
F28PL1 Programming
Languages

Lecture 11: Standard ML 1

Imperative languages

digital computers are concrete realisations of von Neumann
machines

stored program

memory
● associations between addresses and values

instructions change memory

i.e. change address/value association

order of evaluation is fundamental

changing instruction order changes program meaning

Imperative languages

imperative languages

e.g. Java, C

abstractions from von Neumann machines

variables

associations between names and values

 statements/commands change variables

i.e. changing name/value associations

order of evaluation is fundamental

changing statement order changes program meaning

Imperative languages

program parts communicate by modifying/accessing common
variables

order of modification/access determines final result

e.g. swap x and y

int x=3,y=2; {(x,3),(y,2)}

t=x; {(x,3),(y,2),(t,3)}

x=y; {(x,2),(y,2),(t,3)}

y=t; {(x,2),(y,3),(t,3)}

Imperative languages

exchange first two statements

int x=3,y=2;{(x,3),(y,2)}

x=y; {(x,2),(y,2)}

t=x; {(x,2),(y,2),(t,2)}

y=t; {(x,2),(y,2),(t,2)}

exchange second two statements

int x=3,y=2;{(x,3),(y,2)}

t=x; {(x,3),(y,2),(t,3)}

y=t; {(x,3),(y,3),(t,3)}

x=y; {(x,3),(y,3),(t,3)}

Side effects

change to non-local variables

typically function in expression changes shared
variables

e.g. decrement variable and test for 0

int inc(int * x)

{ return ++(*x); }

inc changes *x as a side effect

Side effects

int inc(int * x)

{ return ++(*x); }

order of use of inc in expresisons
with x crucial

int i = 0;

printf(“%d\n”,inc(&i)+i); ==> 2

printf(“%d\n”,i+inc(&i)); ==> 1

Declarative languages

declarative languages

“describe what is to be done, not how to do it”

logic languages

e.g. Prolog

abstractions from predicate calculus

functional languages

e.g. Standard ML, Haskell

abstractions from lambda calculus/recursive function
theory

Declarative languages

variables

associations between names and values

in pure declarative languages, variables cannot be
modified

i.e. no assignment

program parts cannot interact by modifying shared
variables

no side effects

Declarative languages

Church-Rosser property

evaluation order independence

evaluate program in any order

if program terminates then result always the same

makes proof of declarative program properties easier than for
imperative programs

do not need to build idea of time/order into axioms and rules
for declarative languages

declarative languages good basis for parallelism

easier to identify potential loci of parallelism

Declarative languages

declarative languages are more abstract than imperative
languages relative to von Neumann machines

harder to generate code for declarative languages

declarative language implementations may be less
efficient than for imperative languages

assignment absence requires data structure updating by
copying with changes instead of direct structure
modification

less efficient with large structures

Declarative languages

we will study:

functional language
● Standard ML

declarative language
● Prolog

strong similarities

case definitions, pattern matching, lists, recursion

but fundamental differences:

types; evaluation order; variable binding

Standard ML

modern functional language

originally meta-language for LCF Theorem Prover

i.e. language in which theorems expressed

now widely used for:

teaching

research

high-integrity tools/applications

basis of Microsoft’s F# - part of .NET

SML resources

NJSML for Linux from:

http://www.smlnj.org/

obtain other free SML for Windows and Linux via:

 http://www.smlnj.org/links.html

G. Michaelson, Elementary Standard ML, UCL Press, 1995

free Postscript from: http://www.macs.hw.ac.uk/~greg/books

NB discusses older SML version

http://www.smlnj.org/
http://www.smlnj.org/links.html
http://www.macs.hw.ac.uk/~greg/books

Standard ML

both interpreters and compilers available

SML is really an imperative language with a pure
functional subset

useful for evolutionary prototyping:

develop prototype using pure functional SML

once happy with prototype, introduce imperative
constructs

Running SML

SML program consists of:

sequence of function and type definitions

expressions using functions and types for evaluation

will use New Jersey SML interpreter

to run SML on Linux:
linux00% sml

Standard ML of New Jersey v110.72 [built: Fri May 6 13:06:25 2011]

-

- is SML prompt

Running SML

enter an expression or command or definition

followed by a ;

SML system

evaluates expressions

displays values and types of expression results

- expression;

> value : type

> precedes system output

Running SML

NB some SML systems display:

- expression;

> val it = value : type

it - value of most recently evaluated
expression

we will not use this form

Running SML

system commands are expressions based on
function calls

SML system remembers definitions

displays types of definitions

system will automatically replace old definitions
with new ones

system does not support interactive editing

Running SML

suggested program development cycle:

prepare program in file in one window

run SML system in another window

while program not perfect do

● load program file into SML system
● if errors then

– change program in file & save file
● else

– test program
– if errors then

● change program in file & save file

Running SML

to load file:

- use “file name”;

 file name is any valid file path
enclosed in string quotes “...”

file name convention

SML file names end with .sml

to leave SML

- ^D

Standard ML summary

strong types

i.e. can’t change type associated with variable

static typing

i.e. types checked at compile time

parametric polymorphism

i.e. type variables e.g. Java generics

strict parameter passing

i.e. parameters evaluated before function entry

left to right evaluation

Integers

int - integer type constructor

positive and negative integer values

- 42;

> 42 : int

- ~42;

> ~42 : int

NB ~ - integer unary minus/negation
function

Integers

binary infix operators

+ - add two integers to give integer

- - subtract 2nd integer from 1st to give integer

* - multiply two integers to give integer

div - divide 1st integer by 2nd to give integer

mod - integer remainder after dividing 1st integer by
 2nd

 group operations with (...)

Integers

precedence:

(...) before

~ before

* and div and mod before

+ and -

left to right evaluation order

Integers

can use SML interpreter like a desk calculator

- 3*14;

> 42 : int

- 6*21 div 3;

> 42 : int

- (9+12) div 3 *(12-6);

> 42 : int

- 3*61 mod 47;

> 42 : int

Reals

real - real type constructor

positive/negative floating point and decimal
fractions

- 1.234;

> 1.234 : real

- 5.67E4

> 56700.0 : real

- 891.0E~3;

> 0.891 : real

- ~1.01112;

> ~1.01112 : real

Reals

 numberEinteger == number * 10integer

NB ~ - real unary minus/negation function

binary infix operators

+ - add two reals to give real

- - subtract 2nd reals from 1st to give real

* - multiply two reals to give real

/ - divide 1st real by 2nd to give real

group operations with (...)

Reals

precedence:

(...) before

~ before

* and / before

+ and –

Reals

left to right evaluation order

- 1.4*3E1;

> 42.0 : real

- 4.79*10.0-5.9;

> 42.0 : real

Overloaded operators and
mixed mode arithmetic

~, +, -, and * are overloaded for integers and real

+, -, and * may be applied to two integers only or
two reals only

cannot mix integer and real arithmetic directly

must convert

prefix unary functions:

real - converts integer to real

floor - converts real to integer

 - rounds down

Function calls

functions are prefix:

function argument_expression

strict evaluation

i.e. evaluate argument_expression to get actual
parameter value before entering function

- floor 6.789;

> 6 : int

- real 456;

> 456.0 : real

Function calls

precedence:

(...) before

function call before

operators

- floor 12.3+4;

> 16 : int

- 1.2*real 3+4.5;

> 8.1 real

Function calls

only bracket actual parameter if it is another
expression

- floor (6.7+8.9);

> 15 : int

bracket nested function calls

- real (floor 11.12);

> 11.0 : real

Strings

string - string type constructor

any sequence of characters within “...”

- “hello there”;

> “hello there” : string

escape sequence for non-printing characters

\n - newline

\t - tab

Strings

size - function to return number of
characters in string

- size “hello”;

> 5 : int

^ - binary infix operator to join two
strings

- “milk”^”shake”;

> “milkshake” : string

Characters

char - character type constructor

single character string preceded by #

- #”a”;

> #”a” : char

NB string is not a list of char

Characters

ord - function to convert character to
integer ASCII value

chr - function to convert integer ASCII
value to character

- ord #”a”;

> 97 : int

- chr 48;

> #”0” : char

Booleans

bool - boolean type constructor

true, false - boolean values

- true;

> true : bool

not - unary boolean negation function

- not false;

> true : bool

binary infix operators

andalso - boolean conjunction

orelse - boolean disjunction

Booleans

group operations with(...)

precedence:

(...) before

not before

andalso before

orelse

- true orelse false andalso true;

> true : bool

Booleans

 sequential implementation of andalso and orelse

X andalso Y is false if X is false

 no need to evaluate Y if X is false

X Y X andalso Y

false false false

false true false

true false false

true true true

Booleans

 sequential implementation of andalso and orelse

X orelse Y is true if X is true

 no need to evaluate Y if X is true

X Y X orelse Y

false false false

false true true

true false true

true true true

Booleans

can’t so easily have sequential operators in imperative
languages

X and Y might be function calls

evaluating Y might change a global
variable

side effect

so if Y not evaluated than variable not
changed...

Tuples

fixed size collection of values of varying type

 like the fields of a Java object

(exp1,exp2,...,expN)

- (1,1.0,”one”);

> (1,1.0,”one”) : int * real * string

Tuples

if:

exp1 : type1,... expN : typeN

then:

(exp1,...expN) : type1...* typeN

product type

size of tuple domain is:

size of type1 domain * ... *

 size of typeN domain

Tuples

to select element from tuple:

#index tuple

- #1 (1,1.0,”one”);

> 1 : int

can nest tuples

- ((“Bianca”,”Castafiore”),”singer);

> ((“Bianca”,”Castafiore”),”singer”) :

 (string * string) * string

Tuples

• select from nested tuples with nested selection

- #2 (#1 ((“Cuthbert”,”Calculus”),

 ”inventor”)));

> “Calculus” : string

Comparison

equality type

any type which allows equality testing

all types except real, functions and streams

binary infix operators

= - equality

<> - inequality

both operands must be same type

return a boolean

Comparison

- “banana” <> “banana”;

> false : bool

- (1,”one”) = (1,”won”);

> false : bool

- ((“Captain”,”Haddock”),”sailor”) =

 ((“Captain”,”Haddock”),”sailor”);

> true : bool

Comparison

binary infix order operators

< - less than

<= - less than or equal

> - greater than

>= - greater than or equal

overloaded for integer, real, string and
character

both operands must be same type

return a boolean

Comparison

precedence:

(...) before

function call before

arithmetic operator before

comparison before

boolean operator

- 3*4>5*6;

> false : bool

Comparison

strings compared for alphabetic order

- “ant”<”bee”;

> true : bool

- “anthill”>”ant”;

> true : bool

Comparison

NB not is a function so must bracket a
comparison to negate it

- not 1<2;

> type error - can’t apply not to integer 1

- not (1<2);

> false : bool

	Slide 1
	Imperative languages
	Imperative languages
	Imperative languages
	Imperative languages
	Side effects
	Side effects
	Declarative languages
	Declarative languages
	Declarative languages
	Declarative languages
	Declarative languages
	Standard ML
	SML resources
	Standard ML
	Running SML
	Running SML
	Running SML
	Running SML
	Running SML
	Running SML
	Standard ML summary
	Integers
	Integers
	Integers
	Integers
	Reals
	Reals
	Reals
	Reals
	Overloaded operators and mixed mode arithmetic
	Function calls
	Function calls
	Function calls
	Strings
	Strings
	Characters
	Characters
	Booleans
	Booleans
	Booleans
	Booleans
	Booleans
	Tuples
	Tuples
	Tuples
	Tuples
	Comparison
	Comparison
	Comparison
	Comparison
	Comparison
	Comparison

