Formal Specification F28FS2, Lecture 8
Functions

Jamie Gabbay

March 3, 2014

1/16



Functions

Remember: a relation is a set of maplets.
An ordered pair (or maplet) looks like this: 1—2 : N x N.
A relation looks like this {1—2,1—3} : N <+ N (a set of maplets).

If R is a relation then dom(R) is the set
{a: A|3b: Bea—bc R} (‘the set of a related to some b').



Use of functions

Every time we want to assign some information to something else
(e.g. patient ID to patient; have function ID_of (patient)).

Represent programs that compute values deterministically given an
input (or fail, if the function is partial; e.g. 2 % x, v/—1).

Indexes and arrays: map index to array value (a[0], a[1], ...).

Memory: N — (0..7) is a pretty good model of computer memory
(contents_of (cell)).

Pointers (! is a function from a pointer / to a value !/).

Sequences: map natural number to a value, to model infinite lists
(an infinite array is modelled as a function a(0), a(1), a(2), ...).



Functions

A partial function f : A -+ B is a relation f : A <+ B such that
every element of A is related to at most one element of B. In
symbols:

» Va:Ae(Jb:Bea—becf)= (3, b: Beambecf).

“For every a of type A, if there is some b of type B such that
f(a) = b then there is exactly one such b."

»or... Va:Ae(—~db:Bea—bef)V (3 b: Beasbecf).
“For every a of type A, either there are zero b of type B such
that f(a) = b, or there is exactly one such b.”

»or... Va:Ae#{b:B|a—be f} <L
“For every a of type A, the number of b of type B such that
f(a) = b, is at most 1.”

»or... Va:Ae#({a}<f) <1
“For every a of type A, there is at most one tuple in f whose
left-hand side is a.”

4/16



Total functions

A total function f : A — B is such that:

»Va:Aed;b: Bea—bcf.
“For every a of type A there exists exactly one b such that
f(a)=0b"

» or... dom(f) = A.
“The domain of f is equal to the set of elements of type A."

Write f(a) = b for a—b € f. Read this as f of a equals b.
lfVb: Bea—b¢f (i.e. a¢ dom(f)) call £ undefined on a.

5/16



Function overriding

Suppose f,g : A+ B. Define:

fog=
{a—b:Ax B|g(a)=>bV (a¢gdom(g) Af(a) =b)ea—b}

Read f @ g as g, otherwise f. Read the predicate above in detail:

» If g(a) = b then (f ® g)(a) = g(a).
» Otherwise, if f(a) = b then (f & g)(a) = f(a).
» Otherwise, f ® g is undefined at a.

Note: dom(f @ g) = dom(f) Udom(g). Logically equivalently:

fog={a—b:Ax B|(acdom(g) = g(a)=b) A
(a € (dom(f) \ dom(g)) = f(a) = b) e a—b}



Injections, surjections

Call f : A-» B an injection when

» Vb:Be#{a:A|f(a)=b} <1.
For every b of type B, there is at most one a of type A such
that f(a) = b.

» Va,d :Aef(a)=1f(d)=a=4d.
For every a and &’ of type A, if f(a) = f(a’) then a =4’
> Vb:Be#(f>{b}) <1

Another way of reading this: ‘no two elements of A map to the
same element of B'.

An:N.2.nis injective; 2.n = 2.n' implies n = n'.
An:N.2 is not injective; 2 = 2 does not imply n = n’!

Think of an injection as ‘losing no information’.



Injections, surjections
Call f: A+ B a surjection when

» Vb:Be#{a:A|f(a)=0b}>1.
For every b of type B, there is at least one a of type A such
that f(a) = b.

» Vb:Beda:Aef(a)=b.

For every b of type B there is some a of type A such that
f(a) = b.

» range (f) = B (though you may need to define range).
Thus: ‘every element of B is mapped to by something in A’.
An:N.2.nis not surjective; ~dn: Ne2.n=3.

An: N.nis surjective.

A surjection ‘possibly throws away information, but captures all
possible information in B'.



Sequences

Suppose T is any type (e.g. PERSON). Recall
Ny = {x:Z|x>0}.

Write seq T for the type populated by elements in the set

» {f:N;y + T |Vn:N;je(n+tl) € dom(f) = n € dom(f)}.

» or... {f:N;+ T|dom(f) = 1..#dom(f)}. (What's wrong
with this?)

For example, {1—t1} and {1—t;,2—t,3—>t3} are sequences. So
is &.

{21t} and {212, 3 t3} are not sequences.

(Thanks to Ugis for his corrections.)



Nonempty sequences

Write seq; T for the type populated by elements in the set

» {f:seq T |Ja:Aef(a) defined}.
» or... {f:seq T |dom(f) # @}.

For example {1—t;} is a non-empty sequence. @ : A+ B is not a
non-empty sequence — it is the empty sequence.

10/16



Injective sequences

iseq T is the type populated by elements of Ny + T which are
injective; it is the set of sequences of elements of T that do not
repeat.

11/16



Things to do to sequences: restrict them

{1,2} < f is the initial two elements of f (or the first element, or
the empty sequence, depending on f).

{1,3} < f need not be a sequence, unless f consists of at most
two elements.

For example {1,2} < {1—~t1,2—1,3—t3} = {1—1t1, 21}

12/16



Things to do to sequences: overwrite them

f @ g is the sequence which starts as g, and then carries on as f
(if any of f is left).

13/16



Head and tail

If f:seq T then
head(f) = f(1) (‘pop f')
tail(f) = {i—t: Ny x T | f(i + 1) =t} (‘the stack afterwards’).

14 /16



Reverse a sequence

If f:seq T then rev f is the sequence f, reversed.

So (revf)i = f(#dom(f) +1 —1i).

15/16



Concatenate sequences

If f,g:seq T then f ™ g is the sequence f, followed by the
sequence g.

One way to specify this in Z:
frg=FfU{i:Ny|[i<#ge(i+#f)—g(i)}

More on sequences later.

16 /16



