
Language Processors F29LP2, Lecture 6

Jamie Gabbay

February 2, 2014

1 / 25

Pushdown automata (PDA)

A pushdown automaton (PDA) is an NFA (non-deterministic finite
automaton) with a stack (i.e. with some memory).

PDAs recognise exactly context-free languages.

A PDA consists of:

I A stack (a string of symbols). The PDA has access only to
the leftmost symbol–the top–of the stack.
During one move of the PDA, the leftmost symbol may be
popped (removed from) or pushed (added to) the top of the
stack.

I Input tape. Input string to be scanned symbol-by-symbol.
ε-moves are also possible.

I Finite state control unit. A non-deterministic finite state
machine whose transitions depend on the input symbol and
the topmost stack symbol.

2 / 25

PDA

Normal moves. Depending on:

(a) the current state of the control unit,

(b) the next input letter, and

(c) the topmost symbol on the stack

the PDA may

(A) change the state,

(B) pop the topmost element from the stack,

(C) push new symbols to the stack, and

(D) move to the next input symbol.

Spontaneous ε-moves don’t have (b) and (D); they don’t use the
input tape.

3 / 25

Example

Consider a PDA to recognise L = {anbn | n ≥ 1}.

It has two states {Sa, Sb} and alphabet with two symbols {A,Z0}.

It starts at Sa with stack containing one symbol Z0, called the
start symbol of the stack.

Moves are summarized in a table:

Top of I n p u t S y m b o l
State stack a b ε

Sa Z0 Push A, stay at Sa — —

Sa A Push A stay at Sa Pop A go to Sb —

Sb A — Pop A stay at Sb —

Sb Z0 — — Pop Z0 stay at Sb

An input word is accepted if the PDA reaches the empty stack
after reading all input symbols.

4 / 25

Instantaneous descriptions (ID)

An ID is a ‘snapshot’ (‘core dump’) of the PDA. It is a triple

(q,w , γ)

where

I q is the state of the PDA,
I w is the remaining input, i.e. the suffix of the original input

that has not been used yet, and
I γ is the content of the stack.

The ID contains all that is needed in subsequent steps of the
computation.

5 / 25

Instantaneous descriptions (ID)

Write
(q1,w1, γ1) ` (q2,w2, γ2)

when a move exists taking the first ID to the second ID.

Write
(q1,w1, γ1) `∗ (q2,w2, γ2)

when a (possibly empty) sequence of moves exists from the first ID
to the second ID.

Write
(q1,w1, γ1) `n (q2,w2, γ2)

when the first ID becomes the second ID in exactly n moves.

6 / 25

Our example: acceptance by empty stack

For example, when accepting input string aaabbb our sample PDA
evolves as follows:

(Sa, aaabbb,Z0) ` (Sa, aabbb,AZ0)
` (Sa, abbb,AAZ0)
` (Sa, bbb,AAAZ0)
` (Sb, bb,AAZ0)
` (Sb, b,AZ0)
` (Sb, ε,Z0)
` (Sb, ε, ε)

The word is accepted when all input letters are consumed and the
end stack is empty.

Call this acceptance by empty stack.

7 / 25

Acceptance by final state

There is another way of defining which words are accepted.

Some states may be called final states, and a word is accepted
when after reading all input letters, the PDA is in an accepting
state.

This is called acceptance by final state.

The two modes of acceptance are equivalent: If there is a PDA
that recognises language L using empty stack then there
(effectively) exists another PDA that recognises L using final
state(s), and vice versa.

8 / 25

Formal definition of a PDA
A pushdown automaton M consists of

(Q,Σ, Γ, δ, q0,Z0,F)

where

I Q is a finite state set,
I Σ is the finite input alphabet,
I Γ is the finite stack alphabet,
I q0 ∈ Q is the initial state,
I Z0 ∈ Γ is the start symbol of the stack,
I F ⊆ Q is the set of final states,
I δ is the transition function from

Q × (Σ ∪ {ε})× Γ

to finite subsets of
Q × Γ∗.

δ(q, a,Z) is a set of possible outcomes; PDAs are
non-deterministic.

9 / 25

Transitions I

The interpretation of executing a transition

(p, γ) ∈ δ(q, a,Z)

(where p, q ∈ Q, a ∈ Σ, Z ∈ Γ, γ ∈ Γ∗) is that

I in state q, reading input letter a, and Z on the top of the
stack, the PDA

I goes to state p, moves to the next input symbol, and replaces
Z by γ on top of the stack. The leftmost symbol of γ will be
the new top of the stack (if γ 6= ε).

In IDs, this means that the move

(q, aw ,Zα) ` (p,w , γα)

is allowed for all w ∈ Σ∗ and α ∈ Γ∗.

10 / 25

Transitions II

The interpretation of executing a transition

(p, γ) ∈ δ(q, ε,Z)

is that

I in state q and Z on the top of the stack, the PDA
I goes to state p and replaces Z by γ on top of the stack. No

input symbol is consumed, and the transition can be used
regardless of the current input symbol.

In terms of IDs, this transition means that the move

(q,w ,Zα) ` (p,w , γα)

is allowed for all w ∈ Σ∗ and α ∈ Γ∗.

11 / 25

Acceptance by empty stack

A word w ∈ Σ∗ is accepted by PDA M by empty stack, when

(q0,w ,Z0) `∗ (q, ε, ε)

for some q ∈ Q. Note that q can be any state, final or non-final.

Write N(M) for the language recognized by PDA M using empty
stack:

N(M) = {w ∈ Σ∗ | ∃q ∈ Q. (q0,w ,Z0) `∗ (q, ε, ε)}.

12 / 25

Acceptance by final state

A word w ∈ Σ∗ is accepted by PDA M by final state, when

(q0,w ,Z0) `∗ (q, ε, γ)

for some q ∈ F , and γ ∈ Γ∗. Note that q has to be a final state
but the stack does not need to be empty.

Write L(M) for the language recognized by PDA M using final
state:

L(M) = {w ∈ Σ∗ | ∃q ∈ F , γ ∈ Γ∗. (q0,w ,Z0) `∗ (q, ε, γ)}.

13 / 25

Examples

Our sample PDA is

M = ({Sa,Sb}, {a, b}, {Z0,A}, δ,Sa,Z0, ∅)

where
δ(Sa, a,Z0) = {(Sa,AZ0)}
δ(Sa, a,A) = {(Sa,AA)}
δ(Sa, b,A) = {(Sb, ε)}
δ(Sb, b,A) = {(Sb, ε)}
δ(Sb, ε,Z0) = {(Sb, ε)}

and all other sets δ(q, a,Z) are empty. It does not matter which
set we choose as the set of final states, since we use acceptance by
empty stack. (Choose, for example F = ∅.) We have

N(M) = {anbn | n ≥ 1}.

14 / 25

Examples

We construct a PDA M such that

N(M) = {w | w ∈ {a, b}∗ and w is a palindrome }.

The PDA reads symbols from the input and pushes them onto the
stack.

At some point it guesses that it is in the middle of the input word,
and starts popping letters from the stack and comparing them
against the following input letters.

If all letters match, and the stack and the input string become
empty at the same time, then the word was a palindrome!

15 / 25

Examples
We define:

M = ({q1, q2}, {a, b}, {Z0,A,B}, δ, q1,Z0, ∅)

where δ is

δ(q1, ε,Z0) = {(q1, ε)}
δ(q1, a,Z0) = {(q1,AZ0), (q2,AZ0), (q2,Z0)}
δ(q1, b,Z0) = {(q1,BZ0), (q2,BZ0), (q2,Z0)}
δ(q1, a,A) = {(q1,AA), (q2,AA), (q2,A)}
δ(q1, b,A) = {(q1,BA), (q2,BA), (q2,A)}
δ(q1, a,B) = {(q1,AB), (q2,AB), (q2,B)}
δ(q1, b,B) = {(q1,BB), (q2,BB), (q2,B)}
δ(q2, b,B) = {(q2, ε)}
δ(q2, a,A) = {(q2, ε)}
δ(q2, ε,Z0) = {(q2, ε)}

State q1 is used in the first half of the input word, state q2 in the
second half.

16 / 25

Examples

The three possible outcomes of some transitions have the following
roles in accepting computations:

I use the first transition, if the input letter is before the end of
the first half of the input word.

I use the second transition, if the input word has even length
and the current input letter is the last letter of the first half,
and

I use the third transition, if the input word has odd length and
the current input letter is exactly in the middle of the input
word.

17 / 25

Examples

For example, the word bab is accepted because

(q1, bab,Z0) ` (q1, ab,BZ0) ` (q2, b,BZ0) ` (q2, ε,Z0) ` (q2, ε, ε),

and the word abba is accepted, because

(q1, abba,Z0) ` (q1, bba,AZ0) ` (q2, ba,BAZ0)

` (q2, a,AZ0) ` (q2, ε,Z0) ` (q2, ε, ε)

18 / 25

Deterministic PDAs

Call a PDA deterministic when every ID has at most one possible
move.

This means that

I if δ(q, ε,Z) is non-empty then δ(q, a,Z) is empty for every
input letter a, and

I All δ(q, a,Z) and δ(q, ε,Z) contain at most one element.

The first condition states that there is no choice between ε-move
and non-ε-move.

If one can make a move without reading an input letter, then that
is the only possible move.

Our first example was deterministic, while the PDA from slide 15 is
non-deterministic.

19 / 25

Deterministic PDAs

Nota bene: There exist languages that are recognised by
non-deterministic PDA but not by any deterministic PDA.
Language

{anbmck | n = m or n = k}

is an example.

This is different from finite automata, where determinism was
equivalent to non-determinism.

Languages that can be recognised by deterministic PDA (using
final states) are called deterministic context-free languages.

20 / 25

Converting a context-free grammar to a PDA

PDAs recognise precisely the context-free languages.

In fact, context-free languages are recognised by PDAs having just
one state.

We illustrate this by showing how a context-free grammar can be
simulated using only the stack.

Consider the grammar G = (V ,T ,P, S) where V = {S},
T = {a, b} and P contains productions

S −→ aSbS | bSaS | ε.

We construct a PDA M that recognises L(G) using empty stack.

The stack symbols of M are the terminals and non-terminals of G .

At all times, the content of the stack is a suffix of a sentential
form by G .

21 / 25

Converting a context-free grammar to a PDA

Initially the stack contains the start symbol of the grammar.

I If the topmost symbol of the stack is a terminal symbol it is
compared against next input letter. If they are identical, the
symbol is popped from the stack and the machine moves to
the next input letter. If they are different the simulation halts.

I If the topmost symbol of the stack is a variable the machine
rewrites it by a righthand side of a production using an
ε-move.

22 / 25

Converting a context-free grammar to a PDA

We get the machine

M = ({q}, {a, b}, {a, b,S}, δ, q,S , ∅)

with δ is defined as follows:

Transitions for terminals on the top of the stack are

δ(q, a, a) = {(q, ε)},
δ(q, a, b) = ∅,
δ(q, b, b) = {(q, ε)},
δ(q, b, a) = ∅,

Transitions for the non-terminal S on top of the stack are

δ(q, ε,S) = {(q, aSbS), (q, bSaS), (q, ε)}.

There are no other transitions.

23 / 25

Converting a context-free grammar to a PDA

This machine simulates leftmost derivations of G on the stack.

Terminals generated on the left end have to match the input.

A non-terminal at the left extreme is rewritten in the stack using a
production of the grammar.

Recall the productions

S −→ aSbS | bSaS | ε

and . . .

24 / 25

Converting a context-free grammar to a PDA
. . . compare the leftmost derivation of aababb on the left,

with the accepting computation on the right:

S =⇒ aSbS
=⇒ aaSbSbS
=⇒ aabSbS
=⇒ aabaSbSbS
=⇒ aababSbS
=⇒ aababbS
=⇒ aababb

(q, aababb,S) ` (q, aababb, aSbS)
` (q, ababb, SbS)
` (q, ababb, aSbSbS)
` (q, babb,SbSbS)
` (q, babb, bSbS)
` (q, abb,SbS)
` (q, abb, aSbSbS)
` (q, bb, SbSbS)
` (q, bb, bSbS)
` (q, b,SbS)
` (q, b, bS)
` (q, ε,S)
` (q, ε, ε).

25 / 25

