
t the set of particles alive at time t in the

N -BRW, that can be defined as follows. At time 0, NN
0 is the set of the N

rightmost particles in N0, with ties broken uniformly at random. The set NN
t

remains constant in between reproduction events. At each reproduction time T ,
the set NN

T is defined as the rightmost N descendants of particles in NT−, with
ties again broken uniformly at random. The following estimate on the speed of
the cloud of particles in the N -BRW is proved in Section 6.4.
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Lemma 6.3. Let (Xt(u), u ∈ NN
t )t be a continuous-time branching random

walk with selection of the rightmost N particles. Given L a point process of
law L, we assume there exists ε > 0 such that

P(L = ∅) = 0, E(#L) > 1 and E(eε#L) < +∞, (6.4)

E
(

max
`∈L
|`|2
)

+ E

(∑
`∈L

eϕ
∗`

)2
 < +∞. (6.5)

For any N ∈ N, there exists vN such that

lim
t→+∞

maxu∈NNt Xt(u)
t

= lim
t→+∞

minu∈NNt Xt(u)
t

= vN a.s.

and lim
N→+∞

(logN)2(vN − v) = −π
2ϕ∗τ2

2 .

The first statement in proved in Section 6.3 and the second one is proved in
Section 6.4 by adapting the proof used to study discrete-time branching random
walks with selection in [4, 19].

Using the Aldous-Pitman coupling (described below) between IBM(νk) and
continuous-time branching random walks with selection, we now derive the
asymptotic behaviour of kwk as k → +∞, assuming that Lemma 6.3 holds.

Proof of Lemma 6.1. Let k ∈ N. We write (Nt, t ≥ 0) for a Poisson process of
parameter k and (Xn, n ≥ 0) for an independent IBM(νk). For any t > 0, we
denote by N k

t the set consisting of the rightmost k balls in the configuration
XNt , and by Yt(u) the position of the ball u ∈ N k

t .
We observe that (Yt(u), u ∈ N k

t )t evolves as follows: every ball stays put until
an exponential random time with parameter k. At that time T , a ball u ∈ N k

T

is chosen uniformly at random, a new ball is added at position YT (u) + 1, and
the leftmost ball is erased.

By classical properties of exponential random variables, this evolution can be
written in this way: to each ball is associated a clock with parameter 1. When
a clock rings, the corresponding ball makes a “child” to the right of its current
position, and the leftmost ball is erased. In other words, (Yt(u), u ∈ N k

t )t is a
continuous-time branching random walk with selection, with parameter λ = 1
and point process L = δ0 + δ1.

We observe that Λ(θ) = eθ. By straightforward computations, this yields

v = e, ϕ∗ = 1 and τ2 = e.

Consequently, using Lemma 6.3, we obtain

lim
t→+∞

maxu∈Nkt Yt(u)
t

= lim
t→+∞

minu∈Nkt Yt(u)
t

= vk a.s,

with limk→+∞(log k)2(vk − e) = −π
2e
2 .

By the law of large numbers and Proposition 3.3, we have

lim
t→+∞

B(XNt , 1)
t

= lim
n→+∞

B(Xn, 1)
n

lim
t→+∞

Nt
t

= kwk a.s.

We conclude the proof observing that B(XNt , 1)− 1 = maxu∈Nkt Xt(u).

21



6.3 Speed of the N-branching random walk
In this section, we present an increasing coupling introduced by Bérard and
Gouéré on branching random walks with selection, and use it to prove that the
speed of the N -BRW is well-defined. Loosely speaking, this coupling accounts
for the following fact : the larger the population of a branching random walk
with selection is, the faster it travels. To state this coupling, we extend the
definition of branching random walks with selection to authorize the maximal
size of the population to vary.

Let F be a càdlàg, integer-valued process, adapted to the filtration of the
continuous-time branching random walk (Xt(u), u ∈ Nt)t. For any t ≥ 0, we
denote by NF

t the F (t) rightmost descendants of particles belonging to NF
t−.

We call (Xt(u), u ∈ NF
t )t a branching random walk with selection of the F (t)

rightmost particles at each time t, or a F -BRW for short. Note that if F is a
constant process N ∈ N, the notation N -BRW remains consistent.

In the rest of the article, we will assume the point process law L satisfies the
integrability conditions (6.3), (6.4) and (6.5).

Lemma 6.4. Let F and G be two càdlàg integer-valued adapted processes, we
assume that

∀x ∈ R,#{u ∈ NF
0 : X0(u) ≥ x} ≤ #{u ∈ NG

0 : Y0(u) ≥ x}.

There exists a coupling between an F -BRW (Xt(u), u ∈ NF
t )t and a G-BRW

(Yt(u), u ∈ NG
t )t such that a.s. for any t > 0, on the event {Fs ≤ Gs, s ≤ t},

∀x ∈ R, #{u ∈ NF
t : Xt(u) ≥ x} ≤ #{u ∈ NG

t : Yt(u) ≥ x}. (6.6)

This lemma is obtained as a straightforward adaptation of [4, Lemma 1].

Proof. We write m = #NF
0 , n = #NG

0 and x1 ≥ · · · ≥ xm (respectively
y1 ≥ · · · ≥ yn) the ranked values of (X0(u), u ∈ NF

0 ) (resp. (Y0(u), u ∈ NG
0 )).

By assumptions, we have m ≤ F0, m ≤ n ≤ G0 and xj ≤ yj for all j ≤ m. We
assume that we are on the event {Fs ≤ Gs, s ≤ t}, and we couple X and Y such
that this property remains true at any time s ≤ t.

We associate exponential clocks to particles in the processes in such a way
that the particles in position xj and yj reproduce at the same time, for any
j ≤ m. We write Tb the first time one of these particles reproduces, Ta the first
time a particle located at position ym+1, . . . yn reproduces,

S = inf{t > 0 : Ft 6= F0 or Gt 6= G0} and R = Ta ∧ Tb ∧ S.

We observe that X and Y are constant processes until time R, that R > 0 a.s.
and that Ta 6= Tb a.s.

One of three things can happen at time R. First, if R = Ta, there is a
reproduction event in Y but not in X. If we rank in the decreasing order the
children of particles in NF

R− (resp. NG
R−) as (x̃j) (resp. (ỹj)), we again have

x̃j ≤ ỹj for any j ≤ m. As FR ≤ GR, applying the selection procedure to both
models yields

∀x ∈ R, #{u ∈ NF
R : XR(u) ≥ x} ≤ #{u ∈ NG

R : YR(u) ≥ x}.

If R = Tb, then there is a reproduction event in X and Y . We use the
same point process to construct the children of the particle that reproduces in
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each process. Once again, ranking in the decreasing order these children, then
applying the selection, we have

∀x ∈ R, #{u ∈ NF
R : XR(u) ≥ x} ≤ #{u ∈ NG

R : YR(u) ≥ x}.

Finally, if R = S 6∈ {Ta, Tb}, the maximal size of at least one of the popu-
lations is modified. Even if this implies the death of some particles in X or Y ,
the property (6.6) is preserved at time R.

There is a finite sequence of times (Rk) smaller than t such that X or Y is
modified at each time Rk. Using this coupling on each time interval of the form
[Rk, Rk+1] yields (6.6).

Using this lemma, we prove that the cloud of particles in a N -BRW drifts
at linear speed vN .

Lemma 6.5. For any N ∈ N, there exists vN such that

lim
t→+∞

1
t

max
u∈NNt

Xt(u) = lim
t→+∞

1
t

min
u∈NNt

Xt(u) = vN a.s.

Moreover, if (X0(u), u ∈ N0) = (0, . . . , 0) ∈ RN , we have

vN = inf
t>0

E
[
maxu∈NNt Xt(u)

]
t

= sup
t>0

E
[
minu∈NNt Xt(u)

]
t

. (6.7)

The proof of this lemma is adapted from [4, Proposition 2].

Proof. Let N ∈ N, we denote by (Xt(u), u ∈ Nt)t an N -BRW starting with N
particles located at 0 at time 0. We set

Mt = max
u∈NNt

Xt(u) and mt = min
u∈NNt

Xt(u).

We prove that (Mt) (respectively (mt)) is a sub-additive (resp. super-additive)
sequence.

In effect, by Lemma 6.4, for any s ≥ 0, we can couple (Xt+s(u), u ∈ Nt+s)
with an N -BRW X̃ starting with N particles at position Ms in such a way that
(6.6) is verified. We write Ms +Ms,t the maximal displacement at time t of X̃.
For any s ≤ t, we have M0,t ≤M0,s +Ms,t.

We also observe that for any s ≥ 0, (Ms,s+t)t has the same law as (Mt)t,
and Ms,t is independent of (Mu,v, u ≤ v ≤ s). Moreover, by Lemma 6.4, the
maximal displacement of the N -BRW X at time t is larger than the maximal
displacement of a 1-BRW Y starting with a particle located at 0 at time 0. But
the process Y is a continuous-time random walk, with step distribution maxL.
Therefore,

E(M0,1) ≥ −E
(∣∣∣∣max

u∈N1
Yt(u)

∣∣∣∣) > −∞, by (6.4).

Applying Kingman’s subadditive ergodic theorem, there exists vN ∈ R such that
limt→+∞

M0,t
t = vN a.s. (see Kallenberg [16, Theorem 9.14]). With a similar

reasoning, we obtain limt→+∞
mt
t = vN ∈ R. Moreover, we have

vN = lim
t→+∞

1
t

E(Mt) and vN = lim
t→+∞

1
t

E(mt).
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We have immediately vN ≥ vN , we now prove these two quantities are equal.
Let A > 0, we define a sequence of waiting times by setting T0 = 0 and Tk+1

is the first time after time Tk+1 such that only the descendants of the rightmost
particle at time Tk+1 − 1 reproduced between times Tk+1 − 1 and Tk+1, every
particle alive in NN

Tk+1
descend from the rightmost particle at time Tk+1−1 and

the distance between the rightmost and the leftmost of this offspring is smaller
than AN . As long as AN > 0 is large enough, this defines a sequence of a.s.
finite hitting times (as E(Tk) < +∞). By definition, we have

lim sup
k→+∞

MTk −mTk ≤ AN a.s.

therefore lim inft→+∞
Mt−mt

t = 0 a.s. which yields vN = vN =: vN .
Finally, using Lemma 6.4 again, we can couple a N -BRW X starting from

any initial condition X0 with an N -BRW X starting from N particles in position
maxX0 and another one X starting with N particles in position minX0 in such
a way that for any t > 0.

min
u∈NNt

Xt(u) ≤ min
u∈NNt

Xt(u) ≤ max
u∈NNt

Xt(u) ≤ max
u∈NNt

Xt(u) a.s.

As a consequence, for any N -BRW, we have

vN ≤ lim inf
t→+∞

1
t

min
u∈NNt

Xt ≤ lim sup
t→+∞

1
t

max
u∈NNt

Xt ≤ vN a.s.

which concludes the proof.

6.4 End of the proof of Lemma 6.3
In this section, we use Lemma 6.4 to compare the asymptotic behaviour of
a continuous-time and a discrete-time branching random walk with selection.
In the latter model, every particle in the process reproduces independently at
integer-valued times. The discrete-time branching random walk with selection
was introduced by Brunet and Derrida [7] to study noisy FKPP equations. In
this article, they conjectured that the cloud of particles drifts at speed wN , that
satisfies, as N → +∞

wN − w = − χ

(logN + 3 log logN + o(log logN))2 , (6.8)

for some explicit constants w ∈ R and χ > 0.
We describe more precisely the discrete-time branching random walk with

selection model. Every particle reproduces independently at each integer time.
The children are positioned around their parent according to i.i.d. point pro-
cesses of law M. Only the rightmost N children survive to form the new gen-
eration. For every n ∈ N, we set Xn(1) ≥ Xn(2) ≥ . . . ≥ Xn(N) the ranked
positions of particles alive at generation n.

Let M be a point process of law M. We write κ(θ) = log E
(∑

m∈M eθm
)

for any θ > 0, and w = infθ>0
κ(θ)
θ . We assume

there exists θ∗ > 0 such that θ∗κ′(θ∗)− κ(θ∗) = 0. (6.9)
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We then have w = κ(θ∗)
θ∗ , and we write σ2 = κ′′(θ∗). Bérard and Gouéré proved

that for a binary branching random walk with exponential moments, there exists
(wN ) such that

lim
n→+∞

Xn(1)
n

= lim
n→+∞

Xn(N)
n

= wN a.s.

and lim
N→+∞

(logN)2(wN − w) = −π
2θ∗σ2

2 . (6.10)

The integrability assumptions were extended by Mallein [19] to more general
reproduction laws. In particular, (6.10) holds under the following conditions:

P(M = ∅) = 0, E(#M) > 0 and E
(∣∣∣∣max

m∈M
m

∣∣∣∣2
)
< +∞ (6.11)

E
(∑
m∈M

eθ
∗mm2

)
+ E

∑
m∈M

eθ
∗m log

(∑
m∈M

eθ
∗m

)2
 < +∞. (6.12)

Bérard and Maillard [5] obtained a different asymptotic behaviour for branching
random walks with heavy tails. Maillard [18] obtained precise results for the
similar model of branching Brownian motion with selection.

Using Lemma 6.4, we extend (6.10) to obtain an upper bound for the asymp-
totic behaviour of the speed of a continuous-time branching random walk with
selection.

Lemma 6.6. We have lim sup
N→+∞

(logN)2(vN − v) ≤ −π
2ϕ∗τ2

2 .

Proof. Let (Wt(u), u ∈ Nt)t be a continuous-time branching random walk with
reproduction law L and parameter λ, starting with a single particle at position 0
at t = 0. We introduce the point process M =

∑
u∈N1

δW1(u). This proof is
based on a comparison between the N -BRW (Xt(u), u ∈ NN

t )t and a discrete-
time branching random walk with selection (Yn(j), j ≤ N)n with reproduction
law M .

Let θ > 0, for any t ≥ 0 we write fθ(t) = E
(∑

u∈Nt e
θWt(u)). Note that

∀t ≥ 0, f ′θ(t) = λΛ(θ)fθ(t) with fθ(0) = 1,

therefore κ(θ) = log fθ(1) = λΛ(θ). Thus, (6.9) is verified by (6.3), and we have
w = v, θ∗ = ϕ∗ and σ2 = τ2. Moreover, by (6.4) and (6.5), the point process M
satisfies (6.11) and (6.12). As a consequence of [19, Theorem 1.1], there exists
a sequence (wN ) such that

lim
n→+∞

Yn(1)
n

= wN a.s., with lim
N→+∞

(logN)2(wN − v) = −π
2ϕ∗τ2

2 . (6.13)

We now provide an alternative definition of (Yn(j), j ≤ N)n as a continuous-
time branching random walk. We define a càdlàg adapted process F as follows.
At any integer time n ∈ Z+, we set Fn = N , and if t ∈ (n, n+1), Ft is the number
of particles at time t that descend from a particle in NF

n . By the branching
property, we easily observe that the F -BRW (Yt(u), u ∈ NF

t )t satisfies((
Yn(u), u ∈ NF

n

)
, n ≥ 0

) (d)= ((Yn(j), j ≤ N) , n ≥ 0) .
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As a result, we can identify the two processes, and (6.13) yields

lim
n→+∞

1
n

max
u∈NFn

Yn(u) = wN a.s.

We now extend this convergence on Z+ to the convergence of (maxu∈NFt Yt(u))t.
We denote by ξ = maxs∈[0,1] maxu∈NsWs(u) the maximal position attained

before time 1 by a continuous-time branching random walk. By (6.4), we have
E(ξ) < +∞. Moreover, given (ξnj , j ≤ N,n ≥ 0) i.i.d. copies of ξ, this sequence
can easily be coupled with the process Y such that for all n ≥ 0 and t ∈ [n, n+1),

max
u∈NFn

Yn(u) + max
j≤N

ξj ≥ max
u∈NFt

Yt(u) a.s.

Using the Borel-Cantelli lemma, we conclude that

lim sup
t→+∞

1
t

max
u∈NFt

Yt(u) ≤ wN a.s.

As Ft ≥ N for any t ≥ 0, by Lemma 6.4, we can couple the processes X
and Y such that maxu∈NNt Xt(u) ≤ maxu∈NFt Yt(u) a.s. for any t ≥ 0. As a
consequence, we have

lim sup
t→+∞

1
t

max
u∈NFt

Xt(u) ≤ wN a.s.

hence vN ≤ wN , which concludes the proof.

The lower bound is obtained in a similar yet more involved fashion. The
proof of this lemma is adapted from [19, Section 4.4].

Lemma 6.7. We have lim inf
N→+∞

(logN)2(vN − v) ≥ −π
2ϕ∗τ2

2 .

Proof. In this proof, we construct a particle process Y that evolves similarly to a
continuous-time branching random walk with selection, with frequent renovation
events, and that can be coupled with the N -BRW X such that its maximal
displacement is smaller than the maximal displacement of X. Given α ∈ (0, 1),
the process evolves typically like a discrete-time bαNc-branching random walk,
and on a time scale of order (logN)3, every particle in the process is killed and
replaced by P particles starting from the smallest position in Y at that time.

Let α ∈ (0, 1), we denote by P = bαNc. We set (Wt(u), u ∈ Nt) a
continuous-time branching random walk starting from a single particle located
at position 0. As E(#L) < +∞, there exists β > 0 such that E(#Nβ) < 1

α −β.
We introduce the point process Mβ =

∑
u∈Nβ δWβ(u).

Let (Yn(j), j ≤ P )n be a discrete-time branching random walk with selec-
tion of the rightmost P particles, with reproduction law Mβ , starting with P
particles located at position 0. With the same computations as in the proof of
Lemma 6.6, we have κ(θ) = βλΛ(θ) and therefore

w = βv, θ∗ = ϕ∗ and σ2 = βτ2.

Let η > 0 and χN = π2θ∗σ2

2(logP )2 . By [19, Lemma 4.7], there exists γ > 0 such that
for all N ≥ 1 large enough, we have

P
(
∀n ≤ (logP )3, Yn(P )− nw ≤ −n(1 + η)χN

)
≤ exp(−P γ). (6.14)
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We observe that, as in the proof of Lemma 6.6, (Yn(j), j ≤ P )n can be
constructed as the values taken at discrete times by a continuous-time F -BRW.
More precisely, we introduce the càdlàg process (Ft) defined by Fnβ = P for
any n ≥ 0 and for any t ∈ (nβ, (n + 1)β), Ft is the number of descendants at
time t of particles belonging to NF

nβ . We have

((
Ynβ(u), u ∈ NF

nβ

)
, n ≥ 0

) (d)= ((Yn(j), j ≤ N) , n ≥ 0) ,

therefore we can identify these two processes. For any n ∈ N, we introduce the
event ANn = {maxt≤βn Ft ≤ N}. We recall that by Lemma 6.4, we can couple
X and Y in such a way that

∀x ∈ R, #{u ∈ NF
nβ : Ynβ(u) ≥ x} ≤ #{u ∈ NN

nβ : Xnβ(u) ≥ x} a.s. on ANn .

We bound from below the probability for ANn to occur. As P(#L = 0) = 0,
the process F is increasing on each interval (nβ, (n + 1)β). Moreover, observe
that Fβ− is the sum of P i.i.d. random variables, with the same distribution
as #Nβ . This random variable has mean smaller than 1/α and exponential
moments (by (6.4)). By Cramér’s large deviations theorem, there exists ρ < 1
such that P (Fβ− > N) < ρN . Therefore

P(ANn
c) ≤

n−1∑
j=0

P(Fjβ− > N) ≤ nρN . (6.15)

We now construct a particle process Ỹ , based on the F -BRW Y that bounds
from below the N -BRW X. Let nN = (logP )3, we set T0 = 0. For any t ≥ 0,
we write Ñt the set of particles in Ỹ alive at time t and m̃t = min

u∈Ñt
Ỹt(u).

The particle process Ỹ behaves as Y until the waiting time

T1 = min(βnN , T (1)
1 , T

(2)
1 ), where T (1)

1 = inf {t ≥ 0 : Ft ≥ N}

and T
(2)
1 = β inf {n ∈ N : m̃nβ > n(w − χN (1 + η))} .

At time T1, every particle in Ỹ is killed and replaced by P particles positioned
at m̃T1− if FT1 > N (i.e. T1 = T

(1)
1 ) and at position m̃T1 otherwise. Observe

that by Lemma 6.4, in both cases there are at time T1 at least P particles in X
that are to the right of the P newborn particles in Ỹ .

Let k ∈ N, we assume the process Ỹ has been constructed until time Tk.
After this time, it evolves as an F -BRW until time

Tk+1 = min(Tk + βnN , T
(1)
k+1, T

(2)
k+1), where T (1)

k+1 = inf {t ≥ Tk : Ft ≥ N}

and T
(2)
k+1 = Tk + β inf {n ∈ N : m̃Tk+βn − m̃Tk > n(w − χN (1 + η))} .

At time Tk+1, every particle in Ỹ is killed and replaced by P particles positioned
at m̃Tk+1− if FTk+1 > N (i.e. Tk+1 = T

(1)
k+1) and at position m̃Tk+1 otherwise.

By recurrence and the construction of the process, we observe that Ỹ can
be coupled with X in such a way that for any t ≥ 0, we have

∀x ∈ R, #{u ∈ NF
t : Ỹt(u) ≥ x} ≤ #{u ∈ NN

t : Xt(u) ≥ x}.

27



As m̃t ≤ maxu∈NNt Xt(u) for any t > 0 we obtain lim sup
t→+∞

m̃t − tv
t

≤ vN − v.

Moreover, observe that (Tk+1−Tk)k and (m̃Tk+1−m̃Tk)k are i.i.d. sequences.
Consequently, by the law of large numbers we conclude that

E(m̃T1 − T1v)
E(T1) ≤ vN − v.

As a consequence, it is enough to bound from below E(m̃T1 − T1v) to conclude
the proof.

We introduce the event G = {T1 = T
(2)
1 < T

(1)
1 }. By definition of T1,

E(m̃T1 − T1v) ≥ E
(
−T1

β χN (1 + η)1G
)

+ E ((m̃T1− − T1v)1Gc) . (6.16)

Observe that until time T1−, Ỹ behaves as an F -BRW. As a consequence, using
a slight modification of Lemma 6.4, similar to [19, Corollary 4.2], we can couple
Ỹ on [0, T1) with P independent random walks ((Zjt )t, j ≤ P ), that jump at
rate λ according to the law maxL in such a way that

∀t < T1, m̃t ≥ min
j≤P

Zjt := Zt a.s.

In particular E ((m̃T1− − T1v)1Gc) ≥ E
(
(ZT1− − T1v)1Gc

)
. Using the Cauchy-

Schwarz inequality and (6.5), (6.14) and (6.15), we have

E
(
(ZT1− − T1v)1Gc

)2 ≤ E((ZT1− − T1v)2)P (Gc)
≤ P E((ZT1− − T1v)2)P (Gc)

≤ Pn2
N

(
e−P

γ

+ nNρ
N
)

= o
(

(logN)−4
)
.

As a consequence, (6.16) yields

lim inf
N→+∞

(logN)2(vN − v) ≥ lim inf
N→+∞

−(logN)2χN
β

(1 + η) ≥ −π
2θ∗σ2

2β (1 + η).

As ϕ∗ = θ∗ and τ2 = σ2

β , we conclude the proof by letting η → 0.

The last statement of Lemma 6.3 is a combination of Lemmas 6.6 and 6.7.
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graph. Combinatorica, 1(1):1–12, 1981.

[2] D. Aldous and J. Pitman. The asymptotic speed and shape of a particle
system. In Probability, statistics and analysis, volume 79 of London Math.
Soc. Lecture Note Ser., pages 1–23. Cambridge Univ. Press, Cambridge-
New York, 1983.

28
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