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Abstract

The Unified Modeling Language (UML) is the de fastandard for designing models of
software systems in both industry and academia. LUMs many advantages, and is
often the tool of choice when conveying informatibatween various stakeholders.
UML’s main disadvantage is that it is too abstragesulting in ambiguous models. In
safety critical systems, ambiguity could resulthe loss of property or be detrimental to
life. With the continuous use of UML in the softwandustry, there is a need to amend
the informality of software models produced.

The objective of this research is to use formatgmpation to enhance the shortcomings
of UML and analyze its significance to safety cafisystems. The proposed approach is
to design a UML class diagram of a safety critegdtem and remodel it using formal
methods. From this process, an assessment canalle ai the inherent benefits of
formalizing models of safety critical systems.



1. INTRODUCTION

Graphical models of software systems are designetie early phase of the Software
Development Life Cycle (SDLC). In the software ustty, models are important
because they: 1) serve as a blueprint of the pespsegstem, 2) aid in the understanding
of the project, and; 3) act as a guideline for dgwers. The nature of the proposed
system will determine how complex its models wél énd the tactics used to design and
test them. Safety critical systems can be regaeded complex system and models of
complex systems are built because one cannot ctwpdeany such system in its entirety
[1]. Models serve as an abstract view of the sysiad suppress any details pertaining to
implementation. Its purpose is to represent tistesy at a high-level; and in achieving
this level of abstraction, it is possible to oveol or misrepresent critical aspects of the
system. Therefore, it is important that the cdmess of software models be ascertained
at an early stage in the software developmentiitde — especially if these models are of
safety critical systems.

A safety critical system is one in which any lossrosrepresentation of data could result
in injury, loss of lives and/or property. This g&pf system is common in industries such
as:
» Aeronautics:- systems used to regulate the fliglaieoial vehicles,
* Medicine:- systems which diagnose and treat patjent
» Space Exploration: - systems that transport or gudjfe form and objects into
outer-space.

The software development community has recognihedunified Modeling Language
(UML) [1] as the de facto standard for designingpical models of software systems in
both industry and academia. UML has many strongtpo It is technical enough to
model a system’s internal and external compongetssimple enough to explain to non-
technical stakeholders — such as customers. UM.ahavide variety of models and
notations that is intended to equip the develop#r the appropriate tools to capture the
static and dynamic aspects of a system. Its fiyitand object oriented modeling
capability are among the primary reasons for iteptance. However, its weaknesses
have posed many challenges and ambiguity amonga@ftdevelopers.

UML’s disadvantage lies in the lack of rigorouseslland precise semantics when
designing models [3]. For this reason, many deosion how user requirements are
modeled are left to the modeling technique adoptethe software engineer. Ambiguity
is caused when these models are circulated amdtvgase engineers and each interprets
them differently. To overcome prominent limitatoorof UML, formal specification
techniques have been proposed by [4] and are afted to describe and verify models.
Formal methods involve the use of a specificat@mmglage to design models that are
mathematically tractable and unambiguous. To amtiedinformality of graphical
models, model transformation will be done and trenkl models will be analyzed by a
proof tool to check its syntax and semantics. &mprs found will be amended to the
original graphical models; and this process willrbpeated until the proof tool does not
detect any errors in the model. The specificalamguage that will be used is called Z
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(“Zed”) [2]. Z is a notation that is used in dabarg software systems based on the
mathematical principles of set theory and predidaggc. It was created by Jean-
Raymond Abrial [3] in 1977.

This paper encompasses the development of a UMds deagram of a safety critical
system. This aspect of the work was inspired freaearch currently being conducted at
the University of North Dakota (UND). The focus tbkir research is on designing an
air-truth system that acts as a guide for the dgperaf unmanned aerial vehicles (UAVS)
in the US National Airspace [9]. In such systeths, integrity and correctness of data is
crucial to its operation and acceptance by, ndttjus Federal Aviation Administration
(FAA), but by all interested parties. In the reabinsoftware development, no perfect
software development strategy exists. Howeverdifip an optimal approach to a
particular application domain is fundamental toegtance. In the design of safety
critical system, its very nature requires that @tinoal methodology and technique be
sought and applied — especially if a loss in lifgpmperty may occur.

The remainder of the report is as follows; Secttopresents the background research
areas, Section 3 outlines the proposed methoda@ndySection 4 concludes the report.

2. Background

2.1 The Unified Modeling Language

The UML is a language for specifying, visualizingpnstructing, and documenting the
artifacts of software systems [1] and serves dsepbint for software engineers. UML is
an object-oriented modeling language that promaeme of the best software
development practices; and this very quality is agndhe primary reasons for its
acceptance. UML's usefulness is felt in the ephlgise of the software development life
cycle (SDLC) where it is used to depict a high-lexepresentation of the proposed
system.

The UML helps developers to obtain an abstract vidwhe proposed system. This
abstract representation is achieved through thgmes various types of models, which
capture the structure and behavior of the systaitannternal and external components.
Its intent is to facilitate improved communicatiamong members of the development
team as each can comprehend the project as a Wwhfdee dividing the work, and; it
helps developers to identify if user requirementtt ke adequately addressed by the
system. UML is widely accepted because of its oitp, which makes it easily
understood by developers thereby making it easihweyed to their customers [6].



2.1.1 UML Diagrams and Relationships

Diagrams in UML are grouped into the following threategories: structure, behavior,

and interaction diagrams. Structure diagrams sgmethe static composition of the

system [5]. These diagrams illustrate the rol®lgkects and classes — along with their
respective attributes and operations. They alswvdhe flow of data between objects

and classes; and the relationships that exist legtwbem. Examples of structure

diagrams include class, component, object, deployed package diagrams.

Behavior diagrams represent the dynamic featurethefsystem by showing how the

system is acted upon. Behavior diagrams inclu@ecase, activity, and state diagrams.
Interaction diagrams are an extension of behaviagrdms but focuses mainly on the

internal elements of the system. Examples of aut&wn diagrams include sequence and
collaboration diagrams.

Class diagrams and use case diagrams facilitatencmisation between non-technical
stakeholders (i.e. customers) and developers. mnidre complex UML diagrams such as
sequence and state chart diagrams are more technatauitable for astute stakeholders;
such as engineers and developers.

The scope of this paper will be on the static UMbdels — more specifically, the class
diagram. Creation of a new class diagram in UMlgibe with a class. By UML
standards, a class is represented as a rectartgawith three compartments: the class
header, list of attributes, and list of operatiof®r demonstration purposes, classes will
be depicted with two sections: a header and a saped list of attributes and operations.
Figure 1 illustrates a UML class diagram, in whitdte generalization/specialization
relationship is represented, with clas€ésss B andClass C are specialized classes of the
generalized clasSlass A.

Class A

T

Class B Class C

Figure 1: Example of a UML class diagram

In the UML, class diagrams relationships are deplidiy lines that connect two or more
classes. These lines specify the types of relstiips that exist between the classes, the
flow of information, and restrictions on the retatships. Relationships include, but are
not limited to, associations (bidirectional and dirgctional), aggregations (strong and
weak) and hierarchical (generalization/specialargti or parent-child).  Figure 2
illustrates a class diagram with a simple assanaietween class€dass A andClass D,



and an aggregation relationship between claSkes A, Class B, andClass C — Wherein
classClass A is composed of class€sass B andClass C.

Class A Class D

Y

0..n | 1.n
Class B Class C

Figure 2: Example of UML class diagram relationship

2.1.2 Disadvantages of UML

UML, like many other software development toolss s weaknesses. UML lacks

precise semantics, which results in the modelsgosubject to multiple interpretations.

Due to UML's innate flexibility, developers are giv much leeway when designing
models. This is both positive and negative. Tie®dom enables the developer to
capture and model requirements based on the mgdidohnique they have adopted.
Problems arise when these models are circulatech@itihe development team and each
developer interprets the models incorrectly — whiohld affect the latter stages of the
SDLC. Annotations can be used to alleviate thiewéwver, annotations can be

misinterpreted because it is expressed in natangiuage [3].

Another disadvantage is, after the initial stagehaf project, updating models is often
deemed tedious and time-consuming. As a resitigatirchanges are often not reflected
in the model; albeit the source-code reflects th@nge. Therefore, when the software
maintenance is required and developers need tinadtgeneral overview of the project,
the UML models are often inconsistent with the seutode and its significance is lost.

[7]

In some systems, these disadvantages may not hsigaiicant effect on the quality of
software produced. However, in safety criticalteyss a flaw could result in the loss of
property or be detrimental to life. Since UML isdely accepted within the industry,
there is a need for methods to test the correctokegs models. This can be achieved
with the use of formal specification techniquesTE5



2.2 Formal Specification Techniques

Formal specification involves the use of a speatfan language to describe and model
software more accurately. It uses mathematicatepts and principles to model both the
static and dynamic aspects of a system; which teegukoftware models that are not just
sound but tractable. FSTs allow developers toyaeathe syntax and semantics of
models using a proof tool and make any necessagyges in an evolutionary manner.
The specification language that will be used isecbZ. To transform UML models into
Z notation, a Z schema is created for each UMLsglassociation and relationship. The
attributes and operations of the UML class are alstuded in the schema. Constraints
are defined on the relationships between scheniéss prohibits or permits a schema
access to its environs.

A schema in Z has two parts: a declaration ancdigate part [11]. The declaration part
consists of variables which are synonymous to #ieition of attributes in a UML class.
The fundamental difference, however, is that theéabée declaration types are expressed
as mathematical notations unless they are useratkfypes. The predicate part imposes
constraints on the variables defined in the dettarapart. Figure 3 illustrates the
structure of a Z schema.

— Schema Name

Declaration Part

Predicare Part

Figure 3: Example of a Z schema

After the models are transformed into Z notatidreyt will be analyzed by Z/EVES.
Z/EVES is a proof tool which tests the syntax aechantics of the models. This process
is called software testing. Software testing is grocess by which software models
undergo a series of analysis to check for errtirss also used to determine if the quality
of the software produced meets user requiremertsfanperforms as expected — even
under stress. It is impractical for testing toedetall types of errors; and even the most
rigorous testing procedure will, as Edsger Dijksttated, show the presence of bugs but
never their absence [8]. However, it is still imjamt for software models to undergo
testing — especially if they are models of a sateitycal system.

2.3 Model Transformation

The level of abstraction provided by models helpgetbpers and stakeholders visualize
different aspects of the system while avoiding dle¢ails of implementation. For any
given system, a large number of models can exidtitums important to ensure their
overall consistency [10]. Model transformation siseset of rules called transformation



rules, which accepts one or more models as inpipanduce one or more target models
as output [10].

Model transformation can be either manual — i.&nde custom transformation rules; or
it can be automatic — applying predefined transtdrom rules. It is important, however,
that the software engineer have a good understgrafithe scope of the project, the
syntax and semantics of the source and target maaebspective of the transformation
approach taken. In order to automate the propapptbach, transformation rules will be
designed and applied to the models. The sourceeimedll be the UML class diagrams
and the target models will be their equivalent Eesnas.

3. Methodology

There is a plethora of literature in the area ahs$forming UML class diagrams using
FSTs. There are many similarities as well as iffiees in each approach. However,
this research seeks to modify an existing appr@chapply it to a real world system.
This research will also use a theorem prover tofywehe formal models in order to
determine if the approach is sound. From thisyaislone can determine the best way to
automate the formalization of safety critical syste The proposed approach is inspired
collectively by the works of [3],[4] and [11]. Theighlight of their work is on the
advantages and disadvantages of a more formal agpto modeling software systems.
It also demonstrates how to transform UML clasg@imns into formal models using Z.

For the purpose of automating this process, theoagp taken in this methodology is to
define a strict set of sequential rules that -olfolved correctly — will achieve correct

formal models. The fundamental difference betw#sn two approaches is that the
modified approach will be applied as a case stughirst a real world safety critical

system, inspired by research at UND. From thie cstsdy, one can determine the
suitability of automation and the optimality of tapproach taken.

Figure 4 highlights the proposed approach. ImtidaJML class diagrams will be created
for the system. Model transformation will then daglace producing representative
formal models. The formal models will be analyzeihg Z/EVES to check the syntax
and semantics of the models. If errors are fouhey will be documented and
corrections will be made to the original graphicabdels. The corrected models will
undergo model transformation, and the transformedets will be analyzed by the proof
tool; this process will be repeated until errors aot detected by Z/EVES. Subsequently,
programming and code generation can begin.
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Figure 4: The Transformation Process

An example of the UML class diagram which was dagtisrom the real world system is
illustrated in Figure 5. Figure 5 illustrates tAgcraft class as being composed of a
Coordinate class and specialized asMAV (Manned Arial Vehicle) andJAV (Un-

manned Arial Vehicle). These models will be transfed into Z notation then analyzed

by use of the Z/EVES tool; any corrections foundl & amended to the original UML
models.

Coordinate " _Alrc?r:ft_
&5longitude : Double gz’l‘l _Slr']?g > tring
Q)Iatitude : Double 1 Q;air .speeg- nteger

i . .n g _
&Haltitude : Double 1..n Siheading : Integer

[;

MAV UAV
EEMAV_ID : String BEUAV_ID : String
EEMAV _class : String BHUAV _class : String

Figure 5: UAS Aircraft Class Diagram
The set of rules for the model transformation aréHows:

A schema will be created for each of the following:
« Attributes:- The attributes of a class will be goed together. Predicates will be
defined for constraints on each attribute. In Fegh, thelogitude, latitude andaltitude



attributes will be grouped together in a schemhis process will be performed for each
class.

+ Classes:- A schema will be created for each UMEk<lahich will be comprised of
their attribute schema and operations. In Figure@ Schema will be created for the
Coordinate class — which will include its attribute schemBhis process will be applied
to all UML classes.

+ Relationships:- This schema definition pertains ttee different types of
relationships that exists in the class diagramma@beith their respective multiplicities. A
schema will be created for each relationship Figure 5, two relationship schemas will
be defined. One for the aggregate relationship ahe other for the
generalization/specialization relationshipach schema will define additional constraints
on the relationship, such as the multiplicities ascthema ownership rules. The
relationship schema will also define constraintshsas the number of objects that are
allowed to be instantiated in the system at angmivme.

One of the key features of this approach is thegssing of UML annotations. To avoid
ambiguities, software engineers often attach amioos to their graphical models.
However, anything expressed in natural languagenistely subject to multiple
interpretations. Therefore, this work also seekitmalize constraints and annotations
imposed on UML graphical models.

After the formal models are created, they will balsized by use of the Z/EVES theorem
prover. This process is essential for identifymgors and omissions in the original

graphical models. If errors are found, they wél dlocumented for the software engineer
to make changes to the UML models. This procedisbe@irepeated until errors are not

detected in the models. An example of the formadefs produced by the manual

transformation of the graphical model in Figures flustrated below:



[RANGE_OBJECT]
[COORDINATE]
[STRING]

___Aircraft
aircraft: P RANGE_OBJECT

call_sign: RANGE_OBJECT — STRING
air_speed: RANGE_OBJECT — N
heading: RANGE_OBJECT >+~ N

domcall_sign = aircraft

domair_speed = aircraft

domheading = aircraft

V airgpeed: N . airspeed e ranair_speed = airspeed < 250
Vv hdg: N . hdg e ranheading = hdg < 360

____Coordinate
coordinate: P COORDINATE

longitude: P Z

latitude: P 2

altitude: P Z

air_coord: (Z x Z) x Z - COORDINATE

domair_coord = (longitude x latitude) x altitude
V at: altitude . alt < 18000

V lat: latitude - - 90> lat < 90

V lon: longitude - - 180> lon < 180

—__MAV.
Aircraft

mav: P RANGE_OBJECT

mav_ID: F STRING

mav_class: F STRING

aircraft_ID: RANGE_OBJECT — STRING

domaircraft_ID = aircraft
ranaircraft_ID = mav_ID

___UAV
Aircraft

uav: P RANGE_OBJECT

uav_ID: F STRING

uav_class: F STRING

aircraft_ID: RANGE_OBJECT — STRING

domaircraft_ID = aircraft
ranaircraft_ID = uav_ID

__Aircraft_Hierarchy
MAV
UAV
uavl, mavl: P RANGE_OBJECT

Vi,j;MAV. imav ID=jmav ID < i=]j

Vi, j: UAV. juav_ID = juav_ID i =]

V u: uavl; m: mavl. ue aircraft A me aircraft A ue uav A
me mav

mav N uav = &

mav U uav c aircraft

___Aircraft_Coordinate_Rel
Coordinate

Aircraft

rel: COORDINATE < RANGE_OBJECT

Vi, j: Coordinate - i.coordinate = j.coordinate < i =
domrel = coordinate

ranrel = aircraft

Va:aircraft. O<#(rel "({a})) <1

V c: coordinate- # (rel ({c}))>1

Figure 6: UAS Aircraft Z Schemas

The collection of schemas in Figure 6 depicts thienfl model of the class diagram
represented in Figure 5. From the aircraft clasdircraft schema was derived. In the
first half of theAircraft schema, variables were declared, however primidat@ types

were not used.

In the second half of &kiecraft schema, constraints on the variables

were defined; a similar approach was taken foctwdinate class in Figure 5.

The children of the aircraft class, i.e. MAV and WAwhere defined in terms of its
parentAircraft schema. This relationship is shown, where eadd amtludes the parent
schema in the variable declaration part, and inptleelicate part constraints are defined



on the relationship. ThAircraft_Hierarchy schema further constrains this relationship
by describing the uniqueness of the children amit thbjects. A similar approach was
taken for the schema definition of tl@ordinate class and its relationship with the
Aircraft class.

The syntax and semantics of the schemas in Figureré checked by use of the Z/EVES
analysis tool. The proof tool essentially deterdiithe validity of the schemas and their
respective constraints. Any errors found were ataedno both the original graphical
models and the formal models.

The schemas in Figure 6 are cumbersome becauggdbess applied in defining them
did not adhere to the sequence of steps outlinglierea Therefore, the automated
transformation will not only speed up the formatiaa process but also simplify the
schema definitions.

4. Conclusion

In the software development industry, the benefitsformal methods are known.
However, unlike its counterpart graphical moddiss inot quickly gravitated to because
it is not very easy to learn. In order to circaldormal models among the software
development team, each member is required to bpt adenot just the area of formal
methods but the specification language chosen. ttitgmreason, the use of FSTs is not
entertained unless it is deemed absolutely neges3ae such case is in the development
of safety and mission critical systems.

Currently, formalization is conducted manually. dnder to move from research to
productive use of this technique, there has to dmeshigh degree of automation.
Therefore, conducting a case study in the areautin@ated tools for FSTs in safety
critical systems will enlighten researchers ondbmplexity, advantages and possible use
of such software.

In conclusion, the use of FSTs can be advantagevotise development of complex
software systems. FSTs have existed before theeption of UML, its graphical
counterpart. However, unlike UML it does not hdlat high level of simplicity that
makes its models easily conveyed to both techrandl non-technical stakeholders. It
also requires a certain level of detail in ordeexploit its full potential. Therefore, this
case study will determine an optimal approach m dlesign of tools, which automate
FSTs, their advantages and possible use.
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