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Lists

• can build any data structure out of Prolog structures

• structures are ad-hoc polymorphic

– i.e. can contain arbitrary mixed types

• special operators provided for lists

[]

• empty list

.

• prefix binary list constructor

.(X,Y) 

• list with X as head and Y as tail



Lists

• [...,...] notation like SML

• e.g. .(1,.(2,.(3,[]))) ==> [1,2,3]

• list patterns based on:

– .

– [...,...]

• head/tail match with:

[H|T]

– H matches head

– T matches tail



First N squares

• the first 0 squares are in the empty list 
contains 

• the first N squares have N2 on the head of the 
first N-1 squares

squares(0,[]).

squares(N,[N1|T]) :- 

 N1 is N*N,N2 is N-1,squares(N2,T).

| ?- squares(3,L).

L = [9,4,1]



First N squares
• try: squares(3,T)

– try: squares(3,[N1,T’]) :- 

      N1 is 3*3,N2 is 3-1,squares(N2,T’)

try: N1 is 3*3 – N1 is 9

try: N2 is 3-1 – N2 is 2

try: squares(2,T’)

• try: squares(2,[N1’|T’’]) :- 

•      N1’ is 2*2,N2’ is 2-1,

•      squares(N2’,T’’)

try: N1’ is 2*2 – N1’ is 4
try: N2’ is 2-1 – N2’ is 1



First N squares
– try: squares(1,T’’)

• try: squares(1,[N1’’|T’’’]) :- 
•      N1’’ is 1*1,N2’’ is 1-1,
•      squares(N2’’,T’’’)

try: N1’’ is 1*1 – N1’’ is 1
try: N2’’ is 1-1 – N2’’ is 0
try: squares(0,T’’’)

• matches: squares(0,[]) 
•   – T’’’ is []

– T’’ is [1|[]] == [1]
– T’ is[4|[1]] == [4,1]

• T is [9|[4,1]] == [9,4,1]



List length

• the length of an empty list is 0

• the length of a non-empty list is one more 
than the length of the tail

llength([],0).

llength([_|T],L) :- 

 llength(T,L1), L is L1+1.



List length

| ?- llength([a,b,c],L).

L = 3

• try: llength([a,b,c],L) :- 

      l([b,c],L1),L is L1+1

– try: llength([b,c],L1)

– try: llength([b,c],L1) :- 

–      llength([c],L1’),L1 is L1’+1

try: llength([c],L1’)

– try: llength([c],L1’) :- 
–      llength([],L1’’),
–      L1’ is L1’’+1



List length
● try: llength([],L1’’)

● matches: llength([],0) - L1’’ 
instantiated to 0

● try: L1’ is 0+1 – instantiates L1’ to 1
– try: L1 is 1+1 – instantaites L1 to 2

– try: L is 2+1 – instantiates L to 3



List membership

• is X in a list?

• nothing is in an empty list

• X is in a list whose head is X

• X is in a list if it’s in the tail

contains(_,[]) :- fail.

contains(X,[X|_]).

contains(X,[_|T) :- contains(X,T).



List membership
| ?- contains(3,[1,2,3]).

yes

• try: contains(3,[1,2,3]) :-           

     contains(3,[2,3])

– try: contains(3,[2,3])

– try: contains(3,[2,3]) :- 

–      contains(3,[3])

try: contains(3,[3])
–matches: contains(3,[3|[]])



Search pair list

• list of list of pairs [F,S]

• given F find S

• if F is the head of the first pair then S is 
the head of the tail of the first pair

• S is found by  looking for F in tail

find(F,[[F,S]|_],S).

find(F,[_|T],S) :- find(F,T,S).



Search pair list

| ?- find(3,[[1,one],[2,two],[3,three]],S).

S = three

• try: find(3,[[1,one],[2,two],[3,three]],S) :- 

      find(3,[[2,two],[3,three]],S)

– try: find(3,[[2,two],[3,three],S)

– try: find(3,[[2,two],[3,three],S) :- 
find(3,[[3,three],S)

• try: find(3,[[3,three],S)

– matches: find(3,[[3,three]|[]],three)



Ordered list

• an empty list is ordered

• a list with one element is ordered

• a list of more than one element is ordered if the 
head comes before the head of the tail and the 
tail is ordered

ordered([]).

ordered([A]).

ordered([A|[B|T]]) :- A<B,ordered([B|T]).



Ordered list

| ?- ordered([1,2,4,3]).

no

• try: ordered([1,2,4,3]) :-  

     1<2,ordered([2,3,4])

– try: 1<2

– try: ordered([2,4,3])

– try: ordered([2,4,3]) :- 

–      2<4,ordered([4,3])

try: 2<4

try: ordered([4,3])



Ordered list

– try: ordered([4,3]) :-
–      4<3,ordered([4])

try: 4<3
• fail

– fail
● fail

– fail

– fail

• fail



List insert

• inserting V into an empty list gives a list with V

• inserting V into a list with a head and a tail:

– gives a list with V on the front of the old list, if V 
comes before the old head 

– gives a list with the old head on the front of the list 
from inserting V into the old tail, otherwise 

insert(V,[],[V]).

insert(V,[H|T],[V|[H|T]]) :- V<H.

insert(V,[H|T],[H|T1]) :- insert(V,T,T1).



List insert
| ?- insert(3,[1,2,4],L).

L = [1,2,3,4]

• try: insert(3,[1,2,4],L)

– try: insert(3,[1,2,4],[3|[1|[2,4]]) :- 3<1

– try: 3<1

• fail & backtrack

– try: insert(3,[1,2,4],[1|T1] :- 

     insert(3,[2,4],T1)

try: insert(3,[2,4],T1)

• try: insert(3,[2,4],[3|[2|[4]]) :- 3<2

– try: 3<2
• fail & backtrack



List insert
● try: insert(3,[2,4],[2|T1’] :- 
●      insert(3,[4],T1’)

try: insert(3,[4],T1’)
• try: insert(3,[4],[3|[4|[]]) :- 
•      3<4

try: 3<4
T1’ is [3|[4|[]] == [3,4]

– T1 is [2|T1’] == [3,4]] == [2,3,4]

• L is [1|T1] == [1|[2,3,4]] == [1,2,3,4]



List sort

• an empty list is sorted

• a list is sorted when the head is inserted 
into the sorted tail

ssort([],[]).

ssort([H|T],L) :- 
ssort(T,T1),insert(H,T1,L).



List sort
| ?- sort([3,2,1],L).

L = [1,2,3]

• try: ssort([3,2,1],L)

• try: ssort([3,2,1],L) :- 

        ssort([2,1],T1), insert(3,T1,L)

– try: ssort([2,1],T1)

– try: ssort([2,1],T1) :- 

–        ssort([1],T1’), insert(2,T1’,T1)

try: ssort([1],T1’)

– try: ssort([1],T1’) :- 
–        ssort([],T1’’),     
–        insert(1,T1’’,T1’)



List sort
● try: ssort([],T1’’)

• matches: ssort([],[]) 
•  - T1’’ is[]

● try: insert(1,[],T1’)
• succeeds - T1’ is[1]

● try: insert(2,[1],T1)

– succeeds - T1 is [1,2]
– try: insert(1,[1,2],L)

– succeeds - L is[1,2,3]



List to database

• given

 [[1,one],[2,two],[3,three]]

• put:

word(1,one).

word(2,two).

word(3,three)

• in DB



List to database

• for empty list, stop

• for non-empty list with [N,W] in head, 
assert word(N,W) and add tail of list to DB

wordsToDB([]).

wordsToDB([[N,W]|T]) :- 
assert(word(N,W)),wordsToDB(T).



List to database

| ?- wordsToDB([[1,one],[2,two],[3,three]])

yes

| ? – word(2,X).

X = two

• try: wordsToDB([[1,one],[2,two],[3,three]])

– try: assert(word(1,one)) – word(1,one) now in DB

– try: wordsToDB([[2,two],[3,three]])

• try: assert(word(2,two)) – word(2,two) now in DB

– try: wordsToDB([[3,three]])

• try: assert(word(3,three)) – word(3,three) now in DB
• try: wordsToDB([])

• matches: wordsToDB([])



Database to list

• suppose the database holds facts about people 
and their ages:

age(al,18).

age(bea,19).

age(cam,20).

age(deb,21).

• suppose we want to make a list of pairs of 
people and their ages

• use the technique for counting database entries



Database to list

• start with an empty list

• initiate search and set P to final list

people(P) :- assert(ages([])),getAges(P).

• for next age fact,  add details to list

• at end, get final list

getAges(P) :- age(N,A),getAge(N,A).

getAges(P) :- retract(ages(P)).



Database to list

• to add age detail:

–  retract list

–  assert list with new detail

–  fail without backtracking

getAge(N,A) :- 

 retract(ages(P)),

 assert(ages([[N,A]|P])),

 !,fail.



Database to list

| ?- people(L).

L = [[deb,21],[cam,20],[bea,19],[al,18]] 

• try: people(L)

– try: people(L) :- 

       assert(ages([])),getAges(L)

try: assert(ages([])) 

• ages([]) now in DB

try: getAges(L)

•  try: getAges(L) :- 

•       age(N,A),getAge(N,A)



Database to list
– try: age(N,A)

• matches: age(al,18) – N is al and A is 18
– try: getAge(al,18)

• try: getAge(al,18) :-  
•      retract(ages(P)),
•      assert(ages([[al,18]|P])),
•      !,fail

try: retract(ages(P))
• matches: ages([]) – P is []

try: assert(ages([[al,18]|[]))
• ages([[al,18]]) now in DB

try: !, fail - backtrack



Database to list
– try: age(N,A)

• matches: age(bea,19) – N is  bea and A is 19
– try: getAge(bea,19)

• try: getAge(bea,19) :-  
•      retract(ages(P)),
•      assert(ages([[bea,19]|P])),
•      !,fail

try: retract(ages(P))
• matches: ages([[al,18]]) – P is 
[[al,18]]

try: assert(ages([[bea,19]|[[al,18]]))
• ages([[bea,19],[al,18]]) now in DB

try: !, fail - backtrack



Database to list
– try: age(N,A)

• matches: age(cam,20) – N is  cam and A is 20
– try: getAge(cam,20)

• ...
• ages([[cam,20],[bea,19],[al,18]]) 
•  now in DB
• ...

– try: age(N,A)
• matches: age(deb,21) – N is  deb and A is 21

– try: getAge(deb,21)
• ...
• ages([[deb,21],[cam,20],
•        [bea,19],[al,18]]) now in DB
• ...



Database to list
– try: age(N,A)

• fails
• ...

● try: getAges(L) :- retract(ages(L))

– L is [[deb,21],[cam,20],[bea,19],[al,18]]



Input/output

• I/O based on streams

• current input stream

– initially terminal

• current output stream

– initially display



Term I/O

read(X)

• instantiate X to next term from current input 
stream

• prompt is: |:

• end term with: .

| ?- read(X).

|:  hello.

X = hello

• ^D returns end_of_file



Term I/O

write(X)

• display X’s value on current output stream

| ?- write(hello).

hello

yes

| ?-

• value can be any Prolog term

• will be displayed using Prolog syntax

nl

• writes a newline



Term I/O

• continuously send terms from current input to 
current output

• check if next term is end_of_file before output

copyTerms1(end_of_file).

copyTerms1(X) :- 

 write(X),

 read(Y),

 copyTerms1(Y). 

copyTerms :- read(X),copyTerms1(X).



Term I/O

| ?- copyTerms.

|: hello.

hello

|: [1,2,3].

[1,2,3]

|: yellow(banana).

yellow(banana)

|: ^D

yes



Term I/O

• make list of terms from current input stream

• at end_of_file, list is empty

• otherwise, put next term on front of list from getting 
rest of terms

getTerms1(end_of_file,[]).

getTerms1(X,[X|L]) :- read(Y),getTerms1(Y,L). 

getTerms(L) :- read(X),getTerms1(X,L).



Term I/O

| ?- getTerms(X).

|: time.

|: for.

|: lunch.

|: soon.

|: ^D

X = [time,for,lunch,soon]



Character

• atom with one letter

• e.g. a b c ... z 0 1 ... 9 + - * / ... 

• quoted letter or escape character

• e.g. ‘A’ ...’Z’ ‘\n’ ‘\t’

NB:

| ?- a = ‘a’.

yes

• but:

| ?- A = ‘A’.

A = ‘A’



Character I/O

get_char(X)

• instantiate X to next character from 
current input

• do not end chracter input with .

put_char(X)

• display value of X as character to current 
output



Character I/O

• continuously send characters from current 
input to current output

copyChars1(end_of_file).

copyChars1(X) :- 

 put_char(X),

 get_char(Y),

 copyChars1(Y). 

copyChars :- get_char(X),copyChars1(X).



Character I/O

| ?- copyChars.

|: once upon a time

|: there were three little computers

there were three little computers

|: ^D

yes



Character I/O

• make list of characters from current input 
stream

getChars(L) :- 
get_char(X),getChars1(X,L).

getChars1(end_of_file,[]).

getChars1(X,[X|L]) :- 
get_char(Y),getChars1(Y,L).



File I/O

open(file,mode,X)

• open stream for file in specified mode

• file ==> file path – usually in ‘...’

• mode ==> read or write

• X ==> instantiated to name of stream for 
file



File I/O

set_input(X)

• change current input stream to X

set_output(X)

• change current output stream to X

close(X).

• close stream X



File I/O

• copy file to file

copyFile(X,Y) :-

 open(X,read,F1),set_input(F1),

 open(Y,write,F2),set_output(F2),

 copyChars,

 close(F1),close(F2).

| ?- copyFile(‘l18.pl’,l18.pl.copy’).

yes
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