
F28PL1 Programming
Languages

Lecture 18: Prolog 3

Lists

• can build any data structure out of Prolog structures

• structures are ad-hoc polymorphic

– i.e. can contain arbitrary mixed types

• special operators provided for lists

[]

• empty list

.

• prefix binary list constructor

.(X,Y)

• list with X as head and Y as tail

Lists

• [...,...] notation like SML

• e.g. .(1,.(2,.(3,[]))) ==> [1,2,3]

• list patterns based on:

– .

– [...,...]

• head/tail match with:

[H|T]

– H matches head

– T matches tail

First N squares

• the first 0 squares are in the empty list
contains

• the first N squares have N2 on the head of the
first N-1 squares

squares(0,[]).

squares(N,[N1|T]) :-

 N1 is N*N,N2 is N-1,squares(N2,T).

| ?- squares(3,L).

L = [9,4,1]

First N squares
• try: squares(3,T)

– try: squares(3,[N1,T’]) :-

 N1 is 3*3,N2 is 3-1,squares(N2,T’)

try: N1 is 3*3 – N1 is 9

try: N2 is 3-1 – N2 is 2

try: squares(2,T’)

• try: squares(2,[N1’|T’’]) :-

• N1’ is 2*2,N2’ is 2-1,

• squares(N2’,T’’)

try: N1’ is 2*2 – N1’ is 4
try: N2’ is 2-1 – N2’ is 1

First N squares
– try: squares(1,T’’)

• try: squares(1,[N1’’|T’’’]) :-
• N1’’ is 1*1,N2’’ is 1-1,
• squares(N2’’,T’’’)

try: N1’’ is 1*1 – N1’’ is 1
try: N2’’ is 1-1 – N2’’ is 0
try: squares(0,T’’’)

• matches: squares(0,[])
• – T’’’ is []

– T’’ is [1|[]] == [1]
– T’ is[4|[1]] == [4,1]

• T is [9|[4,1]] == [9,4,1]

List length

• the length of an empty list is 0

• the length of a non-empty list is one more
than the length of the tail

llength([],0).

llength([_|T],L) :-

 llength(T,L1), L is L1+1.

List length

| ?- llength([a,b,c],L).

L = 3

• try: llength([a,b,c],L) :-

 l([b,c],L1),L is L1+1

– try: llength([b,c],L1)

– try: llength([b,c],L1) :-

– llength([c],L1’),L1 is L1’+1

try: llength([c],L1’)

– try: llength([c],L1’) :-
– llength([],L1’’),
– L1’ is L1’’+1

List length
● try: llength([],L1’’)

● matches: llength([],0) - L1’’
instantiated to 0

● try: L1’ is 0+1 – instantiates L1’ to 1
– try: L1 is 1+1 – instantaites L1 to 2

– try: L is 2+1 – instantiates L to 3

List membership

• is X in a list?

• nothing is in an empty list

• X is in a list whose head is X

• X is in a list if it’s in the tail

contains(_,[]) :- fail.

contains(X,[X|_]).

contains(X,[_|T) :- contains(X,T).

List membership
| ?- contains(3,[1,2,3]).

yes

• try: contains(3,[1,2,3]) :-

 contains(3,[2,3])

– try: contains(3,[2,3])

– try: contains(3,[2,3]) :-

– contains(3,[3])

try: contains(3,[3])
–matches: contains(3,[3|[]])

Search pair list

• list of list of pairs [F,S]

• given F find S

• if F is the head of the first pair then S is
the head of the tail of the first pair

• S is found by looking for F in tail

find(F,[[F,S]|_],S).

find(F,[_|T],S) :- find(F,T,S).

Search pair list

| ?- find(3,[[1,one],[2,two],[3,three]],S).

S = three

• try: find(3,[[1,one],[2,two],[3,three]],S) :-

 find(3,[[2,two],[3,three]],S)

– try: find(3,[[2,two],[3,three],S)

– try: find(3,[[2,two],[3,three],S) :-
find(3,[[3,three],S)

• try: find(3,[[3,three],S)

– matches: find(3,[[3,three]|[]],three)

Ordered list

• an empty list is ordered

• a list with one element is ordered

• a list of more than one element is ordered if the
head comes before the head of the tail and the
tail is ordered

ordered([]).

ordered([A]).

ordered([A|[B|T]]) :- A<B,ordered([B|T]).

Ordered list

| ?- ordered([1,2,4,3]).

no

• try: ordered([1,2,4,3]) :-

 1<2,ordered([2,3,4])

– try: 1<2

– try: ordered([2,4,3])

– try: ordered([2,4,3]) :-

– 2<4,ordered([4,3])

try: 2<4

try: ordered([4,3])

Ordered list

– try: ordered([4,3]) :-
– 4<3,ordered([4])

try: 4<3
• fail

– fail
● fail

– fail

– fail

• fail

List insert

• inserting V into an empty list gives a list with V

• inserting V into a list with a head and a tail:

– gives a list with V on the front of the old list, if V
comes before the old head

– gives a list with the old head on the front of the list
from inserting V into the old tail, otherwise

insert(V,[],[V]).

insert(V,[H|T],[V|[H|T]]) :- V<H.

insert(V,[H|T],[H|T1]) :- insert(V,T,T1).

List insert
| ?- insert(3,[1,2,4],L).

L = [1,2,3,4]

• try: insert(3,[1,2,4],L)

– try: insert(3,[1,2,4],[3|[1|[2,4]]) :- 3<1

– try: 3<1

• fail & backtrack

– try: insert(3,[1,2,4],[1|T1] :-

 insert(3,[2,4],T1)

try: insert(3,[2,4],T1)

• try: insert(3,[2,4],[3|[2|[4]]) :- 3<2

– try: 3<2
• fail & backtrack

List insert
● try: insert(3,[2,4],[2|T1’] :-
● insert(3,[4],T1’)

try: insert(3,[4],T1’)
• try: insert(3,[4],[3|[4|[]]) :-
• 3<4

try: 3<4
T1’ is [3|[4|[]] == [3,4]

– T1 is [2|T1’] == [3,4]] == [2,3,4]

• L is [1|T1] == [1|[2,3,4]] == [1,2,3,4]

List sort

• an empty list is sorted

• a list is sorted when the head is inserted
into the sorted tail

ssort([],[]).

ssort([H|T],L) :-
ssort(T,T1),insert(H,T1,L).

List sort
| ?- sort([3,2,1],L).

L = [1,2,3]

• try: ssort([3,2,1],L)

• try: ssort([3,2,1],L) :-

 ssort([2,1],T1), insert(3,T1,L)

– try: ssort([2,1],T1)

– try: ssort([2,1],T1) :-

– ssort([1],T1’), insert(2,T1’,T1)

try: ssort([1],T1’)

– try: ssort([1],T1’) :-
– ssort([],T1’’),
– insert(1,T1’’,T1’)

List sort
● try: ssort([],T1’’)

• matches: ssort([],[])
• - T1’’ is[]

● try: insert(1,[],T1’)
• succeeds - T1’ is[1]

● try: insert(2,[1],T1)

– succeeds - T1 is [1,2]
– try: insert(1,[1,2],L)

– succeeds - L is[1,2,3]

List to database

• given

 [[1,one],[2,two],[3,three]]

• put:

word(1,one).

word(2,two).

word(3,three)

• in DB

List to database

• for empty list, stop

• for non-empty list with [N,W] in head,
assert word(N,W) and add tail of list to DB

wordsToDB([]).

wordsToDB([[N,W]|T]) :-
assert(word(N,W)),wordsToDB(T).

List to database

| ?- wordsToDB([[1,one],[2,two],[3,three]])

yes

| ? – word(2,X).

X = two

• try: wordsToDB([[1,one],[2,two],[3,three]])

– try: assert(word(1,one)) – word(1,one) now in DB

– try: wordsToDB([[2,two],[3,three]])

• try: assert(word(2,two)) – word(2,two) now in DB

– try: wordsToDB([[3,three]])

• try: assert(word(3,three)) – word(3,three) now in DB
• try: wordsToDB([])

• matches: wordsToDB([])

Database to list

• suppose the database holds facts about people
and their ages:

age(al,18).

age(bea,19).

age(cam,20).

age(deb,21).

• suppose we want to make a list of pairs of
people and their ages

• use the technique for counting database entries

Database to list

• start with an empty list

• initiate search and set P to final list

people(P) :- assert(ages([])),getAges(P).

• for next age fact, add details to list

• at end, get final list

getAges(P) :- age(N,A),getAge(N,A).

getAges(P) :- retract(ages(P)).

Database to list

• to add age detail:

– retract list

– assert list with new detail

– fail without backtracking

getAge(N,A) :-

 retract(ages(P)),

 assert(ages([[N,A]|P])),

 !,fail.

Database to list

| ?- people(L).

L = [[deb,21],[cam,20],[bea,19],[al,18]]

• try: people(L)

– try: people(L) :-

 assert(ages([])),getAges(L)

try: assert(ages([]))

• ages([]) now in DB

try: getAges(L)

• try: getAges(L) :-

• age(N,A),getAge(N,A)

Database to list
– try: age(N,A)

• matches: age(al,18) – N is al and A is 18
– try: getAge(al,18)

• try: getAge(al,18) :-
• retract(ages(P)),
• assert(ages([[al,18]|P])),
• !,fail

try: retract(ages(P))
• matches: ages([]) – P is []

try: assert(ages([[al,18]|[]))
• ages([[al,18]]) now in DB

try: !, fail - backtrack

Database to list
– try: age(N,A)

• matches: age(bea,19) – N is bea and A is 19
– try: getAge(bea,19)

• try: getAge(bea,19) :-
• retract(ages(P)),
• assert(ages([[bea,19]|P])),
• !,fail

try: retract(ages(P))
• matches: ages([[al,18]]) – P is
[[al,18]]

try: assert(ages([[bea,19]|[[al,18]]))
• ages([[bea,19],[al,18]]) now in DB

try: !, fail - backtrack

Database to list
– try: age(N,A)

• matches: age(cam,20) – N is cam and A is 20
– try: getAge(cam,20)

• ...
• ages([[cam,20],[bea,19],[al,18]])
• now in DB
• ...

– try: age(N,A)
• matches: age(deb,21) – N is deb and A is 21

– try: getAge(deb,21)
• ...
• ages([[deb,21],[cam,20],
• [bea,19],[al,18]]) now in DB
• ...

Database to list
– try: age(N,A)

• fails
• ...

● try: getAges(L) :- retract(ages(L))

– L is [[deb,21],[cam,20],[bea,19],[al,18]]

Input/output

• I/O based on streams

• current input stream

– initially terminal

• current output stream

– initially display

Term I/O

read(X)

• instantiate X to next term from current input
stream

• prompt is: |:

• end term with: .

| ?- read(X).

|: hello.

X = hello

• ^D returns end_of_file

Term I/O

write(X)

• display X’s value on current output stream

| ?- write(hello).

hello

yes

| ?-

• value can be any Prolog term

• will be displayed using Prolog syntax

nl

• writes a newline

Term I/O

• continuously send terms from current input to
current output

• check if next term is end_of_file before output

copyTerms1(end_of_file).

copyTerms1(X) :-

 write(X),

 read(Y),

 copyTerms1(Y).

copyTerms :- read(X),copyTerms1(X).

Term I/O

| ?- copyTerms.

|: hello.

hello

|: [1,2,3].

[1,2,3]

|: yellow(banana).

yellow(banana)

|: ^D

yes

Term I/O

• make list of terms from current input stream

• at end_of_file, list is empty

• otherwise, put next term on front of list from getting
rest of terms

getTerms1(end_of_file,[]).

getTerms1(X,[X|L]) :- read(Y),getTerms1(Y,L).

getTerms(L) :- read(X),getTerms1(X,L).

Term I/O

| ?- getTerms(X).

|: time.

|: for.

|: lunch.

|: soon.

|: ^D

X = [time,for,lunch,soon]

Character

• atom with one letter

• e.g. a b c ... z 0 1 ... 9 + - * / ...

• quoted letter or escape character

• e.g. ‘A’ ...’Z’ ‘\n’ ‘\t’

NB:

| ?- a = ‘a’.

yes

• but:

| ?- A = ‘A’.

A = ‘A’

Character I/O

get_char(X)

• instantiate X to next character from
current input

• do not end chracter input with .

put_char(X)

• display value of X as character to current
output

Character I/O

• continuously send characters from current
input to current output

copyChars1(end_of_file).

copyChars1(X) :-

 put_char(X),

 get_char(Y),

 copyChars1(Y).

copyChars :- get_char(X),copyChars1(X).

Character I/O

| ?- copyChars.

|: once upon a time

|: there were three little computers

there were three little computers

|: ^D

yes

Character I/O

• make list of characters from current input
stream

getChars(L) :-
get_char(X),getChars1(X,L).

getChars1(end_of_file,[]).

getChars1(X,[X|L]) :-
get_char(Y),getChars1(Y,L).

File I/O

open(file,mode,X)

• open stream for file in specified mode

• file ==> file path – usually in ‘...’

• mode ==> read or write

• X ==> instantiated to name of stream for
file

File I/O

set_input(X)

• change current input stream to X

set_output(X)

• change current output stream to X

close(X).

• close stream X

File I/O

• copy file to file

copyFile(X,Y) :-

 open(X,read,F1),set_input(F1),

 open(Y,write,F2),set_output(F2),

 copyChars,

 close(F1),close(F2).

| ?- copyFile(‘l18.pl’,l18.pl.copy’).

yes

	Slide 1
	Lists
	Lists
	First N squares
	First N squares
	First N squares
	List length
	List length
	List length
	List membership
	List membership
	Search pair list
	Search pair list
	Ordered list
	Ordered list
	Ordered list
	List insert
	List insert
	List insert
	List sort
	List sort
	List sort
	List to database
	List to database
	List to database
	Database to list
	Database to list
	Database to list
	Database to list
	Database to list
	Database to list
	Database to list
	Database to list
	Input/output
	Term I/O
	Term I/O
	Term I/O
	Term I/O
	Term I/O
	Term I/O
	Character
	Character I/O
	Character I/O
	Character I/O
	Character I/O
	File I/O
	File I/O
	File I/O

